SkPDFShader.cpp revision 547019e1a671b1b30746e69b9647b201500e1504
1
2/*
3 * Copyright 2011 Google Inc.
4 *
5 * Use of this source code is governed by a BSD-style license that can be
6 * found in the LICENSE file.
7 */
8
9
10#include "SkPDFShader.h"
11
12#include "SkData.h"
13#include "SkPDFCanon.h"
14#include "SkPDFCatalog.h"
15#include "SkPDFDevice.h"
16#include "SkPDFFormXObject.h"
17#include "SkPDFGraphicState.h"
18#include "SkPDFResourceDict.h"
19#include "SkPDFUtils.h"
20#include "SkScalar.h"
21#include "SkStream.h"
22#include "SkTemplates.h"
23#include "SkTypes.h"
24
25static bool inverse_transform_bbox(const SkMatrix& matrix, SkRect* bbox) {
26    SkMatrix inverse;
27    if (!matrix.invert(&inverse)) {
28        return false;
29    }
30    inverse.mapRect(bbox);
31    return true;
32}
33
34static void unitToPointsMatrix(const SkPoint pts[2], SkMatrix* matrix) {
35    SkVector    vec = pts[1] - pts[0];
36    SkScalar    mag = vec.length();
37    SkScalar    inv = mag ? SkScalarInvert(mag) : 0;
38
39    vec.scale(inv);
40    matrix->setSinCos(vec.fY, vec.fX);
41    matrix->preScale(mag, mag);
42    matrix->postTranslate(pts[0].fX, pts[0].fY);
43}
44
45/* Assumes t + startOffset is on the stack and does a linear interpolation on t
46   between startOffset and endOffset from prevColor to curColor (for each color
47   component), leaving the result in component order on the stack. It assumes
48   there are always 3 components per color.
49   @param range                  endOffset - startOffset
50   @param curColor[components]   The current color components.
51   @param prevColor[components]  The previous color components.
52   @param result                 The result ps function.
53 */
54static void interpolateColorCode(SkScalar range, SkScalar* curColor,
55                                 SkScalar* prevColor, SkString* result) {
56    SkASSERT(range != SkIntToScalar(0));
57    static const int kColorComponents = 3;
58
59    // Figure out how to scale each color component.
60    SkScalar multiplier[kColorComponents];
61    for (int i = 0; i < kColorComponents; i++) {
62        multiplier[i] = SkScalarDiv(curColor[i] - prevColor[i], range);
63    }
64
65    // Calculate when we no longer need to keep a copy of the input parameter t.
66    // If the last component to use t is i, then dupInput[0..i - 1] = true
67    // and dupInput[i .. components] = false.
68    bool dupInput[kColorComponents];
69    dupInput[kColorComponents - 1] = false;
70    for (int i = kColorComponents - 2; i >= 0; i--) {
71        dupInput[i] = dupInput[i + 1] || multiplier[i + 1] != 0;
72    }
73
74    if (!dupInput[0] && multiplier[0] == 0) {
75        result->append("pop ");
76    }
77
78    for (int i = 0; i < kColorComponents; i++) {
79        // If the next components needs t and this component will consume a
80        // copy, make another copy.
81        if (dupInput[i] && multiplier[i] != 0) {
82            result->append("dup ");
83        }
84
85        if (multiplier[i] == 0) {
86            result->appendScalar(prevColor[i]);
87            result->append(" ");
88        } else {
89            if (multiplier[i] != 1) {
90                result->appendScalar(multiplier[i]);
91                result->append(" mul ");
92            }
93            if (prevColor[i] != 0) {
94                result->appendScalar(prevColor[i]);
95                result->append(" add ");
96            }
97        }
98
99        if (dupInput[i]) {
100            result->append("exch\n");
101        }
102    }
103}
104
105/* Generate Type 4 function code to map t=[0,1) to the passed gradient,
106   clamping at the edges of the range.  The generated code will be of the form:
107       if (t < 0) {
108           return colorData[0][r,g,b];
109       } else {
110           if (t < info.fColorOffsets[1]) {
111               return linearinterpolation(colorData[0][r,g,b],
112                                          colorData[1][r,g,b]);
113           } else {
114               if (t < info.fColorOffsets[2]) {
115                   return linearinterpolation(colorData[1][r,g,b],
116                                              colorData[2][r,g,b]);
117               } else {
118
119                ...    } else {
120                           return colorData[info.fColorCount - 1][r,g,b];
121                       }
122                ...
123           }
124       }
125 */
126static void gradientFunctionCode(const SkShader::GradientInfo& info,
127                                 SkString* result) {
128    /* We want to linearly interpolate from the previous color to the next.
129       Scale the colors from 0..255 to 0..1 and determine the multipliers
130       for interpolation.
131       C{r,g,b}(t, section) = t - offset_(section-1) + t * Multiplier{r,g,b}.
132     */
133    static const int kColorComponents = 3;
134    typedef SkScalar ColorTuple[kColorComponents];
135    SkAutoSTMalloc<4, ColorTuple> colorDataAlloc(info.fColorCount);
136    ColorTuple *colorData = colorDataAlloc.get();
137    const SkScalar scale = SkScalarInvert(SkIntToScalar(255));
138    for (int i = 0; i < info.fColorCount; i++) {
139        colorData[i][0] = SkScalarMul(SkColorGetR(info.fColors[i]), scale);
140        colorData[i][1] = SkScalarMul(SkColorGetG(info.fColors[i]), scale);
141        colorData[i][2] = SkScalarMul(SkColorGetB(info.fColors[i]), scale);
142    }
143
144    // Clamp the initial color.
145    result->append("dup 0 le {pop ");
146    result->appendScalar(colorData[0][0]);
147    result->append(" ");
148    result->appendScalar(colorData[0][1]);
149    result->append(" ");
150    result->appendScalar(colorData[0][2]);
151    result->append(" }\n");
152
153    // The gradient colors.
154    int gradients = 0;
155    for (int i = 1 ; i < info.fColorCount; i++) {
156        if (info.fColorOffsets[i] == info.fColorOffsets[i - 1]) {
157            continue;
158        }
159        gradients++;
160
161        result->append("{dup ");
162        result->appendScalar(info.fColorOffsets[i]);
163        result->append(" le {");
164        if (info.fColorOffsets[i - 1] != 0) {
165            result->appendScalar(info.fColorOffsets[i - 1]);
166            result->append(" sub\n");
167        }
168
169        interpolateColorCode(info.fColorOffsets[i] - info.fColorOffsets[i - 1],
170                             colorData[i], colorData[i - 1], result);
171        result->append("}\n");
172    }
173
174    // Clamp the final color.
