SkMipMap.cpp revision fc0e96e35f4d63b10a753ef4a7538d653592f976
1/*
2 * Copyright 2013 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8#include "SkMipMap.h"
9#include "SkBitmap.h"
10#include "SkColorPriv.h"
11#include "SkHalf.h"
12#include "SkMathPriv.h"
13#include "SkNx.h"
14#include "SkPM4fPriv.h"
15#include "SkSRGB.h"
16#include "SkTypes.h"
17
18//
19// ColorTypeFilter is the "Type" we pass to some downsample template functions.
20// It controls how we expand a pixel into a large type, with space between each component,
21// so we can then perform our simple filter (either box or triangle) and store the intermediates
22// in the expanded type.
23//
24
25struct ColorTypeFilter_8888 {
26    typedef uint32_t Type;
27    static Sk4h Expand(uint32_t x) {
28        return SkNx_cast<uint16_t>(Sk4b::Load(&x));
29    }
30    static uint32_t Compact(const Sk4h& x) {
31        uint32_t r;
32        SkNx_cast<uint8_t>(x).store(&r);
33        return r;
34    }
35};
36
37struct ColorTypeFilter_S32 {
38    typedef uint32_t Type;
39    static Sk4h Expand(uint32_t x) {
40        return Sk4h(sk_linear12_from_srgb[(x      ) & 0xFF],
41                    sk_linear12_from_srgb[(x >>  8) & 0xFF],
42                    sk_linear12_from_srgb[(x >> 16) & 0xFF],
43                                          (x >> 24) <<   4);
44    }
45    static uint32_t Compact(const Sk4h& x) {
46        return sk_linear12_to_srgb[x[0]]       |
47               sk_linear12_to_srgb[x[1]] <<  8 |
48               sk_linear12_to_srgb[x[2]] << 16 |
49               (x[3] >> 4)               << 24;
50    }
51};
52
53struct ColorTypeFilter_565 {
54    typedef uint16_t Type;
55    static uint32_t Expand(uint16_t x) {
56        return (x & ~SK_G16_MASK_IN_PLACE) | ((x & SK_G16_MASK_IN_PLACE) << 16);
57    }
58    static uint16_t Compact(uint32_t x) {
59        return (x & ~SK_G16_MASK_IN_PLACE) | ((x >> 16) & SK_G16_MASK_IN_PLACE);
60    }
61};
62
63struct ColorTypeFilter_4444 {
64    typedef uint16_t Type;
65    static uint32_t Expand(uint16_t x) {
66        return (x & 0xF0F) | ((x & ~0xF0F) << 12);
67    }
68    static uint16_t Compact(uint32_t x) {
69        return (x & 0xF0F) | ((x >> 12) & ~0xF0F);
70    }
71};
72
73struct ColorTypeFilter_8 {
74    typedef uint8_t Type;
75    static unsigned Expand(unsigned x) {
76        return x;
77    }
78    static uint8_t Compact(unsigned x) {
79        return (uint8_t)x;
80    }
81};
82
83struct ColorTypeFilter_F16 {
84    typedef uint64_t Type; // SkHalf x4
85    static Sk4f Expand(uint64_t x) {
86        return SkHalfToFloat_finite_ftz(x);
87    }
88    static uint64_t Compact(const Sk4f& x) {
89        uint64_t r;
90        SkFloatToHalf_finite_ftz(x).store(&r);
91        return r;
92    }
93};
94
95template <typename T> T add_121(const T& a, const T& b, const T& c) {
96    return a + b + b + c;
97}
98
99template <typename T> T shift_right(const T& x, int bits) {
100    return x >> bits;
101}
102
103Sk4f shift_right(const Sk4f& x, int bits) {
104    return x * (1.0f / (1 << bits));
105}
106
107template <typename T> T shift_left(const T& x, int bits) {
108    return x << bits;
109}
110
111Sk4f shift_left(const Sk4f& x, int bits) {
112    return x * (1 << bits);
113}
114
115//
116//  To produce each mip level, we need to filter down by 1/2 (e.g. 100x100 -> 50,50)
117//  If the starting dimension is odd, we floor the size of the lower level (e.g. 101 -> 50)
118//  In those (odd) cases, we use a triangle filter, with 1-pixel overlap between samplings,
119//  else for even cases, we just use a 2x box filter.
