pgen.c revision 9ac11a752a19c3b8607582a3d5ccb615c467124b
1/* Parser generator */
2
3/* For a description, see the comments at end of this file */
4
5#include "Python.h"
6#include "pgenheaders.h"
7#include "token.h"
8#include "node.h"
9#include "grammar.h"
10#include "metagrammar.h"
11#include "pgen.h"
12
13extern int Py_DebugFlag;
14extern int Py_IgnoreEnvironmentFlag; /* needed by Py_GETENV */
15
16
17/* PART ONE -- CONSTRUCT NFA -- Cf. Algorithm 3.2 from [Aho&Ullman 77] */
18
19typedef struct _nfaarc {
20    int         ar_label;
21    int         ar_arrow;
22} nfaarc;
23
24typedef struct _nfastate {
25    int         st_narcs;
26    nfaarc      *st_arc;
27} nfastate;
28
29typedef struct _nfa {
30    int                 nf_type;
31    char                *nf_name;
32    int                 nf_nstates;
33    nfastate            *nf_state;
34    int                 nf_start, nf_finish;
35} nfa;
36
37/* Forward */
38static void compile_rhs(labellist *ll,
39                        nfa *nf, node *n, int *pa, int *pb);
40static void compile_alt(labellist *ll,
41                        nfa *nf, node *n, int *pa, int *pb);
42static void compile_item(labellist *ll,
43                         nfa *nf, node *n, int *pa, int *pb);
44static void compile_atom(labellist *ll,
45                         nfa *nf, node *n, int *pa, int *pb);
46
47static int
48addnfastate(nfa *nf)
49{
50    nfastate *st;
51
52    nf->nf_state = (nfastate *)PyObject_REALLOC(nf->nf_state,
53                                sizeof(nfastate) * (nf->nf_nstates + 1));
54    if (nf->nf_state == NULL)
55        Py_FatalError("out of mem");
56    st = &nf->nf_state[nf->nf_nstates++];
57    st->st_narcs = 0;
58    st->st_arc = NULL;
59    return st - nf->nf_state;
60}
61
62static void
63addnfaarc(nfa *nf, int from, int to, int lbl)
64{
65    nfastate *st;
66    nfaarc *ar;
67
68    st = &nf->nf_state[from];
69    st->st_arc = (nfaarc *)PyObject_REALLOC(st->st_arc,
70                                  sizeof(nfaarc) * (st->st_narcs + 1));
71    if (st->st_arc == NULL)
72        Py_FatalError("out of mem");
73    ar = &st->st_arc[st->st_narcs++];
74    ar->ar_label = lbl;
75    ar->ar_arrow = to;
76}
77
78static nfa *
79newnfa(char *name)
80{
81    nfa *nf;
82    static int type = NT_OFFSET; /* All types will be disjunct */
83
84    nf = (nfa *)PyObject_MALLOC(sizeof(nfa));
85    if (nf == NULL)
86        Py_FatalError("no mem for new nfa");
87    nf->nf_type = type++;
88    nf->nf_name = name; /* XXX strdup(name) ??? */
89    nf->nf_nstates = 0;
90    nf->nf_state = NULL;
91    nf->nf_start = nf->nf_finish = -1;
92    return nf;
93}
94
95typedef struct _nfagrammar {
96    int                 gr_nnfas;
97    nfa                 **gr_nfa;
98    labellist           gr_ll;
99} nfagrammar;
100
101/* Forward */
102static void compile_rule(nfagrammar *gr, node *n);
103
104static nfagrammar *
105newnfagrammar(void)
106{
107    nfagrammar *gr;
108
109    gr = (nfagrammar *)PyObject_MALLOC(sizeof(nfagrammar));
110    if (gr == NULL)
111        Py_FatalError("no mem for new nfa grammar");
112    gr->gr_nnfas = 0;
113    gr->gr_nfa = NULL;
114    gr->gr_ll.ll_nlabels = 0;
115    gr->gr_ll.ll_label = NULL;
116    addlabel(&gr->gr_ll, ENDMARKER, "EMPTY");
117    return gr;
118}
119
120static void
121freenfagrammar(nfagrammar *gr)
122{
123    for (int i = 0; i < gr->gr_nnfas; i++) {