175    result->append("{pop ");
176    result->appendScalar(colorData[info.fColorCount - 1][0]);
177    result->append(" ");
178    result->appendScalar(colorData[info.fColorCount - 1][1]);
179    result->append(" ");
180    result->appendScalar(colorData[info.fColorCount - 1][2]);
181
182    for (int i = 0 ; i < gradients + 1; i++) {
183        result->append("} ifelse\n");
184    }
185}
186
187/* Map a value of t on the stack into [0, 1) for Repeat or Mirror tile mode. */
188static void tileModeCode(SkShader::TileMode mode, SkString* result) {
189    if (mode == SkShader::kRepeat_TileMode) {
190        result->append("dup truncate sub\n");  // Get the fractional part.
191        result->append("dup 0 le {1 add} if\n");  // Map (-1,0) => (0,1)
192        return;
193    }
194
195    if (mode == SkShader::kMirror_TileMode) {
196        // Map t mod 2 into [0, 1, 1, 0].
197        //               Code                     Stack
198        result->append("abs "                 // Map negative to positive.
199                       "dup "                 // t.s t.s
200                       "truncate "            // t.s t
201                       "dup "                 // t.s t t
202                       "cvi "                 // t.s t T
203                       "2 mod "               // t.s t (i mod 2)
204                       "1 eq "                // t.s t true|false
205                       "3 1 roll "            // true|false t.s t
206                       "sub "                 // true|false 0.s
207                       "exch "                // 0.s true|false
208                       "{1 exch sub} if\n");  // 1 - 0.s|0.s
209    }
210}
211
212/**
213 *  Returns PS function code that applies inverse perspective
214 *  to a x, y point.
215 *  The function assumes that the stack has at least two elements,
216 *  and that the top 2 elements are numeric values.
217 *  After executing this code on a PS stack, the last 2 elements are updated
218 *  while the rest of the stack is preserved intact.
219 *  inversePerspectiveMatrix is the inverse perspective matrix.
220 */
221static SkString apply_perspective_to_coordinates(
222        const SkMatrix& inversePerspectiveMatrix) {
223    SkString code;
224    if (!inversePerspectiveMatrix.hasPerspective()) {
225        return code;
226    }
227
228    // Perspective matrix should be:
229    // 1   0  0
230    // 0   1  0
231    // p0 p1 p2
232
233    const SkScalar p0 = inversePerspectiveMatrix[SkMatrix::kMPersp0];
234    const SkScalar p1 = inversePerspectiveMatrix[SkMatrix::kMPersp1];
235    const SkScalar p2 = inversePerspectiveMatrix[SkMatrix::kMPersp2];
236
237    // y = y / (p2 + p0 x + p1 y)
238    // x = x / (p2 + p0 x + p1 y)
239
240    // Input on stack: x y
241    code.append(" dup ");               // x y y
242    code.appendScalar(p1);              // x y y p1
243    code.append(" mul "                 // x y y*p1
244                " 2 index ");           // x y y*p1 x
245    code.appendScalar(p0);              // x y y p1 x p0
246    code.append(" mul ");               // x y y*p1 x*p0
247    code.appendScalar(p2);              // x y y p1 x*p0 p2
248    code.append(" add "                 // x y y*p1 x*p0+p2
249                "add "                  // x y y*p1+x*p0+p2
250                "3 1 roll "             // y*p1+x*p0+p2 x y
251                "2 index "              // z x y y*p1+x*p0+p2
252                "div "                  // y*p1+x*p0+p2 x y/(y*p1+x*p0+p2)
253                "3 1 roll "             // y/(y*p1+x*p0+p2) y*p1+x*p0+p2 x
254                "exch "                 // y/(y*p1+x*p0+p2) x y*p1+x*p0+p2
255                "div "                  // y/(y*p1+x*p0+p2) x/(y*p1+x*p0+p2)
256                "exch\n");              // x/(y*p1+x*p0+p2) y/(y*p1+x*p0+p2)
257    return code;
258}
259
260static SkString linearCode(const SkShader::GradientInfo& info,
261                           const SkMatrix& perspectiveRemover) {
262    SkString function("{");
263
264    function.append(apply_perspective_to_coordinates(perspectiveRemover));
265
266    function.append("pop\n");  // Just ditch the y value.
267    tileModeCode(info.fTileMode, &function);
268    gradientFunctionCode(info, &function);
269    function.append("}");
270    return function;
271}
272
273static SkString radialCode(const SkShader::GradientInfo& info,
274                           const SkMatrix& perspectiveRemover) {
275    SkString function("{");
276
277    function.append(apply_perspective_to_coordinates(perspectiveRemover));
278
279    // Find the distance from the origin.
280    function.append("dup "      // x y y
281                    "mul "      // x y^2
282                    "exch "     // y^2 x
283                    "dup "      // y^2 x x
284                    "mul "      // y^2 x^2
285                    "add "      // y^2+x^2
286                    "sqrt\n");  // sqrt(y^2+x^2)
287
288    tileModeCode(info.fTileMode, &function);
289    gradientFunctionCode(info, &function);
290    function.append("}");
291    return function;
292}
293
294/* The math here is all based on the description in Two_Point_Radial_Gradient,
295   with one simplification, the coordinate space has been scaled so that
296   Dr = 1.  This means we don't need to scale the entire equation by 1/Dr^2.
297 */
298static SkString twoPointRadialCode(const SkShader::GradientInfo& info,
299                                   const SkMatrix& perspectiveRemover) {
300    SkScalar dx = info.fPoint[0].fX - info.fPoint[1].fX;
301    SkScalar dy = info.fPoint[0].fY - info.fPoint[1].fY;
302    SkScalar sr = info.fRadius[0];
303    SkScalar a = SkScalarMul(dx, dx) + SkScalarMul(dy, dy) - SK_Scalar1;
304    bool posRoot = info.fRadius[1] > info.fRadius[0];
305
306    // We start with a stack of (x y), copy it and then consume one copy in
307    // order to calculate b and the other to calculate c.
308    SkString function("{");
309
310    function.append(apply_perspective_to_coordinates(perspectiveRemover));
311
312    function.append("2 copy ");
313
314    // Calculate -b and b^2.
315    function.appendScalar(dy);
316    function.append(" mul exch ");
317    function.appendScalar(dx);
318    function.append(" mul add ");
319    function.appendScalar(sr);
320    function.append(" sub 2 mul neg dup dup mul\n");
321
322    // Calculate c
323    function.append("4 2 roll dup mul exch dup mul add ");
324    function.appendScalar(SkScalarMul(sr, sr));
325    function.append(" sub\n");
326
327    // Calculate the determinate
328    function.appendScalar(SkScalarMul(SkIntToScalar(4), a));
329    function.append(" mul sub abs sqrt\n");
330
331    // And then the final value of t.
