SkRefCnt.h revision 5f939ab658a228dce34a3b14a545638407150b92
1/*
2 * Copyright 2006 The Android Open Source Project
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8#ifndef SkRefCnt_DEFINED
9#define SkRefCnt_DEFINED
10
11#include "../private/SkAtomics.h"
12#include "../private/SkTLogic.h"
13#include "SkTypes.h"
14#include <functional>
15#include <memory>
16#include <utility>
17
18#define SK_SUPPORT_TRANSITION_TO_SP_INTERFACES
19
20/** \class SkRefCntBase
21
22    SkRefCntBase is the base class for objects that may be shared by multiple
23    objects. When an existing owner wants to share a reference, it calls ref().
24    When an owner wants to release its reference, it calls unref(). When the
25    shared object's reference count goes to zero as the result of an unref()
26    call, its (virtual) destructor is called. It is an error for the
27    destructor to be called explicitly (or via the object going out of scope on
28    the stack or calling delete) if getRefCnt() > 1.
29*/
30class SK_API SkRefCntBase : SkNoncopyable {
31public:
32    /** Default construct, initializing the reference count to 1.
33    */
34    SkRefCntBase() : fRefCnt(1) {}
35
36    /** Destruct, asserting that the reference count is 1.
37    */
38    virtual ~SkRefCntBase() {
39#ifdef SK_DEBUG
40        SkASSERTF(fRefCnt == 1, "fRefCnt was %d", fRefCnt);
41        fRefCnt = 0;    // illegal value, to catch us if we reuse after delete
42#endif
43    }
44
45#ifdef SK_DEBUG
46    /** Return the reference count. Use only for debugging. */
47    int32_t getRefCnt() const { return fRefCnt; }
48#endif
49
50    /** May return true if the caller is the only owner.
51     *  Ensures that all previous owner's actions are complete.
52     */
53    bool unique() const {
54        if (1 == sk_atomic_load(&fRefCnt, sk_memory_order_acquire)) {
55            // The acquire barrier is only really needed if we return true.  It
56            // prevents code conditioned on the result of unique() from running
57            // until previous owners are all totally done calling unref().
58            return true;
59        }
60        return false;
61    }
62
63    /** Increment the reference count. Must be balanced by a call to unref().
64    */
65    void ref() const {
66#ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK
67        // Android employs some special subclasses that enable the fRefCnt to
68        // go to zero, but not below, prior to reusing the object.  This breaks
69        // the use of unique() on such objects and as such should be removed
70        // once the Android code is fixed.
71        SkASSERT(fRefCnt >= 0);
72#else
73        SkASSERT(fRefCnt > 0);
74#endif
75        (void)sk_atomic_fetch_add(&fRefCnt, +1, sk_memory_order_relaxed);  // No barrier required.
76    }
77
78    /** Decrement the reference count. If the reference count is 1 before the
79        decrement, then delete the object. Note that if this is the case, then
80        the object needs to have been allocated via new, and not on the stack.
81    */
82    void unref() const {
83        SkASSERT(fRefCnt > 0);
84        // A release here acts in place of all releases we "should" have been doing in ref().
85        if (1 == sk_atomic_fetch_add(&fRefCnt, -1, sk_memory_order_acq_rel)) {
86            // Like unique(), the acquire is only needed on success, to make sure
87            // code in internal_dispose() doesn't happen before the decrement.
88            this->internal_dispose();
89        }
90    }
91
92#ifdef SK_DEBUG
93    void validate() const {
94        SkASSERT(fRefCnt > 0);
95    }
96#endif
97
98protected:
99    /**
100     *  Allow subclasses to call this if they've overridden internal_dispose
101     *  so they can reset fRefCnt before the destructor is called. Should only
102     *  be called right before calling through to inherited internal_dispose()
103     *  or before calling the destructor.
104     */
105    void internal_dispose_restore_refcnt_to_1() const {
106#ifdef SK_DEBUG
107        SkASSERT(0 == fRefCnt);
108        fRefCnt = 1;
109#endif
110    }
111
112private:
113    /**
114     *  Called when the ref count goes to 0.
115     */
116    virtual void internal_dispose() const {
117        this->internal_dispose_restore_refcnt_to_1();
118        delete this;
119    }
120
121    // The following friends are those which override internal_dispose()
122    // and conditionally call SkRefCnt::internal_dispose().
123    friend class SkWeakRefCnt;
124
125    mutable int32_t fRefCnt;
126
127    typedef SkNoncopyable INHERITED;
128};
129
130#ifdef SK_REF_CNT_MIXIN_INCLUDE
131// It is the responsibility of the following include to define the type SkRefCnt.
