GrCircleBlurFragmentProcessor.fp revision ceb4d48ef4839aab9d99d0200dcfe403ccd0cdf3
1in vec4 circleRect;
2in float textureRadius;
3in float solidRadius;
4in uniform sampler2D blurProfileSampler;
5
6// The data is formatted as:
7// x, y - the center of the circle
8// z    - inner radius that should map to 0th entry in the texture.
9// w    - the inverse of the distance over which the texture is stretched.
10uniform vec4 circleData;
11
12@optimizationFlags {
13    kCompatibleWithCoverageAsAlpha_OptimizationFlag
14}
15
16@constructorParams {
17    GrResourceProvider* resourceProvider
18}
19
20@make {
21    static sk_sp<GrFragmentProcessor> Make(GrResourceProvider* resourceProvider,
22                                           const SkRect& circle, float sigma);
23}
24
25@setData(data) {
26    data.set4f(circleData, circleRect.centerX(), circleRect.centerY(), solidRadius,
27               1.f / textureRadius);
28}
29
30@cpp {
31    #include "GrResourceProvider.h"
32
33    // Computes an unnormalized half kernel (right side). Returns the summation of all the half
34    // kernel values.
35    static float make_unnormalized_half_kernel(float* halfKernel, int halfKernelSize, float sigma) {
36        const float invSigma = 1.f / sigma;
37        const float b = -0.5f * invSigma * invSigma;
38        float tot = 0.0f;
39        // Compute half kernel values at half pixel steps out from the center.
40        float t = 0.5f;
41        for (int i = 0; i < halfKernelSize; ++i) {
42            float value = expf(t * t * b);
43            tot += value;
44            halfKernel[i] = value;
45            t += 1.f;
46        }
47        return tot;
48    }
49
50    // Create a Gaussian half-kernel (right side) and a summed area table given a sigma and number
51    // of discrete steps. The half kernel is normalized to sum to 0.5.
52    static void make_half_kernel_and_summed_table(float* halfKernel, float* summedHalfKernel,
53                                                  int halfKernelSize, float sigma) {
54        // The half kernel should sum to 0.5 not 1.0.
55        const float tot = 2.f * make_unnormalized_half_kernel(halfKernel, halfKernelSize, sigma);
56        float sum = 0.f;
57        for (int i = 0; i < halfKernelSize; ++i) {
58            halfKernel[i] /= tot;
59            sum += halfKernel[i];
60            summedHalfKernel[i] = sum;
61        }
62    }
63
64    // Applies the 1D half kernel vertically at points along the x axis to a circle centered at the
65    // origin with radius circleR.
66    void apply_kernel_in_y(float* results, int numSteps, float firstX, float circleR,
67                           int halfKernelSize, const float* summedHalfKernelTable) {
68        float x = firstX;
69        for (int i = 0; i < numSteps; ++i, x += 1.f) {
70            if (x < -circleR || x > circleR) {
71                results[i] = 0;
72                continue;
73            }
74            float y = sqrtf(circleR * circleR - x * x);
75            // In the column at x we exit the circle at +y and -y
76            // The summed table entry j is actually reflects an offset of j + 0.5.
77            y -= 0.5f;
78            int yInt = SkScalarFloorToInt(y);
79            SkASSERT(yInt >= -1);
80            if (y < 0) {
81                results[i] = (y + 0.5f) * summedHalfKernelTable[0];
82            } else if (yInt >= halfKernelSize - 1) {
83                results[i] = 0.5f;
84            } else {
85                float yFrac = y - yInt;
86                results[i] = (1.f - yFrac) * summedHalfKernelTable[yInt] +
87                             yFrac * summedHalfKernelTable[yInt + 1];
88            }
89        }
90    }
91
92    // Apply a Gaussian at point (evalX, 0) to a circle centered at the origin with radius circleR.
93    // This relies on having a half kernel computed for the Gaussian and a table of applications of
94    // the half kernel in y to columns at (evalX - halfKernel, evalX - halfKernel + 1, ..., evalX +
95    // halfKernel) passed in as yKernelEvaluations.
96    static uint8_t eval_at(float evalX, float circleR, const float* halfKernel, int halfKernelSize,
97                           const float* yKernelEvaluations) {
98        float acc = 0;
99
100        float x = evalX - halfKernelSize;
101        for (int i = 0; i < halfKernelSize; ++i, x += 1.f) {
102            if (x < -circleR || x > circleR) {
103                continue;
104            }
105            float verticalEval = yKernelEvaluations[i];
106            acc += verticalEval * halfKernel[halfKernelSize - i - 1];
107        }
108        for (int i = 0; i < halfKernelSize; ++i, x += 1.f) {
109            if (x < -circleR || x > circleR) {
110                continue;
111            }
112            float verticalEval = yKernelEvaluations[i + halfKernelSize];
113            acc += verticalEval * halfKernel[i];
114        }
115        // Since we applied a half kernel in y we multiply acc by 2 (the circle is symmetric about
116        // the x axis).
