SkRefCnt.h revision a69f4cf0a7093aa8474b8177627e3976d4f1d9de
1/*
2 * Copyright 2006 The Android Open Source Project
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8#ifndef SkRefCnt_DEFINED
9#define SkRefCnt_DEFINED
10
11#include "../private/SkTLogic.h"
12#include "SkTypes.h"
13#include <atomic>
14#include <functional>
15#include <memory>
16#include <type_traits>
17#include <utility>
18
19/** \class SkRefCntBase
20
21    SkRefCntBase is the base class for objects that may be shared by multiple
22    objects. When an existing owner wants to share a reference, it calls ref().
23    When an owner wants to release its reference, it calls unref(). When the
24    shared object's reference count goes to zero as the result of an unref()
25    call, its (virtual) destructor is called. It is an error for the
26    destructor to be called explicitly (or via the object going out of scope on
27    the stack or calling delete) if getRefCnt() > 1.
28*/
29class SK_API SkRefCntBase : SkNoncopyable {
30public:
31    /** Default construct, initializing the reference count to 1.
32    */
33    SkRefCntBase() : fRefCnt(1) {}
34
35    /** Destruct, asserting that the reference count is 1.
36    */
37    virtual ~SkRefCntBase() {
38#ifdef SK_DEBUG
39        SkASSERTF(getRefCnt() == 1, "fRefCnt was %d", getRefCnt());
40        // illegal value, to catch us if we reuse after delete
41        fRefCnt.store(0, std::memory_order_relaxed);
42#endif
43    }
44
45#ifdef SK_DEBUG
46    /** Return the reference count. Use only for debugging. */
47    int32_t getRefCnt() const {
48        return fRefCnt.load(std::memory_order_relaxed);
49    }
50
51    void validate() const {
52        SkASSERT(getRefCnt() > 0);
53    }
54#endif
55
56    /** May return true if the caller is the only owner.
57     *  Ensures that all previous owner's actions are complete.
58     */
59    bool unique() const {
60        if (1 == fRefCnt.load(std::memory_order_acquire)) {
61            // The acquire barrier is only really needed if we return true.  It
62            // prevents code conditioned on the result of unique() from running
63            // until previous owners are all totally done calling unref().
64            return true;
65        }
66        return false;
67    }
68
69    /** Increment the reference count. Must be balanced by a call to unref().
70    */
71    void ref() const {
72        SkASSERT(getRefCnt() > 0);
73        // No barrier required.
74        (void)fRefCnt.fetch_add(+1, std::memory_order_relaxed);
75    }
76
77    /** Decrement the reference count. If the reference count is 1 before the
78        decrement, then delete the object. Note that if this is the case, then
79        the object needs to have been allocated via new, and not on the stack.
80    */
81    void unref() const {
82        SkASSERT(getRefCnt() > 0);
83        // A release here acts in place of all releases we "should" have been doing in ref().
84        if (1 == fRefCnt.fetch_add(-1, std::memory_order_acq_rel)) {
85            // Like unique(), the acquire is only needed on success, to make sure
86            // code in internal_dispose() doesn't happen before the decrement.
87            this->internal_dispose();
88        }
89    }
90
91protected:
92    /**
93     *  Allow subclasses to call this if they've overridden internal_dispose
94     *  so they can reset fRefCnt before the destructor is called or if they
95     *  choose not to call the destructor (e.g. using a free list).
96     */
97    void internal_dispose_restore_refcnt_to_1() const {
98        SkASSERT(0 == getRefCnt());
99        fRefCnt.store(1, std::memory_order_relaxed);
100    }
101
102private:
103    /**
104     *  Called when the ref count goes to 0.
105     */
106    virtual void internal_dispose() const {
107        this->internal_dispose_restore_refcnt_to_1();
108        delete this;
109    }
110
111    // The following friends are those which override internal_dispose()
112    // and conditionally call SkRefCnt::internal_dispose().
113    friend class SkWeakRefCnt;
114
115    mutable std::atomic<int32_t> fRefCnt;
116
117    typedef SkNoncopyable INHERITED;
118};
119
120#ifdef SK_REF_CNT_MIXIN_INCLUDE
121// It is the responsibility of the following include to define the type SkRefCnt.
