SkTypes.h revision 95b96d649547c6b89ae0eca0f88f965d90c531a5
1/*
2 * Copyright 2006 The Android Open Source Project
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8#ifndef SkTypes_DEFINED
9#define SkTypes_DEFINED
10
11// IWYU pragma: begin_exports
12#include "SkPreConfig.h"
13#include "SkUserConfig.h"
14#include "SkPostConfig.h"
15#include <stddef.h>
16#include <stdint.h>
17#include <sys/types.h>
18
19#if defined(SK_ARM_HAS_NEON)
20    #include <arm_neon.h>
21#elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2
22    #include <immintrin.h>
23#endif
24// IWYU pragma: end_exports
25
26#include <stdlib.h>
27#include <string.h>
28
29/** \file SkTypes.h
30*/
31
32/** See SkGraphics::GetVersion() to retrieve these at runtime
33 */
34#define SKIA_VERSION_MAJOR  1
35#define SKIA_VERSION_MINOR  0
36#define SKIA_VERSION_PATCH  0
37
38/*
39    memory wrappers to be implemented by the porting layer (platform)
40*/
41
42/** Called internally if we run out of memory. The platform implementation must
43    not return, but should either throw an exception or otherwise exit.
44*/
45SK_API extern void sk_out_of_memory(void);
46/** Called internally if we hit an unrecoverable error.
47    The platform implementation must not return, but should either throw
48    an exception or otherwise exit.
49*/
50SK_API extern void sk_throw(void);
51
52enum {
53    SK_MALLOC_TEMP  = 0x01, //!< hint to sk_malloc that the requested memory will be freed in the scope of the stack frame
54    SK_MALLOC_THROW = 0x02  //!< instructs sk_malloc to call sk_throw if the memory cannot be allocated.
55};
56/** Return a block of memory (at least 4-byte aligned) of at least the
57    specified size. If the requested memory cannot be returned, either
58    return null (if SK_MALLOC_TEMP bit is clear) or throw an exception
59    (if SK_MALLOC_TEMP bit is set). To free the memory, call sk_free().
60*/
61SK_API extern void* sk_malloc_flags(size_t size, unsigned flags);
62/** Same as sk_malloc(), but hard coded to pass SK_MALLOC_THROW as the flag
63*/
64SK_API extern void* sk_malloc_throw(size_t size);
65/** Same as standard realloc(), but this one never returns null on failure. It will throw
66    an exception if it fails.
67*/
68SK_API extern void* sk_realloc_throw(void* buffer, size_t size);
69/** Free memory returned by sk_malloc(). It is safe to pass null.
70*/
71SK_API extern void sk_free(void*);
72
73/** Much like calloc: returns a pointer to at least size zero bytes, or NULL on failure.
74 */
75SK_API extern void* sk_calloc(size_t size);
76
77/** Same as sk_calloc, but throws an exception instead of returning NULL on failure.
78 */
79SK_API extern void* sk_calloc_throw(size_t size);
80
81// bzero is safer than memset, but we can't rely on it, so... sk_bzero()
82static inline void sk_bzero(void* buffer, size_t size) {
83    memset(buffer, 0, size);
84}
85
86///////////////////////////////////////////////////////////////////////////////
87
88#ifdef override_GLOBAL_NEW
89#include <new>
90
91inline void* operator new(size_t size) {
92    return sk_malloc_throw(size);
93}
94
95inline void operator delete(void* p) {
96    sk_free(p);
97}
98#endif
99
100///////////////////////////////////////////////////////////////////////////////
101
102#define SK_INIT_TO_AVOID_WARNING    = 0
103
104#ifndef SkDebugf
105    SK_API void SkDebugf(const char format[], ...);
106#endif
107
108#ifdef SK_DEBUG
109    #define SkASSERT(cond)              SK_ALWAYSBREAK(cond)
110    #define SkDEBUGFAIL(message)        SkASSERT(false && message)
111    #define SkDEBUGCODE(code)           code
112    #define SkDECLAREPARAM(type, var)   , type var
113    #define SkPARAM(var)                , var
114//  #define SkDEBUGF(args       )       SkDebugf##args
115    #define SkDEBUGF(args       )       SkDebugf args
116    #define SkAssertResult(cond)        SkASSERT(cond)
117#else
118    #define SkASSERT(cond)
119    #define SkDEBUGFAIL(message)
120    #define SkDEBUGCODE(code)
121    #define SkDEBUGF(args)
122    #define SkDECLAREPARAM(type, var)
123    #define SkPARAM(var)
124
125    // unlike SkASSERT, this guy executes its condition in the non-debug build
126    #define SkAssertResult(cond)        cond
127#endif
128
129#define SkFAIL(message)                 SK_ALWAYSBREAK(false && message)
130
131// We want to evaluate cond only once, and inside the SkASSERT somewhere so we see its string form.