332    if (posRoot) {
333        function.append("sub ");
334    } else {
335        function.append("add ");
336    }
337    function.appendScalar(SkScalarMul(SkIntToScalar(2), a));
338    function.append(" div\n");
339
340    tileModeCode(info.fTileMode, &function);
341    gradientFunctionCode(info, &function);
342    function.append("}");
343    return function;
344}
345
346/* Conical gradient shader, based on the Canvas spec for radial gradients
347   See: http://www.w3.org/TR/2dcontext/#dom-context-2d-createradialgradient
348 */
349static SkString twoPointConicalCode(const SkShader::GradientInfo& info,
350                                    const SkMatrix& perspectiveRemover) {
351    SkScalar dx = info.fPoint[1].fX - info.fPoint[0].fX;
352    SkScalar dy = info.fPoint[1].fY - info.fPoint[0].fY;
353    SkScalar r0 = info.fRadius[0];
354    SkScalar dr = info.fRadius[1] - info.fRadius[0];
355    SkScalar a = SkScalarMul(dx, dx) + SkScalarMul(dy, dy) -
356                 SkScalarMul(dr, dr);
357
358    // First compute t, if the pixel falls outside the cone, then we'll end
359    // with 'false' on the stack, otherwise we'll push 'true' with t below it
360
361    // We start with a stack of (x y), copy it and then consume one copy in
362    // order to calculate b and the other to calculate c.
363    SkString function("{");
364
365    function.append(apply_perspective_to_coordinates(perspectiveRemover));
366
367    function.append("2 copy ");
368
369    // Calculate b and b^2; b = -2 * (y * dy + x * dx + r0 * dr).
370    function.appendScalar(dy);
371    function.append(" mul exch ");
372    function.appendScalar(dx);
373    function.append(" mul add ");
374    function.appendScalar(SkScalarMul(r0, dr));
375    function.append(" add -2 mul dup dup mul\n");
376
377    // c = x^2 + y^2 + radius0^2
378    function.append("4 2 roll dup mul exch dup mul add ");
379    function.appendScalar(SkScalarMul(r0, r0));
380    function.append(" sub dup 4 1 roll\n");
381
382    // Contents of the stack at this point: c, b, b^2, c
383
384    // if a = 0, then we collapse to a simpler linear case
385    if (a == 0) {
386
387        // t = -c/b
388        function.append("pop pop div neg dup ");
389
390        // compute radius(t)
391        function.appendScalar(dr);
392        function.append(" mul ");
393        function.appendScalar(r0);
394        function.append(" add\n");
395
396        // if r(t) < 0, then it's outside the cone
397        function.append("0 lt {pop false} {true} ifelse\n");
398
399    } else {
400
401        // quadratic case: the Canvas spec wants the largest
402        // root t for which radius(t) > 0
403
404        // compute the discriminant (b^2 - 4ac)
405        function.appendScalar(SkScalarMul(SkIntToScalar(4), a));
406        function.append(" mul sub dup\n");
407
408        // if d >= 0, proceed
409        function.append("0 ge {\n");
410
411        // an intermediate value we'll use to compute the roots:
412        // q = -0.5 * (b +/- sqrt(d))
413        function.append("sqrt exch dup 0 lt {exch -1 mul} if");
414        function.append(" add -0.5 mul dup\n");
415
416        // first root = q / a
417        function.appendScalar(a);
418        function.append(" div\n");
419
420        // second root = c / q
421        function.append("3 1 roll div\n");
422
423        // put the larger root on top of the stack
424        function.append("2 copy gt {exch} if\n");
425
426        // compute radius(t) for larger root
427        function.append("dup ");
428        function.appendScalar(dr);
429        function.append(" mul ");
430        function.appendScalar(r0);
431        function.append(" add\n");
432
433        // if r(t) > 0, we have our t, pop off the smaller root and we're done
434        function.append(" 0 gt {exch pop true}\n");
435
436        // otherwise, throw out the larger one and try the smaller root
437        function.append("{pop dup\n");
438        function.appendScalar(dr);
439        function.append(" mul ");
440        function.appendScalar(r0);
441        function.append(" add\n");
442
443        // if r(t) < 0, push false, otherwise the smaller root is our t
444        function.append("0 le {pop false} {true} ifelse\n");
445        function.append("} ifelse\n");
446
447        // d < 0, clear the stack and push false
448        function.append("} {pop pop pop false} ifelse\n");
449    }
450
451    // if the pixel is in the cone, proceed to compute a color
452    function.append("{");
453    tileModeCode(info.fTileMode, &function);
454    gradientFunctionCode(info, &function);
455
456    // otherwise, just write black
457    function.append("} {0 0 0} ifelse }");
458
459    return function;
460}
461
462static SkString sweepCode(const SkShader::GradientInfo& info,
463                          const SkMatrix& perspectiveRemover) {
464    SkString function("{exch atan 360 div\n");
465    tileModeCode(info.fTileMode, &function);
466    gradientFunctionCode(info, &function);
467    function.append("}");
468    return function;
469}
470
471static void drawBitmapMatrix(SkCanvas* canvas, const SkBitmap& bm, const SkMatrix& matrix) {
472    SkAutoCanvasRestore acr(canvas, true);
473    canvas->concat(matrix);
474    canvas->drawBitmap(bm, 0, 0);
475}
476
477class SkPDFShader::State {
478public:
479    SkShader::GradientType fType;
480    SkShader::GradientInfo fInfo;
481    SkAutoFree fColorData;    // This provides storage for arrays in fInfo.
482    SkMatrix fCanvasTransform;
483    SkMatrix fShaderTransform;
484    SkIRect fBBox;
485
486    SkBitmap fImage;
487    uint32_t fPixelGeneration;
488    SkShader::TileMode fImageTileModes[2];
489
490    State(const SkShader& shader, const SkMatrix& canvasTransform,
491          const SkIRect& bbox, SkScalar rasterScale);
492
493    bool operator==(const State& b) const;
494
495    SkPDFShader::State* CreateAlphaToLuminosityState() const;
496    SkPDFShader::State* CreateOpaqueState() const;
497
498    bool GradientHasAlpha() const;
499
500private:
501    State(const State& other);
502    State operator=(const State& rhs);
503    void AllocateGradientInfoStorage();
504};
505
506////////////////////////////////////////////////////////////////////////////////
507
508SkPDFFunctionShader::SkPDFFunctionShader(SkPDFShader::State* state)
509    : SkPDFDict("Pattern"), fShaderState(state) {}
510
511SkPDFFunctionShader::~SkPDFFunctionShader() {}
512
513bool SkPDFFunctionShader::equals(const SkPDFShader::State& state) const {
514    return state == *fShaderState;
515}
516
517////////////////////////////////////////////////////////////////////////////////
518
519SkPDFAlphaFunctionShader::SkPDFAlphaFunctionShader(SkPDFShader::State* state)
520    : fShaderState(state) {}
521
522bool SkPDFAlphaFunctionShader::equals(const SkPDFShader::State& state) const {
523    return state == *fShaderState;
524}
525
526SkPDFAlphaFunctionShader::~SkPDFAlphaFunctionShader() {}
527
528////////////////////////////////////////////////////////////////////////////////
529
530SkPDFImageShader::SkPDFImageShader(SkPDFShader::State* state)
531    : fShaderState(state) {}
532
533bool SkPDFImageShader::equals(const SkPDFShader::State& state) const {
534    return state == *fShaderState;
535}
536
537SkPDFImageShader::~SkPDFImageShader() {}
538
539////////////////////////////////////////////////////////////////////////////////
540
541static SkPDFObject* get_pdf_shader_by_state(
542        SkPDFCanon* canon,
543        SkScalar dpi,
544        SkAutoTDelete<SkPDFShader::State>* autoState) {
545    const SkPDFShader::State& state = **autoState;
546    if (state.fType == SkShader::kNone_GradientType && state.fImage.isNull()) {
547        // TODO(vandebo) This drops SKComposeShader on the floor.  We could
548        // handle compose shader by pulling things up to a layer, drawing with
549        // the first shader, applying the xfer mode and drawing again with the
550        // second shader, then applying the layer to the original drawing.