117        return SkUnitScalarClampToByte(2.f * acc);
118    }
119
120    // This function creates a profile of a blurred circle. It does this by computing a kernel for
121    // half the Gaussian and a matching summed area table. The summed area table is used to compute
122    // an array of vertical applications of the half kernel to the circle along the x axis. The
123    // table of y evaluations has 2 * k + n entries where k is the size of the half kernel and n is
124    // the size of the profile being computed. Then for each of the n profile entries we walk out k
125    // steps in each horizontal direction multiplying the corresponding y evaluation by the half
126    // kernel entry and sum these values to compute the profile entry.
127    static uint8_t* create_circle_profile(float sigma, float circleR, int profileTextureWidth) {
128        const int numSteps = profileTextureWidth;
129        uint8_t* weights = new uint8_t[numSteps];
130
131        // The full kernel is 6 sigmas wide.
132        int halfKernelSize = SkScalarCeilToInt(6.0f*sigma);
133        // round up to next multiple of 2 and then divide by 2
134        halfKernelSize = ((halfKernelSize + 1) & ~1) >> 1;
135
136        // Number of x steps at which to apply kernel in y to cover all the profile samples in x.
137        int numYSteps = numSteps + 2 * halfKernelSize;
138
139        SkAutoTArray<float> bulkAlloc(halfKernelSize + halfKernelSize + numYSteps);
140        float* halfKernel = bulkAlloc.get();
141        float* summedKernel = bulkAlloc.get() + halfKernelSize;
142        float* yEvals = bulkAlloc.get() + 2 * halfKernelSize;
143        make_half_kernel_and_summed_table(halfKernel, summedKernel, halfKernelSize, sigma);
144
145        float firstX = -halfKernelSize + 0.5f;
146        apply_kernel_in_y(yEvals, numYSteps, firstX, circleR, halfKernelSize, summedKernel);
147
148        for (int i = 0; i < numSteps - 1; ++i) {
149            float evalX = i + 0.5f;
150            weights[i] = eval_at(evalX, circleR, halfKernel, halfKernelSize, yEvals + i);
151        }
152        // Ensure the tail of the Gaussian goes to zero.
153        weights[numSteps - 1] = 0;
154        return weights;
155    }
156
157    static uint8_t* create_half_plane_profile(int profileWidth) {
158        SkASSERT(!(profileWidth & 0x1));
159        // The full kernel is 6 sigmas wide.
160        float sigma = profileWidth / 6.f;
161        int halfKernelSize = profileWidth / 2;
162
163        SkAutoTArray<float> halfKernel(halfKernelSize);
164        uint8_t* profile = new uint8_t[profileWidth];
165
166        // The half kernel should sum to 0.5.
167        const float tot = 2.f * make_unnormalized_half_kernel(halfKernel.get(), halfKernelSize,
168                                                              sigma);
169        float sum = 0.f;
170        // Populate the profile from the right edge to the middle.
171        for (int i = 0; i < halfKernelSize; ++i) {
172            halfKernel[halfKernelSize - i - 1] /= tot;
173            sum += halfKernel[halfKernelSize - i - 1];
174            profile[profileWidth - i - 1] = SkUnitScalarClampToByte(sum);
175        }
176        // Populate the profile from the middle to the left edge (by flipping the half kernel and
177        // continuing the summation).
178        for (int i = 0; i < halfKernelSize; ++i) {
179            sum += halfKernel[i];
180            profile[halfKernelSize - i - 1] = SkUnitScalarClampToByte(sum);
181        }
182        // Ensure tail goes to 0.
183        profile[profileWidth - 1] = 0;
184        return profile;
185    }
186
187    static sk_sp<GrTextureProxy> create_profile_texture(GrResourceProvider* resourceProvider,
188                                                        const SkRect& circle,
189                                                        float sigma,
190                                                        float* solidRadius, float* textureRadius) {
191        float circleR = circle.width() / 2.0f;
192        // Profile textures are cached by the ratio of sigma to circle radius and by the size of the
193        // profile texture (binned by powers of 2).
