1// Copyright 2012 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#if V8_TARGET_ARCH_ARM
6
7#include "src/code-stubs.h"
8#include "src/api-arguments.h"
9#include "src/base/bits.h"
10#include "src/bootstrapper.h"
11#include "src/codegen.h"
12#include "src/ic/handler-compiler.h"
13#include "src/ic/ic.h"
14#include "src/ic/stub-cache.h"
15#include "src/isolate.h"
16#include "src/regexp/jsregexp.h"
17#include "src/regexp/regexp-macro-assembler.h"
18#include "src/runtime/runtime.h"
19
20#include "src/arm/code-stubs-arm.h"
21
22namespace v8 {
23namespace internal {
24
25#define __ ACCESS_MASM(masm)
26
27void ArrayNArgumentsConstructorStub::Generate(MacroAssembler* masm) {
28  __ lsl(r5, r0, Operand(kPointerSizeLog2));
29  __ str(r1, MemOperand(sp, r5));
30  __ Push(r1);
31  __ Push(r2);
32  __ add(r0, r0, Operand(3));
33  __ TailCallRuntime(Runtime::kNewArray);
34}
35
36static void EmitIdenticalObjectComparison(MacroAssembler* masm, Label* slow,
37                                          Condition cond);
38static void EmitSmiNonsmiComparison(MacroAssembler* masm,
39                                    Register lhs,
40                                    Register rhs,
41                                    Label* lhs_not_nan,
42                                    Label* slow,
43                                    bool strict);
44static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
45                                           Register lhs,
46                                           Register rhs);
47
48
49void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm,
50                                               ExternalReference miss) {
51  // Update the static counter each time a new code stub is generated.
52  isolate()->counters()->code_stubs()->Increment();
53
54  CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor();
55  int param_count = descriptor.GetRegisterParameterCount();
56  {
57    // Call the runtime system in a fresh internal frame.
58    FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
59    DCHECK(param_count == 0 ||
60           r0.is(descriptor.GetRegisterParameter(param_count - 1)));
61    // Push arguments
62    for (int i = 0; i < param_count; ++i) {
63      __ push(descriptor.GetRegisterParameter(i));
64    }
65    __ CallExternalReference(miss, param_count);
66  }
67
68  __ Ret();
69}
70
71
72void DoubleToIStub::Generate(MacroAssembler* masm) {
73  Label out_of_range, only_low, negate, done;
74  Register input_reg = source();
75  Register result_reg = destination();
76  DCHECK(is_truncating());
77
78  int double_offset = offset();
79  // Account for saved regs if input is sp.
80  if (input_reg.is(sp)) double_offset += 3 * kPointerSize;
81
82  Register scratch = GetRegisterThatIsNotOneOf(input_reg, result_reg);
83  Register scratch_low =
84      GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch);
85  Register scratch_high =
86      GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch, scratch_low);
87  LowDwVfpRegister double_scratch = kScratchDoubleReg;
88
89  __ Push(scratch_high, scratch_low, scratch);
90
91  if (!skip_fastpath()) {
92    // Load double input.
93    __ vldr(double_scratch, MemOperand(input_reg, double_offset));
94    __ vmov(scratch_low, scratch_high, double_scratch);
95
96    // Do fast-path convert from double to int.
97    __ vcvt_s32_f64(double_scratch.low(), double_scratch);
98    __ vmov(result_reg, double_scratch.low());
99
100    // If result is not saturated (0x7fffffff or 0x80000000), we are done.
101    __ sub(scratch, result_reg, Operand(1));
102    __ cmp(scratch, Operand(0x7ffffffe));
103    __ b(lt, &done);
104  } else {
105    // We've already done MacroAssembler::TryFastTruncatedDoubleToILoad, so we
106    // know exponent > 31, so we can skip the vcvt_s32_f64 which will saturate.
107    if (double_offset == 0) {
108      __ ldm(ia, input_reg, scratch_low.bit() | scratch_high.bit());
109    } else {
110      __ ldr(scratch_low, MemOperand(input_reg, double_offset));
111      __ ldr(scratch_high, MemOperand(input_reg, double_offset + kIntSize));
112    }
113  }
114
115  __ Ubfx(scratch, scratch_high,
116         HeapNumber::kExponentShift, HeapNumber::kExponentBits);
117  // Load scratch with exponent - 1. This is faster than loading
118  // with exponent because Bias + 1 = 1024 which is an *ARM* immediate value.
119  STATIC_ASSERT(HeapNumber::kExponentBias + 1 == 1024);
120  __ sub(scratch, scratch, Operand(HeapNumber::kExponentBias + 1));
121  // If exponent is greater than or equal to 84, the 32 less significant
122  // bits are 0s (2^84 = 1, 52 significant bits, 32 uncoded bits),
123  // the result is 0.
124  // Compare exponent with 84 (compare exponent - 1 with 83).
125  __ cmp(scratch, Operand(83));
126  __ b(ge, &out_of_range);
127
128  // If we reach this code, 31 <= exponent <= 83.
129  // So, we don't have to handle cases where 0 <= exponent <= 20 for
130  // which we would need to shift right the high part of the mantissa.
131  // Scratch contains exponent - 1.
132  // Load scratch with 52 - exponent (load with 51 - (exponent - 1)).
133  __ rsb(scratch, scratch, Operand(51), SetCC);
134  __ b(ls, &only_low);
135  // 21 <= exponent <= 51, shift scratch_low and scratch_high
136  // to generate the result.
137  __ mov(scratch_low, Operand(scratch_low, LSR, scratch));
138  // Scratch contains: 52 - exponent.
139  // We needs: exponent - 20.
140  // So we use: 32 - scratch = 32 - 52 + exponent = exponent - 20.
141  __ rsb(scratch, scratch, Operand(32));
142  __ Ubfx(result_reg, scratch_high,
143          0, HeapNumber::kMantissaBitsInTopWord);
144  // Set the implicit 1 before the mantissa part in scratch_high.
145  __ orr(result_reg, result_reg,
146         Operand(1 << HeapNumber::kMantissaBitsInTopWord));
147  __ orr(result_reg, scratch_low, Operand(result_reg, LSL, scratch));
148  __ b(&negate);
149
150  __ bind(&out_of_range);
151  __ mov(result_reg, Operand::Zero());
152  __ b(&done);
153
154  __ bind(&only_low);
155  // 52 <= exponent <= 83, shift only scratch_low.
156  // On entry, scratch contains: 52 - exponent.
157  __ rsb(scratch, scratch, Operand::Zero());
158  __ mov(result_reg, Operand(scratch_low, LSL, scratch));
159
160  __ bind(&negate);
161  // If input was positive, scratch_high ASR 31 equals 0 and
162  // scratch_high LSR 31 equals zero.
163  // New result = (result eor 0) + 0 = result.
164  // If the input was negative, we have to negate the result.
165  // Input_high ASR 31 equals 0xffffffff and scratch_high LSR 31 equals 1.
166  // New result = (result eor 0xffffffff) + 1 = 0 - result.
167  __ eor(result_reg, result_reg, Operand(scratch_high, ASR, 31));
168  __ add(result_reg, result_reg, Operand(scratch_high, LSR, 31));
169
170  __ bind(&done);
171
172  __ Pop(scratch_high, scratch_low, scratch);
173  __ Ret();
174}
175
176
177// Handle the case where the lhs and rhs are the same object.
178// Equality is almost reflexive (everything but NaN), so this is a test
179// for "identity and not NaN".
180static void EmitIdenticalObjectComparison(MacroAssembler* masm, Label* slow,
181                                          Condition cond) {
182  Label not_identical;
183  Label heap_number, return_equal;
184  __ cmp(r0, r1);
185  __ b(ne, &not_identical);
186
187  // Test for NaN. Sadly, we can't just compare to Factory::nan_value(),
188  // so we do the second best thing - test it ourselves.
189  // They are both equal and they are not both Smis so both of them are not
190  // Smis.  If it's not a heap number, then return equal.
191  if (cond == lt || cond == gt) {
192    // Call runtime on identical JSObjects.
193    __ CompareObjectType(r0, r4, r4, FIRST_JS_RECEIVER_TYPE);
194    __ b(ge, slow);
195    // Call runtime on identical symbols since we need to throw a TypeError.
196    __ cmp(r4, Operand(SYMBOL_TYPE));
197    __ b(eq, slow);
198  } else {
199    __ CompareObjectType(r0, r4, r4, HEAP_NUMBER_TYPE);
200    __ b(eq, &heap_number);
201    // Comparing JS objects with <=, >= is complicated.
202    if (cond != eq) {
203      __ cmp(r4, Operand(FIRST_JS_RECEIVER_TYPE));
204      __ b(ge, slow);
205      // Call runtime on identical symbols since we need to throw a TypeError.
206      __ cmp(r4, Operand(SYMBOL_TYPE));
207      __ b(eq, slow);
208      // Normally here we fall through to return_equal, but undefined is
209      // special: (undefined == undefined) == true, but
210      // (undefined <= undefined) == false!  See ECMAScript 11.8.5.
211      if (cond == le || cond == ge) {
212        __ cmp(r4, Operand(ODDBALL_TYPE));
213        __ b(ne, &return_equal);
214        __ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
215        __ cmp(r0, r2);
216        __ b(ne, &return_equal);
217        if (cond == le) {
218          // undefined <= undefined should fail.
219          __ mov(r0, Operand(GREATER));
220        } else  {
221          // undefined >= undefined should fail.
222          __ mov(r0, Operand(LESS));
223        }
224        __ Ret();
225      }
226    }
227  }
228
229  __ bind(&return_equal);
230  if (cond == lt) {
231    __ mov(r0, Operand(GREATER));  // Things aren't less than themselves.
232  } else if (cond == gt) {
233    __ mov(r0, Operand(LESS));     // Things aren't greater than themselves.
234  } else {
235    __ mov(r0, Operand(EQUAL));    // Things are <=, >=, ==, === themselves.
236  }
237  __ Ret();
238
239  // For less and greater we don't have to check for NaN since the result of
240  // x < x is false regardless.  For the others here is some code to check
241  // for NaN.
242  if (cond != lt && cond != gt) {
243    __ bind(&heap_number);
244    // It is a heap number, so return non-equal if it's NaN and equal if it's
245    // not NaN.
246
247    // The representation of NaN values has all exponent bits (52..62) set,
248    // and not all mantissa bits (0..51) clear.
249    // Read top bits of double representation (second word of value).
250    __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
251    // Test that exponent bits are all set.
252    __ Sbfx(r3, r2, HeapNumber::kExponentShift, HeapNumber::kExponentBits);
253    // NaNs have all-one exponents so they sign extend to -1.
254    __ cmp(r3, Operand(-1));
255    __ b(ne, &return_equal);
256
257    // Shift out flag and all exponent bits, retaining only mantissa.
258    __ mov(r2, Operand(r2, LSL, HeapNumber::kNonMantissaBitsInTopWord));
259    // Or with all low-bits of mantissa.
260    __ ldr(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset));
261    __ orr(r0, r3, Operand(r2), SetCC);
262    // For equal we already have the right value in r0:  Return zero (equal)
263    // if all bits in mantissa are zero (it's an Infinity) and non-zero if
264    // not (it's a NaN).  For <= and >= we need to load r0 with the failing
265    // value if it's a NaN.
266    if (cond != eq) {
267      // All-zero means Infinity means equal.
268      __ Ret(eq);
269      if (cond == le) {
270        __ mov(r0, Operand(GREATER));  // NaN <= NaN should fail.
271      } else {
272        __ mov(r0, Operand(LESS));     // NaN >= NaN should fail.
273      }
274    }
275    __ Ret();
276  }
277  // No fall through here.
278
279  __ bind(&not_identical);
280}
281
282
283// See comment at call site.
284static void EmitSmiNonsmiComparison(MacroAssembler* masm,
285                                    Register lhs,
286                                    Register rhs,
287                                    Label* lhs_not_nan,
288                                    Label* slow,
289                                    bool strict) {
290  DCHECK((lhs.is(r0) && rhs.is(r1)) ||
291         (lhs.is(r1) && rhs.is(r0)));
292
293  Label rhs_is_smi;
294  __ JumpIfSmi(rhs, &rhs_is_smi);
295
296  // Lhs is a Smi.  Check whether the rhs is a heap number.
297  __ CompareObjectType(rhs, r4, r4, HEAP_NUMBER_TYPE);
298  if (strict) {
299    // If rhs is not a number and lhs is a Smi then strict equality cannot
300    // succeed.  Return non-equal
301    // If rhs is r0 then there is already a non zero value in it.
302    if (!rhs.is(r0)) {
303      __ mov(r0, Operand(NOT_EQUAL), LeaveCC, ne);
304    }
305    __ Ret(ne);
306  } else {
307    // Smi compared non-strictly with a non-Smi non-heap-number.  Call
308    // the runtime.
309    __ b(ne, slow);
310  }
311
312  // Lhs is a smi, rhs is a number.
313  // Convert lhs to a double in d7.
314  __ SmiToDouble(d7, lhs);
315  // Load the double from rhs, tagged HeapNumber r0, to d6.
316  __ vldr(d6, rhs, HeapNumber::kValueOffset - kHeapObjectTag);
317
318  // We now have both loaded as doubles but we can skip the lhs nan check
319  // since it's a smi.
320  __ jmp(lhs_not_nan);
321
322  __ bind(&rhs_is_smi);
323  // Rhs is a smi.  Check whether the non-smi lhs is a heap number.
324  __ CompareObjectType(lhs, r4, r4, HEAP_NUMBER_TYPE);
325  if (strict) {
326    // If lhs is not a number and rhs is a smi then strict equality cannot
327    // succeed.  Return non-equal.
328    // If lhs is r0 then there is already a non zero value in it.
329    if (!lhs.is(r0)) {
330      __ mov(r0, Operand(NOT_EQUAL), LeaveCC, ne);
331    }
332    __ Ret(ne);
333  } else {
334    // Smi compared non-strictly with a non-smi non-heap-number.  Call
335    // the runtime.
336    __ b(ne, slow);
337  }
338
339  // Rhs is a smi, lhs is a heap number.
340  // Load the double from lhs, tagged HeapNumber r1, to d7.
341  __ vldr(d7, lhs, HeapNumber::kValueOffset - kHeapObjectTag);
342  // Convert rhs to a double in d6              .
343  __ SmiToDouble(d6, rhs);
344  // Fall through to both_loaded_as_doubles.
345}
346
347
348// See comment at call site.
349static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
350                                           Register lhs,
351                                           Register rhs) {
352    DCHECK((lhs.is(r0) && rhs.is(r1)) ||
353           (lhs.is(r1) && rhs.is(r0)));
354
355    // If either operand is a JS object or an oddball value, then they are
356    // not equal since their pointers are different.
357    // There is no test for undetectability in strict equality.
358    STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
359    Label first_non_object;
360    // Get the type of the first operand into r2 and compare it with
361    // FIRST_JS_RECEIVER_TYPE.
362    __ CompareObjectType(rhs, r2, r2, FIRST_JS_RECEIVER_TYPE);
363    __ b(lt, &first_non_object);
364
365    // Return non-zero (r0 is not zero)
366    Label return_not_equal;
367    __ bind(&return_not_equal);
368    __ Ret();
369
370    __ bind(&first_non_object);
371    // Check for oddballs: true, false, null, undefined.
372    __ cmp(r2, Operand(ODDBALL_TYPE));
373    __ b(eq, &return_not_equal);
374
375    __ CompareObjectType(lhs, r3, r3, FIRST_JS_RECEIVER_TYPE);
376    __ b(ge, &return_not_equal);
377
378    // Check for oddballs: true, false, null, undefined.
379    __ cmp(r3, Operand(ODDBALL_TYPE));
380    __ b(eq, &return_not_equal);
381
382    // Now that we have the types we might as well check for
383    // internalized-internalized.
384    STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
385    __ orr(r2, r2, Operand(r3));
386    __ tst(r2, Operand(kIsNotStringMask | kIsNotInternalizedMask));
387    __ b(eq, &return_not_equal);
388}
389
390
391// See comment at call site.
392static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm,
393                                       Register lhs,
394                                       Register rhs,
395                                       Label* both_loaded_as_doubles,
396                                       Label* not_heap_numbers,
397                                       Label* slow) {
398  DCHECK((lhs.is(r0) && rhs.is(r1)) ||
399         (lhs.is(r1) && rhs.is(r0)));
400
401  __ CompareObjectType(rhs, r3, r2, HEAP_NUMBER_TYPE);
402  __ b(ne, not_heap_numbers);
403  __ ldr(r2, FieldMemOperand(lhs, HeapObject::kMapOffset));
404  __ cmp(r2, r3);
405  __ b(ne, slow);  // First was a heap number, second wasn't.  Go slow case.
406
407  // Both are heap numbers.  Load them up then jump to the code we have
408  // for that.
409  __ vldr(d6, rhs, HeapNumber::kValueOffset - kHeapObjectTag);
410  __ vldr(d7, lhs, HeapNumber::kValueOffset - kHeapObjectTag);
411  __ jmp(both_loaded_as_doubles);
412}
413
414
415// Fast negative check for internalized-to-internalized equality or receiver
416// equality. Also handles the undetectable receiver to null/undefined
417// comparison.