551        return NULL;
552    } else if (state.fType == SkShader::kNone_GradientType) {
553        SkPDFObject* shader = canon->findImageShader(state);
554        return shader ? SkRef(shader)
555                      : SkPDFImageShader::Create(canon, dpi, autoState);
556    } else if (state.GradientHasAlpha()) {
557        SkPDFObject* shader = canon->findAlphaShader(state);
558        return shader ? SkRef(shader)
559                      : SkPDFAlphaFunctionShader::Create(canon, dpi, autoState);
560    } else {
561        SkPDFObject* shader = canon->findFunctionShader(state);
562        return shader ? SkRef(shader)
563                      : SkPDFFunctionShader::Create(canon, autoState);
564    }
565}
566
567// static
568SkPDFObject* SkPDFShader::GetPDFShader(SkPDFCanon* canon,
569                                       SkScalar dpi,
570                                       const SkShader& shader,
571                                       const SkMatrix& matrix,
572                                       const SkIRect& surfaceBBox,
573                                       SkScalar rasterScale) {
574    SkAutoTDelete<SkPDFShader::State> state(
575            SkNEW_ARGS(State, (shader, matrix, surfaceBBox, rasterScale)));
576    return get_pdf_shader_by_state(canon, dpi, &state);
577}
578
579static SkPDFResourceDict* get_gradient_resource_dict(
580        SkPDFObject* functionShader,
581        SkPDFObject* gState) {
582    SkPDFResourceDict* dict = new SkPDFResourceDict();
583
584    if (functionShader != NULL) {
585        dict->insertResourceAsReference(
586                SkPDFResourceDict::kPattern_ResourceType, 0, functionShader);
587    }
588    if (gState != NULL) {
589        dict->insertResourceAsReference(
590                SkPDFResourceDict::kExtGState_ResourceType, 0, gState);
591    }
592
593    return dict;
594}
595
596static void populate_tiling_pattern_dict(SkPDFDict* pattern,
597                                         SkRect& bbox,
598                                         SkPDFDict* resources,
599                                         const SkMatrix& matrix) {
600    const int kTiling_PatternType = 1;
601    const int kColoredTilingPattern_PaintType = 1;
602    const int kConstantSpacing_TilingType = 1;
603
604    pattern->insertName("Type", "Pattern");
605    pattern->insertInt("PatternType", kTiling_PatternType);
606    pattern->insertInt("PaintType", kColoredTilingPattern_PaintType);
607    pattern->insertInt("TilingType", kConstantSpacing_TilingType);
608    pattern->insert("BBox", SkPDFUtils::RectToArray(bbox))->unref();
609    pattern->insertScalar("XStep", bbox.width());
610    pattern->insertScalar("YStep", bbox.height());
611    pattern->insert("Resources", resources);
612    if (!matrix.isIdentity()) {
613        pattern->insert("Matrix", SkPDFUtils::MatrixToArray(matrix))->unref();
614    }
615}
616
617/**
618 * Creates a content stream which fills the pattern P0 across bounds.
619 * @param gsIndex A graphics state resource index to apply, or <0 if no
620 * graphics state to apply.
621 */
622static SkStream* create_pattern_fill_content(int gsIndex, SkRect& bounds) {
623    SkDynamicMemoryWStream content;
624    if (gsIndex >= 0) {
625        SkPDFUtils::ApplyGraphicState(gsIndex, &content);
626    }
627    SkPDFUtils::ApplyPattern(0, &content);
628    SkPDFUtils::AppendRectangle(bounds, &content);
629    SkPDFUtils::PaintPath(SkPaint::kFill_Style, SkPath::kEvenOdd_FillType,
630                          &content);
631
632    return content.detachAsStream();
633}
634
635/**
636 * Creates a ExtGState with the SMask set to the luminosityShader in
637 * luminosity mode. The shader pattern extends to the bbox.
638 */
639static SkPDFGraphicState* create_smask_graphic_state(
640        SkPDFCanon* canon, SkScalar dpi, const SkPDFShader::State& state) {
641    SkRect bbox;
642    bbox.set(state.fBBox);
643
644    SkAutoTDelete<SkPDFShader::State> alphaToLuminosityState(
645            state.CreateAlphaToLuminosityState());
646    SkAutoTUnref<SkPDFObject> luminosityShader(
647            get_pdf_shader_by_state(canon, dpi, &alphaToLuminosityState));
648
649    SkAutoTDelete<SkStream> alphaStream(create_pattern_fill_content(-1, bbox));
650
651    SkAutoTUnref<SkPDFResourceDict>
652        resources(get_gradient_resource_dict(luminosityShader, NULL));
653
654    SkAutoTUnref<SkPDFFormXObject> alphaMask(
655            new SkPDFFormXObject(alphaStream.get(), bbox, resources.get()));
656
657    return SkPDFGraphicState::GetSMaskGraphicState(
658            alphaMask.get(), false,
659            SkPDFGraphicState::kLuminosity_SMaskMode);
660}
661
662SkPDFAlphaFunctionShader* SkPDFAlphaFunctionShader::Create(
663        SkPDFCanon* canon,
664        SkScalar dpi,
665        SkAutoTDelete<SkPDFShader::State>* autoState) {
666    const SkPDFShader::State& state = **autoState;
667    SkRect bbox;
668    bbox.set(state.fBBox);
669
670    SkAutoTDelete<SkPDFShader::State> opaqueState(state.CreateOpaqueState());
671
672    SkAutoTUnref<SkPDFObject> colorShader(
673            get_pdf_shader_by_state(canon, dpi, &opaqueState));
674    if (!colorShader) {
675        return NULL;
676    }
677
678    // Create resource dict with alpha graphics state as G0 and
679    // pattern shader as P0, then write content stream.