194        SkScalar sigmaToCircleRRatio = sigma / circleR;
195        // When sigma is really small this becomes a equivalent to convolving a Gaussian with a
196        // half-plane. Similarly, in the extreme high ratio cases circle becomes a point WRT to the
197        // Guassian and the profile texture is a just a Gaussian evaluation. However, we haven't yet
198        // implemented this latter optimization.
199        sigmaToCircleRRatio = SkTMin(sigmaToCircleRRatio, 8.f);
200        SkFixed sigmaToCircleRRatioFixed;
201        static const SkScalar kHalfPlaneThreshold = 0.1f;
202        bool useHalfPlaneApprox = false;
203        if (sigmaToCircleRRatio <= kHalfPlaneThreshold) {
204            useHalfPlaneApprox = true;
205            sigmaToCircleRRatioFixed = 0;
206            *solidRadius = circleR - 3 * sigma;
207            *textureRadius = 6 * sigma;
208        } else {
209            // Convert to fixed point for the key.
210            sigmaToCircleRRatioFixed = SkScalarToFixed(sigmaToCircleRRatio);
211            // We shave off some bits to reduce the number of unique entries. We could probably
212            // shave off more than we do.
213            sigmaToCircleRRatioFixed &= ~0xff;
214            sigmaToCircleRRatio = SkFixedToScalar(sigmaToCircleRRatioFixed);
215            sigma = circleR * sigmaToCircleRRatio;
216            *solidRadius = 0;
217            *textureRadius = circleR + 3 * sigma;
218        }
219
220        static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain();
221        GrUniqueKey key;
222        GrUniqueKey::Builder builder(&key, kDomain, 1);
223        builder[0] = sigmaToCircleRRatioFixed;
224        builder.finish();
225
226        sk_sp<GrTextureProxy> blurProfile = resourceProvider->findProxyByUniqueKey(key);
227        if (!blurProfile) {
228            static constexpr int kProfileTextureWidth = 512;
229            GrSurfaceDesc texDesc;
230            texDesc.fWidth = kProfileTextureWidth;
231            texDesc.fHeight = 1;
232            texDesc.fConfig = kAlpha_8_GrPixelConfig;
233
234            std::unique_ptr<uint8_t[]> profile(nullptr);
235            if (useHalfPlaneApprox) {
236                profile.reset(create_half_plane_profile(kProfileTextureWidth));
237            } else {
238                // Rescale params to the size of the texture we're creating.
239                SkScalar scale = kProfileTextureWidth / *textureRadius;
240                profile.reset(create_circle_profile(sigma * scale, circleR * scale,
241                                                    kProfileTextureWidth));
242            }
243
244            blurProfile = GrSurfaceProxy::MakeDeferred(resourceProvider,
245                                                       texDesc, SkBudgeted::kYes, profile.get(), 0);
246            if (!blurProfile) {
247                return nullptr;
248            }
249
250            resourceProvider->assignUniqueKeyToProxy(key, blurProfile.get());
251        }
252
253        return blurProfile;
254    }
255
256    sk_sp<GrFragmentProcessor> GrCircleBlurFragmentProcessor::Make(
257                                                               GrResourceProvider* resourceProvider,
258                                                               const SkRect& circle,
259                                                               float sigma) {
260        float solidRadius;
261        float textureRadius;
262        sk_sp<GrTextureProxy> profile(create_profile_texture(resourceProvider, circle, sigma,
263                                                             &solidRadius, &textureRadius));
264        if (!profile) {
265            return nullptr;
266        }
267        return sk_sp<GrFragmentProcessor>(new GrCircleBlurFragmentProcessor(circle,
268                                                                            textureRadius,
269                                                                            solidRadius,
270                                                                            std::move(profile),
271                                                                            resourceProvider));
272    }
273}
274
275void main() {
276    // We just want to compute "(length(vec) - circleData.z + 0.5) * circleData.w" but need to
277    // rearrange for precision.
278    vec2 vec = vec2((sk_FragCoord.x - circleData.x) * circleData.w,
279                    (sk_FragCoord.y - circleData.y) * circleData.w);
280    float dist = length(vec) + (0.5 - circleData.z) * circleData.w;
281    sk_OutColor = sk_InColor * texture(blurProfileSampler, vec2(dist, 0.5)).a;
282}
283
284@test(testData) {
285    SkScalar wh = testData->fRandom->nextRangeScalar(100.f, 1000.f);
286    SkScalar sigma = testData->fRandom->nextRangeF(1.f,10.f);
287    SkRect circle = SkRect::MakeWH(wh, wh);
288    return GrCircleBlurFragmentProcessor::Make(testData->resourceProvider(), circle, sigma);
289}