418static void EmitCheckForInternalizedStringsOrObjects(MacroAssembler* masm,
419                                                     Register lhs, Register rhs,
420                                                     Label* possible_strings,
421                                                     Label* runtime_call) {
422  DCHECK((lhs.is(r0) && rhs.is(r1)) ||
423         (lhs.is(r1) && rhs.is(r0)));
424
425  // r2 is object type of rhs.
426  Label object_test, return_equal, return_unequal, undetectable;
427  STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
428  __ tst(r2, Operand(kIsNotStringMask));
429  __ b(ne, &object_test);
430  __ tst(r2, Operand(kIsNotInternalizedMask));
431  __ b(ne, possible_strings);
432  __ CompareObjectType(lhs, r3, r3, FIRST_NONSTRING_TYPE);
433  __ b(ge, runtime_call);
434  __ tst(r3, Operand(kIsNotInternalizedMask));
435  __ b(ne, possible_strings);
436
437  // Both are internalized. We already checked they weren't the same pointer so
438  // they are not equal. Return non-equal by returning the non-zero object
439  // pointer in r0.
440  __ Ret();
441
442  __ bind(&object_test);
443  __ ldr(r2, FieldMemOperand(lhs, HeapObject::kMapOffset));
444  __ ldr(r3, FieldMemOperand(rhs, HeapObject::kMapOffset));
445  __ ldrb(r4, FieldMemOperand(r2, Map::kBitFieldOffset));
446  __ ldrb(r5, FieldMemOperand(r3, Map::kBitFieldOffset));
447  __ tst(r4, Operand(1 << Map::kIsUndetectable));
448  __ b(ne, &undetectable);
449  __ tst(r5, Operand(1 << Map::kIsUndetectable));
450  __ b(ne, &return_unequal);
451
452  __ CompareInstanceType(r2, r2, FIRST_JS_RECEIVER_TYPE);
453  __ b(lt, runtime_call);
454  __ CompareInstanceType(r3, r3, FIRST_JS_RECEIVER_TYPE);
455  __ b(lt, runtime_call);
456
457  __ bind(&return_unequal);
458  // Return non-equal by returning the non-zero object pointer in r0.
459  __ Ret();
460
461  __ bind(&undetectable);
462  __ tst(r5, Operand(1 << Map::kIsUndetectable));
463  __ b(eq, &return_unequal);
464
465  // If both sides are JSReceivers, then the result is false according to
466  // the HTML specification, which says that only comparisons with null or
467  // undefined are affected by special casing for document.all.
468  __ CompareInstanceType(r2, r2, ODDBALL_TYPE);
469  __ b(eq, &return_equal);
470  __ CompareInstanceType(r3, r3, ODDBALL_TYPE);
471  __ b(ne, &return_unequal);
472
473  __ bind(&return_equal);
474  __ mov(r0, Operand(EQUAL));
475  __ Ret();
476}
477
478
479static void CompareICStub_CheckInputType(MacroAssembler* masm, Register input,
480                                         Register scratch,
481                                         CompareICState::State expected,
482                                         Label* fail) {
483  Label ok;
484  if (expected == CompareICState::SMI) {
485    __ JumpIfNotSmi(input, fail);
486  } else if (expected == CompareICState::NUMBER) {
487    __ JumpIfSmi(input, &ok);
488    __ CheckMap(input, scratch, Heap::kHeapNumberMapRootIndex, fail,
489                DONT_DO_SMI_CHECK);
490  }
491  // We could be strict about internalized/non-internalized here, but as long as
492  // hydrogen doesn't care, the stub doesn't have to care either.
493  __ bind(&ok);
494}
495
496
497// On entry r1 and r2 are the values to be compared.
498// On exit r0 is 0, positive or negative to indicate the result of
499// the comparison.
500void CompareICStub::GenerateGeneric(MacroAssembler* masm) {
501  Register lhs = r1;
502  Register rhs = r0;
503  Condition cc = GetCondition();
504
505  Label miss;
506  CompareICStub_CheckInputType(masm, lhs, r2, left(), &miss);
507  CompareICStub_CheckInputType(masm, rhs, r3, right(), &miss);
508
509  Label slow;  // Call builtin.
510  Label not_smis, both_loaded_as_doubles, lhs_not_nan;
511
512  Label not_two_smis, smi_done;
513  __ orr(r2, r1, r0);
514  __ JumpIfNotSmi(r2, &not_two_smis);
515  __ mov(r1, Operand(r1, ASR, 1));
516  __ sub(r0, r1, Operand(r0, ASR, 1));
517  __ Ret();
518  __ bind(&not_two_smis);
519
520  // NOTICE! This code is only reached after a smi-fast-case check, so
521  // it is certain that at least one operand isn't a smi.
522
523  // Handle the case where the objects are identical.  Either returns the answer
524  // or goes to slow.  Only falls through if the objects were not identical.
525  EmitIdenticalObjectComparison(masm, &slow, cc);
526
527  // If either is a Smi (we know that not both are), then they can only
528  // be strictly equal if the other is a HeapNumber.
529  STATIC_ASSERT(kSmiTag == 0);
530  DCHECK_EQ(static_cast<Smi*>(0), Smi::kZero);
531  __ and_(r2, lhs, Operand(rhs));
532  __ JumpIfNotSmi(r2, &not_smis);
533  // One operand is a smi.  EmitSmiNonsmiComparison generates code that can:
534  // 1) Return the answer.
535  // 2) Go to slow.
536  // 3) Fall through to both_loaded_as_doubles.
537  // 4) Jump to lhs_not_nan.
538  // In cases 3 and 4 we have found out we were dealing with a number-number
539  // comparison. The double values of the numbers have been loaded into d7 (lhs)
540  // and d6 (rhs).
541  EmitSmiNonsmiComparison(masm, lhs, rhs, &lhs_not_nan, &slow, strict());
542
543  __ bind(&both_loaded_as_doubles);
544  // The arguments have been converted to doubles and stored in d6 and d7.
545  __ bind(&lhs_not_nan);
546  Label no_nan;
547  __ VFPCompareAndSetFlags(d7, d6);
548  Label nan;
549  __ b(vs, &nan);
550  __ mov(r0, Operand(EQUAL), LeaveCC, eq);
551  __ mov(r0, Operand(LESS), LeaveCC, lt);
552  __ mov(r0, Operand(GREATER), LeaveCC, gt);
553  __ Ret();
554
555  __ bind(&nan);
556  // If one of the sides was a NaN then the v flag is set.  Load r0 with
557  // whatever it takes to make the comparison fail, since comparisons with NaN
558  // always fail.
559  if (cc == lt || cc == le) {
560    __ mov(r0, Operand(GREATER));
561  } else {
562    __ mov(r0, Operand(LESS));
563  }
564  __ Ret();
565
566  __ bind(&not_smis);
567  // At this point we know we are dealing with two different objects,
568  // and neither of them is a Smi.  The objects are in rhs_ and lhs_.
569  if (strict()) {
570    // This returns non-equal for some object types, or falls through if it
571    // was not lucky.
572    EmitStrictTwoHeapObjectCompare(masm, lhs, rhs);
573  }
574
575  Label check_for_internalized_strings;
576  Label flat_string_check;
577  // Check for heap-number-heap-number comparison.  Can jump to slow case,
578  // or load both doubles into r0, r1, r2, r3 and jump to the code that handles
579  // that case.  If the inputs are not doubles then jumps to
580  // check_for_internalized_strings.
581  // In this case r2 will contain the type of rhs_.  Never falls through.
582  EmitCheckForTwoHeapNumbers(masm,
583                             lhs,
584                             rhs,
585                             &both_loaded_as_doubles,
586                             &check_for_internalized_strings,
587                             &flat_string_check);
588
589  __ bind(&check_for_internalized_strings);
590  // In the strict case the EmitStrictTwoHeapObjectCompare already took care of
591  // internalized strings.
592  if (cc == eq && !strict()) {
593    // Returns an answer for two internalized strings or two detectable objects.
594    // Otherwise jumps to string case or not both strings case.
595    // Assumes that r2 is the type of rhs_ on entry.
596    EmitCheckForInternalizedStringsOrObjects(
597        masm, lhs, rhs, &flat_string_check, &slow);
598  }
599
600  // Check for both being sequential one-byte strings,
601  // and inline if that is the case.
602  __ bind(&flat_string_check);
603
604  __ JumpIfNonSmisNotBothSequentialOneByteStrings(lhs, rhs, r2, r3, &slow);
605
606  __ IncrementCounter(isolate()->counters()->string_compare_native(), 1, r2,
607                      r3);
608  if (cc == eq) {
609    StringHelper::GenerateFlatOneByteStringEquals(masm, lhs, rhs, r2, r3, r4);
610  } else {
611    StringHelper::GenerateCompareFlatOneByteStrings(masm, lhs, rhs, r2, r3, r4,
612                                                    r5);
613  }
614  // Never falls through to here.
615
616  __ bind(&slow);
617
618  if (cc == eq) {
619    {
620      FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
621      __ Push(cp);
622      __ Call(strict() ? isolate()->builtins()->StrictEqual()
623                       : isolate()->builtins()->Equal(),
624              RelocInfo::CODE_TARGET);
625      __ Pop(cp);
626    }
627    // Turn true into 0 and false into some non-zero value.
628    STATIC_ASSERT(EQUAL == 0);
629    __ LoadRoot(r1, Heap::kTrueValueRootIndex);
630    __ sub(r0, r0, r1);
631    __ Ret();
632  } else {
633    __ Push(lhs, rhs);
634    int ncr;  // NaN compare result
635    if (cc == lt || cc == le) {
636      ncr = GREATER;
637    } else {
638      DCHECK(cc == gt || cc == ge);  // remaining cases
639      ncr = LESS;
640    }
641    __ mov(r0, Operand(Smi::FromInt(ncr)));
642    __ push(r0);
643
644    // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
645    // tagged as a small integer.
646    __ TailCallRuntime(Runtime::kCompare);
647  }
648
649  __ bind(&miss);
650  GenerateMiss(masm);
651}
652
653
654void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
655  // We don't allow a GC during a store buffer overflow so there is no need to
656  // store the registers in any particular way, but we do have to store and
657  // restore them.
658  __ stm(db_w, sp, kCallerSaved | lr.bit());
659
660  const Register scratch = r1;
661
662  if (save_doubles()) {
663    __ SaveFPRegs(sp, scratch);
664  }
665  const int argument_count = 1;
666  const int fp_argument_count = 0;
667
668  AllowExternalCallThatCantCauseGC scope(masm);
669  __ PrepareCallCFunction(argument_count, fp_argument_count, scratch);
670  __ mov(r0, Operand(ExternalReference::isolate_address(isolate())));
671  __ CallCFunction(
672      ExternalReference::store_buffer_overflow_function(isolate()),
673      argument_count);
674  if (save_doubles()) {
675    __ RestoreFPRegs(sp, scratch);
676  }
677  __ ldm(ia_w, sp, kCallerSaved | pc.bit());  // Also pop pc to get Ret(0).
678}
679
680void MathPowStub::Generate(MacroAssembler* masm) {
681  const Register exponent = MathPowTaggedDescriptor::exponent();
682  DCHECK(exponent.is(r2));
683  const LowDwVfpRegister double_base = d0;
684  const LowDwVfpRegister double_exponent = d1;
685  const LowDwVfpRegister double_result = d2;
686  const LowDwVfpRegister double_scratch = d3;
687  const SwVfpRegister single_scratch = s6;
688  const Register scratch = r9;
689  const Register scratch2 = r4;
690
691  Label call_runtime, done, int_exponent;
692  if (exponent_type() == TAGGED) {
693    // Base is already in double_base.
694    __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
695
696    __ vldr(double_exponent,
697            FieldMemOperand(exponent, HeapNumber::kValueOffset));
698  }
699
700  if (exponent_type() != INTEGER) {
701    // Detect integer exponents stored as double.
702    __ TryDoubleToInt32Exact(scratch, double_exponent, double_scratch);
703    __ b(eq, &int_exponent);
704
705    __ push(lr);
706    {
707      AllowExternalCallThatCantCauseGC scope(masm);
708      __ PrepareCallCFunction(0, 2, scratch);
709      __ MovToFloatParameters(double_base, double_exponent);
710      __ CallCFunction(
711          ExternalReference::power_double_double_function(isolate()), 0, 2);
712    }
713    __ pop(lr);
714    __ MovFromFloatResult(double_result);
715    __ b(&done);
716  }
717
718  // Calculate power with integer exponent.
719  __ bind(&int_exponent);
720
721  // Get two copies of exponent in the registers scratch and exponent.
722  if (exponent_type() == INTEGER) {
723    __ mov(scratch, exponent);
724  } else {
725    // Exponent has previously been stored into scratch as untagged integer.
726    __ mov(exponent, scratch);
727  }
728  __ vmov(double_scratch, double_base);  // Back up base.
729  __ vmov(double_result, 1.0, scratch2);
730
731  // Get absolute value of exponent.
732  __ cmp(scratch, Operand::Zero());
733  __ rsb(scratch, scratch, Operand::Zero(), LeaveCC, mi);
734
735  Label while_true;
736  __ bind(&while_true);
737  __ mov(scratch, Operand(scratch, LSR, 1), SetCC);
738  __ vmul(double_result, double_result, double_scratch, cs);
739  __ vmul(double_scratch, double_scratch, double_scratch, ne);
740  __ b(ne, &while_true);
741
742  __ cmp(exponent, Operand::Zero());
743  __ b(ge, &done);
744  __ vmov(double_scratch, 1.0, scratch);
745  __ vdiv(double_result, double_scratch, double_result);
746  // Test whether result is zero.  Bail out to check for subnormal result.
747  // Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
748  __ VFPCompareAndSetFlags(double_result, 0.0);
749  __ b(ne, &done);
750  // double_exponent may not containe the exponent value if the input was a
751  // smi.  We set it with exponent value before bailing out.
752  __ vmov(single_scratch, exponent);
753  __ vcvt_f64_s32(double_exponent, single_scratch);
754
755  // Returning or bailing out.
756  __ push(lr);
757  {
758    AllowExternalCallThatCantCauseGC scope(masm);
759    __ PrepareCallCFunction(0, 2, scratch);
760    __ MovToFloatParameters(double_base, double_exponent);
761    __ CallCFunction(ExternalReference::power_double_double_function(isolate()),
762                     0, 2);
763  }
764  __ pop(lr);
765  __ MovFromFloatResult(double_result);
766
767  __ bind(&done);
768  __ Ret();
769}
770
771bool CEntryStub::NeedsImmovableCode() {
772  return true;
773}
774
775
776void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
777  CEntryStub::GenerateAheadOfTime(isolate);
778  StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
779  StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
780  CommonArrayConstructorStub::GenerateStubsAheadOfTime(isolate);
781  CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
782  CreateWeakCellStub::GenerateAheadOfTime(isolate);
783  BinaryOpICStub::GenerateAheadOfTime(isolate);
784  BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate);
785  StoreFastElementStub::GenerateAheadOfTime(isolate);
786}
787
788
789void CodeStub::GenerateFPStubs(Isolate* isolate) {
790  // Generate if not already in cache.
791  SaveFPRegsMode mode = kSaveFPRegs;
792  CEntryStub(isolate, 1, mode).GetCode();
793  StoreBufferOverflowStub(isolate, mode).GetCode();
794}
795
796
797void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
798  CEntryStub stub(isolate, 1, kDontSaveFPRegs);
799  stub.GetCode();
800}
801
802
803void CEntryStub::Generate(MacroAssembler* masm) {
804  // Called from JavaScript; parameters are on stack as if calling JS function.
805  // r0: number of arguments including receiver
806  // r1: pointer to builtin function
807  // fp: frame pointer  (restored after C call)
808  // sp: stack pointer  (restored as callee's sp after C call)
809  // cp: current context  (C callee-saved)
810  //
811  // If argv_in_register():
812  // r2: pointer to the first argument
813  ProfileEntryHookStub::MaybeCallEntryHook(masm);
814
815  __ mov(r5, Operand(r1));
816
817  if (argv_in_register()) {
818    // Move argv into the correct register.
819    __ mov(r1, Operand(r2));
820  } else {
821    // Compute the argv pointer in a callee-saved register.
822    __ add(r1, sp, Operand(r0, LSL, kPointerSizeLog2));
823    __ sub(r1, r1, Operand(kPointerSize));
824  }
825
826  // Enter the exit frame that transitions from JavaScript to C++.
827  FrameScope scope(masm, StackFrame::MANUAL);
828  __ EnterExitFrame(save_doubles(), 0, is_builtin_exit()
829                                           ? StackFrame::BUILTIN_EXIT
830                                           : StackFrame::EXIT);
831
832  // Store a copy of argc in callee-saved registers for later.