120//
121//  This produces 4 possible isotropic filters: 2x2 2x3 3x2 3x3 where WxH indicates the number of
122//  src pixels we need to sample in each dimension to produce 1 dst pixel.
123//
124//  OpenGL expects a full mipmap stack to contain anisotropic space as well.
125//  This means a 100x1 image would continue down to a 50x1 image, 25x1 image...
126//  Because of this, we need 4 more anisotropic filters: 1x2, 1x3, 2x1, 3x1.
127
128template <typename F> void downsample_1_2(void* dst, const void* src, size_t srcRB, int count) {
129    SkASSERT(count > 0);
130    auto p0 = static_cast<const typename F::Type*>(src);
131    auto p1 = (const typename F::Type*)((const char*)p0 + srcRB);
132    auto d = static_cast<typename F::Type*>(dst);
133
134    for (int i = 0; i < count; ++i) {
135        auto c00 = F::Expand(p0[0]);
136        auto c10 = F::Expand(p1[0]);
137
138        auto c = c00 + c10;
139        d[i] = F::Compact(shift_right(c, 1));
140        p0 += 2;
141        p1 += 2;
142    }
143}
144
145template <typename F> void downsample_1_3(void* dst, const void* src, size_t srcRB, int count) {
146    SkASSERT(count > 0);
147    auto p0 = static_cast<const typename F::Type*>(src);
148    auto p1 = (const typename F::Type*)((const char*)p0 + srcRB);
149    auto p2 = (const typename F::Type*)((const char*)p1 + srcRB);
150    auto d = static_cast<typename F::Type*>(dst);
151
152    for (int i = 0; i < count; ++i) {
153        auto c00 = F::Expand(p0[0]);
154        auto c10 = F::Expand(p1[0]);
155        auto c20 = F::Expand(p2[0]);
156
157        auto c = add_121(c00, c10, c20);
158        d[i] = F::Compact(shift_right(c, 2));
159        p0 += 2;
160        p1 += 2;
161        p2 += 2;
162    }
163}
164
165template <typename F> void downsample_2_1(void* dst, const void* src, size_t srcRB, int count) {
166    SkASSERT(count > 0);
167    auto p0 = static_cast<const typename F::Type*>(src);
168    auto d = static_cast<typename F::Type*>(dst);
169
170    for (int i = 0; i < count; ++i) {
171        auto c00 = F::Expand(p0[0]);
172        auto c01 = F::Expand(p0[1]);
173
174        auto c = c00 + c01;
175        d[i] = F::Compact(shift_right(c, 1));
176        p0 += 2;
177    }
178}
179
180template <typename F> void downsample_2_2(void* dst, const void* src, size_t srcRB, int count) {
181    SkASSERT(count > 0);
182    auto p0 = static_cast<const typename F::Type*>(src);
183    auto p1 = (const typename F::Type*)((const char*)p0 + srcRB);
184    auto d = static_cast<typename F::Type*>(dst);
185
186    for (int i = 0; i < count; ++i) {
187        auto c00 = F::Expand(p0[0]);
188        auto c01 = F::Expand(p0[1]);
189        auto c10 = F::Expand(p1[0]);
190        auto c11 = F::Expand(p1[1]);
191
192        auto c = c00 + c10 + c01 + c11;
193        d[i] = F::Compact(shift_right(c, 2));
194        p0 += 2;
195        p1 += 2;
196    }
197}
198