132// So we use the comma operator to make an SkDebugf that always returns false: we'll evaluate cond,
133// and if it's true the assert passes; if it's false, we'll print the message and the assert fails.
134#define SkASSERTF(cond, fmt, ...)       SkASSERT((cond) || (SkDebugf(fmt"\n", __VA_ARGS__), false))
135
136#ifdef SK_DEVELOPER
137    #define SkDEVCODE(code)             code
138#else
139    #define SkDEVCODE(code)
140#endif
141
142#ifdef SK_IGNORE_TO_STRING
143    #define SK_TO_STRING_NONVIRT()
144    #define SK_TO_STRING_VIRT()
145    #define SK_TO_STRING_PUREVIRT()
146    #define SK_TO_STRING_OVERRIDE()
147#else
148    class SkString;
149    // the 'toString' helper functions convert Sk* objects to human-readable
150    // form in developer mode
151    #define SK_TO_STRING_NONVIRT() void toString(SkString* str) const;
152    #define SK_TO_STRING_VIRT() virtual void toString(SkString* str) const;
153    #define SK_TO_STRING_PUREVIRT() virtual void toString(SkString* str) const = 0;
154    #define SK_TO_STRING_OVERRIDE() void toString(SkString* str) const override;
155#endif
156
157template <bool>
158struct SkCompileAssert {
159};
160
161// Uses static_cast<bool>(expr) instead of bool(expr) due to
162// https://connect.microsoft.com/VisualStudio/feedback/details/832915
163
164// The extra parentheses in SkCompileAssert<(...)> are a work around for
165// http://gcc.gnu.org/bugzilla/show_bug.cgi?id=57771
166// which was fixed in gcc 4.8.2.
167#define SK_COMPILE_ASSERT(expr, msg) \
168    typedef SkCompileAssert<(static_cast<bool>(expr))> \
169            msg[static_cast<bool>(expr) ? 1 : -1] SK_UNUSED
170
171/*
172 *  Usage:  SK_MACRO_CONCAT(a, b)   to construct the symbol ab
173 *
174 *  SK_MACRO_CONCAT_IMPL_PRIV just exists to make this work. Do not use directly
175 *
176 */
177#define SK_MACRO_CONCAT(X, Y)           SK_MACRO_CONCAT_IMPL_PRIV(X, Y)
178#define SK_MACRO_CONCAT_IMPL_PRIV(X, Y)  X ## Y
179
180/*
181 *  Usage: SK_MACRO_APPEND_LINE(foo)    to make foo123, where 123 is the current
182 *                                      line number. Easy way to construct
183 *                                      unique names for local functions or
184 *                                      variables.
185 */
186#define SK_MACRO_APPEND_LINE(name)  SK_MACRO_CONCAT(name, __LINE__)
187
188/**
189 * For some classes, it's almost always an error to instantiate one without a name, e.g.
190 *   {
191 *       SkAutoMutexAcquire(&mutex);
192 *       <some code>
193 *   }
194 * In this case, the writer meant to hold mutex while the rest of the code in the block runs,
195 * but instead the mutex is acquired and then immediately released.  The correct usage is
196 *   {
197 *       SkAutoMutexAcquire lock(&mutex);
198 *       <some code>
199 *   }
200 *
201 * To prevent callers from instantiating your class without a name, use SK_REQUIRE_LOCAL_VAR
202 * like this:
203 *   class classname {
204 *       <your class>
205 *   };
206 *   #define classname(...) SK_REQUIRE_LOCAL_VAR(classname)
207 *
208 * This won't work with templates, and you must inline the class' constructors and destructors.