124        PyObject_FREE(gr->gr_nfa[i]->nf_state);
125    }
126    PyObject_FREE(gr->gr_nfa);
127    PyObject_FREE(gr);
128}
129
130static nfa *
131addnfa(nfagrammar *gr, char *name)
132{
133    nfa *nf;
134
135    nf = newnfa(name);
136    gr->gr_nfa = (nfa **)PyObject_REALLOC(gr->gr_nfa,
137                                  sizeof(nfa*) * (gr->gr_nnfas + 1));
138    if (gr->gr_nfa == NULL)
139        Py_FatalError("out of mem");
140    gr->gr_nfa[gr->gr_nnfas++] = nf;
141    addlabel(&gr->gr_ll, NAME, nf->nf_name);
142    return nf;
143}
144
145#ifdef Py_DEBUG
146
147static const char REQNFMT[] = "metacompile: less than %d children\n";
148
149#define REQN(i, count) do { \
150    if (i < count) { \
151        fprintf(stderr, REQNFMT, count); \
152        Py_FatalError("REQN"); \
153    } \
154} while (0)
155
156#else
157#define REQN(i, count)  /* empty */
158#endif
159
160static nfagrammar *
161metacompile(node *n)
162{
163    nfagrammar *gr;
164    int i;
165
166    if (Py_DebugFlag)
167        printf("Compiling (meta-) parse tree into NFA grammar\n");
168    gr = newnfagrammar();
169    REQ(n, MSTART);
170    i = n->n_nchildren - 1; /* Last child is ENDMARKER */
171    n = n->n_child;
172    for (; --i >= 0; n++) {
173        if (n->n_type != NEWLINE)
174            compile_rule(gr, n);
175    }
176    return gr;
177}
178
179static void
180compile_rule(nfagrammar *gr, node *n)
181{
182    nfa *nf;
183
184    REQ(n, RULE);
185    REQN(n->n_nchildren, 4);
186    n = n->n_child;
187    REQ(n, NAME);
188    nf = addnfa(gr, n->n_str);
189    n++;
190    REQ(n, COLON);
191    n++;
192    REQ(n, RHS);
193    compile_rhs(&gr->gr_ll, nf, n, &nf->nf_start, &nf->nf_finish);
194    n++;
195    REQ(n, NEWLINE);
196}
197
198static void
199compile_rhs(labellist *ll, nfa *nf, node *n, int *pa, int *pb)
200{
201    int i;
202    int a, b;
203
204    REQ(n, RHS);
205    i = n->n_nchildren;
206    REQN(i, 1);
207    n = n->n_child;
208    REQ(n, ALT);
209    compile_alt(ll, nf, n, pa, pb);
210    if (--i <= 0)
211        return;
212    n++;
213    a = *pa;
214    b = *pb;
215    *pa = addnfastate(nf);
216    *pb = addnfastate(nf);
217    addnfaarc(nf, *pa, a, EMPTY);
218    addnfaarc(nf, b, *pb, EMPTY);
219    for (; --i >= 0; n++) {
220        REQ(n, VBAR);
221        REQN(i, 1);
222        --i;
223        n++;
224        REQ(n, ALT);
225        compile_alt(ll, nf, n, &a, &b);
226        addnfaarc(nf, *pa, a, EMPTY);
227        addnfaarc(nf, b, *pb, EMPTY);
228    }
229}
230
231static void
232compile_alt(labellist *ll, nfa *nf, node *n, int *pa, int *pb)
233{
234    int i;
235    int a, b;
236
237    REQ(n, ALT);
238    i = n->n_nchildren;
239    REQN(i, 1);
240    n = n->n_child;
241    REQ(n, ITEM);
242    compile_item(ll, nf, n, pa, pb);
243    --i;
244    n++;
245    for (; --i >= 0; n++) {
246        REQ(n, ITEM);
247        compile_item(ll, nf, n, &a, &b);
248        addnfaarc(nf, *pb, a, EMPTY);
249        *pb = b;
250    }
251}
252
253static void
254compile_item(labellist *ll, nfa *nf, node *n, int *pa, int *pb)
255{
256    int i;
257    int a, b;
258
259    REQ(n, ITEM);
260    i = n->n_nchildren;
261    REQN(i, 1);
262    n = n->n_child;
263    if (n->n_type == LSQB) {
264        REQN(i, 3);
265        n++;
266        REQ(n, RHS);
267        *pa = addnfastate(nf);
268        *pb = addnfastate(nf);
269        addnfaarc(nf, *pa, *pb, EMPTY);
270        compile_rhs(ll, nf, n, &a, &b);