833  __ mov(r4, Operand(r0));
834
835  // r0, r4: number of arguments including receiver  (C callee-saved)
836  // r1: pointer to the first argument (C callee-saved)
837  // r5: pointer to builtin function  (C callee-saved)
838
839  int frame_alignment = MacroAssembler::ActivationFrameAlignment();
840  int frame_alignment_mask = frame_alignment - 1;
841#if V8_HOST_ARCH_ARM
842  if (FLAG_debug_code) {
843    if (frame_alignment > kPointerSize) {
844      Label alignment_as_expected;
845      DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
846      __ tst(sp, Operand(frame_alignment_mask));
847      __ b(eq, &alignment_as_expected);
848      // Don't use Check here, as it will call Runtime_Abort re-entering here.
849      __ stop("Unexpected alignment");
850      __ bind(&alignment_as_expected);
851    }
852  }
853#endif
854
855  // Call C built-in.
856  int result_stack_size;
857  if (result_size() <= 2) {
858    // r0 = argc, r1 = argv, r2 = isolate
859    __ mov(r2, Operand(ExternalReference::isolate_address(isolate())));
860    result_stack_size = 0;
861  } else {
862    DCHECK_EQ(3, result_size());
863    // Allocate additional space for the result.
864    result_stack_size =
865        ((result_size() * kPointerSize) + frame_alignment_mask) &
866        ~frame_alignment_mask;
867    __ sub(sp, sp, Operand(result_stack_size));
868
869    // r0 = hidden result argument, r1 = argc, r2 = argv, r3 = isolate.
870    __ mov(r3, Operand(ExternalReference::isolate_address(isolate())));
871    __ mov(r2, Operand(r1));
872    __ mov(r1, Operand(r0));
873    __ mov(r0, Operand(sp));
874  }
875
876  // To let the GC traverse the return address of the exit frames, we need to
877  // know where the return address is. The CEntryStub is unmovable, so
878  // we can store the address on the stack to be able to find it again and
879  // we never have to restore it, because it will not change.
880  // Compute the return address in lr to return to after the jump below. Pc is
881  // already at '+ 8' from the current instruction but return is after three
882  // instructions so add another 4 to pc to get the return address.
883  {
884    // Prevent literal pool emission before return address.
885    Assembler::BlockConstPoolScope block_const_pool(masm);
886    __ add(lr, pc, Operand(4));
887    __ str(lr, MemOperand(sp, result_stack_size));
888    __ Call(r5);
889  }
890  if (result_size() > 2) {
891    DCHECK_EQ(3, result_size());
892    // Read result values stored on stack.
893    __ ldr(r2, MemOperand(sp, 2 * kPointerSize));
894    __ ldr(r1, MemOperand(sp, 1 * kPointerSize));
895    __ ldr(r0, MemOperand(sp, 0 * kPointerSize));
896  }
897  // Result returned in r0, r1:r0 or r2:r1:r0 - do not destroy these registers!
898
899  // Check result for exception sentinel.
900  Label exception_returned;
901  __ CompareRoot(r0, Heap::kExceptionRootIndex);
902  __ b(eq, &exception_returned);
903
904  // Check that there is no pending exception, otherwise we
905  // should have returned the exception sentinel.
906  if (FLAG_debug_code) {
907    Label okay;
908    ExternalReference pending_exception_address(
909        Isolate::kPendingExceptionAddress, isolate());
910    __ mov(r3, Operand(pending_exception_address));
911    __ ldr(r3, MemOperand(r3));
912    __ CompareRoot(r3, Heap::kTheHoleValueRootIndex);
913    // Cannot use check here as it attempts to generate call into runtime.
914    __ b(eq, &okay);
915    __ stop("Unexpected pending exception");
916    __ bind(&okay);
917  }
918
919  // Exit C frame and return.
920  // r0:r1: result
921  // sp: stack pointer
922  // fp: frame pointer
923  Register argc;
924  if (argv_in_register()) {
925    // We don't want to pop arguments so set argc to no_reg.
926    argc = no_reg;
927  } else {
928    // Callee-saved register r4 still holds argc.
929    argc = r4;
930  }
931  __ LeaveExitFrame(save_doubles(), argc, true);
932  __ mov(pc, lr);
933
934  // Handling of exception.
935  __ bind(&exception_returned);
936
937  ExternalReference pending_handler_context_address(
938      Isolate::kPendingHandlerContextAddress, isolate());
939  ExternalReference pending_handler_code_address(
940      Isolate::kPendingHandlerCodeAddress, isolate());
941  ExternalReference pending_handler_offset_address(
942      Isolate::kPendingHandlerOffsetAddress, isolate());
943  ExternalReference pending_handler_fp_address(
944      Isolate::kPendingHandlerFPAddress, isolate());
945  ExternalReference pending_handler_sp_address(
946      Isolate::kPendingHandlerSPAddress, isolate());
947
948  // Ask the runtime for help to determine the handler. This will set r0 to
949  // contain the current pending exception, don't clobber it.
950  ExternalReference find_handler(Runtime::kUnwindAndFindExceptionHandler,
951                                 isolate());
952  {
953    FrameScope scope(masm, StackFrame::MANUAL);
954    __ PrepareCallCFunction(3, 0, r0);
955    __ mov(r0, Operand(0));
956    __ mov(r1, Operand(0));
957    __ mov(r2, Operand(ExternalReference::isolate_address(isolate())));
958    __ CallCFunction(find_handler, 3);
959  }
960
961  // Retrieve the handler context, SP and FP.
962  __ mov(cp, Operand(pending_handler_context_address));
963  __ ldr(cp, MemOperand(cp));
964  __ mov(sp, Operand(pending_handler_sp_address));
965  __ ldr(sp, MemOperand(sp));
966  __ mov(fp, Operand(pending_handler_fp_address));
967  __ ldr(fp, MemOperand(fp));
968
969  // If the handler is a JS frame, restore the context to the frame. Note that
970  // the context will be set to (cp == 0) for non-JS frames.
971  __ cmp(cp, Operand(0));
972  __ str(cp, MemOperand(fp, StandardFrameConstants::kContextOffset), ne);
973
974  // Compute the handler entry address and jump to it.
975  ConstantPoolUnavailableScope constant_pool_unavailable(masm);
976  __ mov(r1, Operand(pending_handler_code_address));
977  __ ldr(r1, MemOperand(r1));
978  __ mov(r2, Operand(pending_handler_offset_address));
979  __ ldr(r2, MemOperand(r2));
980  __ add(r1, r1, Operand(Code::kHeaderSize - kHeapObjectTag));  // Code start
981  if (FLAG_enable_embedded_constant_pool) {
982    __ LoadConstantPoolPointerRegisterFromCodeTargetAddress(r1);
983  }
984  __ add(pc, r1, r2);
985}
986
987
988void JSEntryStub::Generate(MacroAssembler* masm) {
989  // r0: code entry
990  // r1: function
991  // r2: receiver
992  // r3: argc
993  // [sp+0]: argv
994
995  Label invoke, handler_entry, exit;
996
997  ProfileEntryHookStub::MaybeCallEntryHook(masm);
998
999  // Called from C, so do not pop argc and args on exit (preserve sp)
1000  // No need to save register-passed args
1001  // Save callee-saved registers (incl. cp and fp), sp, and lr
1002  __ stm(db_w, sp, kCalleeSaved | lr.bit());
1003
1004  // Save callee-saved vfp registers.
1005  __ vstm(db_w, sp, kFirstCalleeSavedDoubleReg, kLastCalleeSavedDoubleReg);
1006  // Set up the reserved register for 0.0.
1007  __ vmov(kDoubleRegZero, 0.0);
1008
1009  // Get address of argv, see stm above.
1010  // r0: code entry
1011  // r1: function
1012  // r2: receiver
1013  // r3: argc
1014
1015  // Set up argv in r4.
1016  int offset_to_argv = (kNumCalleeSaved + 1) * kPointerSize;
1017  offset_to_argv += kNumDoubleCalleeSaved * kDoubleSize;
1018  __ ldr(r4, MemOperand(sp, offset_to_argv));
1019
1020  // Push a frame with special values setup to mark it as an entry frame.
1021  // r0: code entry
1022  // r1: function
1023  // r2: receiver
1024  // r3: argc
1025  // r4: argv
1026  StackFrame::Type marker = type();
1027  if (FLAG_enable_embedded_constant_pool) {
1028    __ mov(r8, Operand::Zero());
1029  }
1030  __ mov(r7, Operand(StackFrame::TypeToMarker(marker)));
1031  __ mov(r6, Operand(StackFrame::TypeToMarker(marker)));
1032  __ mov(r5,
1033         Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
1034  __ ldr(r5, MemOperand(r5));
1035  __ mov(ip, Operand(-1));  // Push a bad frame pointer to fail if it is used.
1036  __ stm(db_w, sp, r5.bit() | r6.bit() | r7.bit() |
1037                       (FLAG_enable_embedded_constant_pool ? r8.bit() : 0) |
1038                       ip.bit());
1039
1040  // Set up frame pointer for the frame to be pushed.
1041  __ add(fp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
1042
1043  // If this is the outermost JS call, set js_entry_sp value.
1044  Label non_outermost_js;
1045  ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate());
1046  __ mov(r5, Operand(ExternalReference(js_entry_sp)));
1047  __ ldr(r6, MemOperand(r5));
1048  __ cmp(r6, Operand::Zero());
1049  __ b(ne, &non_outermost_js);
1050  __ str(fp, MemOperand(r5));
1051  __ mov(ip, Operand(StackFrame::OUTERMOST_JSENTRY_FRAME));
1052  Label cont;
1053  __ b(&cont);
1054  __ bind(&non_outermost_js);
1055  __ mov(ip, Operand(StackFrame::INNER_JSENTRY_FRAME));
1056  __ bind(&cont);
1057  __ push(ip);
1058
1059  // Jump to a faked try block that does the invoke, with a faked catch
1060  // block that sets the pending exception.
1061  __ jmp(&invoke);
1062
1063  // Block literal pool emission whilst taking the position of the handler
1064  // entry. This avoids making the assumption that literal pools are always
1065  // emitted after an instruction is emitted, rather than before.
1066  {
1067    Assembler::BlockConstPoolScope block_const_pool(masm);
1068    __ bind(&handler_entry);
1069    handler_offset_ = handler_entry.pos();
1070    // Caught exception: Store result (exception) in the pending exception
1071    // field in the JSEnv and return a failure sentinel.  Coming in here the
1072    // fp will be invalid because the PushStackHandler below sets it to 0 to
1073    // signal the existence of the JSEntry frame.
1074    __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
1075                                         isolate())));
1076  }
1077  __ str(r0, MemOperand(ip));
1078  __ LoadRoot(r0, Heap::kExceptionRootIndex);
1079  __ b(&exit);
1080
1081  // Invoke: Link this frame into the handler chain.
1082  __ bind(&invoke);
1083  // Must preserve r0-r4, r5-r6 are available.
1084  __ PushStackHandler();
1085  // If an exception not caught by another handler occurs, this handler
1086  // returns control to the code after the bl(&invoke) above, which
1087  // restores all kCalleeSaved registers (including cp and fp) to their
1088  // saved values before returning a failure to C.
1089
1090  // Invoke the function by calling through JS entry trampoline builtin.
1091  // Notice that we cannot store a reference to the trampoline code directly in
1092  // this stub, because runtime stubs are not traversed when doing GC.
1093
1094  // Expected registers by Builtins::JSEntryTrampoline
1095  // r0: code entry
1096  // r1: function
1097  // r2: receiver
1098  // r3: argc
1099  // r4: argv
1100  if (type() == StackFrame::ENTRY_CONSTRUCT) {
1101    ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
1102                                      isolate());
1103    __ mov(ip, Operand(construct_entry));
1104  } else {
1105    ExternalReference entry(Builtins::kJSEntryTrampoline, isolate());
1106    __ mov(ip, Operand(entry));
1107  }
1108  __ ldr(ip, MemOperand(ip));  // deref address
1109  __ add(ip, ip, Operand(Code::kHeaderSize - kHeapObjectTag));
1110
1111  // Branch and link to JSEntryTrampoline.
1112  __ Call(ip);
1113
1114  // Unlink this frame from the handler chain.
1115  __ PopStackHandler();
1116
1117  __ bind(&exit);  // r0 holds result
1118  // Check if the current stack frame is marked as the outermost JS frame.
1119  Label non_outermost_js_2;
1120  __ pop(r5);
1121  __ cmp(r5, Operand(StackFrame::OUTERMOST_JSENTRY_FRAME));
1122  __ b(ne, &non_outermost_js_2);
1123  __ mov(r6, Operand::Zero());
1124  __ mov(r5, Operand(ExternalReference(js_entry_sp)));
1125  __ str(r6, MemOperand(r5));
1126  __ bind(&non_outermost_js_2);
1127
1128  // Restore the top frame descriptors from the stack.
1129  __ pop(r3);
1130  __ mov(ip,
1131         Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
1132  __ str(r3, MemOperand(ip));
1133
1134  // Reset the stack to the callee saved registers.
1135  __ add(sp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
1136
1137  // Restore callee-saved registers and return.
1138#ifdef DEBUG
1139  if (FLAG_debug_code) {
1140    __ mov(lr, Operand(pc));
1141  }
1142#endif
1143
1144  // Restore callee-saved vfp registers.
1145  __ vldm(ia_w, sp, kFirstCalleeSavedDoubleReg, kLastCalleeSavedDoubleReg);
1146
1147  __ ldm(ia_w, sp, kCalleeSaved | pc.bit());
1148}
1149
1150void RegExpExecStub::Generate(MacroAssembler* masm) {
1151  // Just jump directly to runtime if native RegExp is not selected at compile
1152  // time or if regexp entry in generated code is turned off runtime switch or
1153  // at compilation.
1154#ifdef V8_INTERPRETED_REGEXP
1155  __ TailCallRuntime(Runtime::kRegExpExec);
1156#else  // V8_INTERPRETED_REGEXP
1157
1158  // Stack frame on entry.
1159  //  sp[0]: last_match_info (expected JSArray)
1160  //  sp[4]: previous index
1161  //  sp[8]: subject string
1162  //  sp[12]: JSRegExp object
1163
1164  const int kLastMatchInfoOffset = 0 * kPointerSize;
1165  const int kPreviousIndexOffset = 1 * kPointerSize;
1166  const int kSubjectOffset = 2 * kPointerSize;
1167  const int kJSRegExpOffset = 3 * kPointerSize;
1168
1169  Label runtime;
1170  // Allocation of registers for this function. These are in callee save
1171  // registers and will be preserved by the call to the native RegExp code, as
1172  // this code is called using the normal C calling convention. When calling
1173  // directly from generated code the native RegExp code will not do a GC and
1174  // therefore the content of these registers are safe to use after the call.
1175  Register subject = r4;
1176  Register regexp_data = r5;
1177  Register last_match_info_elements = no_reg;  // will be r6;
1178
1179  // Ensure that a RegExp stack is allocated.
1180  ExternalReference address_of_regexp_stack_memory_address =
1181      ExternalReference::address_of_regexp_stack_memory_address(isolate());
1182  ExternalReference address_of_regexp_stack_memory_size =
1183      ExternalReference::address_of_regexp_stack_memory_size(isolate());
1184  __ mov(r0, Operand(address_of_regexp_stack_memory_size));
1185  __ ldr(r0, MemOperand(r0, 0));
1186  __ cmp(r0, Operand::Zero());
1187  __ b(eq, &runtime);
1188
1189  // Check that the first argument is a JSRegExp object.
1190  __ ldr(r0, MemOperand(sp, kJSRegExpOffset));
1191  __ JumpIfSmi(r0, &runtime);
1192  __ CompareObjectType(r0, r1, r1, JS_REGEXP_TYPE);
1193  __ b(ne, &runtime);
1194
1195  // Check that the RegExp has been compiled (data contains a fixed array).
1196  __ ldr(regexp_data, FieldMemOperand(r0, JSRegExp::kDataOffset));
1197  if (FLAG_debug_code) {
1198    __ SmiTst(regexp_data);
1199    __ Check(ne, kUnexpectedTypeForRegExpDataFixedArrayExpected);
1200    __ CompareObjectType(regexp_data, r0, r0, FIXED_ARRAY_TYPE);
1201    __ Check(eq, kUnexpectedTypeForRegExpDataFixedArrayExpected);
1202  }
1203
1204  // regexp_data: RegExp data (FixedArray)
1205  // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
1206  __ ldr(r0, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset));
1207  __ cmp(r0, Operand(Smi::FromInt(JSRegExp::IRREGEXP)));
1208  __ b(ne, &runtime);
1209
1210  // regexp_data: RegExp data (FixedArray)
1211  // Check that the number of captures fit in the static offsets vector buffer.
1212  __ ldr(r2,
1213         FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
1214  // Check (number_of_captures + 1) * 2 <= offsets vector size
1215  // Or          number_of_captures * 2 <= offsets vector size - 2
1216  // Multiplying by 2 comes for free since r2 is smi-tagged.
1217  STATIC_ASSERT(kSmiTag == 0);
1218  STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
1219  STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
1220  __ cmp(r2, Operand(Isolate::kJSRegexpStaticOffsetsVectorSize - 2));
1221  __ b(hi, &runtime);
1222
1223  // Reset offset for possibly sliced string.