132// This SkRefCnt should normally derive from SkRefCntBase.
133#include SK_REF_CNT_MIXIN_INCLUDE
134#else
135class SK_API SkRefCnt : public SkRefCntBase { };
136#endif
137
138///////////////////////////////////////////////////////////////////////////////
139
140/** Helper macro to safely assign one SkRefCnt[TS]* to another, checking for
141    null in on each side of the assignment, and ensuring that ref() is called
142    before unref(), in case the two pointers point to the same object.
143 */
144#define SkRefCnt_SafeAssign(dst, src)   \
145    do {                                \
146        if (src) src->ref();            \
147        if (dst) dst->unref();          \
148        dst = src;                      \
149    } while (0)
150
151
152/** Call obj->ref() and return obj. The obj must not be nullptr.
153 */
154template <typename T> static inline T* SkRef(T* obj) {
155    SkASSERT(obj);
156    obj->ref();
157    return obj;
158}
159
160/** Check if the argument is non-null, and if so, call obj->ref() and return obj.
161 */
162template <typename T> static inline T* SkSafeRef(T* obj) {
163    if (obj) {
164        obj->ref();
165    }
166    return obj;
167}
168
169/** Check if the argument is non-null, and if so, call obj->unref()
170 */
171template <typename T> static inline void SkSafeUnref(T* obj) {
172    if (obj) {
173        obj->unref();
174    }
175}
176
177template<typename T> static inline void SkSafeSetNull(T*& obj) {
178    if (obj) {
179        obj->unref();
180        obj = nullptr;
181    }
182}
183
184///////////////////////////////////////////////////////////////////////////////
185
186template <typename T> struct SkTUnref {
187    void operator()(T* t) { t->unref(); }
188};
189
190/**
191 *  Utility class that simply unref's its argument in the destructor.
192 */
193template <typename T> class SkAutoTUnref : public std::unique_ptr<T, SkTUnref<T>> {
194public:
195    explicit SkAutoTUnref(T* obj = nullptr) : std::unique_ptr<T, SkTUnref<T>>(obj) {}
196
197    T* detach() { return this->release(); }
198    operator T*() const { return this->get(); }
199
200    // Android's std::unique_ptr's operator bool() is sometimes not explicit...
201    // so override it with our own explcitly explicit version.
202    explicit operator bool() const { return this->get() != nullptr; }
203};
204// Can't use the #define trick below to guard a bare SkAutoTUnref(...) because it's templated. :(
205
206class SkAutoUnref : public SkAutoTUnref<SkRefCnt> {
207public:
208    SkAutoUnref(SkRefCnt* obj) : SkAutoTUnref<SkRefCnt>(obj) {}
209};
210#define SkAutoUnref(...) SK_REQUIRE_LOCAL_VAR(SkAutoUnref)
211
212// This is a variant of SkRefCnt that's Not Virtual, so weighs 4 bytes instead of 8 or 16.
213// There's only benefit to using this if the deriving class does not otherwise need a vtable.
214template <typename Derived>
215class SkNVRefCnt : SkNoncopyable {
216public:
217    SkNVRefCnt() : fRefCnt(1) {}
218    ~SkNVRefCnt() { SkASSERTF(1 == fRefCnt, "NVRefCnt was %d", fRefCnt); }
219
220    // Implementation is pretty much the same as SkRefCntBase. All required barriers are the same:
221    //   - unique() needs acquire when it returns true, and no barrier if it returns false;
222    //   - ref() doesn't need any barrier;
223    //   - unref() needs a release barrier, and an acquire if it's going to call delete.
224
225    bool unique() const { return 1 == sk_atomic_load(&fRefCnt, sk_memory_order_acquire); }
226    void    ref() const { (void)sk_atomic_fetch_add(&fRefCnt, +1, sk_memory_order_relaxed); }
227    void  unref() const {
228        if (1 == sk_atomic_fetch_add(&fRefCnt, -1, sk_memory_order_acq_rel)) {
229            SkDEBUGCODE(fRefCnt = 1;)  // restore the 1 for our destructor's assert
230            delete (const Derived*)this;
231        }
232    }
233    void  deref() const { this->unref(); }
234
235private:
236    mutable int32_t fRefCnt;
237};
238
239///////////////////////////////////////////////////////////////////////////////////////////////////
240
241/**
242 *  Shared pointer class to wrap classes that support a ref()/unref() interface.