271        addnfaarc(nf, *pa, a, EMPTY);
272        addnfaarc(nf, b, *pb, EMPTY);
273        REQN(i, 1);
274        n++;
275        REQ(n, RSQB);
276    }
277    else {
278        compile_atom(ll, nf, n, pa, pb);
279        if (--i <= 0)
280            return;
281        n++;
282        addnfaarc(nf, *pb, *pa, EMPTY);
283        if (n->n_type == STAR)
284            *pb = *pa;
285        else
286            REQ(n, PLUS);
287    }
288}
289
290static void
291compile_atom(labellist *ll, nfa *nf, node *n, int *pa, int *pb)
292{
293    int i;
294
295    REQ(n, ATOM);
296    i = n->n_nchildren;
297    (void)i; /* Don't warn about set but unused */
298    REQN(i, 1);
299    n = n->n_child;
300    if (n->n_type == LPAR) {
301        REQN(i, 3);
302        n++;
303        REQ(n, RHS);
304        compile_rhs(ll, nf, n, pa, pb);
305        n++;
306        REQ(n, RPAR);
307    }
308    else if (n->n_type == NAME || n->n_type == STRING) {
309        *pa = addnfastate(nf);
310        *pb = addnfastate(nf);
311        addnfaarc(nf, *pa, *pb, addlabel(ll, n->n_type, n->n_str));
312    }
313    else
314        REQ(n, NAME);
315}
316
317static void
318dumpstate(labellist *ll, nfa *nf, int istate)
319{
320    nfastate *st;
321    int i;
322    nfaarc *ar;
323
324    printf("%c%2d%c",
325        istate == nf->nf_start ? '*' : ' ',
326        istate,
327        istate == nf->nf_finish ? '.' : ' ');
328    st = &nf->nf_state[istate];
329    ar = st->st_arc;
330    for (i = 0; i < st->st_narcs; i++) {
331        if (i > 0)
332            printf("\n    ");
333        printf("-> %2d  %s", ar->ar_arrow,
334            PyGrammar_LabelRepr(&ll->ll_label[ar->ar_label]));
335        ar++;
336    }
337    printf("\n");
338}
339
340static void
341dumpnfa(labellist *ll, nfa *nf)
342{
343    int i;
344
345    printf("NFA '%s' has %d states; start %d, finish %d\n",
346        nf->nf_name, nf->nf_nstates, nf->nf_start, nf->nf_finish);
347    for (i = 0; i < nf->nf_nstates; i++)
348        dumpstate(ll, nf, i);
349}
350
351
352/* PART TWO -- CONSTRUCT DFA -- Algorithm 3.1 from [Aho&Ullman 77] */
353
354static void
355addclosure(bitset ss, nfa *nf, int istate)
356{
357    if (addbit(ss, istate)) {
358        nfastate *st = &nf->nf_state[istate];
359        nfaarc *ar = st->st_arc;
360        int i;
361
362        for (i = st->st_narcs; --i >= 0; ) {
363            if (ar->ar_label == EMPTY)
364                addclosure(ss, nf, ar->ar_arrow);
365            ar++;
366        }
367    }
368}
369
370typedef struct _ss_arc {
371    bitset      sa_bitset;
372    int         sa_arrow;
373    int         sa_label;
374} ss_arc;
375
376typedef struct _ss_state {
377    bitset      ss_ss;
378    int         ss_narcs;
379    struct _ss_arc      *ss_arc;
380    int         ss_deleted;
381    int         ss_finish;
382    int         ss_rename;
383} ss_state;
384
385typedef struct _ss_dfa {
386    int         sd_nstates;
387    ss_state *sd_state;
388} ss_dfa;
389
390/* Forward */
391static void printssdfa(int xx_nstates, ss_state *xx_state, int nbits,
392                       labellist *ll, const char *msg);
393static void simplify(int xx_nstates, ss_state *xx_state);
394static void convert(dfa *d, int xx_nstates, ss_state *xx_state);
395
396static void
397makedfa(nfagrammar *gr, nfa *nf, dfa *d)
398{
399    int nbits = nf->nf_nstates;
400    bitset ss;
401    int xx_nstates;