1224  __ mov(r9, Operand::Zero());
1225  __ ldr(subject, MemOperand(sp, kSubjectOffset));
1226  __ JumpIfSmi(subject, &runtime);
1227  __ mov(r3, subject);  // Make a copy of the original subject string.
1228  // subject: subject string
1229  // r3: subject string
1230  // regexp_data: RegExp data (FixedArray)
1231  // Handle subject string according to its encoding and representation:
1232  // (1) Sequential string?  If yes, go to (4).
1233  // (2) Sequential or cons?  If not, go to (5).
1234  // (3) Cons string.  If the string is flat, replace subject with first string
1235  //     and go to (1). Otherwise bail out to runtime.
1236  // (4) Sequential string.  Load regexp code according to encoding.
1237  // (E) Carry on.
1238  /// [...]
1239
1240  // Deferred code at the end of the stub:
1241  // (5) Long external string?  If not, go to (7).
1242  // (6) External string.  Make it, offset-wise, look like a sequential string.
1243  //     Go to (4).
1244  // (7) Short external string or not a string?  If yes, bail out to runtime.
1245  // (8) Sliced or thin string.  Replace subject with parent.  Go to (1).
1246
1247  Label seq_string /* 4 */, external_string /* 6 */, check_underlying /* 1 */,
1248      not_seq_nor_cons /* 5 */, not_long_external /* 7 */;
1249
1250  __ bind(&check_underlying);
1251  __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset));
1252  __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset));
1253
1254  // (1) Sequential string?  If yes, go to (4).
1255  __ and_(r1,
1256          r0,
1257          Operand(kIsNotStringMask |
1258                  kStringRepresentationMask |
1259                  kShortExternalStringMask),
1260          SetCC);
1261  STATIC_ASSERT((kStringTag | kSeqStringTag) == 0);
1262  __ b(eq, &seq_string);  // Go to (4).
1263
1264  // (2) Sequential or cons?  If not, go to (5).
1265  STATIC_ASSERT(kConsStringTag < kExternalStringTag);
1266  STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
1267  STATIC_ASSERT(kThinStringTag > kExternalStringTag);
1268  STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
1269  STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
1270  __ cmp(r1, Operand(kExternalStringTag));
1271  __ b(ge, &not_seq_nor_cons);  // Go to (5).
1272
1273  // (3) Cons string.  Check that it's flat.
1274  // Replace subject with first string and reload instance type.
1275  __ ldr(r0, FieldMemOperand(subject, ConsString::kSecondOffset));
1276  __ CompareRoot(r0, Heap::kempty_stringRootIndex);
1277  __ b(ne, &runtime);
1278  __ ldr(subject, FieldMemOperand(subject, ConsString::kFirstOffset));
1279  __ jmp(&check_underlying);
1280
1281  // (4) Sequential string.  Load regexp code according to encoding.
1282  __ bind(&seq_string);
1283  // subject: sequential subject string (or look-alike, external string)
1284  // r3: original subject string
1285  // Load previous index and check range before r3 is overwritten.  We have to
1286  // use r3 instead of subject here because subject might have been only made
1287  // to look like a sequential string when it actually is an external string.
1288  __ ldr(r1, MemOperand(sp, kPreviousIndexOffset));
1289  __ JumpIfNotSmi(r1, &runtime);
1290  __ ldr(r3, FieldMemOperand(r3, String::kLengthOffset));
1291  __ cmp(r3, Operand(r1));
1292  __ b(ls, &runtime);
1293  __ SmiUntag(r1);
1294
1295  STATIC_ASSERT(8 == kOneByteStringTag);
1296  STATIC_ASSERT(kTwoByteStringTag == 0);
1297  __ and_(r0, r0, Operand(kStringEncodingMask));
1298  __ mov(r3, Operand(r0, ASR, 3), SetCC);
1299  __ ldr(r6, FieldMemOperand(regexp_data, JSRegExp::kDataOneByteCodeOffset),
1300         ne);
1301  __ ldr(r6, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset), eq);
1302
1303  // (E) Carry on.  String handling is done.
1304  // r6: irregexp code
1305  // Check that the irregexp code has been generated for the actual string
1306  // encoding. If it has, the field contains a code object otherwise it contains
1307  // a smi (code flushing support).
1308  __ JumpIfSmi(r6, &runtime);
1309
1310  // r1: previous index
1311  // r3: encoding of subject string (1 if one_byte, 0 if two_byte);
1312  // r6: code
1313  // subject: Subject string
1314  // regexp_data: RegExp data (FixedArray)
1315  // All checks done. Now push arguments for native regexp code.
1316  __ IncrementCounter(isolate()->counters()->regexp_entry_native(), 1, r0, r2);
1317
1318  // Isolates: note we add an additional parameter here (isolate pointer).
1319  const int kRegExpExecuteArguments = 9;
1320  const int kParameterRegisters = 4;
1321  __ EnterExitFrame(false, kRegExpExecuteArguments - kParameterRegisters);
1322
1323  // Stack pointer now points to cell where return address is to be written.
1324  // Arguments are before that on the stack or in registers.
1325
1326  // Argument 9 (sp[20]): Pass current isolate address.
1327  __ mov(r0, Operand(ExternalReference::isolate_address(isolate())));
1328  __ str(r0, MemOperand(sp, 5 * kPointerSize));
1329
1330  // Argument 8 (sp[16]): Indicate that this is a direct call from JavaScript.
1331  __ mov(r0, Operand(1));
1332  __ str(r0, MemOperand(sp, 4 * kPointerSize));
1333
1334  // Argument 7 (sp[12]): Start (high end) of backtracking stack memory area.
1335  __ mov(r0, Operand(address_of_regexp_stack_memory_address));
1336  __ ldr(r0, MemOperand(r0, 0));
1337  __ mov(r2, Operand(address_of_regexp_stack_memory_size));
1338  __ ldr(r2, MemOperand(r2, 0));
1339  __ add(r0, r0, Operand(r2));
1340  __ str(r0, MemOperand(sp, 3 * kPointerSize));
1341
1342  // Argument 6: Set the number of capture registers to zero to force global
1343  // regexps to behave as non-global.  This does not affect non-global regexps.
1344  __ mov(r0, Operand::Zero());
1345  __ str(r0, MemOperand(sp, 2 * kPointerSize));
1346
1347  // Argument 5 (sp[4]): static offsets vector buffer.
1348  __ mov(r0,
1349         Operand(ExternalReference::address_of_static_offsets_vector(
1350             isolate())));
1351  __ str(r0, MemOperand(sp, 1 * kPointerSize));
1352
1353  // For arguments 4 and 3 get string length, calculate start of string data and
1354  // calculate the shift of the index (0 for one-byte and 1 for two-byte).
1355  __ add(r7, subject, Operand(SeqString::kHeaderSize - kHeapObjectTag));
1356  __ eor(r3, r3, Operand(1));
1357  // Load the length from the original subject string from the previous stack
1358  // frame. Therefore we have to use fp, which points exactly to two pointer
1359  // sizes below the previous sp. (Because creating a new stack frame pushes
1360  // the previous fp onto the stack and moves up sp by 2 * kPointerSize.)
1361  __ ldr(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize));
1362  // If slice offset is not 0, load the length from the original sliced string.
1363  // Argument 4, r3: End of string data
1364  // Argument 3, r2: Start of string data
1365  // Prepare start and end index of the input.
1366  __ add(r9, r7, Operand(r9, LSL, r3));
1367  __ add(r2, r9, Operand(r1, LSL, r3));
1368
1369  __ ldr(r7, FieldMemOperand(subject, String::kLengthOffset));
1370  __ SmiUntag(r7);
1371  __ add(r3, r9, Operand(r7, LSL, r3));
1372
1373  // Argument 2 (r1): Previous index.
1374  // Already there
1375
1376  // Argument 1 (r0): Subject string.
1377  __ mov(r0, subject);
1378
1379  // Locate the code entry and call it.
1380  __ add(r6, r6, Operand(Code::kHeaderSize - kHeapObjectTag));
1381  DirectCEntryStub stub(isolate());
1382  stub.GenerateCall(masm, r6);
1383
1384  __ LeaveExitFrame(false, no_reg, true);
1385
1386  last_match_info_elements = r6;
1387
1388  // r0: result
1389  // subject: subject string (callee saved)
1390  // regexp_data: RegExp data (callee saved)
1391  // last_match_info_elements: Last match info elements (callee saved)
1392  // Check the result.
1393  Label success;
1394  __ cmp(r0, Operand(1));
1395  // We expect exactly one result since we force the called regexp to behave
1396  // as non-global.
1397  __ b(eq, &success);
1398  Label failure;
1399  __ cmp(r0, Operand(NativeRegExpMacroAssembler::FAILURE));
1400  __ b(eq, &failure);
1401  __ cmp(r0, Operand(NativeRegExpMacroAssembler::EXCEPTION));
1402  // If not exception it can only be retry. Handle that in the runtime system.
1403  __ b(ne, &runtime);
1404  // Result must now be exception. If there is no pending exception already a
1405  // stack overflow (on the backtrack stack) was detected in RegExp code but
1406  // haven't created the exception yet. Handle that in the runtime system.
1407  // TODO(592): Rerunning the RegExp to get the stack overflow exception.
1408  __ mov(r1, Operand(isolate()->factory()->the_hole_value()));
1409  __ mov(r2, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
1410                                       isolate())));
1411  __ ldr(r0, MemOperand(r2, 0));
1412  __ cmp(r0, r1);
1413  __ b(eq, &runtime);
1414
1415  // For exception, throw the exception again.
1416  __ TailCallRuntime(Runtime::kRegExpExecReThrow);
1417
1418  __ bind(&failure);
1419  // For failure and exception return null.
1420  __ mov(r0, Operand(isolate()->factory()->null_value()));
1421  __ add(sp, sp, Operand(4 * kPointerSize));
1422  __ Ret();
1423
1424  // Process the result from the native regexp code.
1425  __ bind(&success);
1426  __ ldr(r1,
1427         FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
1428  // Calculate number of capture registers (number_of_captures + 1) * 2.
1429  // Multiplying by 2 comes for free since r1 is smi-tagged.
1430  STATIC_ASSERT(kSmiTag == 0);
1431  STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
1432  __ add(r1, r1, Operand(2));  // r1 was a smi.
1433
1434  // Check that the last match info is a FixedArray.
1435  __ ldr(last_match_info_elements, MemOperand(sp, kLastMatchInfoOffset));
1436  __ JumpIfSmi(last_match_info_elements, &runtime);
1437  // Check that the object has fast elements.
1438  __ ldr(r0, FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset));
1439  __ CompareRoot(r0, Heap::kFixedArrayMapRootIndex);
1440  __ b(ne, &runtime);
1441  // Check that the last match info has space for the capture registers and the
1442  // additional information.
1443  __ ldr(r0,
1444         FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset));
1445  __ add(r2, r1, Operand(RegExpMatchInfo::kLastMatchOverhead));
1446  __ cmp(r2, Operand::SmiUntag(r0));
1447  __ b(gt, &runtime);
1448
1449  // r1: number of capture registers
1450  // r4: subject string
1451  // Store the capture count.
1452  __ SmiTag(r2, r1);
1453  __ str(r2, FieldMemOperand(last_match_info_elements,
1454                             RegExpMatchInfo::kNumberOfCapturesOffset));
1455  // Store last subject and last input.
1456  __ str(subject, FieldMemOperand(last_match_info_elements,
1457                                  RegExpMatchInfo::kLastSubjectOffset));
1458  __ mov(r2, subject);
1459  __ RecordWriteField(last_match_info_elements,
1460                      RegExpMatchInfo::kLastSubjectOffset, subject, r3,
1461                      kLRHasNotBeenSaved, kDontSaveFPRegs);
1462  __ mov(subject, r2);
1463  __ str(subject, FieldMemOperand(last_match_info_elements,
1464                                  RegExpMatchInfo::kLastInputOffset));
1465  __ RecordWriteField(last_match_info_elements,
1466                      RegExpMatchInfo::kLastInputOffset, subject, r3,
1467                      kLRHasNotBeenSaved, kDontSaveFPRegs);
1468
1469  // Get the static offsets vector filled by the native regexp code.
1470  ExternalReference address_of_static_offsets_vector =
1471      ExternalReference::address_of_static_offsets_vector(isolate());
1472  __ mov(r2, Operand(address_of_static_offsets_vector));
1473
1474  // r1: number of capture registers
1475  // r2: offsets vector
1476  Label next_capture, done;
1477  // Capture register counter starts from number of capture registers and
1478  // counts down until wrapping after zero.
1479  __ add(r0, last_match_info_elements,
1480         Operand(RegExpMatchInfo::kFirstCaptureOffset - kHeapObjectTag));
1481  __ bind(&next_capture);
1482  __ sub(r1, r1, Operand(1), SetCC);
1483  __ b(mi, &done);
1484  // Read the value from the static offsets vector buffer.
1485  __ ldr(r3, MemOperand(r2, kPointerSize, PostIndex));
1486  // Store the smi value in the last match info.
1487  __ SmiTag(r3);
1488  __ str(r3, MemOperand(r0, kPointerSize, PostIndex));
1489  __ jmp(&next_capture);
1490  __ bind(&done);
1491
1492  // Return last match info.
1493  __ mov(r0, last_match_info_elements);
1494  __ add(sp, sp, Operand(4 * kPointerSize));
1495  __ Ret();
1496
1497  // Do the runtime call to execute the regexp.
1498  __ bind(&runtime);
1499  __ TailCallRuntime(Runtime::kRegExpExec);
1500
1501  // Deferred code for string handling.
1502  // (5) Long external string?  If not, go to (7).
1503  __ bind(&not_seq_nor_cons);
1504  // Compare flags are still set.
1505  __ b(gt, &not_long_external);  // Go to (7).
1506
1507  // (6) External string.  Make it, offset-wise, look like a sequential string.
1508  __ bind(&external_string);
1509  __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset));
1510  __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset));
1511  if (FLAG_debug_code) {
1512    // Assert that we do not have a cons or slice (indirect strings) here.
1513    // Sequential strings have already been ruled out.
1514    __ tst(r0, Operand(kIsIndirectStringMask));
1515    __ Assert(eq, kExternalStringExpectedButNotFound);
1516  }
1517  __ ldr(subject,
1518         FieldMemOperand(subject, ExternalString::kResourceDataOffset));
1519  // Move the pointer so that offset-wise, it looks like a sequential string.
1520  STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
1521  __ sub(subject,
1522         subject,
1523         Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
1524  __ jmp(&seq_string);  // Go to (4).
1525
1526  // (7) Short external string or not a string?  If yes, bail out to runtime.
1527  __ bind(&not_long_external);
1528  STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0);
1529  __ tst(r1, Operand(kIsNotStringMask | kShortExternalStringMask));
1530  __ b(ne, &runtime);
1531
1532  // (8) Sliced or thin string.  Replace subject with parent.  Go to (4).
1533  Label thin_string;
1534  __ cmp(r1, Operand(kThinStringTag));
1535  __ b(eq, &thin_string);
1536  // Load offset into r9 and replace subject string with parent.
1537  __ ldr(r9, FieldMemOperand(subject, SlicedString::kOffsetOffset));
1538  __ SmiUntag(r9);
1539  __ ldr(subject, FieldMemOperand(subject, SlicedString::kParentOffset));
1540  __ jmp(&check_underlying);  // Go to (4).
1541
1542  __ bind(&thin_string);
1543  __ ldr(subject, FieldMemOperand(subject, ThinString::kActualOffset));
1544  __ jmp(&check_underlying);  // Go to (4).
1545#endif  // V8_INTERPRETED_REGEXP
1546}
1547
1548
1549static void CallStubInRecordCallTarget(MacroAssembler* masm, CodeStub* stub) {
1550  // r0 : number of arguments to the construct function
1551  // r1 : the function to call
1552  // r2 : feedback vector
1553  // r3 : slot in feedback vector (Smi)
1554  FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
1555
1556  // Number-of-arguments register must be smi-tagged to call out.
1557  __ SmiTag(r0);
1558  __ Push(r3, r2, r1, r0);
1559  __ Push(cp);
1560
1561  __ CallStub(stub);
1562
1563  __ Pop(cp);
1564  __ Pop(r3, r2, r1, r0);
1565  __ SmiUntag(r0);
1566}
1567
1568
1569static void GenerateRecordCallTarget(MacroAssembler* masm) {
1570  // Cache the called function in a feedback vector slot.  Cache states
1571  // are uninitialized, monomorphic (indicated by a JSFunction), and
1572  // megamorphic.
1573  // r0 : number of arguments to the construct function
1574  // r1 : the function to call
1575  // r2 : feedback vector
1576  // r3 : slot in feedback vector (Smi)
1577  Label initialize, done, miss, megamorphic, not_array_function;
1578
1579  DCHECK_EQ(*FeedbackVector::MegamorphicSentinel(masm->isolate()),
1580            masm->isolate()->heap()->megamorphic_symbol());
1581  DCHECK_EQ(*FeedbackVector::UninitializedSentinel(masm->isolate()),
1582            masm->isolate()->heap()->uninitialized_symbol());
1583
1584  // Load the cache state into r5.