209 * Take a look at SkAutoFree and SkAutoMalloc in this file for examples.
210 */
211#define SK_REQUIRE_LOCAL_VAR(classname) \
212    SK_COMPILE_ASSERT(false, missing_name_for_##classname)
213
214///////////////////////////////////////////////////////////////////////
215
216/**
217 *  Fast type for signed 8 bits. Use for parameter passing and local variables,
218 *  not for storage.
219 */
220typedef int S8CPU;
221
222/**
223 *  Fast type for unsigned 8 bits. Use for parameter passing and local
224 *  variables, not for storage
225 */
226typedef unsigned U8CPU;
227
228/**
229 *  Fast type for signed 16 bits. Use for parameter passing and local variables,
230 *  not for storage
231 */
232typedef int S16CPU;
233
234/**
235 *  Fast type for unsigned 16 bits. Use for parameter passing and local
236 *  variables, not for storage
237 */
238typedef unsigned U16CPU;
239
240/**
241 *  Meant to be faster than bool (doesn't promise to be 0 or 1,
242 *  just 0 or non-zero
243 */
244typedef int SkBool;
245
246/**
247 *  Meant to be a small version of bool, for storage purposes. Will be 0 or 1
248 */
249typedef uint8_t SkBool8;
250
251#ifdef SK_DEBUG
252    SK_API int8_t      SkToS8(intmax_t);
253    SK_API uint8_t     SkToU8(uintmax_t);
254    SK_API int16_t     SkToS16(intmax_t);
255    SK_API uint16_t    SkToU16(uintmax_t);
256    SK_API int32_t     SkToS32(intmax_t);
257    SK_API uint32_t    SkToU32(uintmax_t);
258    SK_API int         SkToInt(intmax_t);
259    SK_API unsigned    SkToUInt(uintmax_t);
260    SK_API size_t      SkToSizeT(uintmax_t);
261    SK_API off_t       SkToOffT(intmax_t x);
262#else
263    #define SkToS8(x)   ((int8_t)(x))
264    #define SkToU8(x)   ((uint8_t)(x))
265    #define SkToS16(x)  ((int16_t)(x))
266    #define SkToU16(x)  ((uint16_t)(x))
267    #define SkToS32(x)  ((int32_t)(x))
268    #define SkToU32(x)  ((uint32_t)(x))
269    #define SkToInt(x)  ((int)(x))
270    #define SkToUInt(x) ((unsigned)(x))
271    #define SkToSizeT(x) ((size_t)(x))
272    #define SkToOffT(x) ((off_t)(x))
273#endif
274
275/** Returns 0 or 1 based on the condition
276*/
277#define SkToBool(cond)  ((cond) != 0)
278
279#define SK_MaxS16   32767
280#define SK_MinS16   -32767
281#define SK_MaxU16   0xFFFF
282#define SK_MinU16   0
283#define SK_MaxS32   0x7FFFFFFF
284#define SK_MinS32   -SK_MaxS32
285#define SK_MaxU32   0xFFFFFFFF
286#define SK_MinU32   0
287#define SK_NaN32    (1 << 31)
288
289/** Returns true if the value can be represented with signed 16bits
290 */
291static inline bool SkIsS16(long x) {
292    return (int16_t)x == x;
293}
294
295/** Returns true if the value can be represented with unsigned 16bits
296 */
297static inline bool SkIsU16(long x) {
298    return (uint16_t)x == x;
299}
300
301//////////////////////////////////////////////////////////////////////////////
302#ifndef SK_OFFSETOF
303    #define SK_OFFSETOF(type, field)    (size_t)((char*)&(((type*)1)->field) - (char*)1)
304#endif
305
306/** Returns the number of entries in an array (not a pointer) */
307template <typename T, size_t N> char (&SkArrayCountHelper(T (&array)[N]))[N];
308#define SK_ARRAY_COUNT(array) (sizeof(SkArrayCountHelper(array)))
309
310#define SkAlign2(x)     (((x) + 1) >> 1 << 1)
311#define SkIsAlign2(x)   (0 == ((x) & 1))
312
313#define SkAlign4(x)     (((x) + 3) >> 2 << 2)
314#define SkIsAlign4(x)   (0 == ((x) & 3))
315
316#define SkAlign8(x)     (((x) + 7) >> 3 << 3)
317#define SkIsAlign8(x)   (0 == ((x) & 7))
318
319#define SkAlignPtr(x)   (sizeof(void*) == 8 ?   SkAlign8(x) :   SkAlign4(x))
320#define SkIsAlignPtr(x) (sizeof(void*) == 8 ? SkIsAlign8(x) : SkIsAlign4(x))