680    SkAutoTUnref<SkPDFGraphicState> alphaGs(
681            create_smask_graphic_state(canon, dpi, state));
682
683    SkPDFAlphaFunctionShader* alphaFunctionShader =
684            SkNEW_ARGS(SkPDFAlphaFunctionShader, (autoState->detach()));
685
686    SkAutoTUnref<SkPDFResourceDict> resourceDict(
687            get_gradient_resource_dict(colorShader.get(), alphaGs.get()));
688
689    SkAutoTDelete<SkStream> colorStream(
690            create_pattern_fill_content(0, bbox));
691    alphaFunctionShader->setData(colorStream.get());
692
693    populate_tiling_pattern_dict(alphaFunctionShader, bbox, resourceDict.get(),
694                                 SkMatrix::I());
695    canon->addAlphaShader(alphaFunctionShader);
696    return alphaFunctionShader;
697}
698
699// Finds affine and persp such that in = affine * persp.
700// but it returns the inverse of perspective matrix.
701static bool split_perspective(const SkMatrix in, SkMatrix* affine,
702                              SkMatrix* perspectiveInverse) {
703    const SkScalar p2 = in[SkMatrix::kMPersp2];
704
705    if (SkScalarNearlyZero(p2)) {
706        return false;
707    }
708
709    const SkScalar zero = SkIntToScalar(0);
710    const SkScalar one = SkIntToScalar(1);
711
712    const SkScalar sx = in[SkMatrix::kMScaleX];
713    const SkScalar kx = in[SkMatrix::kMSkewX];
714    const SkScalar tx = in[SkMatrix::kMTransX];
715    const SkScalar ky = in[SkMatrix::kMSkewY];
716    const SkScalar sy = in[SkMatrix::kMScaleY];
717    const SkScalar ty = in[SkMatrix::kMTransY];
718    const SkScalar p0 = in[SkMatrix::kMPersp0];
719    const SkScalar p1 = in[SkMatrix::kMPersp1];
720
721    // Perspective matrix would be:
722    // 1  0  0
723    // 0  1  0
724    // p0 p1 p2
725    // But we need the inverse of persp.
726    perspectiveInverse->setAll(one,          zero,       zero,
727                               zero,         one,        zero,
728                               -p0/p2,     -p1/p2,     1/p2);
729
730    affine->setAll(sx - p0 * tx / p2,       kx - p1 * tx / p2,      tx / p2,
731                   ky - p0 * ty / p2,       sy - p1 * ty / p2,      ty / p2,
732                   zero,                    zero,                   one);
733
734    return true;
735}
736
737namespace {
738SkPDFObject* create_range_object() {
739    SkPDFArray* range = SkNEW(SkPDFArray);
740    range->reserve(6);
741    range->appendInt(0);
742    range->appendInt(1);
743    range->appendInt(0);
744    range->appendInt(1);
745    range->appendInt(0);
746    range->appendInt(1);
747    return range;
748}
749
750template <typename T> void unref(T* ptr) { ptr->unref();}
751}  // namespace
752
753SK_DECLARE_STATIC_LAZY_PTR(SkPDFObject, rangeObject,
754                           create_range_object, unref<SkPDFObject>);
755
756static SkPDFStream* make_ps_function(const SkString& psCode,
757                                     SkPDFArray* domain) {
758    SkAutoDataUnref funcData(
759            SkData::NewWithCopy(psCode.c_str(), psCode.size()));
760    SkPDFStream* result = SkNEW_ARGS(SkPDFStream, (funcData.get()));
761    result->insertInt("FunctionType", 4);
762    result->insert("Domain", domain);
763    result->insert("Range", rangeObject.get());
764    return result;
765}
766
767SkPDFFunctionShader* SkPDFFunctionShader::Create(
768        SkPDFCanon* canon, SkAutoTDelete<SkPDFShader::State>* autoState) {
769    const SkPDFShader::State& state = **autoState;
770
771    SkString (*codeFunction)(const SkShader::GradientInfo& info,
772                             const SkMatrix& perspectiveRemover) = NULL;
773    SkPoint transformPoints[2];
774
775    // Depending on the type of the gradient, we want to transform the
776    // coordinate space in different ways.
777    const SkShader::GradientInfo* info = &state.fInfo;
778    transformPoints[0] = info->fPoint[0];
779    transformPoints[1] = info->fPoint[1];
780    switch (state.fType) {
781        case SkShader::kLinear_GradientType:
782            codeFunction = &linearCode;
783            break;
784        case SkShader::kRadial_GradientType:
785            transformPoints[1] = transformPoints[0];
786            transformPoints[1].fX += info->fRadius[0];
787            codeFunction = &radialCode;
788            break;
789        case SkShader::kRadial2_GradientType: {
790            // Bail out if the radii are the same.
791            if (info->fRadius[0] == info->fRadius[1]) {
792                return NULL;
793            }
794            transformPoints[1] = transformPoints[0];
795            SkScalar dr = info->fRadius[1] - info->fRadius[0];
796            transformPoints[1].fX += dr;
797            codeFunction = &twoPointRadialCode;
798            break;
799        }
800        case SkShader::kConical_GradientType: {
801            transformPoints[1] = transformPoints[0];
802            transformPoints[1].fX += SK_Scalar1;
803            codeFunction = &twoPointConicalCode;
804            break;
805        }
806        case SkShader::kSweep_GradientType:
807            transformPoints[1] = transformPoints[0];
808            transformPoints[1].fX += SK_Scalar1;
809            codeFunction = &sweepCode;
810            break;
811        case SkShader::kColor_GradientType:
812        case SkShader::kNone_GradientType:
813        default:
814            return NULL;
815    }
816
817    // Move any scaling (assuming a unit gradient) or translation
818    // (and rotation for linear gradient), of the final gradient from
819    // info->fPoints to the matrix (updating bbox appropriately).  Now
820    // the gradient can be drawn on on the unit segment.
821    SkMatrix mapperMatrix;
822    unitToPointsMatrix(transformPoints, &mapperMatrix);
823
824    SkMatrix finalMatrix = state.fCanvasTransform;
825    finalMatrix.preConcat(state.fShaderTransform);
826    finalMatrix.preConcat(mapperMatrix);
827
828    // Preserves as much as posible in the final matrix, and only removes
829    // the perspective. The inverse of the perspective is stored in
830    // perspectiveInverseOnly matrix and has 3 useful numbers
831    // (p0, p1, p2), while everything else is either 0 or 1.
832    // In this way the shader will handle it eficiently, with minimal code.
833    SkMatrix perspectiveInverseOnly = SkMatrix::I();
834    if (finalMatrix.hasPerspective()) {
835        if (!split_perspective(finalMatrix,
836                               &finalMatrix, &perspectiveInverseOnly)) {
837            return NULL;
838        }
839    }
840
841    SkRect bbox;
842    bbox.set(state.fBBox);
843    if (!inverse_transform_bbox(finalMatrix, &bbox)) {
844        return NULL;
845    }
846
847    SkAutoTUnref<SkPDFArray> domain(new SkPDFArray);
848    domain->reserve(4);
849    domain->appendScalar(bbox.fLeft);
850    domain->appendScalar(bbox.fRight);
851    domain->appendScalar(bbox.fTop);
852    domain->appendScalar(bbox.fBottom);
853
854    SkString functionCode;
855    // The two point radial gradient further references
856    // state.fInfo
857    // in translating from x, y coordinates to the t parameter. So, we have
858    // to transform the points and radii according to the calculated matrix.