243 *
244 *  This can be used for classes inheriting from SkRefCnt, but it also works for other
245 *  classes that match the interface, but have different internal choices: e.g. the hosted class
246 *  may have its ref/unref be thread-safe, but that is not assumed/imposed by sk_sp.
247 */
248template <typename T> class sk_sp {
249    /** Supports safe bool idiom. Obsolete with explicit operator bool. */
250    using unspecified_bool_type = T* sk_sp::*;
251public:
252    using element_type = T;
253
254    sk_sp() : fPtr(nullptr) {}
255    sk_sp(std::nullptr_t) : fPtr(nullptr) {}
256
257    /**
258     *  Shares the underlying object by calling ref(), so that both the argument and the newly
259     *  created sk_sp both have a reference to it.
260     */
261    sk_sp(const sk_sp<T>& that) : fPtr(SkSafeRef(that.get())) {}
262    template <typename U, typename = skstd::enable_if_t<skstd::is_convertible<U*, T*>::value>>
263    sk_sp(const sk_sp<U>& that) : fPtr(SkSafeRef(that.get())) {}
264
265    /**
266     *  Move the underlying object from the argument to the newly created sk_sp. Afterwards only
267     *  the new sk_sp will have a reference to the object, and the argument will point to null.
268     *  No call to ref() or unref() will be made.
269     */
270    sk_sp(sk_sp<T>&& that) : fPtr(that.release()) {}
271    template <typename U, typename = skstd::enable_if_t<skstd::is_convertible<U*, T*>::value>>
272    sk_sp(sk_sp<U>&& that) : fPtr(that.release()) {}
273
274    /**
275     *  Adopt the bare pointer into the newly created sk_sp.
276     *  No call to ref() or unref() will be made.
277     */
278    explicit sk_sp(T* obj) : fPtr(obj) {}
279
280    /**
281     *  Calls unref() on the underlying object pointer.
282     */
283    ~sk_sp() {
284        SkSafeUnref(fPtr);
285        SkDEBUGCODE(fPtr = nullptr);
286    }
287
288    sk_sp<T>& operator=(std::nullptr_t) { this->reset(); return *this; }
289
290    /**
291     *  Shares the underlying object referenced by the argument by calling ref() on it. If this
292     *  sk_sp previously had a reference to an object (i.e. not null) it will call unref() on that
293     *  object.
294     */
295    sk_sp<T>& operator=(const sk_sp<T>& that) {
296        this->reset(SkSafeRef(that.get()));
297        return *this;
298    }
299    template <typename U, typename = skstd::enable_if_t<skstd::is_convertible<U*, T*>::value>>
300    sk_sp<T>& operator=(const sk_sp<U>& that) {
301        this->reset(SkSafeRef(that.get()));
302        return *this;
303    }
304
305    /**
306     *  Move the underlying object from the argument to the sk_sp. If the sk_sp previously held
307     *  a reference to another object, unref() will be called on that object. No call to ref()
308     *  will be made.
309     */
310    sk_sp<T>& operator=(sk_sp<T>&& that) {
311        this->reset(that.release());
312        return *this;
313    }
314    template <typename U, typename = skstd::enable_if_t<skstd::is_convertible<U*, T*>::value>>
315    sk_sp<T>& operator=(sk_sp<U>&& that) {
316        this->reset(that.release());
317        return *this;
318    }
319
320    T& operator*() const {
321        SkASSERT(this->get() != nullptr);
322        return *this->get();
323    }
324
325    // MSVC 2013 does not work correctly with explicit operator bool.
326    // https://chromium-cpp.appspot.com/#core-blacklist
327    // When explicit operator bool can be used, remove operator! and operator unspecified_bool_type.
328    //explicit operator bool() const { return this->get() != nullptr; }
329    operator unspecified_bool_type() const { return this->get() ? &sk_sp::fPtr : nullptr; }
330    bool operator!() const { return this->get() == nullptr; }
331
332    T* get() const { return fPtr; }
333    T* operator->() const { return fPtr; }
334
335    /**
336     *  Adopt the new bare pointer, and call unref() on any previously held object (if not null).
337     *  No call to ref() will be made.
338     */
339    void reset(T* ptr = nullptr) {
340        // Calling fPtr->unref() may call this->~() or this->reset(T*).
341        // http://wg21.cmeerw.net/lwg/issue998
342        // http://wg21.cmeerw.net/lwg/issue2262
343        T* oldPtr = fPtr;
344        fPtr = ptr;
345        SkSafeUnref(oldPtr);
346    }
347
348    /**
349     *  Return the bare pointer, and set the internal object pointer to nullptr.