402    ss_state *xx_state, *yy;
403    ss_arc *zz;
404    int istate, jstate, iarc, jarc, ibit;
405    nfastate *st;
406    nfaarc *ar;
407
408    ss = newbitset(nbits);
409    addclosure(ss, nf, nf->nf_start);
410    xx_state = (ss_state *)PyObject_MALLOC(sizeof(ss_state));
411    if (xx_state == NULL)
412        Py_FatalError("no mem for xx_state in makedfa");
413    xx_nstates = 1;
414    yy = &xx_state[0];
415    yy->ss_ss = ss;
416    yy->ss_narcs = 0;
417    yy->ss_arc = NULL;
418    yy->ss_deleted = 0;
419    yy->ss_finish = testbit(ss, nf->nf_finish);
420    if (yy->ss_finish)
421        printf("Error: nonterminal '%s' may produce empty.\n",
422            nf->nf_name);
423
424    /* This algorithm is from a book written before
425       the invention of structured programming... */
426
427    /* For each unmarked state... */
428    for (istate = 0; istate < xx_nstates; ++istate) {
429        size_t size;
430        yy = &xx_state[istate];
431        ss = yy->ss_ss;
432        /* For all its states... */
433        for (ibit = 0; ibit < nf->nf_nstates; ++ibit) {
434            if (!testbit(ss, ibit))
435                continue;
436            st = &nf->nf_state[ibit];
437            /* For all non-empty arcs from this state... */
438            for (iarc = 0; iarc < st->st_narcs; iarc++) {
439                ar = &st->st_arc[iarc];
440                if (ar->ar_label == EMPTY)
441                    continue;
442                /* Look up in list of arcs from this state */
443                for (jarc = 0; jarc < yy->ss_narcs; ++jarc) {
444                    zz = &yy->ss_arc[jarc];
445                    if (ar->ar_label == zz->sa_label)
446                        goto found;
447                }
448                /* Add new arc for this state */
449                size = sizeof(ss_arc) * (yy->ss_narcs + 1);
450                yy->ss_arc = (ss_arc *)PyObject_REALLOC(
451                                            yy->ss_arc, size);
452                if (yy->ss_arc == NULL)
453                    Py_FatalError("out of mem");
454                zz = &yy->ss_arc[yy->ss_narcs++];
455                zz->sa_label = ar->ar_label;
456                zz->sa_bitset = newbitset(nbits);
457                zz->sa_arrow = -1;
458             found:             ;
459                /* Add destination */
460                addclosure(zz->sa_bitset, nf, ar->ar_arrow);
461            }
462        }
463        /* Now look up all the arrow states */
464        for (jarc = 0; jarc < xx_state[istate].ss_narcs; jarc++) {
465            zz = &xx_state[istate].ss_arc[jarc];
466            for (jstate = 0; jstate < xx_nstates; jstate++) {
467                if (samebitset(zz->sa_bitset,
468                    xx_state[jstate].ss_ss, nbits)) {
469                    zz->sa_arrow = jstate;
470                    goto done;
471                }
472            }
473            size = sizeof(ss_state) * (xx_nstates + 1);
474            xx_state = (ss_state *)PyObject_REALLOC(xx_state,
475                                                        size);
476            if (xx_state == NULL)
477                Py_FatalError("out of mem");
478            zz->sa_arrow = xx_nstates;
479            yy = &xx_state[xx_nstates++];
480            yy->ss_ss = zz->sa_bitset;
481            yy->ss_narcs = 0;
482            yy->ss_arc = NULL;
483            yy->ss_deleted = 0;