859    if (state.fType == SkShader::kRadial2_GradientType) {
860        SkShader::GradientInfo twoPointRadialInfo = *info;
861        SkMatrix inverseMapperMatrix;
862        if (!mapperMatrix.invert(&inverseMapperMatrix)) {
863            return NULL;
864        }
865        inverseMapperMatrix.mapPoints(twoPointRadialInfo.fPoint, 2);
866        twoPointRadialInfo.fRadius[0] =
867            inverseMapperMatrix.mapRadius(info->fRadius[0]);
868        twoPointRadialInfo.fRadius[1] =
869            inverseMapperMatrix.mapRadius(info->fRadius[1]);
870        functionCode = codeFunction(twoPointRadialInfo, perspectiveInverseOnly);
871    } else {
872        functionCode = codeFunction(*info, perspectiveInverseOnly);
873    }
874
875    SkAutoTUnref<SkPDFDict> pdfShader(new SkPDFDict);
876    pdfShader->insertInt("ShadingType", 1);
877    pdfShader->insertName("ColorSpace", "DeviceRGB");
878    pdfShader->insert("Domain", domain.get());
879
880    SkPDFStream* function = make_ps_function(functionCode, domain.get());
881    pdfShader->insert("Function", new SkPDFObjRef(function))->unref();
882
883    SkAutoTUnref<SkPDFArray> matrixArray(
884            SkPDFUtils::MatrixToArray(finalMatrix));
885
886    SkPDFFunctionShader* pdfFunctionShader =
887            SkNEW_ARGS(SkPDFFunctionShader, (autoState->detach()));
888
889    pdfFunctionShader->insertInt("PatternType", 2);
890    pdfFunctionShader->insert("Matrix", matrixArray.get());
891    pdfFunctionShader->insert("Shading", pdfShader.get());
892
893    canon->addFunctionShader(pdfFunctionShader);
894    return pdfFunctionShader;
895}
896
897SkPDFImageShader* SkPDFImageShader::Create(
898        SkPDFCanon* canon,
899        SkScalar dpi,
900        SkAutoTDelete<SkPDFShader::State>* autoState) {
901    const SkPDFShader::State& state = **autoState;
902
903    state.fImage.lockPixels();
904
905    // The image shader pattern cell will be drawn into a separate device
906    // in pattern cell space (no scaling on the bitmap, though there may be
907    // translations so that all content is in the device, coordinates > 0).
908
909    // Map clip bounds to shader space to ensure the device is large enough
910    // to handle fake clamping.
911    SkMatrix finalMatrix = state.fCanvasTransform;
912    finalMatrix.preConcat(state.fShaderTransform);
913    SkRect deviceBounds;
914    deviceBounds.set(state.fBBox);
915    if (!inverse_transform_bbox(finalMatrix, &deviceBounds)) {
916        return NULL;
917    }
918
919    const SkBitmap* image = &state.fImage;
920    SkRect bitmapBounds;
921    image->getBounds(&bitmapBounds);
922
923    // For tiling modes, the bounds should be extended to include the bitmap,
924    // otherwise the bitmap gets clipped out and the shader is empty and awful.
925    // For clamp modes, we're only interested in the clip region, whether
926    // or not the main bitmap is in it.
927    SkShader::TileMode tileModes[2];
928    tileModes[0] = state.fImageTileModes[0];
929    tileModes[1] = state.fImageTileModes[1];
930    if (tileModes[0] != SkShader::kClamp_TileMode ||
931            tileModes[1] != SkShader::kClamp_TileMode) {
932        deviceBounds.join(bitmapBounds);
933    }
934
935    SkISize size = SkISize::Make(SkScalarRoundToInt(deviceBounds.width()),
936                                 SkScalarRoundToInt(deviceBounds.height()));
937    SkAutoTUnref<SkPDFDevice> patternDevice(
938            SkPDFDevice::CreateUnflipped(size, dpi, canon));
939    SkCanvas canvas(patternDevice.get());
940
941    SkRect patternBBox;
942    image->getBounds(&patternBBox);
943
944    // Translate the canvas so that the bitmap origin is at (0, 0).
945    canvas.translate(-deviceBounds.left(), -deviceBounds.top());
946    patternBBox.offset(-deviceBounds.left(), -deviceBounds.top());
947    // Undo the translation in the final matrix
948    finalMatrix.preTranslate(deviceBounds.left(), deviceBounds.top());
949
950    // If the bitmap is out of bounds (i.e. clamp mode where we only see the
951    // stretched sides), canvas will clip this out and the extraneous data
952    // won't be saved to the PDF.
953    canvas.drawBitmap(*image, 0, 0);
954
955    SkScalar width = SkIntToScalar(image->width());
956    SkScalar height = SkIntToScalar(image->height());
957
958    // Tiling is implied.  First we handle mirroring.
959    if (tileModes[0] == SkShader::kMirror_TileMode) {
960        SkMatrix xMirror;
961        xMirror.setScale(-1, 1);
962        xMirror.postTranslate(2 * width, 0);
963        drawBitmapMatrix(&canvas, *image, xMirror);
964        patternBBox.fRight += width;
965    }
966    if (tileModes[1] == SkShader::kMirror_TileMode) {
967        SkMatrix yMirror;
968        yMirror.setScale(SK_Scalar1, -SK_Scalar1);
969        yMirror.postTranslate(0, 2 * height);
970        drawBitmapMatrix(&canvas, *image, yMirror);
971        patternBBox.fBottom += height;
972    }
973    if (tileModes[0] == SkShader::kMirror_TileMode &&
974            tileModes[1] == SkShader::kMirror_TileMode) {
975        SkMatrix mirror;
976        mirror.setScale(-1, -1);
977        mirror.postTranslate(2 * width, 2 * height);
978        drawBitmapMatrix(&canvas, *image, mirror);
979    }
980
981    // Then handle Clamping, which requires expanding the pattern canvas to
982    // cover the entire surfaceBBox.
983
984    // If both x and y are in clamp mode, we start by filling in the corners.
985    // (Which are just a rectangles of the corner colors.)