350     *  The caller must assume ownership of the object, and manage its reference count directly.
351     *  No call to unref() will be made.
352     */
353    T* SK_WARN_UNUSED_RESULT release() {
354        T* ptr = fPtr;
355        fPtr = nullptr;
356        return ptr;
357    }
358
359    void swap(sk_sp<T>& that) /*noexcept*/ {
360        using std::swap;
361        swap(fPtr, that.fPtr);
362    }
363
364private:
365    T*  fPtr;
366};
367
368template <typename T> inline void swap(sk_sp<T>& a, sk_sp<T>& b) /*noexcept*/ {
369    a.swap(b);
370}
371
372template <typename T, typename U> inline bool operator==(const sk_sp<T>& a, const sk_sp<U>& b) {
373    return a.get() == b.get();
374}
375template <typename T> inline bool operator==(const sk_sp<T>& a, std::nullptr_t) /*noexcept*/ {
376    return !a;
377}
378template <typename T> inline bool operator==(std::nullptr_t, const sk_sp<T>& b) /*noexcept*/ {
379    return !b;
380}
381
382template <typename T, typename U> inline bool operator!=(const sk_sp<T>& a, const sk_sp<U>& b) {
383    return a.get() != b.get();
384}
385template <typename T> inline bool operator!=(const sk_sp<T>& a, std::nullptr_t) /*noexcept*/ {
386    return static_cast<bool>(a);
387}
388template <typename T> inline bool operator!=(std::nullptr_t, const sk_sp<T>& b) /*noexcept*/ {
389    return static_cast<bool>(b);
390}
391
392template <typename T, typename U> inline bool operator<(const sk_sp<T>& a, const sk_sp<U>& b) {
393    // Provide defined total order on sk_sp.
394    // http://wg21.cmeerw.net/lwg/issue1297
395    // http://wg21.cmeerw.net/lwg/issue1401 .
396    return std::less<skstd::common_type_t<T*, U*>>()(a.get(), b.get());
397}
398template <typename T> inline bool operator<(const sk_sp<T>& a, std::nullptr_t) {
399    return std::less<T*>()(a.get(), nullptr);
400}
401template <typename T> inline bool operator<(std::nullptr_t, const sk_sp<T>& b) {
402    return std::less<T*>()(nullptr, b.get());
403}
404
405template <typename T, typename U> inline bool operator<=(const sk_sp<T>& a, const sk_sp<U>& b) {
406    return !(b < a);
407}
408template <typename T> inline bool operator<=(const sk_sp<T>& a, std::nullptr_t) {
409    return !(nullptr < a);
410}
411template <typename T> inline bool operator<=(std::nullptr_t, const sk_sp<T>& b) {
412    return !(b < nullptr);
413}
414
415template <typename T, typename U> inline bool operator>(const sk_sp<T>& a, const sk_sp<U>& b) {
416    return b < a;
417}
418template <typename T> inline bool operator>(const sk_sp<T>& a, std::nullptr_t) {
419    return nullptr < a;
420}
421template <typename T> inline bool operator>(std::nullptr_t, const sk_sp<T>& b) {
422    return b < nullptr;
423}
424
425template <typename T, typename U> inline bool operator>=(const sk_sp<T>& a, const sk_sp<U>& b) {
426    return !(a < b);
427}
428template <typename T> inline bool operator>=(const sk_sp<T>& a, std::nullptr_t) {
429    return !(a < nullptr);
430}
431template <typename T> inline bool operator>=(std::nullptr_t, const sk_sp<T>& b) {
432    return !(nullptr < b);
433}
434
435template <typename T, typename... Args>
436sk_sp<T> sk_make_sp(Args&&... args) {
437    return sk_sp<T>(new T(std::forward<Args>(args)...));
438}
439
440#ifdef SK_SUPPORT_TRANSITION_TO_SP_INTERFACES
441
442/*
443 *  Returns a sk_sp wrapping the provided ptr AND calls ref on it (if not null).
444 *
445 *  This is different than the semantics of the constructor for sk_sp, which just wraps the ptr,
446 *  effectively "adopting" it.
447 *
448 *  This function may be helpful while we convert callers from ptr-based to sk_sp-based parameters.
449 */
450template <typename T> sk_sp<T> sk_ref_sp(T* obj) {
451    return sk_sp<T>(SkSafeRef(obj));
452}
453
454#endif
455
456#endif
457