484            yy->ss_finish = testbit(yy->ss_ss, nf->nf_finish);
485         done:          ;
486        }
487    }
488
489    if (Py_DebugFlag)
490        printssdfa(xx_nstates, xx_state, nbits, &gr->gr_ll,
491                                        "before minimizing");
492
493    simplify(xx_nstates, xx_state);
494
495    if (Py_DebugFlag)
496        printssdfa(xx_nstates, xx_state, nbits, &gr->gr_ll,
497                                        "after minimizing");
498
499    convert(d, xx_nstates, xx_state);
500
501    for (int i = 0; i < xx_nstates; i++) {
502        for (int j = 0; j < xx_state[i].ss_narcs; j++)
503            delbitset(xx_state[i].ss_arc[j].sa_bitset);
504        PyObject_FREE(xx_state[i].ss_arc);
505    }
506    PyObject_FREE(xx_state);
507}
508
509static void
510printssdfa(int xx_nstates, ss_state *xx_state, int nbits,
511           labellist *ll, const char *msg)
512{
513    int i, ibit, iarc;
514    ss_state *yy;
515    ss_arc *zz;
516
517    printf("Subset DFA %s\n", msg);
518    for (i = 0; i < xx_nstates; i++) {
519        yy = &xx_state[i];
520        if (yy->ss_deleted)
521            continue;
522        printf(" Subset %d", i);
523        if (yy->ss_finish)
524            printf(" (finish)");
525        printf(" { ");
526        for (ibit = 0; ibit < nbits; ibit++) {
527            if (testbit(yy->ss_ss, ibit))
528                printf("%d ", ibit);
529        }
530        printf("}\n");
531        for (iarc = 0; iarc < yy->ss_narcs; iarc++) {
532            zz = &yy->ss_arc[iarc];
533            printf("  Arc to state %d, label %s\n",
534                zz->sa_arrow,
535                PyGrammar_LabelRepr(
536                    &ll->ll_label[zz->sa_label]));
537        }
538    }
539}
540
541
542/* PART THREE -- SIMPLIFY DFA */
543
544/* Simplify the DFA by repeatedly eliminating states that are
545   equivalent to another oner.  This is NOT Algorithm 3.3 from
546   [Aho&Ullman 77].  It does not always finds the minimal DFA,
547   but it does usually make a much smaller one...  (For an example
548   of sub-optimal behavior, try S: x a b+ | y a b+.)
549*/
550
551static int
552samestate(ss_state *s1, ss_state *s2)
553{
554    int i;
555
556    if (s1->ss_narcs != s2->ss_narcs || s1->ss_finish != s2->ss_finish)
557        return 0;
558    for (i = 0; i < s1->ss_narcs; i++) {
559        if (s1->ss_arc[i].sa_arrow != s2->ss_arc[i].sa_arrow ||
560            s1->ss_arc[i].sa_label != s2->ss_arc[i].sa_label)
561            return 0;
562    }
563    return 1;
564}
565
566static void
567renamestates(int xx_nstates, ss_state *xx_state, int from, int to)
568{
569    int i, j;
570
571    if (Py_DebugFlag)
572        printf("Rename state %d to %d.\n", from, to);
573    for (i = 0; i < xx_nstates; i++) {
574        if (xx_state[i].ss_deleted)
575            continue;
576        for (j = 0; j < xx_state[i].ss_narcs; j++) {
577            if (xx_state[i].ss_arc[j].sa_arrow == from)
578                xx_state[i].ss_arc[j].sa_arrow = to;
579        }
580    }
581}
582
583static void
584simplify(int xx_nstates, ss_state *xx_state)
585{
586    int changes;
587    int i, j;
588
589    do {
590        changes = 0;
591        for (i = 1; i < xx_nstates; i++) {
592            if (xx_state[i].ss_deleted)
593                continue;
594            for (j = 0; j < i; j++) {
595                if (xx_state[j].ss_deleted)
596                    continue;