199template <typename F> void downsample_2_3(void* dst, const void* src, size_t srcRB, int count) {
200    SkASSERT(count > 0);
201    auto p0 = static_cast<const typename F::Type*>(src);
202    auto p1 = (const typename F::Type*)((const char*)p0 + srcRB);
203    auto p2 = (const typename F::Type*)((const char*)p1 + srcRB);
204    auto d = static_cast<typename F::Type*>(dst);
205
206    for (int i = 0; i < count; ++i) {
207        auto c00 = F::Expand(p0[0]);
208        auto c01 = F::Expand(p0[1]);
209        auto c10 = F::Expand(p1[0]);
210        auto c11 = F::Expand(p1[1]);
211        auto c20 = F::Expand(p2[0]);
212        auto c21 = F::Expand(p2[1]);
213
214        auto c = add_121(c00, c10, c20) + add_121(c01, c11, c21);
215        d[i] = F::Compact(shift_right(c, 3));
216        p0 += 2;
217        p1 += 2;
218        p2 += 2;
219    }
220}
221
222template <typename F> void downsample_3_1(void* dst, const void* src, size_t srcRB, int count) {
223    SkASSERT(count > 0);
224    auto p0 = static_cast<const typename F::Type*>(src);
225    auto d = static_cast<typename F::Type*>(dst);
226
227    auto c02 = F::Expand(p0[0]);
228    for (int i = 0; i < count; ++i) {
229        auto c00 = c02;
230        auto c01 = F::Expand(p0[1]);
231             c02 = F::Expand(p0[2]);
232
233        auto c = add_121(c00, c01, c02);
234        d[i] = F::Compact(shift_right(c, 2));
235        p0 += 2;
236    }
237}
238
239template <typename F> void downsample_3_2(void* dst, const void* src, size_t srcRB, int count) {
240    SkASSERT(count > 0);
241    auto p0 = static_cast<const typename F::Type*>(src);
242    auto p1 = (const typename F::Type*)((const char*)p0 + srcRB);
243    auto d = static_cast<typename F::Type*>(dst);
244
245    auto c02 = F::Expand(p0[0]);
246    auto c12 = F::Expand(p1[0]);
247    for (int i = 0; i < count; ++i) {
248        auto c00 = c02;
249        auto c01 = F::Expand(p0[1]);
250             c02 = F::Expand(p0[2]);
251        auto c10 = c12;
252        auto c11 = F::Expand(p1[1]);
253             c12 = F::Expand(p1[2]);
254
255        auto c = add_121(c00, c01, c02) + add_121(c10, c11, c12);
256        d[i] = F::Compact(shift_right(c, 3));
257        p0 += 2;
258        p1 += 2;
259    }
260}
261
262template <typename F> void downsample_3_3(void* dst, const void* src, size_t srcRB, int count) {
263    SkASSERT(count > 0);
264    auto p0 = static_cast<const typename F::Type*>(src);
265    auto p1 = (const typename F::Type*)((const char*)p0 + srcRB);
266    auto p2 = (const typename F::Type*)((const char*)p1 + srcRB);
267    auto d = static_cast<typename F::Type*>(dst);
268
269    // Given pixels:
270    // a0 b0 c0 d0 e0 ...
271    // a1 b1 c1 d1 e1 ...
272    // a2 b2 c2 d2 e2 ...
273    // We want:
274    // (a0 + 2*b0 + c0 + 2*a1 + 4*b1 + 2*c1 + a2 + 2*b2 + c2) / 16
275    // (c0 + 2*d0 + e0 + 2*c1 + 4*d1 + 2*e1 + c2 + 2*d2 + e2) / 16
276    // ...