122// This SkRefCnt should normally derive from SkRefCntBase.
123#include SK_REF_CNT_MIXIN_INCLUDE
124#else
125class SK_API SkRefCnt : public SkRefCntBase {
126    // "#include SK_REF_CNT_MIXIN_INCLUDE" doesn't work with this build system.
127    #if defined(GOOGLE3)
128    public:
129        void deref() const { this->unref(); }
130    #endif
131};
132#endif
133
134///////////////////////////////////////////////////////////////////////////////
135
136/** Helper macro to safely assign one SkRefCnt[TS]* to another, checking for
137    null in on each side of the assignment, and ensuring that ref() is called
138    before unref(), in case the two pointers point to the same object.
139 */
140#define SkRefCnt_SafeAssign(dst, src)   \
141    do {                                \
142        if (src) src->ref();            \
143        if (dst) dst->unref();          \
144        dst = src;                      \
145    } while (0)
146
147
148/** Call obj->ref() and return obj. The obj must not be nullptr.
149 */
150template <typename T> static inline T* SkRef(T* obj) {
151    SkASSERT(obj);
152    obj->ref();
153    return obj;
154}
155
156/** Check if the argument is non-null, and if so, call obj->ref() and return obj.
157 */
158template <typename T> static inline T* SkSafeRef(T* obj) {
159    if (obj) {
160        obj->ref();
161    }
162    return obj;
163}
164
165/** Check if the argument is non-null, and if so, call obj->unref()
166 */
167template <typename T> static inline void SkSafeUnref(T* obj) {
168    if (obj) {
169        obj->unref();
170    }
171}
172
173template<typename T> static inline void SkSafeSetNull(T*& obj) {
174    if (obj) {
175        obj->unref();
176        obj = nullptr;
177    }
178}
179
180///////////////////////////////////////////////////////////////////////////////
181
182// This is a variant of SkRefCnt that's Not Virtual, so weighs 4 bytes instead of 8 or 16.
183// There's only benefit to using this if the deriving class does not otherwise need a vtable.
184template <typename Derived>
185class SkNVRefCnt : SkNoncopyable {
186public:
187    SkNVRefCnt() : fRefCnt(1) {}
188    ~SkNVRefCnt() { SkASSERTF(1 == getRefCnt(), "NVRefCnt was %d", getRefCnt()); }
189
190    // Implementation is pretty much the same as SkRefCntBase. All required barriers are the same:
191    //   - unique() needs acquire when it returns true, and no barrier if it returns false;
192    //   - ref() doesn't need any barrier;
193    //   - unref() needs a release barrier, and an acquire if it's going to call delete.
194
195    bool unique() const { return 1 == fRefCnt.load(std::memory_order_acquire); }
196    void ref() const { (void)fRefCnt.fetch_add(+1, std::memory_order_relaxed); }
197    void  unref() const {
198        if (1 == fRefCnt.fetch_add(-1, std::memory_order_acq_rel)) {
199            // restore the 1 for our destructor's assert
200            SkDEBUGCODE(fRefCnt.store(1, std::memory_order_relaxed));
201            delete (const Derived*)this;
202        }
203    }
204    void  deref() const { this->unref(); }
205
206private:
207    mutable std::atomic<int32_t> fRefCnt;
208    int32_t getRefCnt() const {
209        return fRefCnt.load(std::memory_order_relaxed);
210    }
211};
212
213///////////////////////////////////////////////////////////////////////////////////////////////////
214
215/**
216 *  Shared pointer class to wrap classes that support a ref()/unref() interface.
217 *
218 *  This can be used for classes inheriting from SkRefCnt, but it also works for other
219 *  classes that match the interface, but have different internal choices: e.g. the hosted class
220 *  may have its ref/unref be thread-safe, but that is not assumed/imposed by sk_sp.