597                if (samestate(&xx_state[i], &xx_state[j])) {
598                    xx_state[i].ss_deleted++;
599                    renamestates(xx_nstates, xx_state,
600                                 i, j);
601                    changes++;
602                    break;
603                }
604            }
605        }
606    } while (changes);
607}
608
609
610/* PART FOUR -- GENERATE PARSING TABLES */
611
612/* Convert the DFA into a grammar that can be used by our parser */
613
614static void
615convert(dfa *d, int xx_nstates, ss_state *xx_state)
616{
617    int i, j;
618    ss_state *yy;
619    ss_arc *zz;
620
621    for (i = 0; i < xx_nstates; i++) {
622        yy = &xx_state[i];
623        if (yy->ss_deleted)
624            continue;
625        yy->ss_rename = addstate(d);
626    }
627
628    for (i = 0; i < xx_nstates; i++) {
629        yy = &xx_state[i];
630        if (yy->ss_deleted)
631            continue;
632        for (j = 0; j < yy->ss_narcs; j++) {
633            zz = &yy->ss_arc[j];
634            addarc(d, yy->ss_rename,
635                xx_state[zz->sa_arrow].ss_rename,
636                zz->sa_label);
637        }
638        if (yy->ss_finish)
639            addarc(d, yy->ss_rename, yy->ss_rename, 0);
640    }
641
642    d->d_initial = 0;
643}
644
645
646/* PART FIVE -- GLUE IT ALL TOGETHER */
647
648static grammar *
649maketables(nfagrammar *gr)
650{
651    int i;
652    nfa *nf;
653    dfa *d;
654    grammar *g;
655
656    if (gr->gr_nnfas == 0)
657        return NULL;
658    g = newgrammar(gr->gr_nfa[0]->nf_type);
659                    /* XXX first rule must be start rule */
660    g->g_ll = gr->gr_ll;
661
662    for (i = 0; i < gr->gr_nnfas; i++) {
663        nf = gr->gr_nfa[i];
664        if (Py_DebugFlag) {
665            printf("Dump of NFA for '%s' ...\n", nf->nf_name);
666            dumpnfa(&gr->gr_ll, nf);
667            printf("Making DFA for '%s' ...\n", nf->nf_name);
668        }
669        d = adddfa(g, nf->nf_type, nf->nf_name);
670        makedfa(gr, gr->gr_nfa[i], d);
671    }
672
673    return g;
674}
675
676grammar *
677pgen(node *n)
678{
679    nfagrammar *gr;
680    grammar *g;
681
682    gr = metacompile(n);
683    g = maketables(gr);
684    translatelabels(g);
685    addfirstsets(g);
686    freenfagrammar(gr);
687    return g;
688}
689
690grammar *
691Py_pgen(node *n)
692{
693  return pgen(n);
694}
695
696/*
697
698Description
699-----------
700
701Input is a grammar in extended BNF (using * for repetition, + for
702at-least-once repetition, [] for optional parts, | for alternatives and
703() for grouping).  This has already been parsed and turned into a parse
704tree.
705
706Each rule is considered as a regular expression in its own right.
707It is turned into a Non-deterministic Finite Automaton (NFA), which
708is then turned into a Deterministic Finite Automaton (DFA), which is then
709optimized to reduce the number of states.  See [Aho&Ullman 77] chapter 3,
710or similar compiler books (this technique is more often used for lexical
711analyzers).
712
713The DFA's are used by the parser as parsing tables in a special way
714that's probably unique.  Before they are usable, the FIRST sets of all
715non-terminals are computed.
716
717Reference
718---------
719
720[Aho&Ullman 77]
721    Aho&Ullman, Principles of Compiler Design, Addison-Wesley 1977
722    (first edition)
723
724*/
725