GrCCGeometry.h revision 84403d7f53d88b2449fd19415538ba1479fe300b
1/*
2 * Copyright 2017 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8#ifndef GrGrCCGeometry_DEFINED
9#define GrGrCCGeometry_DEFINED
10
11#include "SkGeometry.h"
12#include "SkNx.h"
13#include "SkPoint.h"
14#include "SkTArray.h"
15
16/**
17 * This class chops device-space contours up into a series of segments that CCPR knows how to
18 * render. (See GrCCGeometry::Verb.)
19 *
20 * NOTE: This must be done in device space, since an affine transformation can change whether a
21 * curve is monotonic.
22 */
23class GrCCGeometry {
24public:
25    // These are the verbs that CCPR knows how to draw. If a path has any segments that don't map to
26    // this list, then they are chopped into smaller ones that do. A list of these comprise a
27    // compact representation of what can later be expanded into GPU instance data.
28    enum class Verb : uint8_t {
29        kBeginPath, // Included only for caller convenience.
30        kBeginContour,
31        kLineTo,
32        kMonotonicQuadraticTo, // Monotonic relative to the vector between its endpoints [P2 - P0].
33        kMonotonicCubicTo,
34        kEndClosedContour, // endPt == startPt.
35        kEndOpenContour // endPt != startPt.
36    };
37
38    // These tallies track numbers of CCPR primitives that are required to draw a contour.
39    struct PrimitiveTallies {
40        int fTriangles; // Number of triangles in the contour's fan.
41        int fWoundTriangles; // Triangles (from the tessellator) whose winding magnitude > 1.
42        int fQuadratics;
43        int fCubics;
44
45        void operator+=(const PrimitiveTallies&);
46        PrimitiveTallies operator-(const PrimitiveTallies&) const;
47        bool operator==(const PrimitiveTallies&);
48    };
49
50    GrCCGeometry(int numSkPoints = 0, int numSkVerbs = 0)
51            : fPoints(numSkPoints * 3) // Reserve for a 3x expansion in points and verbs.
52            , fVerbs(numSkVerbs * 3) {}
53
54    const SkTArray<SkPoint, true>& points() const { SkASSERT(!fBuildingContour); return fPoints; }
55    const SkTArray<Verb, true>& verbs() const { SkASSERT(!fBuildingContour); return fVerbs; }
56
57    void reset() {
58        SkASSERT(!fBuildingContour);
59        fPoints.reset();
60        fVerbs.reset();
61    }
62
63    // This is included in case the caller needs to discard previously added contours. It is up to
64    // the caller to track counts and ensure we don't pop back into the middle of a different
65    // contour.
66    void resize_back(int numPoints, int numVerbs) {
67        SkASSERT(!fBuildingContour);
68        fPoints.resize_back(numPoints);
69        fVerbs.resize_back(numVerbs);
70        SkASSERT(fVerbs.empty() || fVerbs.back() == Verb::kEndOpenContour ||
71                 fVerbs.back() == Verb::kEndClosedContour);
72    }
73
74    void beginPath();
75    void beginContour(const SkPoint& devPt);
76    void lineTo(const SkPoint& devPt);
77    void quadraticTo(const SkPoint& devP1, const SkPoint& devP2);
78
79    // We pass through inflection points and loop intersections using a line and quadratic(s)
80    // respectively. 'inflectPad' and 'loopIntersectPad' specify how close (in pixels) cubic
81    // segments are allowed to get to these points. For normal rendering you will want to use the
82    // default values, but these can be overridden for testing purposes.
83    //
84    // NOTE: loops do appear to require two full pixels of padding around the intersection point.
85    //       With just one pixel-width of pad, we start to see bad pixels. Ultimately this has a
86    //       minimal effect on the total amount of segments produced. Most sections that pass
87    //       through the loop intersection can be approximated with a single quadratic anyway,
88    //       regardless of whether we are use one pixel of pad or two (1.622 avg. quads per loop
89    //       intersection vs. 1.489 on the tiger).
90    void cubicTo(const SkPoint& devP1, const SkPoint& devP2, const SkPoint& devP3,
91                 float inflectPad = 0.55f, float loopIntersectPad = 2);
92
93    PrimitiveTallies endContour(); // Returns the numbers of primitives needed to draw the contour.
94
95private:
96    inline void appendMonotonicQuadratics(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2);
97    inline void appendSingleMonotonicQuadratic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2);
98
99    using AppendCubicFn = void(GrCCGeometry::*)(const Sk2f& p0, const Sk2f& p1,
100                                                const Sk2f& p2, const Sk2f& p3,
101                                                int maxSubdivisions);
102    static constexpr int kMaxSubdivionsPerCubicSection = 2;
103
104    template<AppendCubicFn AppendLeftRight>
105    inline void chopCubicAtMidTangent(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
106                                      const Sk2f& p3, const Sk2f& tan0, const Sk2f& tan3,
107                                      int maxFutureSubdivisions = kMaxSubdivionsPerCubicSection);
108
109    template<AppendCubicFn AppendLeft, AppendCubicFn AppendRight>
110    inline void chopCubic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, const Sk2f& p3,
111                          float T, int maxFutureSubdivisions = kMaxSubdivionsPerCubicSection);
112
113    void appendMonotonicCubics(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, const Sk2f& p3,
114                               int maxSubdivisions = kMaxSubdivionsPerCubicSection);
115    void appendCubicApproximation(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, const Sk2f& p3,
116                                  int maxSubdivisions = kMaxSubdivionsPerCubicSection);
117
118    // Transient state used while building a contour.
119    SkPoint fCurrAnchorPoint;
120    SkPoint fCurrFanPoint;
121    PrimitiveTallies fCurrContourTallies;
122    SkCubicType fCurrCubicType;
123    SkDEBUGCODE(bool fBuildingContour = false);
124
125    // TODO: These points could eventually be written directly to block-allocated GPU buffers.
126    SkSTArray<128, SkPoint, true>   fPoints;
127    SkSTArray<128, Verb, true>      fVerbs;
128};
129
130inline void GrCCGeometry::PrimitiveTallies::operator+=(const PrimitiveTallies& b) {
131    fTriangles += b.fTriangles;
132    fWoundTriangles += b.fWoundTriangles;
133    fQuadratics += b.fQuadratics;
134    fCubics += b.fCubics;
135}
136
137GrCCGeometry::PrimitiveTallies
138inline GrCCGeometry::PrimitiveTallies::operator-(const PrimitiveTallies& b) const {
139    return {fTriangles - b.fTriangles,
140            fWoundTriangles - b.fWoundTriangles,
141            fQuadratics - b.fQuadratics,
142            fCubics - b.fCubics};
143}
144
145inline bool GrCCGeometry::PrimitiveTallies::operator==(const PrimitiveTallies& b) {
146    return fTriangles == b.fTriangles && fWoundTriangles == b.fWoundTriangles &&
147           fQuadratics == b.fQuadratics && fCubics == b.fCubics;
148}
149
150#endif
151