321
322typedef uint32_t SkFourByteTag;
323#define SkSetFourByteTag(a, b, c, d)    (((a) << 24) | ((b) << 16) | ((c) << 8) | (d))
324
325/** 32 bit integer to hold a unicode value
326*/
327typedef int32_t SkUnichar;
328/** 32 bit value to hold a millisecond count
329*/
330typedef uint32_t SkMSec;
331/** 1 second measured in milliseconds
332*/
333#define SK_MSec1 1000
334/** maximum representable milliseconds
335*/
336#define SK_MSecMax 0x7FFFFFFF
337/** Returns a < b for milliseconds, correctly handling wrap-around from 0xFFFFFFFF to 0
338*/
339#define SkMSec_LT(a, b)     ((int32_t)(a) - (int32_t)(b) < 0)
340/** Returns a <= b for milliseconds, correctly handling wrap-around from 0xFFFFFFFF to 0
341*/
342#define SkMSec_LE(a, b)     ((int32_t)(a) - (int32_t)(b) <= 0)
343
344/** The generation IDs in Skia reserve 0 has an invalid marker.
345 */
346#define SK_InvalidGenID     0
347/** The unique IDs in Skia reserve 0 has an invalid marker.
348 */
349#define SK_InvalidUniqueID  0
350
351/****************************************************************************
352    The rest of these only build with C++
353*/
354#ifdef __cplusplus
355
356/** Faster than SkToBool for integral conditions. Returns 0 or 1
357*/
358static inline int Sk32ToBool(uint32_t n) {
359    return (n | (0-n)) >> 31;
360}
361
362/** Generic swap function. Classes with efficient swaps should specialize this function to take
363    their fast path. This function is used by SkTSort. */
364template <typename T> inline void SkTSwap(T& a, T& b) {
365    T c(a);
366    a = b;
367    b = c;
368}
369
370static inline int32_t SkAbs32(int32_t value) {
371    SkASSERT(value != SK_NaN32);  // The most negative int32_t can't be negated.
372    if (value < 0) {
373        value = -value;
374    }
375    return value;
376}
377
378template <typename T> inline T SkTAbs(T value) {
379    if (value < 0) {
380        value = -value;
381    }
382    return value;
383}
384
385static inline int32_t SkMax32(int32_t a, int32_t b) {
386    if (a < b)
387        a = b;
388    return a;
389}
390
391static inline int32_t SkMin32(int32_t a, int32_t b) {
392    if (a > b)
393        a = b;
394    return a;
395}
396
397template <typename T> const T& SkTMin(const T& a, const T& b) {
398    return (a < b) ? a : b;
399}
400
401template <typename T> const T& SkTMax(const T& a, const T& b) {
402    return (b < a) ? a : b;
403}
404
405static inline int32_t SkSign32(int32_t a) {
406    return (a >> 31) | ((unsigned) -a >> 31);
407}
408
409static inline int32_t SkFastMin32(int32_t value, int32_t max) {
410    if (value > max) {
411        value = max;
412    }
413    return value;
414}
415
416template <typename T> static inline const T& SkTPin(const T& x, const T& min, const T& max) {
417    return SkTMax(SkTMin(x, max), min);
418}
419
420/** Returns signed 32 bit value pinned between min and max, inclusively. */
421static inline int32_t SkPin32(int32_t value, int32_t min, int32_t max) {
422    return SkTPin(value, min, max);
423}
424
425static inline uint32_t SkSetClearShift(uint32_t bits, bool cond,
426                                       unsigned shift) {
427    SkASSERT((int)cond == 0 || (int)cond == 1);
428    return (bits & ~(1 << shift)) | ((int)cond << shift);
429}
430
431static inline uint32_t SkSetClearMask(uint32_t bits, bool cond,
432                                      uint32_t mask) {
433    return cond ? bits | mask : bits & ~mask;
434}
435
436///////////////////////////////////////////////////////////////////////////////
437
438/** Use to combine multiple bits in a bitmask in a type safe way.