1585  __ add(r5, r2, Operand::PointerOffsetFromSmiKey(r3));
1586  __ ldr(r5, FieldMemOperand(r5, FixedArray::kHeaderSize));
1587
1588  // A monomorphic cache hit or an already megamorphic state: invoke the
1589  // function without changing the state.
1590  // We don't know if r5 is a WeakCell or a Symbol, but it's harmless to read at
1591  // this position in a symbol (see static asserts in feedback-vector.h).
1592  Label check_allocation_site;
1593  Register feedback_map = r6;
1594  Register weak_value = r9;
1595  __ ldr(weak_value, FieldMemOperand(r5, WeakCell::kValueOffset));
1596  __ cmp(r1, weak_value);
1597  __ b(eq, &done);
1598  __ CompareRoot(r5, Heap::kmegamorphic_symbolRootIndex);
1599  __ b(eq, &done);
1600  __ ldr(feedback_map, FieldMemOperand(r5, HeapObject::kMapOffset));
1601  __ CompareRoot(feedback_map, Heap::kWeakCellMapRootIndex);
1602  __ b(ne, &check_allocation_site);
1603
1604  // If the weak cell is cleared, we have a new chance to become monomorphic.
1605  __ JumpIfSmi(weak_value, &initialize);
1606  __ jmp(&megamorphic);
1607
1608  __ bind(&check_allocation_site);
1609  // If we came here, we need to see if we are the array function.
1610  // If we didn't have a matching function, and we didn't find the megamorph
1611  // sentinel, then we have in the slot either some other function or an
1612  // AllocationSite.
1613  __ CompareRoot(feedback_map, Heap::kAllocationSiteMapRootIndex);
1614  __ b(ne, &miss);
1615
1616  // Make sure the function is the Array() function
1617  __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, r5);
1618  __ cmp(r1, r5);
1619  __ b(ne, &megamorphic);
1620  __ jmp(&done);
1621
1622  __ bind(&miss);
1623
1624  // A monomorphic miss (i.e, here the cache is not uninitialized) goes
1625  // megamorphic.
1626  __ CompareRoot(r5, Heap::kuninitialized_symbolRootIndex);
1627  __ b(eq, &initialize);
1628  // MegamorphicSentinel is an immortal immovable object (undefined) so no
1629  // write-barrier is needed.
1630  __ bind(&megamorphic);
1631  __ add(r5, r2, Operand::PointerOffsetFromSmiKey(r3));
1632  __ LoadRoot(ip, Heap::kmegamorphic_symbolRootIndex);
1633  __ str(ip, FieldMemOperand(r5, FixedArray::kHeaderSize));
1634  __ jmp(&done);
1635
1636  // An uninitialized cache is patched with the function
1637  __ bind(&initialize);
1638
1639  // Make sure the function is the Array() function
1640  __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, r5);
1641  __ cmp(r1, r5);
1642  __ b(ne, &not_array_function);
1643
1644  // The target function is the Array constructor,
1645  // Create an AllocationSite if we don't already have it, store it in the
1646  // slot.
1647  CreateAllocationSiteStub create_stub(masm->isolate());
1648  CallStubInRecordCallTarget(masm, &create_stub);
1649  __ b(&done);
1650
1651  __ bind(&not_array_function);
1652  CreateWeakCellStub weak_cell_stub(masm->isolate());
1653  CallStubInRecordCallTarget(masm, &weak_cell_stub);
1654
1655  __ bind(&done);
1656
1657  // Increment the call count for all function calls.
1658  __ add(r5, r2, Operand::PointerOffsetFromSmiKey(r3));
1659  __ add(r5, r5, Operand(FixedArray::kHeaderSize + kPointerSize));
1660  __ ldr(r4, FieldMemOperand(r5, 0));
1661  __ add(r4, r4, Operand(Smi::FromInt(1)));
1662  __ str(r4, FieldMemOperand(r5, 0));
1663}
1664
1665void CallConstructStub::Generate(MacroAssembler* masm) {
1666  // r0 : number of arguments
1667  // r1 : the function to call
1668  // r2 : feedback vector
1669  // r3 : slot in feedback vector (Smi, for RecordCallTarget)
1670
1671  Label non_function;
1672  // Check that the function is not a smi.
1673  __ JumpIfSmi(r1, &non_function);
1674  // Check that the function is a JSFunction.
1675  __ CompareObjectType(r1, r5, r5, JS_FUNCTION_TYPE);
1676  __ b(ne, &non_function);
1677
1678  GenerateRecordCallTarget(masm);
1679
1680  __ add(r5, r2, Operand::PointerOffsetFromSmiKey(r3));
1681  Label feedback_register_initialized;
1682  // Put the AllocationSite from the feedback vector into r2, or undefined.
1683  __ ldr(r2, FieldMemOperand(r5, FixedArray::kHeaderSize));
1684  __ ldr(r5, FieldMemOperand(r2, AllocationSite::kMapOffset));
1685  __ CompareRoot(r5, Heap::kAllocationSiteMapRootIndex);
1686  __ b(eq, &feedback_register_initialized);
1687  __ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
1688  __ bind(&feedback_register_initialized);
1689
1690  __ AssertUndefinedOrAllocationSite(r2, r5);
1691
1692  // Pass function as new target.
1693  __ mov(r3, r1);
1694
1695  // Tail call to the function-specific construct stub (still in the caller
1696  // context at this point).
1697  __ ldr(r4, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
1698  __ ldr(r4, FieldMemOperand(r4, SharedFunctionInfo::kConstructStubOffset));
1699  __ add(pc, r4, Operand(Code::kHeaderSize - kHeapObjectTag));
1700
1701  __ bind(&non_function);
1702  __ mov(r3, r1);
1703  __ Jump(isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET);
1704}
1705
1706// StringCharCodeAtGenerator
1707void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
1708  // If the receiver is a smi trigger the non-string case.
1709  if (check_mode_ == RECEIVER_IS_UNKNOWN) {
1710    __ JumpIfSmi(object_, receiver_not_string_);
1711
1712    // Fetch the instance type of the receiver into result register.
1713    __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
1714    __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
1715    // If the receiver is not a string trigger the non-string case.
1716    __ tst(result_, Operand(kIsNotStringMask));
1717    __ b(ne, receiver_not_string_);
1718  }
1719
1720  // If the index is non-smi trigger the non-smi case.
1721  __ JumpIfNotSmi(index_, &index_not_smi_);
1722  __ bind(&got_smi_index_);
1723
1724  // Check for index out of range.
1725  __ ldr(ip, FieldMemOperand(object_, String::kLengthOffset));
1726  __ cmp(ip, Operand(index_));
1727  __ b(ls, index_out_of_range_);
1728
1729  __ SmiUntag(index_);
1730
1731  StringCharLoadGenerator::Generate(masm,
1732                                    object_,
1733                                    index_,
1734                                    result_,
1735                                    &call_runtime_);
1736
1737  __ SmiTag(result_);
1738  __ bind(&exit_);
1739}
1740
1741
1742void StringCharCodeAtGenerator::GenerateSlow(
1743    MacroAssembler* masm, EmbedMode embed_mode,
1744    const RuntimeCallHelper& call_helper) {
1745  __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);
1746
1747  // Index is not a smi.
1748  __ bind(&index_not_smi_);
1749  // If index is a heap number, try converting it to an integer.
1750  __ CheckMap(index_,
1751              result_,
1752              Heap::kHeapNumberMapRootIndex,
1753              index_not_number_,
1754              DONT_DO_SMI_CHECK);
1755  call_helper.BeforeCall(masm);
1756  if (embed_mode == PART_OF_IC_HANDLER) {
1757    __ Push(LoadWithVectorDescriptor::VectorRegister(),
1758            LoadWithVectorDescriptor::SlotRegister(), object_, index_);
1759  } else {
1760    // index_ is consumed by runtime conversion function.
1761    __ Push(object_, index_);
1762  }
1763  __ CallRuntime(Runtime::kNumberToSmi);
1764  // Save the conversion result before the pop instructions below
1765  // have a chance to overwrite it.
1766  __ Move(index_, r0);
1767  if (embed_mode == PART_OF_IC_HANDLER) {
1768    __ Pop(LoadWithVectorDescriptor::VectorRegister(),
1769           LoadWithVectorDescriptor::SlotRegister(), object_);
1770  } else {
1771    __ pop(object_);
1772  }
1773  // Reload the instance type.
1774  __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
1775  __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
1776  call_helper.AfterCall(masm);
1777  // If index is still not a smi, it must be out of range.
1778  __ JumpIfNotSmi(index_, index_out_of_range_);
1779  // Otherwise, return to the fast path.
1780  __ jmp(&got_smi_index_);
1781
1782  // Call runtime. We get here when the receiver is a string and the
1783  // index is a number, but the code of getting the actual character
1784  // is too complex (e.g., when the string needs to be flattened).
1785  __ bind(&call_runtime_);
1786  call_helper.BeforeCall(masm);
1787  __ SmiTag(index_);
1788  __ Push(object_, index_);
1789  __ CallRuntime(Runtime::kStringCharCodeAtRT);
1790  __ Move(result_, r0);
1791  call_helper.AfterCall(masm);
1792  __ jmp(&exit_);
1793
1794  __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
1795}
1796
1797void StringHelper::GenerateFlatOneByteStringEquals(
1798    MacroAssembler* masm, Register left, Register right, Register scratch1,
1799    Register scratch2, Register scratch3) {
1800  Register length = scratch1;
1801
1802  // Compare lengths.
1803  Label strings_not_equal, check_zero_length;
1804  __ ldr(length, FieldMemOperand(left, String::kLengthOffset));
1805  __ ldr(scratch2, FieldMemOperand(right, String::kLengthOffset));
1806  __ cmp(length, scratch2);
1807  __ b(eq, &check_zero_length);
1808  __ bind(&strings_not_equal);
1809  __ mov(r0, Operand(Smi::FromInt(NOT_EQUAL)));
1810  __ Ret();
1811
1812  // Check if the length is zero.
1813  Label compare_chars;
1814  __ bind(&check_zero_length);
1815  STATIC_ASSERT(kSmiTag == 0);
1816  __ cmp(length, Operand::Zero());
1817  __ b(ne, &compare_chars);
1818  __ mov(r0, Operand(Smi::FromInt(EQUAL)));
1819  __ Ret();
1820
1821  // Compare characters.
1822  __ bind(&compare_chars);
1823  GenerateOneByteCharsCompareLoop(masm, left, right, length, scratch2, scratch3,
1824                                  &strings_not_equal);
1825
1826  // Characters are equal.
1827  __ mov(r0, Operand(Smi::FromInt(EQUAL)));
1828  __ Ret();
1829}
1830
1831
1832void StringHelper::GenerateCompareFlatOneByteStrings(
1833    MacroAssembler* masm, Register left, Register right, Register scratch1,
1834    Register scratch2, Register scratch3, Register scratch4) {
1835  Label result_not_equal, compare_lengths;
1836  // Find minimum length and length difference.
1837  __ ldr(scratch1, FieldMemOperand(left, String::kLengthOffset));
1838  __ ldr(scratch2, FieldMemOperand(right, String::kLengthOffset));
1839  __ sub(scratch3, scratch1, Operand(scratch2), SetCC);
1840  Register length_delta = scratch3;
1841  __ mov(scratch1, scratch2, LeaveCC, gt);
1842  Register min_length = scratch1;
1843  STATIC_ASSERT(kSmiTag == 0);
1844  __ cmp(min_length, Operand::Zero());
1845  __ b(eq, &compare_lengths);
1846
1847  // Compare loop.
1848  GenerateOneByteCharsCompareLoop(masm, left, right, min_length, scratch2,
1849                                  scratch4, &result_not_equal);
1850
1851  // Compare lengths - strings up to min-length are equal.
1852  __ bind(&compare_lengths);
1853  DCHECK(Smi::FromInt(EQUAL) == static_cast<Smi*>(0));
1854  // Use length_delta as result if it's zero.
1855  __ mov(r0, Operand(length_delta), SetCC);
1856  __ bind(&result_not_equal);
1857  // Conditionally update the result based either on length_delta or
1858  // the last comparion performed in the loop above.
1859  __ mov(r0, Operand(Smi::FromInt(GREATER)), LeaveCC, gt);
1860  __ mov(r0, Operand(Smi::FromInt(LESS)), LeaveCC, lt);
1861  __ Ret();
1862}
1863
1864
1865void StringHelper::GenerateOneByteCharsCompareLoop(
1866    MacroAssembler* masm, Register left, Register right, Register length,
1867    Register scratch1, Register scratch2, Label* chars_not_equal) {
1868  // Change index to run from -length to -1 by adding length to string
1869  // start. This means that loop ends when index reaches zero, which
1870  // doesn't need an additional compare.
1871  __ SmiUntag(length);
1872  __ add(scratch1, length,
1873         Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
1874  __ add(left, left, Operand(scratch1));
1875  __ add(right, right, Operand(scratch1));
1876  __ rsb(length, length, Operand::Zero());
1877  Register index = length;  // index = -length;
1878
1879  // Compare loop.
1880  Label loop;
1881  __ bind(&loop);
1882  __ ldrb(scratch1, MemOperand(left, index));
1883  __ ldrb(scratch2, MemOperand(right, index));
1884  __ cmp(scratch1, scratch2);
1885  __ b(ne, chars_not_equal);
1886  __ add(index, index, Operand(1), SetCC);
1887  __ b(ne, &loop);
1888}
1889
1890
1891void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) {
1892  // ----------- S t a t e -------------
1893  //  -- r1    : left
1894  //  -- r0    : right
1895  //  -- lr    : return address
1896  // -----------------------------------
1897
1898  // Load r2 with the allocation site.  We stick an undefined dummy value here
1899  // and replace it with the real allocation site later when we instantiate this
1900  // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate().
1901  __ Move(r2, isolate()->factory()->undefined_value());
1902
1903  // Make sure that we actually patched the allocation site.
1904  if (FLAG_debug_code) {
1905    __ tst(r2, Operand(kSmiTagMask));
1906    __ Assert(ne, kExpectedAllocationSite);
1907    __ push(r2);
1908    __ ldr(r2, FieldMemOperand(r2, HeapObject::kMapOffset));
1909    __ LoadRoot(ip, Heap::kAllocationSiteMapRootIndex);
1910    __ cmp(r2, ip);
1911    __ pop(r2);
1912    __ Assert(eq, kExpectedAllocationSite);
1913  }
1914
1915  // Tail call into the stub that handles binary operations with allocation
1916  // sites.
1917  BinaryOpWithAllocationSiteStub stub(isolate(), state());
1918  __ TailCallStub(&stub);
1919}
1920
1921
1922void CompareICStub::GenerateBooleans(MacroAssembler* masm) {
1923  DCHECK_EQ(CompareICState::BOOLEAN, state());
1924  Label miss;
1925
1926  __ CheckMap(r1, r2, Heap::kBooleanMapRootIndex, &miss, DO_SMI_CHECK);
1927  __ CheckMap(r0, r3, Heap::kBooleanMapRootIndex, &miss, DO_SMI_CHECK);
1928  if (!Token::IsEqualityOp(op())) {
1929    __ ldr(r1, FieldMemOperand(r1, Oddball::kToNumberOffset));
1930    __ AssertSmi(r1);
1931    __ ldr(r0, FieldMemOperand(r0, Oddball::kToNumberOffset));
1932    __ AssertSmi(r0);
1933  }
1934  __ sub(r0, r1, r0);
1935  __ Ret();
1936
1937  __ bind(&miss);
1938  GenerateMiss(masm);
1939}
1940
1941
1942void CompareICStub::GenerateSmis(MacroAssembler* masm) {
1943  DCHECK(state() == CompareICState::SMI);
1944  Label miss;
1945  __ orr(r2, r1, r0);
1946  __ JumpIfNotSmi(r2, &miss);
1947
1948  if (GetCondition() == eq) {
1949    // For equality we do not care about the sign of the result.
1950    __ sub(r0, r0, r1, SetCC);
1951  } else {
1952    // Untag before subtracting to avoid handling overflow.
1953    __ SmiUntag(r1);
1954    __ sub(r0, r1, Operand::SmiUntag(r0));
1955  }
1956  __ Ret();
1957
1958  __ bind(&miss);
1959  GenerateMiss(masm);
1960}
1961
1962
1963void CompareICStub::GenerateNumbers(MacroAssembler* masm) {
1964  DCHECK(state() == CompareICState::NUMBER);
1965
1966  Label generic_stub;
1967  Label unordered, maybe_undefined1, maybe_undefined2;
1968  Label miss;
1969
1970  if (left() == CompareICState::SMI) {
1971    __ JumpIfNotSmi(r1, &miss);
1972  }
1973  if (right() == CompareICState::SMI) {
1974    __ JumpIfNotSmi(r0, &miss);
1975  }
1976
1977  // Inlining the double comparison and falling back to the general compare
1978  // stub if NaN is involved.
1979  // Load left and right operand.