277
278    auto c0 = F::Expand(p0[0]);
279    auto c1 = F::Expand(p1[0]);
280    auto c2 = F::Expand(p2[0]);
281    auto c = add_121(c0, c1, c2);
282    for (int i = 0; i < count; ++i) {
283        auto a = c;
284
285        auto b0 = F::Expand(p0[1]);
286        auto b1 = F::Expand(p1[1]);
287        auto b2 = F::Expand(p2[1]);
288        auto b = shift_left(add_121(b0, b1, b2), 1);
289
290        c0 = F::Expand(p0[2]);
291        c1 = F::Expand(p1[2]);
292        c2 = F::Expand(p2[2]);
293        c = add_121(c0, c1, c2);
294
295        auto sum = a + b + c;
296        d[i] = F::Compact(shift_right(sum, 4));
297        p0 += 2;
298        p1 += 2;
299        p2 += 2;
300    }
301}
302
303///////////////////////////////////////////////////////////////////////////////////////////////////
304
305// Some sRGB specific performance optimizations.
306
307void downsample_2_2_srgb(void* dst, const void* src, size_t srcRB, int count) {
308    const uint8_t* p0 = ((const uint8_t*) src);
309    const uint8_t* p1 = ((const uint8_t*) src) + srcRB;
310    uint8_t* d = (uint8_t*) dst;
311
312    // Given pixels:
313    // a0 b0 c0 d0 ...
314    // a1 b1 c1 d1 ...
315    // We want:
316    // (a0 + b0 + a1 + b1) / 4
317    // (c0 + d0 + c1 + d1) / 4
318    // ...
319    while (count >= 2) {
320        Sk8h a0c0 = Sk8h(sk_linear12_from_srgb[p0[ 0]],
321                         sk_linear12_from_srgb[p0[ 1]],
322                         sk_linear12_from_srgb[p0[ 2]],
323                         p0[ 3] << 4                  ,
324                         sk_linear12_from_srgb[p0[ 8]],
325                         sk_linear12_from_srgb[p0[ 9]],
326                         sk_linear12_from_srgb[p0[10]],
327                         p0[11] << 4               );
328        Sk8h b0d0 = Sk8h(sk_linear12_from_srgb[p0[ 4]],
329                         sk_linear12_from_srgb[p0[ 5]],
330                         sk_linear12_from_srgb[p0[ 6]],
331                         p0[ 7] << 4                  ,
332                         sk_linear12_from_srgb[p0[12]],
333                         sk_linear12_from_srgb[p0[13]],
334                         sk_linear12_from_srgb[p0[14]],
335                         p0[15] << 4                 );
336        Sk8h a1c1 = Sk8h(sk_linear12_from_srgb[p1[ 0]],
337                         sk_linear12_from_srgb[p1[ 1]],
338                         sk_linear12_from_srgb[p1[ 2]],
339                         p1[ 3] << 4                  ,
340                         sk_linear12_from_srgb[p1[ 8]],
341                         sk_linear12_from_srgb[p1[ 9]],
342                         sk_linear12_from_srgb[p1[10]],
343                         p1[11] << 4                 );
344        Sk8h b1d1 = Sk8h(sk_linear12_from_srgb[p1[ 4]],
345                         sk_linear12_from_srgb[p1[ 5]],
346                         sk_linear12_from_srgb[p1[ 6]],
347                         p1[ 7] << 4                  ,
348                         sk_linear12_from_srgb[p1[12]],
349                         sk_linear12_from_srgb[p1[13]],
350                         sk_linear12_from_srgb[p1[14]],
351                         p1[15] << 4                 );
352
353        Sk8h avg = (a0c0 + b0d0 + a1c1 + b1d1) >> 2;
354        d[0] = sk_linear12_to_srgb[avg[0]];
355        d[1] = sk_linear12_to_srgb[avg[1]];
356        d[2] = sk_linear12_to_srgb[avg[2]];
357        d[3] = avg[3] >> 4;
358        d[4] = sk_linear12_to_srgb[avg[4]];
359        d[5] = sk_linear12_to_srgb[avg[5]];
360        d[6] = sk_linear12_to_srgb[avg[6]];