986    if (tileModes[0] == SkShader::kClamp_TileMode &&
987            tileModes[1] == SkShader::kClamp_TileMode) {
988        SkPaint paint;
989        SkRect rect;
990        rect = SkRect::MakeLTRB(deviceBounds.left(), deviceBounds.top(), 0, 0);
991        if (!rect.isEmpty()) {
992            paint.setColor(image->getColor(0, 0));
993            canvas.drawRect(rect, paint);
994        }
995
996        rect = SkRect::MakeLTRB(width, deviceBounds.top(),
997                                deviceBounds.right(), 0);
998        if (!rect.isEmpty()) {
999            paint.setColor(image->getColor(image->width() - 1, 0));
1000            canvas.drawRect(rect, paint);
1001        }
1002
1003        rect = SkRect::MakeLTRB(width, height,
1004                                deviceBounds.right(), deviceBounds.bottom());
1005        if (!rect.isEmpty()) {
1006            paint.setColor(image->getColor(image->width() - 1,
1007                                           image->height() - 1));
1008            canvas.drawRect(rect, paint);
1009        }
1010
1011        rect = SkRect::MakeLTRB(deviceBounds.left(), height,
1012                                0, deviceBounds.bottom());
1013        if (!rect.isEmpty()) {
1014            paint.setColor(image->getColor(0, image->height() - 1));
1015            canvas.drawRect(rect, paint);
1016        }
1017    }
1018
1019    // Then expand the left, right, top, then bottom.
1020    if (tileModes[0] == SkShader::kClamp_TileMode) {
1021        SkIRect subset = SkIRect::MakeXYWH(0, 0, 1, image->height());
1022        if (deviceBounds.left() < 0) {
1023            SkBitmap left;
1024            SkAssertResult(image->extractSubset(&left, subset));
1025
1026            SkMatrix leftMatrix;
1027            leftMatrix.setScale(-deviceBounds.left(), 1);
1028            leftMatrix.postTranslate(deviceBounds.left(), 0);
1029            drawBitmapMatrix(&canvas, left, leftMatrix);
1030
1031            if (tileModes[1] == SkShader::kMirror_TileMode) {
1032                leftMatrix.postScale(SK_Scalar1, -SK_Scalar1);
1033                leftMatrix.postTranslate(0, 2 * height);
1034                drawBitmapMatrix(&canvas, left, leftMatrix);
1035            }
1036            patternBBox.fLeft = 0;
1037        }
1038
1039        if (deviceBounds.right() > width) {
1040            SkBitmap right;
1041            subset.offset(image->width() - 1, 0);
1042            SkAssertResult(image->extractSubset(&right, subset));
1043
1044            SkMatrix rightMatrix;
1045            rightMatrix.setScale(deviceBounds.right() - width, 1);
1046            rightMatrix.postTranslate(width, 0);
1047            drawBitmapMatrix(&canvas, right, rightMatrix);
1048
1049            if (tileModes[1] == SkShader::kMirror_TileMode) {
1050                rightMatrix.postScale(SK_Scalar1, -SK_Scalar1);
1051                rightMatrix.postTranslate(0, 2 * height);
1052                drawBitmapMatrix(&canvas, right, rightMatrix);
1053            }
1054            patternBBox.fRight = deviceBounds.width();
1055        }
1056    }
1057
1058    if (tileModes[1] == SkShader::kClamp_TileMode) {
1059        SkIRect subset = SkIRect::MakeXYWH(0, 0, image->width(), 1);
1060        if (deviceBounds.top() < 0) {
1061            SkBitmap top;
1062            SkAssertResult(image->extractSubset(&top, subset));
1063
1064            SkMatrix topMatrix;
1065            topMatrix.setScale(SK_Scalar1, -deviceBounds.top());
1066            topMatrix.postTranslate(0, deviceBounds.top());
1067            drawBitmapMatrix(&canvas, top, topMatrix);
1068
1069            if (tileModes[0] == SkShader::kMirror_TileMode) {
1070                topMatrix.postScale(-1, 1);
1071                topMatrix.postTranslate(2 * width, 0);
1072                drawBitmapMatrix(&canvas, top, topMatrix);
1073            }
1074            patternBBox.fTop = 0;
1075        }
1076
1077        if (deviceBounds.bottom() > height) {
1078            SkBitmap bottom;
1079            subset.offset(0, image->height() - 1);
1080            SkAssertResult(image->extractSubset(&bottom, subset));
1081
1082            SkMatrix bottomMatrix;
1083            bottomMatrix.setScale(SK_Scalar1, deviceBounds.bottom() - height);
1084            bottomMatrix.postTranslate(0, height);
1085            drawBitmapMatrix(&canvas, bottom, bottomMatrix);
1086
1087            if (tileModes[0] == SkShader::kMirror_TileMode) {
1088                bottomMatrix.postScale(-1, 1);
1089                bottomMatrix.postTranslate(2 * width, 0);
1090                drawBitmapMatrix(&canvas, bottom, bottomMatrix);
1091            }
1092            patternBBox.fBottom = deviceBounds.height();
1093        }
1094    }
1095
1096    // Put the canvas into the pattern stream (fContent).
1097    SkAutoTDelete<SkStreamAsset> content(patternDevice->content());
1098
1099    SkPDFImageShader* imageShader =
1100            SkNEW_ARGS(SkPDFImageShader, (autoState->detach()));
1101    imageShader->setData(content.get());
1102
1103    populate_tiling_pattern_dict(imageShader, patternBBox,
1104                                 patternDevice->getResourceDict(), finalMatrix);
1105
1106    imageShader->fShaderState->fImage.unlockPixels();
1107
1108    canon->addImageShader(imageShader);
1109    return imageShader;
1110}
1111
1112bool SkPDFShader::State::operator==(const SkPDFShader::State& b) const {
1113    if (fType != b.fType ||
1114            fCanvasTransform != b.fCanvasTransform ||
1115            fShaderTransform != b.fShaderTransform ||
1116            fBBox != b.fBBox) {
1117        return false;
1118    }
1119
1120    if (fType == SkShader::kNone_GradientType) {
1121        if (fPixelGeneration != b.fPixelGeneration ||
1122                fPixelGeneration == 0 ||
1123                fImageTileModes[0] != b.fImageTileModes[0] ||
1124                fImageTileModes[1] != b.fImageTileModes[1]) {
1125            return false;
1126        }
1127    } else {
1128        if (fInfo.fColorCount != b.fInfo.fColorCount ||
1129                memcmp(fInfo.fColors, b.fInfo.fColors,
1130                       sizeof(SkColor) * fInfo.fColorCount) != 0 ||
1131                memcmp(fInfo.fColorOffsets, b.fInfo.fColorOffsets,
1132                       sizeof(SkScalar) * fInfo.fColorCount) != 0 ||
1133                fInfo.fPoint[0] != b.fInfo.fPoint[0] ||
1134                fInfo.fTileMode != b.fInfo.fTileMode) {
1135            return false;
1136        }
1137
1138        switch (fType) {
1139            case SkShader::kLinear_GradientType:
1140                if (fInfo.fPoint[1] != b.fInfo.fPoint[1]) {
1141                    return false;
1142                }
1143                break;
1144            case SkShader::kRadial_GradientType:
1145                if (fInfo.fRadius[0] != b.fInfo.fRadius[0]) {
1146                    return false;
1147                }
1148                break;
1149            case SkShader::kRadial2_GradientType:
1150            case SkShader::kConical_GradientType:
1151                if (fInfo.fPoint[1] != b.fInfo.fPoint[1] ||
1152                        fInfo.fRadius[0] != b.fInfo.fRadius[0] ||
1153                        fInfo.fRadius[1] != b.fInfo.fRadius[1]) {
1154                    return false;
1155                }
1156                break;
1157            case SkShader::kSweep_GradientType:
1158            case SkShader::kNone_GradientType:
1159            case SkShader::kColor_GradientType:
1160                break;
1161        }
1162    }
1163    return true;
1164}
1165
1166SkPDFShader::State::State(const SkShader& shader, const SkMatrix& canvasTransform,
1167                          const SkIRect& bbox, SkScalar rasterScale)
1168        : fCanvasTransform(canvasTransform),
1169          fBBox(bbox),
1170          fPixelGeneration(0) {
1171    fInfo.fColorCount = 0;
1172    fInfo.fColors = NULL;
1173    fInfo.fColorOffsets = NULL;
1174    fShaderTransform = shader.getLocalMatrix();
1175    fImageTileModes[0] = fImageTileModes[1] = SkShader::kClamp_TileMode;
1176
1177    fType = shader.asAGradient(&fInfo);
1178
1179    if (fType == SkShader::kNone_GradientType) {
1180        SkShader::BitmapType bitmapType;
1181        SkMatrix matrix;
1182        bitmapType = shader.asABitmap(&fImage, &matrix, fImageTileModes);
1183        if (bitmapType != SkShader::kDefault_BitmapType) {
1184            // Generic fallback for unsupported shaders:
1185            //  * allocate a bbox-sized bitmap
1186            //  * shade the whole area
1187            //  * use the result as a bitmap shader
1188
1189            // bbox is in device space. While that's exactly what we want for sizing our bitmap,
1190            // we need to map it into shader space for adjustments (to match
1191            // SkPDFImageShader::Create's behavior).