1980  Label done, left, left_smi, right_smi;
1981  __ JumpIfSmi(r0, &right_smi);
1982  __ CheckMap(r0, r2, Heap::kHeapNumberMapRootIndex, &maybe_undefined1,
1983              DONT_DO_SMI_CHECK);
1984  __ sub(r2, r0, Operand(kHeapObjectTag));
1985  __ vldr(d1, r2, HeapNumber::kValueOffset);
1986  __ b(&left);
1987  __ bind(&right_smi);
1988  __ SmiToDouble(d1, r0);
1989
1990  __ bind(&left);
1991  __ JumpIfSmi(r1, &left_smi);
1992  __ CheckMap(r1, r2, Heap::kHeapNumberMapRootIndex, &maybe_undefined2,
1993              DONT_DO_SMI_CHECK);
1994  __ sub(r2, r1, Operand(kHeapObjectTag));
1995  __ vldr(d0, r2, HeapNumber::kValueOffset);
1996  __ b(&done);
1997  __ bind(&left_smi);
1998  __ SmiToDouble(d0, r1);
1999
2000  __ bind(&done);
2001  // Compare operands.
2002  __ VFPCompareAndSetFlags(d0, d1);
2003
2004  // Don't base result on status bits when a NaN is involved.
2005  __ b(vs, &unordered);
2006
2007  // Return a result of -1, 0, or 1, based on status bits.
2008  __ mov(r0, Operand(EQUAL), LeaveCC, eq);
2009  __ mov(r0, Operand(LESS), LeaveCC, lt);
2010  __ mov(r0, Operand(GREATER), LeaveCC, gt);
2011  __ Ret();
2012
2013  __ bind(&unordered);
2014  __ bind(&generic_stub);
2015  CompareICStub stub(isolate(), op(), CompareICState::GENERIC,
2016                     CompareICState::GENERIC, CompareICState::GENERIC);
2017  __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
2018
2019  __ bind(&maybe_undefined1);
2020  if (Token::IsOrderedRelationalCompareOp(op())) {
2021    __ CompareRoot(r0, Heap::kUndefinedValueRootIndex);
2022    __ b(ne, &miss);
2023    __ JumpIfSmi(r1, &unordered);
2024    __ CompareObjectType(r1, r2, r2, HEAP_NUMBER_TYPE);
2025    __ b(ne, &maybe_undefined2);
2026    __ jmp(&unordered);
2027  }
2028
2029  __ bind(&maybe_undefined2);
2030  if (Token::IsOrderedRelationalCompareOp(op())) {
2031    __ CompareRoot(r1, Heap::kUndefinedValueRootIndex);
2032    __ b(eq, &unordered);
2033  }
2034
2035  __ bind(&miss);
2036  GenerateMiss(masm);
2037}
2038
2039
2040void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) {
2041  DCHECK(state() == CompareICState::INTERNALIZED_STRING);
2042  Label miss;
2043
2044  // Registers containing left and right operands respectively.
2045  Register left = r1;
2046  Register right = r0;
2047  Register tmp1 = r2;
2048  Register tmp2 = r3;
2049
2050  // Check that both operands are heap objects.
2051  __ JumpIfEitherSmi(left, right, &miss);
2052
2053  // Check that both operands are internalized strings.
2054  __ ldr(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
2055  __ ldr(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
2056  __ ldrb(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
2057  __ ldrb(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
2058  STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
2059  __ orr(tmp1, tmp1, Operand(tmp2));
2060  __ tst(tmp1, Operand(kIsNotStringMask | kIsNotInternalizedMask));
2061  __ b(ne, &miss);
2062
2063  // Internalized strings are compared by identity.
2064  __ cmp(left, right);
2065  // Make sure r0 is non-zero. At this point input operands are
2066  // guaranteed to be non-zero.
2067  DCHECK(right.is(r0));
2068  STATIC_ASSERT(EQUAL == 0);
2069  STATIC_ASSERT(kSmiTag == 0);
2070  __ mov(r0, Operand(Smi::FromInt(EQUAL)), LeaveCC, eq);
2071  __ Ret();
2072
2073  __ bind(&miss);
2074  GenerateMiss(masm);
2075}
2076
2077
2078void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) {
2079  DCHECK(state() == CompareICState::UNIQUE_NAME);
2080  DCHECK(GetCondition() == eq);
2081  Label miss;
2082
2083  // Registers containing left and right operands respectively.
2084  Register left = r1;
2085  Register right = r0;
2086  Register tmp1 = r2;
2087  Register tmp2 = r3;
2088
2089  // Check that both operands are heap objects.
2090  __ JumpIfEitherSmi(left, right, &miss);
2091
2092  // Check that both operands are unique names. This leaves the instance
2093  // types loaded in tmp1 and tmp2.
2094  __ ldr(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
2095  __ ldr(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
2096  __ ldrb(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
2097  __ ldrb(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
2098
2099  __ JumpIfNotUniqueNameInstanceType(tmp1, &miss);
2100  __ JumpIfNotUniqueNameInstanceType(tmp2, &miss);
2101
2102  // Unique names are compared by identity.
2103  __ cmp(left, right);
2104  // Make sure r0 is non-zero. At this point input operands are
2105  // guaranteed to be non-zero.
2106  DCHECK(right.is(r0));
2107  STATIC_ASSERT(EQUAL == 0);
2108  STATIC_ASSERT(kSmiTag == 0);
2109  __ mov(r0, Operand(Smi::FromInt(EQUAL)), LeaveCC, eq);
2110  __ Ret();
2111
2112  __ bind(&miss);
2113  GenerateMiss(masm);
2114}
2115
2116
2117void CompareICStub::GenerateStrings(MacroAssembler* masm) {
2118  DCHECK(state() == CompareICState::STRING);
2119  Label miss;
2120
2121  bool equality = Token::IsEqualityOp(op());
2122
2123  // Registers containing left and right operands respectively.
2124  Register left = r1;
2125  Register right = r0;
2126  Register tmp1 = r2;
2127  Register tmp2 = r3;
2128  Register tmp3 = r4;
2129  Register tmp4 = r5;
2130
2131  // Check that both operands are heap objects.
2132  __ JumpIfEitherSmi(left, right, &miss);
2133
2134  // Check that both operands are strings. This leaves the instance
2135  // types loaded in tmp1 and tmp2.
2136  __ ldr(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
2137  __ ldr(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
2138  __ ldrb(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
2139  __ ldrb(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
2140  STATIC_ASSERT(kNotStringTag != 0);
2141  __ orr(tmp3, tmp1, tmp2);
2142  __ tst(tmp3, Operand(kIsNotStringMask));
2143  __ b(ne, &miss);
2144
2145  // Fast check for identical strings.
2146  __ cmp(left, right);
2147  STATIC_ASSERT(EQUAL == 0);
2148  STATIC_ASSERT(kSmiTag == 0);
2149  __ mov(r0, Operand(Smi::FromInt(EQUAL)), LeaveCC, eq);
2150  __ Ret(eq);
2151
2152  // Handle not identical strings.
2153
2154  // Check that both strings are internalized strings. If they are, we're done
2155  // because we already know they are not identical. We know they are both
2156  // strings.
2157  if (equality) {
2158    DCHECK(GetCondition() == eq);
2159    STATIC_ASSERT(kInternalizedTag == 0);
2160    __ orr(tmp3, tmp1, Operand(tmp2));
2161    __ tst(tmp3, Operand(kIsNotInternalizedMask));
2162    // Make sure r0 is non-zero. At this point input operands are
2163    // guaranteed to be non-zero.
2164    DCHECK(right.is(r0));
2165    __ Ret(eq);
2166  }
2167
2168  // Check that both strings are sequential one-byte.
2169  Label runtime;
2170  __ JumpIfBothInstanceTypesAreNotSequentialOneByte(tmp1, tmp2, tmp3, tmp4,
2171                                                    &runtime);
2172
2173  // Compare flat one-byte strings. Returns when done.
2174  if (equality) {
2175    StringHelper::GenerateFlatOneByteStringEquals(masm, left, right, tmp1, tmp2,
2176                                                  tmp3);
2177  } else {
2178    StringHelper::GenerateCompareFlatOneByteStrings(masm, left, right, tmp1,
2179                                                    tmp2, tmp3, tmp4);
2180  }
2181
2182  // Handle more complex cases in runtime.
2183  __ bind(&runtime);
2184  if (equality) {
2185    {
2186      FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
2187      __ Push(left, right);
2188      __ CallRuntime(Runtime::kStringEqual);
2189    }
2190    __ LoadRoot(r1, Heap::kTrueValueRootIndex);
2191    __ sub(r0, r0, r1);
2192    __ Ret();
2193  } else {
2194    __ Push(left, right);
2195    __ TailCallRuntime(Runtime::kStringCompare);
2196  }
2197
2198  __ bind(&miss);
2199  GenerateMiss(masm);
2200}
2201
2202
2203void CompareICStub::GenerateReceivers(MacroAssembler* masm) {
2204  DCHECK_EQ(CompareICState::RECEIVER, state());
2205  Label miss;
2206  __ and_(r2, r1, Operand(r0));
2207  __ JumpIfSmi(r2, &miss);
2208
2209  STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
2210  __ CompareObjectType(r0, r2, r2, FIRST_JS_RECEIVER_TYPE);
2211  __ b(lt, &miss);
2212  __ CompareObjectType(r1, r2, r2, FIRST_JS_RECEIVER_TYPE);
2213  __ b(lt, &miss);
2214
2215  DCHECK(GetCondition() == eq);
2216  __ sub(r0, r0, Operand(r1));
2217  __ Ret();
2218
2219  __ bind(&miss);
2220  GenerateMiss(masm);
2221}
2222
2223
2224void CompareICStub::GenerateKnownReceivers(MacroAssembler* masm) {
2225  Label miss;
2226  Handle<WeakCell> cell = Map::WeakCellForMap(known_map_);
2227  __ and_(r2, r1, Operand(r0));
2228  __ JumpIfSmi(r2, &miss);
2229  __ GetWeakValue(r4, cell);
2230  __ ldr(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
2231  __ ldr(r3, FieldMemOperand(r1, HeapObject::kMapOffset));
2232  __ cmp(r2, r4);
2233  __ b(ne, &miss);
2234  __ cmp(r3, r4);
2235  __ b(ne, &miss);
2236
2237  if (Token::IsEqualityOp(op())) {
2238    __ sub(r0, r0, Operand(r1));
2239    __ Ret();
2240  } else {
2241    if (op() == Token::LT || op() == Token::LTE) {
2242      __ mov(r2, Operand(Smi::FromInt(GREATER)));
2243    } else {
2244      __ mov(r2, Operand(Smi::FromInt(LESS)));
2245    }
2246    __ Push(r1, r0, r2);
2247    __ TailCallRuntime(Runtime::kCompare);
2248  }
2249
2250  __ bind(&miss);
2251  GenerateMiss(masm);
2252}
2253
2254
2255void CompareICStub::GenerateMiss(MacroAssembler* masm) {
2256  {
2257    // Call the runtime system in a fresh internal frame.
2258    FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
2259    __ Push(r1, r0);
2260    __ Push(lr, r1, r0);
2261    __ mov(ip, Operand(Smi::FromInt(op())));
2262    __ push(ip);
2263    __ CallRuntime(Runtime::kCompareIC_Miss);
2264    // Compute the entry point of the rewritten stub.
2265    __ add(r2, r0, Operand(Code::kHeaderSize - kHeapObjectTag));
2266    // Restore registers.
2267    __ pop(lr);
2268    __ Pop(r1, r0);
2269  }
2270
2271  __ Jump(r2);
2272}
2273
2274
2275void DirectCEntryStub::Generate(MacroAssembler* masm) {
2276  // Place the return address on the stack, making the call
2277  // GC safe. The RegExp backend also relies on this.
2278  __ str(lr, MemOperand(sp, 0));
2279  __ blx(ip);  // Call the C++ function.
2280  __ ldr(pc, MemOperand(sp, 0));
2281}
2282
2283
2284void DirectCEntryStub::GenerateCall(MacroAssembler* masm,
2285                                    Register target) {
2286  intptr_t code =
2287      reinterpret_cast<intptr_t>(GetCode().location());
2288  __ Move(ip, target);
2289  __ mov(lr, Operand(code, RelocInfo::CODE_TARGET));
2290  __ blx(lr);  // Call the stub.
2291}
2292
2293
2294void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
2295                                                      Label* miss,
2296                                                      Label* done,
2297                                                      Register receiver,
2298                                                      Register properties,
2299                                                      Handle<Name> name,
2300                                                      Register scratch0) {
2301  DCHECK(name->IsUniqueName());
2302  // If names of slots in range from 1 to kProbes - 1 for the hash value are
2303  // not equal to the name and kProbes-th slot is not used (its name is the
2304  // undefined value), it guarantees the hash table doesn't contain the
2305  // property. It's true even if some slots represent deleted properties
2306  // (their names are the hole value).
2307  for (int i = 0; i < kInlinedProbes; i++) {
2308    // scratch0 points to properties hash.
2309    // Compute the masked index: (hash + i + i * i) & mask.
2310    Register index = scratch0;
2311    // Capacity is smi 2^n.
2312    __ ldr(index, FieldMemOperand(properties, kCapacityOffset));
2313    __ sub(index, index, Operand(1));
2314    __ and_(index, index, Operand(
2315        Smi::FromInt(name->Hash() + NameDictionary::GetProbeOffset(i))));
2316
2317    // Scale the index by multiplying by the entry size.
2318    STATIC_ASSERT(NameDictionary::kEntrySize == 3);
2319    __ add(index, index, Operand(index, LSL, 1));  // index *= 3.
2320
2321    Register entity_name = scratch0;
2322    // Having undefined at this place means the name is not contained.
2323    STATIC_ASSERT(kSmiTagSize == 1);
2324    Register tmp = properties;
2325    __ add(tmp, properties, Operand(index, LSL, 1));
2326    __ ldr(entity_name, FieldMemOperand(tmp, kElementsStartOffset));
2327
2328    DCHECK(!tmp.is(entity_name));
2329    __ LoadRoot(tmp, Heap::kUndefinedValueRootIndex);
2330    __ cmp(entity_name, tmp);
2331    __ b(eq, done);
2332
2333    // Load the hole ready for use below:
2334    __ LoadRoot(tmp, Heap::kTheHoleValueRootIndex);
2335
2336    // Stop if found the property.
2337    __ cmp(entity_name, Operand(Handle<Name>(name)));
2338    __ b(eq, miss);
2339
2340    Label good;
2341    __ cmp(entity_name, tmp);
2342    __ b(eq, &good);
2343
2344    // Check if the entry name is not a unique name.
2345    __ ldr(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset));
2346    __ ldrb(entity_name,
2347            FieldMemOperand(entity_name, Map::kInstanceTypeOffset));
2348    __ JumpIfNotUniqueNameInstanceType(entity_name, miss);
2349    __ bind(&good);
2350
2351    // Restore the properties.
2352    __ ldr(properties,
2353           FieldMemOperand(receiver, JSObject::kPropertiesOffset));
2354  }
2355
2356  const int spill_mask =
2357      (lr.bit() | r6.bit() | r5.bit() | r4.bit() | r3.bit() |
2358       r2.bit() | r1.bit() | r0.bit());
2359
2360  __ stm(db_w, sp, spill_mask);
2361  __ ldr(r0, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
2362  __ mov(r1, Operand(Handle<Name>(name)));
2363  NameDictionaryLookupStub stub(masm->isolate(), NEGATIVE_LOOKUP);
2364  __ CallStub(&stub);
2365  __ cmp(r0, Operand::Zero());
2366  __ ldm(ia_w, sp, spill_mask);
2367
2368  __ b(eq, done);
2369  __ b(ne, miss);
2370}
2371
2372void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
2373  // This stub overrides SometimesSetsUpAFrame() to return false.  That means
2374  // we cannot call anything that could cause a GC from this stub.
2375  // Registers:
2376  //  result: NameDictionary to probe
2377  //  r1: key
2378  //  dictionary: NameDictionary to probe.
2379  //  index: will hold an index of entry if lookup is successful.
2380  //         might alias with result_.
2381  // Returns:
2382  //  result_ is zero if lookup failed, non zero otherwise.
2383
2384  Register result = r0;
2385  Register dictionary = r0;
2386  Register key = r1;
2387  Register index = r2;
2388  Register mask = r3;
2389  Register hash = r4;
2390  Register undefined = r5;
2391  Register entry_key = r6;
2392
2393  Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
2394
2395  __ ldr(mask, FieldMemOperand(dictionary, kCapacityOffset));
2396  __ SmiUntag(mask);
2397  __ sub(mask, mask, Operand(1));
2398
2399  __ ldr(hash, FieldMemOperand(key, Name::kHashFieldOffset));
2400
2401  __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
2402
2403  for (int i = kInlinedProbes; i < kTotalProbes; i++) {
2404    // Compute the masked index: (hash + i + i * i) & mask.
2405    // Capacity is smi 2^n.
2406    if (i > 0) {
2407      // Add the probe offset (i + i * i) left shifted to avoid right shifting
2408      // the hash in a separate instruction. The value hash + i + i * i is right
2409      // shifted in the following and instruction.