361        d[7] = avg[7] >> 4;
362
363        p0 += 16;
364        p1 += 16;
365        d += 8;
366        count -= 2;
367    }
368
369    if (count) {
370        downsample_2_2<ColorTypeFilter_S32>(d, p0, srcRB, count);
371    }
372}
373
374///////////////////////////////////////////////////////////////////////////////////////////////////
375
376size_t SkMipMap::AllocLevelsSize(int levelCount, size_t pixelSize) {
377    if (levelCount < 0) {
378        return 0;
379    }
380    int64_t size = sk_64_mul(levelCount + 1, sizeof(Level)) + pixelSize;
381    if (!sk_64_isS32(size)) {
382        return 0;
383    }
384    return sk_64_asS32(size);
385}
386
387SkMipMap* SkMipMap::Build(const SkPixmap& src, SkDestinationSurfaceColorMode colorMode,
388                          SkDiscardableFactoryProc fact) {
389    typedef void FilterProc(void*, const void* srcPtr, size_t srcRB, int count);
390
391    FilterProc* proc_1_2 = nullptr;
392    FilterProc* proc_1_3 = nullptr;
393    FilterProc* proc_2_1 = nullptr;
394    FilterProc* proc_2_2 = nullptr;
395    FilterProc* proc_2_3 = nullptr;
396    FilterProc* proc_3_1 = nullptr;
397    FilterProc* proc_3_2 = nullptr;
398    FilterProc* proc_3_3 = nullptr;
399
400    const SkColorType ct = src.colorType();
401    const SkAlphaType at = src.alphaType();
402    const bool srgbGamma = (SkDestinationSurfaceColorMode::kGammaAndColorSpaceAware == colorMode)
403                            && src.info().gammaCloseToSRGB();
404
405    switch (ct) {
406        case kRGBA_8888_SkColorType:
407        case kBGRA_8888_SkColorType:
408            if (srgbGamma) {
409                proc_1_2 = downsample_1_2<ColorTypeFilter_S32>;
410                proc_1_3 = downsample_1_3<ColorTypeFilter_S32>;
411                proc_2_1 = downsample_2_1<ColorTypeFilter_S32>;
412                proc_2_2 = downsample_2_2_srgb;
413                proc_2_3 = downsample_2_3<ColorTypeFilter_S32>;
414                proc_3_1 = downsample_3_1<ColorTypeFilter_S32>;
415                proc_3_2 = downsample_3_2<ColorTypeFilter_S32>;
416                proc_3_3 = downsample_3_3<ColorTypeFilter_S32>;
417            } else {
418                proc_1_2 = downsample_1_2<ColorTypeFilter_8888>;
419                proc_1_3 = downsample_1_3<ColorTypeFilter_8888>;
420                proc_2_1 = downsample_2_1<ColorTypeFilter_8888>;
421                proc_2_2 = downsample_2_2<ColorTypeFilter_8888>;
422                proc_2_3 = downsample_2_3<ColorTypeFilter_8888>;
423                proc_3_1 = downsample_3_1<ColorTypeFilter_8888>;
424                proc_3_2 = downsample_3_2<ColorTypeFilter_8888>;
425                proc_3_3 = downsample_3_3<ColorTypeFilter_8888>;
426            }
427            break;
428        case kRGB_565_SkColorType:
429            proc_1_2 = downsample_1_2<ColorTypeFilter_565>;
430            proc_1_3 = downsample_1_3<ColorTypeFilter_565>;
431            proc_2_1 = downsample_2_1<ColorTypeFilter_565>;
432            proc_2_2 = downsample_2_2<ColorTypeFilter_565>;
433            proc_2_3 = downsample_2_3<ColorTypeFilter_565>;
434            proc_3_1 = downsample_3_1<ColorTypeFilter_565>;
435            proc_3_2 = downsample_3_2<ColorTypeFilter_565>;
436            proc_3_3 = downsample_3_3<ColorTypeFilter_565>;
437            break;
438        case kARGB_4444_SkColorType:
439            proc_1_2 = downsample_1_2<ColorTypeFilter_4444>;
440            proc_1_3 = downsample_1_3<ColorTypeFilter_4444>;
441            proc_2_1 = downsample_2_1<ColorTypeFilter_4444>;
442            proc_2_2 = downsample_2_2<ColorTypeFilter_4444>;