1192            SkRect shaderRect = SkRect::Make(bbox);
1193            if (!inverse_transform_bbox(canvasTransform, &shaderRect)) {
1194                fImage.reset();
1195                return;
1196            }
1197
1198            // Clamp the bitmap size to about 1M pixels
1199            static const SkScalar kMaxBitmapArea = 1024 * 1024;
1200            SkScalar bitmapArea = rasterScale * bbox.width() * rasterScale * bbox.height();
1201            if (bitmapArea > kMaxBitmapArea) {
1202                rasterScale *= SkScalarSqrt(SkScalarDiv(kMaxBitmapArea, bitmapArea));
1203            }
1204
1205            SkISize size = SkISize::Make(SkScalarRoundToInt(rasterScale * bbox.width()),
1206                                         SkScalarRoundToInt(rasterScale * bbox.height()));
1207            SkSize scale = SkSize::Make(SkIntToScalar(size.width()) / shaderRect.width(),
1208                                        SkIntToScalar(size.height()) / shaderRect.height());
1209
1210            fImage.allocN32Pixels(size.width(), size.height());
1211            fImage.eraseColor(SK_ColorTRANSPARENT);
1212
1213            SkPaint p;
1214            p.setShader(const_cast<SkShader*>(&shader));
1215
1216            SkCanvas canvas(fImage);
1217            canvas.scale(scale.width(), scale.height());
1218            canvas.translate(-shaderRect.x(), -shaderRect.y());
1219            canvas.drawPaint(p);
1220
1221            fShaderTransform.setTranslate(shaderRect.x(), shaderRect.y());
1222            fShaderTransform.preScale(1 / scale.width(), 1 / scale.height());
1223        } else {
1224            SkASSERT(matrix.isIdentity());
1225        }
1226        fPixelGeneration = fImage.getGenerationID();
1227    } else {
1228        AllocateGradientInfoStorage();
1229        shader.asAGradient(&fInfo);
1230    }
1231}
1232
1233SkPDFShader::State::State(const SkPDFShader::State& other)
1234  : fType(other.fType),
1235    fCanvasTransform(other.fCanvasTransform),
1236    fShaderTransform(other.fShaderTransform),
1237    fBBox(other.fBBox)
1238{
1239    // Only gradients supported for now, since that is all that is used.
1240    // If needed, image state copy constructor can be added here later.
1241    SkASSERT(fType != SkShader::kNone_GradientType);
1242
1243    if (fType != SkShader::kNone_GradientType) {
1244        fInfo = other.fInfo;
1245
1246        AllocateGradientInfoStorage();
1247        for (int i = 0; i < fInfo.fColorCount; i++) {
1248            fInfo.fColors[i] = other.fInfo.fColors[i];
1249            fInfo.fColorOffsets[i] = other.fInfo.fColorOffsets[i];
1250        }
1251    }
1252}
1253
1254/**
1255 * Create a copy of this gradient state with alpha assigned to RGB luminousity.
1256 * Only valid for gradient states.
1257 */
1258SkPDFShader::State* SkPDFShader::State::CreateAlphaToLuminosityState() const {
1259    SkASSERT(fType != SkShader::kNone_GradientType);
1260
1261    SkPDFShader::State* newState = new SkPDFShader::State(*this);
1262
1263    for (int i = 0; i < fInfo.fColorCount; i++) {
1264        SkAlpha alpha = SkColorGetA(fInfo.fColors[i]);
1265        newState->fInfo.fColors[i] = SkColorSetARGB(255, alpha, alpha, alpha);
1266    }
1267
1268    return newState;
1269}
1270
1271/**
1272 * Create a copy of this gradient state with alpha set to fully opaque
1273 * Only valid for gradient states.
1274 */
1275SkPDFShader::State* SkPDFShader::State::CreateOpaqueState() const {
1276    SkASSERT(fType != SkShader::kNone_GradientType);
1277
1278    SkPDFShader::State* newState = new SkPDFShader::State(*this);
1279    for (int i = 0; i < fInfo.fColorCount; i++) {
1280        newState->fInfo.fColors[i] = SkColorSetA(fInfo.fColors[i],
1281                                                 SK_AlphaOPAQUE);
1282    }
1283
1284    return newState;
1285}
1286
1287/**
1288 * Returns true if state is a gradient and the gradient has alpha.
1289 */
1290bool SkPDFShader::State::GradientHasAlpha() const {
1291    if (fType == SkShader::kNone_GradientType) {
1292        return false;
1293    }
1294
1295    for (int i = 0; i < fInfo.fColorCount; i++) {
1296        SkAlpha alpha = SkColorGetA(fInfo.fColors[i]);
1297        if (alpha != SK_AlphaOPAQUE) {
1298            return true;
1299        }
1300    }
1301    return false;
1302}
1303
1304void SkPDFShader::State::AllocateGradientInfoStorage() {
1305    fColorData.set(sk_malloc_throw(
1306               fInfo.fColorCount * (sizeof(SkColor) + sizeof(SkScalar))));
1307    fInfo.fColors = reinterpret_cast<SkColor*>(fColorData.get());
1308    fInfo.fColorOffsets =
1309            reinterpret_cast<SkScalar*>(fInfo.fColors + fInfo.fColorCount);
1310}
1311