2410      DCHECK(NameDictionary::GetProbeOffset(i) <
2411             1 << (32 - Name::kHashFieldOffset));
2412      __ add(index, hash, Operand(
2413          NameDictionary::GetProbeOffset(i) << Name::kHashShift));
2414    } else {
2415      __ mov(index, Operand(hash));
2416    }
2417    __ and_(index, mask, Operand(index, LSR, Name::kHashShift));
2418
2419    // Scale the index by multiplying by the entry size.
2420    STATIC_ASSERT(NameDictionary::kEntrySize == 3);
2421    __ add(index, index, Operand(index, LSL, 1));  // index *= 3.
2422
2423    STATIC_ASSERT(kSmiTagSize == 1);
2424    __ add(index, dictionary, Operand(index, LSL, 2));
2425    __ ldr(entry_key, FieldMemOperand(index, kElementsStartOffset));
2426
2427    // Having undefined at this place means the name is not contained.
2428    __ cmp(entry_key, Operand(undefined));
2429    __ b(eq, &not_in_dictionary);
2430
2431    // Stop if found the property.
2432    __ cmp(entry_key, Operand(key));
2433    __ b(eq, &in_dictionary);
2434
2435    if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) {
2436      // Check if the entry name is not a unique name.
2437      __ ldr(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset));
2438      __ ldrb(entry_key,
2439              FieldMemOperand(entry_key, Map::kInstanceTypeOffset));
2440      __ JumpIfNotUniqueNameInstanceType(entry_key, &maybe_in_dictionary);
2441    }
2442  }
2443
2444  __ bind(&maybe_in_dictionary);
2445  // If we are doing negative lookup then probing failure should be
2446  // treated as a lookup success. For positive lookup probing failure
2447  // should be treated as lookup failure.
2448  if (mode() == POSITIVE_LOOKUP) {
2449    __ mov(result, Operand::Zero());
2450    __ Ret();
2451  }
2452
2453  __ bind(&in_dictionary);
2454  __ mov(result, Operand(1));
2455  __ Ret();
2456
2457  __ bind(&not_in_dictionary);
2458  __ mov(result, Operand::Zero());
2459  __ Ret();
2460}
2461
2462
2463void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
2464    Isolate* isolate) {
2465  StoreBufferOverflowStub stub1(isolate, kDontSaveFPRegs);
2466  stub1.GetCode();
2467  // Hydrogen code stubs need stub2 at snapshot time.
2468  StoreBufferOverflowStub stub2(isolate, kSaveFPRegs);
2469  stub2.GetCode();
2470}
2471
2472
2473// Takes the input in 3 registers: address_ value_ and object_.  A pointer to
2474// the value has just been written into the object, now this stub makes sure
2475// we keep the GC informed.  The word in the object where the value has been
2476// written is in the address register.
2477void RecordWriteStub::Generate(MacroAssembler* masm) {
2478  Label skip_to_incremental_noncompacting;
2479  Label skip_to_incremental_compacting;
2480
2481  // The first two instructions are generated with labels so as to get the
2482  // offset fixed up correctly by the bind(Label*) call.  We patch it back and
2483  // forth between a compare instructions (a nop in this position) and the
2484  // real branch when we start and stop incremental heap marking.
2485  // See RecordWriteStub::Patch for details.
2486  {
2487    // Block literal pool emission, as the position of these two instructions
2488    // is assumed by the patching code.
2489    Assembler::BlockConstPoolScope block_const_pool(masm);
2490    __ b(&skip_to_incremental_noncompacting);
2491    __ b(&skip_to_incremental_compacting);
2492  }
2493
2494  if (remembered_set_action() == EMIT_REMEMBERED_SET) {
2495    __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
2496                           MacroAssembler::kReturnAtEnd);
2497  }
2498  __ Ret();
2499
2500  __ bind(&skip_to_incremental_noncompacting);
2501  GenerateIncremental(masm, INCREMENTAL);
2502
2503  __ bind(&skip_to_incremental_compacting);
2504  GenerateIncremental(masm, INCREMENTAL_COMPACTION);
2505
2506  // Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
2507  // Will be checked in IncrementalMarking::ActivateGeneratedStub.
2508  DCHECK(Assembler::GetBranchOffset(masm->instr_at(0)) < (1 << 12));
2509  DCHECK(Assembler::GetBranchOffset(masm->instr_at(4)) < (1 << 12));
2510  PatchBranchIntoNop(masm, 0);
2511  PatchBranchIntoNop(masm, Assembler::kInstrSize);
2512}
2513
2514
2515void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
2516  regs_.Save(masm);
2517
2518  if (remembered_set_action() == EMIT_REMEMBERED_SET) {
2519    Label dont_need_remembered_set;
2520
2521    __ ldr(regs_.scratch0(), MemOperand(regs_.address(), 0));
2522    __ JumpIfNotInNewSpace(regs_.scratch0(),  // Value.
2523                           regs_.scratch0(),
2524                           &dont_need_remembered_set);
2525
2526    __ JumpIfInNewSpace(regs_.object(), regs_.scratch0(),
2527                        &dont_need_remembered_set);
2528
2529    // First notify the incremental marker if necessary, then update the
2530    // remembered set.
2531    CheckNeedsToInformIncrementalMarker(
2532        masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode);
2533    InformIncrementalMarker(masm);
2534    regs_.Restore(masm);
2535    __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
2536                           MacroAssembler::kReturnAtEnd);
2537
2538    __ bind(&dont_need_remembered_set);
2539  }
2540
2541  CheckNeedsToInformIncrementalMarker(
2542      masm, kReturnOnNoNeedToInformIncrementalMarker, mode);
2543  InformIncrementalMarker(masm);
2544  regs_.Restore(masm);
2545  __ Ret();
2546}
2547
2548
2549void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
2550  regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode());
2551  int argument_count = 3;
2552  __ PrepareCallCFunction(argument_count, regs_.scratch0());
2553  Register address =
2554      r0.is(regs_.address()) ? regs_.scratch0() : regs_.address();
2555  DCHECK(!address.is(regs_.object()));
2556  DCHECK(!address.is(r0));
2557  __ Move(address, regs_.address());
2558  __ Move(r0, regs_.object());
2559  __ Move(r1, address);
2560  __ mov(r2, Operand(ExternalReference::isolate_address(isolate())));
2561
2562  AllowExternalCallThatCantCauseGC scope(masm);
2563  __ CallCFunction(
2564      ExternalReference::incremental_marking_record_write_function(isolate()),
2565      argument_count);
2566  regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode());
2567}
2568
2569
2570void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
2571    MacroAssembler* masm,
2572    OnNoNeedToInformIncrementalMarker on_no_need,
2573    Mode mode) {
2574  Label on_black;
2575  Label need_incremental;
2576  Label need_incremental_pop_scratch;
2577
2578  // Let's look at the color of the object:  If it is not black we don't have
2579  // to inform the incremental marker.
2580  __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black);
2581
2582  regs_.Restore(masm);
2583  if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
2584    __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
2585                           MacroAssembler::kReturnAtEnd);
2586  } else {
2587    __ Ret();
2588  }
2589
2590  __ bind(&on_black);
2591
2592  // Get the value from the slot.
2593  __ ldr(regs_.scratch0(), MemOperand(regs_.address(), 0));
2594
2595  if (mode == INCREMENTAL_COMPACTION) {
2596    Label ensure_not_white;
2597
2598    __ CheckPageFlag(regs_.scratch0(),  // Contains value.
2599                     regs_.scratch1(),  // Scratch.
2600                     MemoryChunk::kEvacuationCandidateMask,
2601                     eq,
2602                     &ensure_not_white);
2603
2604    __ CheckPageFlag(regs_.object(),
2605                     regs_.scratch1(),  // Scratch.
2606                     MemoryChunk::kSkipEvacuationSlotsRecordingMask,
2607                     eq,
2608                     &need_incremental);
2609
2610    __ bind(&ensure_not_white);
2611  }
2612
2613  // We need extra registers for this, so we push the object and the address
2614  // register temporarily.
2615  __ Push(regs_.object(), regs_.address());
2616  __ JumpIfWhite(regs_.scratch0(),  // The value.
2617                 regs_.scratch1(),  // Scratch.
2618                 regs_.object(),    // Scratch.
2619                 regs_.address(),   // Scratch.
2620                 &need_incremental_pop_scratch);
2621  __ Pop(regs_.object(), regs_.address());
2622
2623  regs_.Restore(masm);
2624  if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
2625    __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
2626                           MacroAssembler::kReturnAtEnd);
2627  } else {
2628    __ Ret();
2629  }
2630
2631  __ bind(&need_incremental_pop_scratch);
2632  __ Pop(regs_.object(), regs_.address());
2633
2634  __ bind(&need_incremental);
2635
2636  // Fall through when we need to inform the incremental marker.
2637}
2638
2639
2640void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
2641  CEntryStub ces(isolate(), 1, kSaveFPRegs);
2642  __ Call(ces.GetCode(), RelocInfo::CODE_TARGET);
2643  int parameter_count_offset =
2644      StubFailureTrampolineFrameConstants::kArgumentsLengthOffset;
2645  __ ldr(r1, MemOperand(fp, parameter_count_offset));
2646  if (function_mode() == JS_FUNCTION_STUB_MODE) {
2647    __ add(r1, r1, Operand(1));
2648  }
2649  masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
2650  __ mov(r1, Operand(r1, LSL, kPointerSizeLog2));
2651  __ add(sp, sp, r1);
2652  __ Ret();
2653}
2654
2655void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
2656  if (masm->isolate()->function_entry_hook() != NULL) {
2657    ProfileEntryHookStub stub(masm->isolate());
2658    PredictableCodeSizeScope predictable(masm);
2659    predictable.ExpectSize(masm->CallStubSize(&stub) +
2660                           2 * Assembler::kInstrSize);
2661    __ push(lr);
2662    __ CallStub(&stub);
2663    __ pop(lr);
2664  }
2665}
2666
2667
2668void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
2669  // The entry hook is a "push lr" instruction, followed by a call.
2670  const int32_t kReturnAddressDistanceFromFunctionStart =
2671      3 * Assembler::kInstrSize;
2672
2673  // This should contain all kCallerSaved registers.
2674  const RegList kSavedRegs =
2675      1 <<  0 |  // r0
2676      1 <<  1 |  // r1
2677      1 <<  2 |  // r2
2678      1 <<  3 |  // r3
2679      1 <<  5 |  // r5
2680      1 <<  9;   // r9
2681  // We also save lr, so the count here is one higher than the mask indicates.
2682  const int32_t kNumSavedRegs = 7;
2683
2684  DCHECK((kCallerSaved & kSavedRegs) == kCallerSaved);
2685
2686  // Save all caller-save registers as this may be called from anywhere.
2687  __ stm(db_w, sp, kSavedRegs | lr.bit());
2688
2689  // Compute the function's address for the first argument.
2690  __ sub(r0, lr, Operand(kReturnAddressDistanceFromFunctionStart));
2691
2692  // The caller's return address is above the saved temporaries.
2693  // Grab that for the second argument to the hook.
2694  __ add(r1, sp, Operand(kNumSavedRegs * kPointerSize));
2695
2696  // Align the stack if necessary.
2697  int frame_alignment = masm->ActivationFrameAlignment();
2698  if (frame_alignment > kPointerSize) {
2699    __ mov(r5, sp);
2700    DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
2701    __ and_(sp, sp, Operand(-frame_alignment));
2702  }
2703
2704#if V8_HOST_ARCH_ARM
2705  int32_t entry_hook =
2706      reinterpret_cast<int32_t>(isolate()->function_entry_hook());
2707  __ mov(ip, Operand(entry_hook));
2708#else
2709  // Under the simulator we need to indirect the entry hook through a
2710  // trampoline function at a known address.
2711  // It additionally takes an isolate as a third parameter
2712  __ mov(r2, Operand(ExternalReference::isolate_address(isolate())));
2713
2714  ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline));
2715  __ mov(ip, Operand(ExternalReference(&dispatcher,
2716                                       ExternalReference::BUILTIN_CALL,
2717                                       isolate())));
2718#endif
2719  __ Call(ip);
2720
2721  // Restore the stack pointer if needed.
2722  if (frame_alignment > kPointerSize) {
2723    __ mov(sp, r5);
2724  }
2725
2726  // Also pop pc to get Ret(0).
2727  __ ldm(ia_w, sp, kSavedRegs | pc.bit());
2728}
2729
2730
2731template<class T>
2732static void CreateArrayDispatch(MacroAssembler* masm,
2733                                AllocationSiteOverrideMode mode) {
2734  if (mode == DISABLE_ALLOCATION_SITES) {
2735    T stub(masm->isolate(), GetInitialFastElementsKind(), mode);
2736    __ TailCallStub(&stub);
2737  } else if (mode == DONT_OVERRIDE) {
2738    int last_index = GetSequenceIndexFromFastElementsKind(
2739        TERMINAL_FAST_ELEMENTS_KIND);
2740    for (int i = 0; i <= last_index; ++i) {
2741      ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
2742      __ cmp(r3, Operand(kind));
2743      T stub(masm->isolate(), kind);
2744      __ TailCallStub(&stub, eq);
2745    }
2746
2747    // If we reached this point there is a problem.
2748    __ Abort(kUnexpectedElementsKindInArrayConstructor);
2749  } else {
2750    UNREACHABLE();
2751  }
2752}
2753
2754
2755static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
2756                                           AllocationSiteOverrideMode mode) {
2757  // r2 - allocation site (if mode != DISABLE_ALLOCATION_SITES)
2758  // r3 - kind (if mode != DISABLE_ALLOCATION_SITES)
2759  // r0 - number of arguments
2760  // r1 - constructor?
2761  // sp[0] - last argument
2762  Label normal_sequence;
2763  if (mode == DONT_OVERRIDE) {
2764    STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
2765    STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
2766    STATIC_ASSERT(FAST_ELEMENTS == 2);
2767    STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
2768    STATIC_ASSERT(FAST_DOUBLE_ELEMENTS == 4);
2769    STATIC_ASSERT(FAST_HOLEY_DOUBLE_ELEMENTS == 5);
2770
2771    // is the low bit set? If so, we are holey and that is good.
2772    __ tst(r3, Operand(1));
2773    __ b(ne, &normal_sequence);
2774  }
2775
2776  // look at the first argument
2777  __ ldr(r5, MemOperand(sp, 0));
2778  __ cmp(r5, Operand::Zero());
2779  __ b(eq, &normal_sequence);
2780
2781  if (mode == DISABLE_ALLOCATION_SITES) {
2782    ElementsKind initial = GetInitialFastElementsKind();
2783    ElementsKind holey_initial = GetHoleyElementsKind(initial);
2784
2785    ArraySingleArgumentConstructorStub stub_holey(masm->isolate(),
2786                                                  holey_initial,
2787                                                  DISABLE_ALLOCATION_SITES);
2788    __ TailCallStub(&stub_holey);
2789
2790    __ bind(&normal_sequence);
2791    ArraySingleArgumentConstructorStub stub(masm->isolate(),
2792                                            initial,
2793                                            DISABLE_ALLOCATION_SITES);
2794    __ TailCallStub(&stub);
2795  } else if (mode == DONT_OVERRIDE) {
2796    // We are going to create a holey array, but our kind is non-holey.
2797    // Fix kind and retry (only if we have an allocation site in the slot).
2798    __ add(r3, r3, Operand(1));
2799
2800    if (FLAG_debug_code) {
2801      __ ldr(r5, FieldMemOperand(r2, 0));
2802      __ CompareRoot(r5, Heap::kAllocationSiteMapRootIndex);
2803      __ Assert(eq, kExpectedAllocationSite);
2804    }
2805
2806    // Save the resulting elements kind in type info. We can't just store r3
2807    // in the AllocationSite::transition_info field because elements kind is
2808    // restricted to a portion of the field...upper bits need to be left alone.
2809    STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
2810    __ ldr(r4, FieldMemOperand(r2, AllocationSite::kTransitionInfoOffset));
2811    __ add(r4, r4, Operand(Smi::FromInt(kFastElementsKindPackedToHoley)));
2812    __ str(r4, FieldMemOperand(r2, AllocationSite::kTransitionInfoOffset));
2813
2814    __ bind(&normal_sequence);
2815    int last_index = GetSequenceIndexFromFastElementsKind(
2816        TERMINAL_FAST_ELEMENTS_KIND);
2817    for (int i = 0; i <= last_index; ++i) {
2818      ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
2819      __ cmp(r3, Operand(kind));
2820      ArraySingleArgumentConstructorStub stub(masm->isolate(), kind);
2821      __ TailCallStub(&stub, eq);
2822    }
2823
2824    // If we reached this point there is a problem.