443            proc_2_3 = downsample_2_3<ColorTypeFilter_4444>;
444            proc_3_1 = downsample_3_1<ColorTypeFilter_4444>;
445            proc_3_2 = downsample_3_2<ColorTypeFilter_4444>;
446            proc_3_3 = downsample_3_3<ColorTypeFilter_4444>;
447            break;
448        case kAlpha_8_SkColorType:
449        case kGray_8_SkColorType:
450            proc_1_2 = downsample_1_2<ColorTypeFilter_8>;
451            proc_1_3 = downsample_1_3<ColorTypeFilter_8>;
452            proc_2_1 = downsample_2_1<ColorTypeFilter_8>;
453            proc_2_2 = downsample_2_2<ColorTypeFilter_8>;
454            proc_2_3 = downsample_2_3<ColorTypeFilter_8>;
455            proc_3_1 = downsample_3_1<ColorTypeFilter_8>;
456            proc_3_2 = downsample_3_2<ColorTypeFilter_8>;
457            proc_3_3 = downsample_3_3<ColorTypeFilter_8>;
458            break;
459        case kRGBA_F16_SkColorType:
460            proc_1_2 = downsample_1_2<ColorTypeFilter_F16>;
461            proc_1_3 = downsample_1_3<ColorTypeFilter_F16>;
462            proc_2_1 = downsample_2_1<ColorTypeFilter_F16>;
463            proc_2_2 = downsample_2_2<ColorTypeFilter_F16>;
464            proc_2_3 = downsample_2_3<ColorTypeFilter_F16>;
465            proc_3_1 = downsample_3_1<ColorTypeFilter_F16>;
466            proc_3_2 = downsample_3_2<ColorTypeFilter_F16>;
467            proc_3_3 = downsample_3_3<ColorTypeFilter_F16>;
468            break;
469        default:
470            // TODO: We could build miplevels for kIndex8 if the levels were in 8888.
471            //       Means using more ram, but the quality would be fine.
472            return nullptr;
473    }
474
475    if (src.width() <= 1 && src.height() <= 1) {
476        return nullptr;
477    }
478    // whip through our loop to compute the exact size needed
479    size_t size = 0;
480    int countLevels = ComputeLevelCount(src.width(), src.height());
481    for (int currentMipLevel = countLevels; currentMipLevel >= 0; currentMipLevel--) {
482        SkISize mipSize = ComputeLevelSize(src.width(), src.height(), currentMipLevel);
483        size += SkColorTypeMinRowBytes(ct, mipSize.fWidth) * mipSize.fHeight;
484    }
485
486    size_t storageSize = SkMipMap::AllocLevelsSize(countLevels, size);
487    if (0 == storageSize) {
488        return nullptr;
489    }
490
491    SkMipMap* mipmap;
492    if (fact) {
493        SkDiscardableMemory* dm = fact(storageSize);
494        if (nullptr == dm) {
495            return nullptr;
496        }
497        mipmap = new SkMipMap(storageSize, dm);
498    } else {
499        mipmap = new SkMipMap(sk_malloc_throw(storageSize), storageSize);
500    }
501
502    // init
503    mipmap->fCS = sk_ref_sp(src.info().colorSpace());
504    mipmap->fCount = countLevels;
505    mipmap->fLevels = (Level*)mipmap->writable_data();
506    SkASSERT(mipmap->fLevels);
507
508    Level* levels = mipmap->fLevels;
509    uint8_t*    baseAddr = (uint8_t*)&levels[countLevels];
510    uint8_t*    addr = baseAddr;
511    int         width = src.width();
512    int         height = src.height();
513    uint32_t    rowBytes;
514    SkPixmap    srcPM(src);
515
516    for (int i = 0; i < countLevels; ++i) {
517        FilterProc* proc;
518        if (height & 1) {
519            if (height == 1) {        // src-height is 1
520                if (width & 1) {      // src-width is 3
521                    proc = proc_3_1;
522                } else {              // src-width is 2
523                    proc = proc_2_1;
524                }