221 */
222template <typename T> class sk_sp {
223    /** Supports safe bool idiom. Obsolete with explicit operator bool. */
224    using unspecified_bool_type = T* sk_sp::*;
225public:
226    using element_type = T;
227
228    constexpr sk_sp() : fPtr(nullptr) {}
229    constexpr sk_sp(std::nullptr_t) : fPtr(nullptr) {}
230
231    /**
232     *  Shares the underlying object by calling ref(), so that both the argument and the newly
233     *  created sk_sp both have a reference to it.
234     */
235    sk_sp(const sk_sp<T>& that) : fPtr(SkSafeRef(that.get())) {}
236    template <typename U, typename = skstd::enable_if_t<std::is_convertible<U*, T*>::value>>
237    sk_sp(const sk_sp<U>& that) : fPtr(SkSafeRef(that.get())) {}
238
239    /**
240     *  Move the underlying object from the argument to the newly created sk_sp. Afterwards only
241     *  the new sk_sp will have a reference to the object, and the argument will point to null.
242     *  No call to ref() or unref() will be made.
243     */
244    sk_sp(sk_sp<T>&& that) : fPtr(that.release()) {}
245    template <typename U, typename = skstd::enable_if_t<std::is_convertible<U*, T*>::value>>
246    sk_sp(sk_sp<U>&& that) : fPtr(that.release()) {}
247
248    /**
249     *  Adopt the bare pointer into the newly created sk_sp.
250     *  No call to ref() or unref() will be made.
251     */
252    explicit sk_sp(T* obj) : fPtr(obj) {}
253
254    /**
255     *  Calls unref() on the underlying object pointer.
256     */
257    ~sk_sp() {
258        SkSafeUnref(fPtr);
259        SkDEBUGCODE(fPtr = nullptr);
260    }
261
262    sk_sp<T>& operator=(std::nullptr_t) { this->reset(); return *this; }
263
264    /**
265     *  Shares the underlying object referenced by the argument by calling ref() on it. If this
266     *  sk_sp previously had a reference to an object (i.e. not null) it will call unref() on that
267     *  object.
268     */
269    sk_sp<T>& operator=(const sk_sp<T>& that) {
270        this->reset(SkSafeRef(that.get()));
271        return *this;
272    }
273    template <typename U, typename = skstd::enable_if_t<std::is_convertible<U*, T*>::value>>
274    sk_sp<T>& operator=(const sk_sp<U>& that) {
275        this->reset(SkSafeRef(that.get()));
276        return *this;
277    }
278
279    /**
280     *  Move the underlying object from the argument to the sk_sp. If the sk_sp previously held
281     *  a reference to another object, unref() will be called on that object. No call to ref()
282     *  will be made.
283     */
284    sk_sp<T>& operator=(sk_sp<T>&& that) {
285        this->reset(that.release());
286        return *this;
287    }
288    template <typename U, typename = skstd::enable_if_t<std::is_convertible<U*, T*>::value>>
289    sk_sp<T>& operator=(sk_sp<U>&& that) {
290        this->reset(that.release());
291        return *this;
292    }
293
294    T& operator*() const {
295        SkASSERT(this->get() != nullptr);
296        return *this->get();
297    }
298
299    // MSVC 2013 does not work correctly with explicit operator bool.
300    // https://chromium-cpp.appspot.com/#core-blacklist
301    // When explicit operator bool can be used, remove operator! and operator unspecified_bool_type.
302    //explicit operator bool() const { return this->get() != nullptr; }
303    operator unspecified_bool_type() const { return this->get() ? &sk_sp::fPtr : nullptr; }
304    bool operator!() const { return this->get() == nullptr; }
305
306    T* get() const { return fPtr; }
307    T* operator->() const { return fPtr; }
308
309    /**
310     *  Adopt the new bare pointer, and call unref() on any previously held object (if not null).
311     *  No call to ref() will be made.
312     */
313    void reset(T* ptr = nullptr) {
314        // Calling fPtr->unref() may call this->~() or this->reset(T*).
315        // http://wg21.cmeerw.net/lwg/issue998
316        // http://wg21.cmeerw.net/lwg/issue2262
317        T* oldPtr = fPtr;
318        fPtr = ptr;
319        SkSafeUnref(oldPtr);
320    }
321
322    /**
323     *  Return the bare pointer, and set the internal object pointer to nullptr.