439 */
440template <typename T>
441T SkTBitOr(T a, T b) {
442    return (T)(a | b);
443}
444
445/**
446 *  Use to cast a pointer to a different type, and maintaining strict-aliasing
447 */
448template <typename Dst> Dst SkTCast(const void* ptr) {
449    union {
450        const void* src;
451        Dst dst;
452    } data;
453    data.src = ptr;
454    return data.dst;
455}
456
457//////////////////////////////////////////////////////////////////////////////
458
459/** \class SkNoncopyable
460
461SkNoncopyable is the base class for objects that do not want to
462be copied. It hides its copy-constructor and its assignment-operator.
463*/
464class SK_API SkNoncopyable {
465public:
466    SkNoncopyable() {}
467
468private:
469    SkNoncopyable(const SkNoncopyable&);
470    SkNoncopyable& operator=(const SkNoncopyable&);
471};
472
473class SkAutoFree : SkNoncopyable {
474public:
475    SkAutoFree() : fPtr(NULL) {}
476    explicit SkAutoFree(void* ptr) : fPtr(ptr) {}
477    ~SkAutoFree() { sk_free(fPtr); }
478
479    /** Return the currently allocate buffer, or null
480    */
481    void* get() const { return fPtr; }
482
483    /** Assign a new ptr allocated with sk_malloc (or null), and return the
484        previous ptr. Note it is the caller's responsibility to sk_free the
485        returned ptr.
486    */
487    void* set(void* ptr) {
488        void* prev = fPtr;
489        fPtr = ptr;
490        return prev;
491    }
492
493    /** Transfer ownership of the current ptr to the caller, setting the
494        internal reference to null. Note the caller is reponsible for calling
495        sk_free on the returned address.
496    */
497    void* detach() { return this->set(NULL); }
498
499    /** Free the current buffer, and set the internal reference to NULL. Same
500        as calling sk_free(detach())
501    */
502    void free() {
503        sk_free(fPtr);
504        fPtr = NULL;
505    }
506
507private:
508    void* fPtr;
509    // illegal
510    SkAutoFree(const SkAutoFree&);
511    SkAutoFree& operator=(const SkAutoFree&);
512};
513#define SkAutoFree(...) SK_REQUIRE_LOCAL_VAR(SkAutoFree)
514
515/**
516 *  Manage an allocated block of heap memory. This object is the sole manager of
517 *  the lifetime of the block, so the caller must not call sk_free() or delete
518 *  on the block, unless detach() was called.
519 */
520class SkAutoMalloc : SkNoncopyable {
521public:
522    explicit SkAutoMalloc(size_t size = 0) {
523        fPtr = size ? sk_malloc_throw(size) : NULL;
524        fSize = size;
525    }
526
527    ~SkAutoMalloc() {
528        sk_free(fPtr);
529    }
530
531    /**
532     *  Passed to reset to specify what happens if the requested size is smaller
533     *  than the current size (and the current block was dynamically allocated).
534     */
535    enum OnShrink {
536        /**
537         *  If the requested size is smaller than the current size, and the
538         *  current block is dynamically allocated, free the old block and
539         *  malloc a new block of the smaller size.
540         */
541        kAlloc_OnShrink,
542
543        /**
544         *  If the requested size is smaller than the current size, and the
545         *  current block is dynamically allocated, just return the old
546         *  block.
547         */
548        kReuse_OnShrink
549    };
550
551    /**
552     *  Reallocates the block to a new size. The ptr may or may not change.
553     */
554    void* reset(size_t size, OnShrink shrink = kAlloc_OnShrink,  bool* didChangeAlloc = NULL) {
555        if (size == fSize || (kReuse_OnShrink == shrink && size < fSize)) {
556            if (didChangeAlloc) {
557                *didChangeAlloc = false;
558            }
559            return fPtr;
560        }
561
562        sk_free(fPtr);
563        fPtr = size ? sk_malloc_throw(size) : NULL;
564        fSize = size;
565        if (didChangeAlloc) {
566            *didChangeAlloc = true;
567        }
568
569        return fPtr;
570    }
571
572    /**
573     *  Releases the block back to the heap
574     */
575    void free() {
576        this->reset(0);
577    }
578
579    /**
580     *  Return the allocated block.