525            } else {                  // src-height is 3
526                if (width & 1) {
527                    if (width == 1) { // src-width is 1
528                        proc = proc_1_3;
529                    } else {          // src-width is 3
530                        proc = proc_3_3;
531                    }
532                } else {              // src-width is 2
533                    proc = proc_2_3;
534                }
535            }
536        } else {                      // src-height is 2
537            if (width & 1) {
538                if (width == 1) {     // src-width is 1
539                    proc = proc_1_2;
540                } else {              // src-width is 3
541                    proc = proc_3_2;
542                }
543            } else {                  // src-width is 2
544                proc = proc_2_2;
545            }
546        }
547        width = SkTMax(1, width >> 1);
548        height = SkTMax(1, height >> 1);
549        rowBytes = SkToU32(SkColorTypeMinRowBytes(ct, width));
550
551        // We make the Info w/o any colorspace, since that storage is not under our control, and
552        // will not be deleted in a controlled fashion. When the caller is given the pixmap for
553        // a given level, we augment this pixmap with fCS (which we do manage).
554        new (&levels[i].fPixmap) SkPixmap(SkImageInfo::Make(width, height, ct, at), addr, rowBytes);
555        levels[i].fScale  = SkSize::Make(SkIntToScalar(width)  / src.width(),
556                                         SkIntToScalar(height) / src.height());
557
558        const SkPixmap& dstPM = levels[i].fPixmap;
559        const void* srcBasePtr = srcPM.addr();
560        void* dstBasePtr = dstPM.writable_addr();
561
562        const size_t srcRB = srcPM.rowBytes();
563        for (int y = 0; y < height; y++) {
564            proc(dstBasePtr, srcBasePtr, srcRB, width);
565            srcBasePtr = (char*)srcBasePtr + srcRB * 2; // jump two rows
566            dstBasePtr = (char*)dstBasePtr + dstPM.rowBytes();
567        }
568        srcPM = dstPM;
569        addr += height * rowBytes;
570    }
571    SkASSERT(addr == baseAddr + size);
572
573    SkASSERT(mipmap->fLevels);
574    return mipmap;
575}
576
577int SkMipMap::ComputeLevelCount(int baseWidth, int baseHeight) {
578    if (baseWidth < 1 || baseHeight < 1) {
579        return 0;
580    }
581
582    // OpenGL's spec requires that each mipmap level have height/width equal to
583    // max(1, floor(original_height / 2^i)
584    // (or original_width) where i is the mipmap level.
585    // Continue scaling down until both axes are size 1.
586
587    const int largestAxis = SkTMax(baseWidth, baseHeight);
588    if (largestAxis < 2) {
589        // SkMipMap::Build requires a minimum size of 2.
590        return 0;
591    }
592    const int leadingZeros = SkCLZ(static_cast<uint32_t>(largestAxis));
593    // If the value 00011010 has 3 leading 0s then it has 5 significant bits
594    // (the bits which are not leading zeros)
595    const int significantBits = (sizeof(uint32_t) * 8) - leadingZeros;
596    // This is making the assumption that the size of a byte is 8 bits
597    // and that sizeof(uint32_t)'s implementation-defined behavior is 4.
598    int mipLevelCount = significantBits;
599
600    // SkMipMap does not include the base mip level.
601    // For example, it contains levels 1-x instead of 0-x.
602    // This is because the image used to create SkMipMap is the base level.
603    // So subtract 1 from the mip level count.