324     *  The caller must assume ownership of the object, and manage its reference count directly.
325     *  No call to unref() will be made.
326     */
327    T* SK_WARN_UNUSED_RESULT release() {
328        T* ptr = fPtr;
329        fPtr = nullptr;
330        return ptr;
331    }
332
333    void swap(sk_sp<T>& that) /*noexcept*/ {
334        using std::swap;
335        swap(fPtr, that.fPtr);
336    }
337
338private:
339    T*  fPtr;
340};
341
342template <typename T> inline void swap(sk_sp<T>& a, sk_sp<T>& b) /*noexcept*/ {
343    a.swap(b);
344}
345
346template <typename T, typename U> inline bool operator==(const sk_sp<T>& a, const sk_sp<U>& b) {
347    return a.get() == b.get();
348}
349template <typename T> inline bool operator==(const sk_sp<T>& a, std::nullptr_t) /*noexcept*/ {
350    return !a;
351}
352template <typename T> inline bool operator==(std::nullptr_t, const sk_sp<T>& b) /*noexcept*/ {
353    return !b;
354}
355
356template <typename T, typename U> inline bool operator!=(const sk_sp<T>& a, const sk_sp<U>& b) {
357    return a.get() != b.get();
358}
359template <typename T> inline bool operator!=(const sk_sp<T>& a, std::nullptr_t) /*noexcept*/ {
360    return static_cast<bool>(a);
361}
362template <typename T> inline bool operator!=(std::nullptr_t, const sk_sp<T>& b) /*noexcept*/ {
363    return static_cast<bool>(b);
364}
365
366template <typename T, typename U> inline bool operator<(const sk_sp<T>& a, const sk_sp<U>& b) {
367    // Provide defined total order on sk_sp.
368    // http://wg21.cmeerw.net/lwg/issue1297
369    // http://wg21.cmeerw.net/lwg/issue1401 .
370    return std::less<skstd::common_type_t<T*, U*>>()(a.get(), b.get());
371}
372template <typename T> inline bool operator<(const sk_sp<T>& a, std::nullptr_t) {
373    return std::less<T*>()(a.get(), nullptr);
374}
375template <typename T> inline bool operator<(std::nullptr_t, const sk_sp<T>& b) {
376    return std::less<T*>()(nullptr, b.get());
377}
378
379template <typename T, typename U> inline bool operator<=(const sk_sp<T>& a, const sk_sp<U>& b) {
380    return !(b < a);
381}
382template <typename T> inline bool operator<=(const sk_sp<T>& a, std::nullptr_t) {
383    return !(nullptr < a);
384}
385template <typename T> inline bool operator<=(std::nullptr_t, const sk_sp<T>& b) {
386    return !(b < nullptr);
387}
388
389template <typename T, typename U> inline bool operator>(const sk_sp<T>& a, const sk_sp<U>& b) {
390    return b < a;
391}
392template <typename T> inline bool operator>(const sk_sp<T>& a, std::nullptr_t) {
393    return nullptr < a;
394}
395template <typename T> inline bool operator>(std::nullptr_t, const sk_sp<T>& b) {
396    return b < nullptr;
397}
398
399template <typename T, typename U> inline bool operator>=(const sk_sp<T>& a, const sk_sp<U>& b) {
400    return !(a < b);
401}
402template <typename T> inline bool operator>=(const sk_sp<T>& a, std::nullptr_t) {
403    return !(a < nullptr);
404}
405template <typename T> inline bool operator>=(std::nullptr_t, const sk_sp<T>& b) {
406    return !(nullptr < b);
407}
408
409template <typename T, typename... Args>
410sk_sp<T> sk_make_sp(Args&&... args) {
411    return sk_sp<T>(new T(std::forward<Args>(args)...));
412}
413
414/*
415 *  Returns a sk_sp wrapping the provided ptr AND calls ref on it (if not null).
416 *
417 *  This is different than the semantics of the constructor for sk_sp, which just wraps the ptr,
418 *  effectively "adopting" it.
419 */
420template <typename T> sk_sp<T> sk_ref_sp(T* obj) {
421    return sk_sp<T>(SkSafeRef(obj));
422}
423
424#endif
425