581     */
582    void* get() { return fPtr; }
583    const void* get() const { return fPtr; }
584
585   /** Transfer ownership of the current ptr to the caller, setting the
586       internal reference to null. Note the caller is reponsible for calling
587       sk_free on the returned address.
588    */
589    void* detach() {
590        void* ptr = fPtr;
591        fPtr = NULL;
592        fSize = 0;
593        return ptr;
594    }
595
596private:
597    void*   fPtr;
598    size_t  fSize;  // can be larger than the requested size (see kReuse)
599};
600#define SkAutoMalloc(...) SK_REQUIRE_LOCAL_VAR(SkAutoMalloc)
601
602/**
603 *  Manage an allocated block of memory. If the requested size is <= kSize, then
604 *  the allocation will come from the stack rather than the heap. This object
605 *  is the sole manager of the lifetime of the block, so the caller must not
606 *  call sk_free() or delete on the block.
607 */
608template <size_t kSize> class SkAutoSMalloc : SkNoncopyable {
609public:
610    /**
611     *  Creates initially empty storage. get() returns a ptr, but it is to
612     *  a zero-byte allocation. Must call reset(size) to return an allocated
613     *  block.
614     */
615    SkAutoSMalloc() {
616        fPtr = fStorage;
617        fSize = kSize;
618    }
619
620    /**
621     *  Allocate a block of the specified size. If size <= kSize, then the
622     *  allocation will come from the stack, otherwise it will be dynamically
623     *  allocated.
624     */
625    explicit SkAutoSMalloc(size_t size) {
626        fPtr = fStorage;
627        fSize = kSize;
628        this->reset(size);
629    }
630
631    /**
632     *  Free the allocated block (if any). If the block was small enought to
633     *  have been allocated on the stack (size <= kSize) then this does nothing.
634     */
635    ~SkAutoSMalloc() {
636        if (fPtr != (void*)fStorage) {
637            sk_free(fPtr);
638        }
639    }
640
641    /**
642     *  Return the allocated block. May return non-null even if the block is
643     *  of zero size. Since this may be on the stack or dynamically allocated,
644     *  the caller must not call sk_free() on it, but must rely on SkAutoSMalloc
645     *  to manage it.
646     */
647    void* get() const { return fPtr; }
648
649    /**
650     *  Return a new block of the requested size, freeing (as necessary) any
651     *  previously allocated block. As with the constructor, if size <= kSize
652     *  then the return block may be allocated locally, rather than from the
653     *  heap.
654     */
655    void* reset(size_t size,
656                SkAutoMalloc::OnShrink shrink = SkAutoMalloc::kAlloc_OnShrink,
657                bool* didChangeAlloc = NULL) {
658        size = (size < kSize) ? kSize : size;
659        bool alloc = size != fSize && (SkAutoMalloc::kAlloc_OnShrink == shrink || size > fSize);
660        if (didChangeAlloc) {
661            *didChangeAlloc = alloc;
662        }
663        if (alloc) {
664            if (fPtr != (void*)fStorage) {
665                sk_free(fPtr);
666            }
667
668            if (size == kSize) {
669                SkASSERT(fPtr != fStorage); // otherwise we lied when setting didChangeAlloc.
670                fPtr = fStorage;
671            } else {
672                fPtr = sk_malloc_flags(size, SK_MALLOC_THROW | SK_MALLOC_TEMP);
673            }
674
675            fSize = size;
676        }
677        SkASSERT(fSize >= size && fSize >= kSize);
678        SkASSERT((fPtr == fStorage) || fSize > kSize);
679        return fPtr;
680    }
681
682private:
683    void*       fPtr;
684    size_t      fSize;  // can be larger than the requested size (see kReuse)
685    uint32_t    fStorage[(kSize + 3) >> 2];
686};
687// Can't guard the constructor because it's a template class.
688
689#endif /* C++ */
690
691#endif
692