604    if (mipLevelCount > 0) {
605        --mipLevelCount;
606    }
607
608    return mipLevelCount;
609}
610
611SkISize SkMipMap::ComputeLevelSize(int baseWidth, int baseHeight, int level) {
612    if (baseWidth < 1 || baseHeight < 1) {
613        return SkISize::Make(0, 0);
614    }
615
616    int maxLevelCount = ComputeLevelCount(baseWidth, baseHeight);
617    if (level >= maxLevelCount || level < 0) {
618        return SkISize::Make(0, 0);
619    }
620    // OpenGL's spec requires that each mipmap level have height/width equal to
621    // max(1, floor(original_height / 2^i)
622    // (or original_width) where i is the mipmap level.
623
624    // SkMipMap does not include the base mip level.
625    // For example, it contains levels 1-x instead of 0-x.
626    // This is because the image used to create SkMipMap is the base level.
627    // So subtract 1 from the mip level to get the index stored by SkMipMap.
628    int width = SkTMax(1, baseWidth >> (level + 1));
629    int height = SkTMax(1, baseHeight >> (level + 1));
630
631    return SkISize::Make(width, height);
632}
633
634///////////////////////////////////////////////////////////////////////////////
635
636bool SkMipMap::extractLevel(const SkSize& scaleSize, Level* levelPtr) const {
637    if (nullptr == fLevels) {
638        return false;
639    }
640
641    SkASSERT(scaleSize.width() >= 0 && scaleSize.height() >= 0);
642
643#ifndef SK_SUPPORT_LEGACY_ANISOTROPIC_MIPMAP_SCALE
644    // Use the smallest scale to match the GPU impl.
645    const SkScalar scale = SkTMin(scaleSize.width(), scaleSize.height());
646#else
647    // Ideally we'd pick the smaller scale, to match Ganesh.  But ignoring one of the
648    // scales can produce some atrocious results, so for now we use the geometric mean.
649    // (https://bugs.chromium.org/p/skia/issues/detail?id=4863)
650    const SkScalar scale = SkScalarSqrt(scaleSize.width() * scaleSize.height());
651#endif
652
653    if (scale >= SK_Scalar1 || scale <= 0 || !SkScalarIsFinite(scale)) {
654        return false;
655    }
656
657    SkScalar L = -SkScalarLog2(scale);
658    if (!SkScalarIsFinite(L)) {
659        return false;
660    }
661    SkASSERT(L >= 0);
662    int level = SkScalarFloorToInt(L);
663
664    SkASSERT(level >= 0);
665    if (level <= 0) {
666        return false;
667    }
668
669    if (level > fCount) {
670        level = fCount;
671    }
672    if (levelPtr) {
673        *levelPtr = fLevels[level - 1];
674        // need to augment with our colorspace
675        levelPtr->fPixmap.setColorSpace(fCS);
676    }
677    return true;
678}
679
680// Helper which extracts a pixmap from the src bitmap
681//
682SkMipMap* SkMipMap::Build(const SkBitmap& src, SkDestinationSurfaceColorMode colorMode,
683                          SkDiscardableFactoryProc fact) {
684    SkAutoPixmapUnlock srcUnlocker;
685    if (!src.requestLock(&srcUnlocker)) {
686        return nullptr;
687    }
688    const SkPixmap& srcPixmap = srcUnlocker.pixmap();
689    // Try to catch where we might have returned nullptr for src crbug.com/492818
690    if (nullptr == srcPixmap.addr()) {
691        sk_throw();
692    }
693    return Build(srcPixmap, colorMode, fact);
694}
695
696int SkMipMap::countLevels() const {
697    return fCount;
698}
699
700bool SkMipMap::getLevel(int index, Level* levelPtr) const {
701    if (NULL == fLevels) {
702        return false;
703    }
704    if (index < 0) {
705        return false;
706    }
707    if (index > fCount - 1) {
708        return false;
709    }
710    if (levelPtr) {
711        *levelPtr = fLevels[index];
712    }
713    return true;
714}
715