2825    __ Abort(kUnexpectedElementsKindInArrayConstructor);
2826  } else {
2827    UNREACHABLE();
2828  }
2829}
2830
2831
2832template<class T>
2833static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
2834  int to_index = GetSequenceIndexFromFastElementsKind(
2835      TERMINAL_FAST_ELEMENTS_KIND);
2836  for (int i = 0; i <= to_index; ++i) {
2837    ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
2838    T stub(isolate, kind);
2839    stub.GetCode();
2840    if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) {
2841      T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
2842      stub1.GetCode();
2843    }
2844  }
2845}
2846
2847void CommonArrayConstructorStub::GenerateStubsAheadOfTime(Isolate* isolate) {
2848  ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
2849      isolate);
2850  ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>(
2851      isolate);
2852  ArrayNArgumentsConstructorStub stub(isolate);
2853  stub.GetCode();
2854  ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS };
2855  for (int i = 0; i < 2; i++) {
2856    // For internal arrays we only need a few things
2857    InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
2858    stubh1.GetCode();
2859    InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
2860    stubh2.GetCode();
2861  }
2862}
2863
2864
2865void ArrayConstructorStub::GenerateDispatchToArrayStub(
2866    MacroAssembler* masm,
2867    AllocationSiteOverrideMode mode) {
2868  Label not_zero_case, not_one_case;
2869  __ tst(r0, r0);
2870  __ b(ne, &not_zero_case);
2871  CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
2872
2873  __ bind(&not_zero_case);
2874  __ cmp(r0, Operand(1));
2875  __ b(gt, &not_one_case);
2876  CreateArrayDispatchOneArgument(masm, mode);
2877
2878  __ bind(&not_one_case);
2879  ArrayNArgumentsConstructorStub stub(masm->isolate());
2880  __ TailCallStub(&stub);
2881}
2882
2883
2884void ArrayConstructorStub::Generate(MacroAssembler* masm) {
2885  // ----------- S t a t e -------------
2886  //  -- r0 : argc (only if argument_count() == ANY)
2887  //  -- r1 : constructor
2888  //  -- r2 : AllocationSite or undefined
2889  //  -- r3 : new target
2890  //  -- sp[0] : return address
2891  //  -- sp[4] : last argument
2892  // -----------------------------------
2893
2894  if (FLAG_debug_code) {
2895    // The array construct code is only set for the global and natives
2896    // builtin Array functions which always have maps.
2897
2898    // Initial map for the builtin Array function should be a map.
2899    __ ldr(r4, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
2900    // Will both indicate a NULL and a Smi.
2901    __ tst(r4, Operand(kSmiTagMask));
2902    __ Assert(ne, kUnexpectedInitialMapForArrayFunction);
2903    __ CompareObjectType(r4, r4, r5, MAP_TYPE);
2904    __ Assert(eq, kUnexpectedInitialMapForArrayFunction);
2905
2906    // We should either have undefined in r2 or a valid AllocationSite
2907    __ AssertUndefinedOrAllocationSite(r2, r4);
2908  }
2909
2910  // Enter the context of the Array function.
2911  __ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
2912
2913  Label subclassing;
2914  __ cmp(r3, r1);
2915  __ b(ne, &subclassing);
2916
2917  Label no_info;
2918  // Get the elements kind and case on that.
2919  __ CompareRoot(r2, Heap::kUndefinedValueRootIndex);
2920  __ b(eq, &no_info);
2921
2922  __ ldr(r3, FieldMemOperand(r2, AllocationSite::kTransitionInfoOffset));
2923  __ SmiUntag(r3);
2924  STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
2925  __ and_(r3, r3, Operand(AllocationSite::ElementsKindBits::kMask));
2926  GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
2927
2928  __ bind(&no_info);
2929  GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
2930
2931  __ bind(&subclassing);
2932  __ str(r1, MemOperand(sp, r0, LSL, kPointerSizeLog2));
2933  __ add(r0, r0, Operand(3));
2934  __ Push(r3, r2);
2935  __ JumpToExternalReference(ExternalReference(Runtime::kNewArray, isolate()));
2936}
2937
2938
2939void InternalArrayConstructorStub::GenerateCase(
2940    MacroAssembler* masm, ElementsKind kind) {
2941  __ cmp(r0, Operand(1));
2942
2943  InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
2944  __ TailCallStub(&stub0, lo);
2945
2946  ArrayNArgumentsConstructorStub stubN(isolate());
2947  __ TailCallStub(&stubN, hi);
2948
2949  if (IsFastPackedElementsKind(kind)) {
2950    // We might need to create a holey array
2951    // look at the first argument
2952    __ ldr(r3, MemOperand(sp, 0));
2953    __ cmp(r3, Operand::Zero());
2954
2955    InternalArraySingleArgumentConstructorStub
2956        stub1_holey(isolate(), GetHoleyElementsKind(kind));
2957    __ TailCallStub(&stub1_holey, ne);
2958  }
2959
2960  InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
2961  __ TailCallStub(&stub1);
2962}
2963
2964
2965void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
2966  // ----------- S t a t e -------------
2967  //  -- r0 : argc
2968  //  -- r1 : constructor
2969  //  -- sp[0] : return address
2970  //  -- sp[4] : last argument
2971  // -----------------------------------
2972
2973  if (FLAG_debug_code) {
2974    // The array construct code is only set for the global and natives
2975    // builtin Array functions which always have maps.
2976
2977    // Initial map for the builtin Array function should be a map.
2978    __ ldr(r3, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
2979    // Will both indicate a NULL and a Smi.
2980    __ tst(r3, Operand(kSmiTagMask));
2981    __ Assert(ne, kUnexpectedInitialMapForArrayFunction);
2982    __ CompareObjectType(r3, r3, r4, MAP_TYPE);
2983    __ Assert(eq, kUnexpectedInitialMapForArrayFunction);
2984  }
2985
2986  // Figure out the right elements kind
2987  __ ldr(r3, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
2988  // Load the map's "bit field 2" into |result|. We only need the first byte,
2989  // but the following bit field extraction takes care of that anyway.
2990  __ ldr(r3, FieldMemOperand(r3, Map::kBitField2Offset));
2991  // Retrieve elements_kind from bit field 2.
2992  __ DecodeField<Map::ElementsKindBits>(r3);
2993
2994  if (FLAG_debug_code) {
2995    Label done;
2996    __ cmp(r3, Operand(FAST_ELEMENTS));
2997    __ b(eq, &done);
2998    __ cmp(r3, Operand(FAST_HOLEY_ELEMENTS));
2999    __ Assert(eq,
3000              kInvalidElementsKindForInternalArrayOrInternalPackedArray);
3001    __ bind(&done);
3002  }
3003
3004  Label fast_elements_case;
3005  __ cmp(r3, Operand(FAST_ELEMENTS));
3006  __ b(eq, &fast_elements_case);
3007  GenerateCase(masm, FAST_HOLEY_ELEMENTS);
3008
3009  __ bind(&fast_elements_case);
3010  GenerateCase(masm, FAST_ELEMENTS);
3011}
3012
3013static int AddressOffset(ExternalReference ref0, ExternalReference ref1) {
3014  return ref0.address() - ref1.address();
3015}
3016
3017
3018// Calls an API function.  Allocates HandleScope, extracts returned value
3019// from handle and propagates exceptions.  Restores context.  stack_space
3020// - space to be unwound on exit (includes the call JS arguments space and
3021// the additional space allocated for the fast call).
3022static void CallApiFunctionAndReturn(MacroAssembler* masm,
3023                                     Register function_address,
3024                                     ExternalReference thunk_ref,
3025                                     int stack_space,
3026                                     MemOperand* stack_space_operand,
3027                                     MemOperand return_value_operand,
3028                                     MemOperand* context_restore_operand) {
3029  Isolate* isolate = masm->isolate();
3030  ExternalReference next_address =
3031      ExternalReference::handle_scope_next_address(isolate);
3032  const int kNextOffset = 0;
3033  const int kLimitOffset = AddressOffset(
3034      ExternalReference::handle_scope_limit_address(isolate), next_address);
3035  const int kLevelOffset = AddressOffset(
3036      ExternalReference::handle_scope_level_address(isolate), next_address);
3037
3038  DCHECK(function_address.is(r1) || function_address.is(r2));
3039
3040  Label profiler_disabled;
3041  Label end_profiler_check;
3042  __ mov(r9, Operand(ExternalReference::is_profiling_address(isolate)));
3043  __ ldrb(r9, MemOperand(r9, 0));
3044  __ cmp(r9, Operand(0));
3045  __ b(eq, &profiler_disabled);
3046
3047  // Additional parameter is the address of the actual callback.
3048  __ mov(r3, Operand(thunk_ref));
3049  __ jmp(&end_profiler_check);
3050
3051  __ bind(&profiler_disabled);
3052  __ Move(r3, function_address);
3053  __ bind(&end_profiler_check);
3054
3055  // Allocate HandleScope in callee-save registers.
3056  __ mov(r9, Operand(next_address));
3057  __ ldr(r4, MemOperand(r9, kNextOffset));
3058  __ ldr(r5, MemOperand(r9, kLimitOffset));
3059  __ ldr(r6, MemOperand(r9, kLevelOffset));
3060  __ add(r6, r6, Operand(1));
3061  __ str(r6, MemOperand(r9, kLevelOffset));
3062
3063  if (FLAG_log_timer_events) {
3064    FrameScope frame(masm, StackFrame::MANUAL);
3065    __ PushSafepointRegisters();
3066    __ PrepareCallCFunction(1, r0);
3067    __ mov(r0, Operand(ExternalReference::isolate_address(isolate)));
3068    __ CallCFunction(ExternalReference::log_enter_external_function(isolate),
3069                     1);
3070    __ PopSafepointRegisters();
3071  }
3072
3073  // Native call returns to the DirectCEntry stub which redirects to the
3074  // return address pushed on stack (could have moved after GC).
3075  // DirectCEntry stub itself is generated early and never moves.
3076  DirectCEntryStub stub(isolate);
3077  stub.GenerateCall(masm, r3);
3078
3079  if (FLAG_log_timer_events) {
3080    FrameScope frame(masm, StackFrame::MANUAL);
3081    __ PushSafepointRegisters();
3082    __ PrepareCallCFunction(1, r0);
3083    __ mov(r0, Operand(ExternalReference::isolate_address(isolate)));
3084    __ CallCFunction(ExternalReference::log_leave_external_function(isolate),
3085                     1);
3086    __ PopSafepointRegisters();
3087  }
3088
3089  Label promote_scheduled_exception;
3090  Label delete_allocated_handles;
3091  Label leave_exit_frame;
3092  Label return_value_loaded;
3093
3094  // load value from ReturnValue
3095  __ ldr(r0, return_value_operand);
3096  __ bind(&return_value_loaded);
3097  // No more valid handles (the result handle was the last one). Restore
3098  // previous handle scope.
3099  __ str(r4, MemOperand(r9, kNextOffset));
3100  if (__ emit_debug_code()) {
3101    __ ldr(r1, MemOperand(r9, kLevelOffset));
3102    __ cmp(r1, r6);
3103    __ Check(eq, kUnexpectedLevelAfterReturnFromApiCall);
3104  }
3105  __ sub(r6, r6, Operand(1));
3106  __ str(r6, MemOperand(r9, kLevelOffset));
3107  __ ldr(ip, MemOperand(r9, kLimitOffset));
3108  __ cmp(r5, ip);
3109  __ b(ne, &delete_allocated_handles);
3110
3111  // Leave the API exit frame.
3112  __ bind(&leave_exit_frame);
3113  bool restore_context = context_restore_operand != NULL;
3114  if (restore_context) {
3115    __ ldr(cp, *context_restore_operand);
3116  }
3117  // LeaveExitFrame expects unwind space to be in a register.
3118  if (stack_space_operand != NULL) {
3119    __ ldr(r4, *stack_space_operand);
3120  } else {
3121    __ mov(r4, Operand(stack_space));
3122  }
3123  __ LeaveExitFrame(false, r4, !restore_context, stack_space_operand != NULL);
3124
3125  // Check if the function scheduled an exception.
3126  __ LoadRoot(r4, Heap::kTheHoleValueRootIndex);
3127  __ mov(ip, Operand(ExternalReference::scheduled_exception_address(isolate)));
3128  __ ldr(r5, MemOperand(ip));
3129  __ cmp(r4, r5);
3130  __ b(ne, &promote_scheduled_exception);
3131
3132  __ mov(pc, lr);
3133
3134  // Re-throw by promoting a scheduled exception.
3135  __ bind(&promote_scheduled_exception);
3136  __ TailCallRuntime(Runtime::kPromoteScheduledException);
3137
3138  // HandleScope limit has changed. Delete allocated extensions.
3139  __ bind(&delete_allocated_handles);
3140  __ str(r5, MemOperand(r9, kLimitOffset));
3141  __ mov(r4, r0);
3142  __ PrepareCallCFunction(1, r5);
3143  __ mov(r0, Operand(ExternalReference::isolate_address(isolate)));
3144  __ CallCFunction(ExternalReference::delete_handle_scope_extensions(isolate),
3145                   1);
3146  __ mov(r0, r4);
3147  __ jmp(&leave_exit_frame);
3148}
3149
3150void CallApiCallbackStub::Generate(MacroAssembler* masm) {
3151  // ----------- S t a t e -------------
3152  //  -- r0                  : callee
3153  //  -- r4                  : call_data
3154  //  -- r2                  : holder
3155  //  -- r1                  : api_function_address
3156  //  -- cp                  : context
3157  //  --
3158  //  -- sp[0]               : last argument
3159  //  -- ...
3160  //  -- sp[(argc - 1)* 4]   : first argument
3161  //  -- sp[argc * 4]        : receiver
3162  // -----------------------------------
3163
3164  Register callee = r0;
3165  Register call_data = r4;
3166  Register holder = r2;
3167  Register api_function_address = r1;
3168  Register context = cp;
3169
3170  typedef FunctionCallbackArguments FCA;
3171
3172  STATIC_ASSERT(FCA::kContextSaveIndex == 6);
3173  STATIC_ASSERT(FCA::kCalleeIndex == 5);
3174  STATIC_ASSERT(FCA::kDataIndex == 4);
3175  STATIC_ASSERT(FCA::kReturnValueOffset == 3);
3176  STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
3177  STATIC_ASSERT(FCA::kIsolateIndex == 1);
3178  STATIC_ASSERT(FCA::kHolderIndex == 0);
3179  STATIC_ASSERT(FCA::kNewTargetIndex == 7);
3180  STATIC_ASSERT(FCA::kArgsLength == 8);
3181
3182  // new target
3183  __ PushRoot(Heap::kUndefinedValueRootIndex);
3184
3185  // context save
3186  __ push(context);
3187  if (!is_lazy()) {
3188    // load context from callee
3189    __ ldr(context, FieldMemOperand(callee, JSFunction::kContextOffset));
3190  }
3191
3192  // callee
3193  __ push(callee);
3194
3195  // call data
3196  __ push(call_data);
3197
3198  Register scratch = call_data;
3199  if (!call_data_undefined()) {
3200    __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
3201  }
3202  // return value
3203  __ push(scratch);
3204  // return value default
3205  __ push(scratch);
3206  // isolate
3207  __ mov(scratch, Operand(ExternalReference::isolate_address(masm->isolate())));
3208  __ push(scratch);
3209  // holder
3210  __ push(holder);
3211
3212  // Prepare arguments.
3213  __ mov(scratch, sp);
3214
3215  // Allocate the v8::Arguments structure in the arguments' space since
3216  // it's not controlled by GC.
3217  const int kApiStackSpace = 3;
3218
3219  FrameScope frame_scope(masm, StackFrame::MANUAL);
3220  __ EnterExitFrame(false, kApiStackSpace);
3221
3222  DCHECK(!api_function_address.is(r0) && !scratch.is(r0));
3223  // r0 = FunctionCallbackInfo&
3224  // Arguments is after the return address.
3225  __ add(r0, sp, Operand(1 * kPointerSize));
3226  // FunctionCallbackInfo::implicit_args_
3227  __ str(scratch, MemOperand(r0, 0 * kPointerSize));
3228  // FunctionCallbackInfo::values_
3229  __ add(ip, scratch, Operand((FCA::kArgsLength - 1 + argc()) * kPointerSize));
3230  __ str(ip, MemOperand(r0, 1 * kPointerSize));
3231  // FunctionCallbackInfo::length_ = argc
3232  __ mov(ip, Operand(argc()));
3233  __ str(ip, MemOperand(r0, 2 * kPointerSize));
3234
3235  ExternalReference thunk_ref =
3236      ExternalReference::invoke_function_callback(masm->isolate());
3237
3238  AllowExternalCallThatCantCauseGC scope(masm);
3239  MemOperand context_restore_operand(
3240      fp, (2 + FCA::kContextSaveIndex) * kPointerSize);
3241  // Stores return the first js argument
3242  int return_value_offset = 0;
3243  if (is_store()) {
3244    return_value_offset = 2 + FCA::kArgsLength;
3245  } else {
3246    return_value_offset = 2 + FCA::kReturnValueOffset;
3247  }
3248  MemOperand return_value_operand(fp, return_value_offset * kPointerSize);
3249  int stack_space = 0;
3250  MemOperand length_operand = MemOperand(sp, 3 * kPointerSize);
3251  MemOperand* stack_space_operand = &length_operand;
3252  stack_space = argc() + FCA::kArgsLength + 1;
3253  stack_space_operand = NULL;
3254
3255  CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, stack_space,
3256                           stack_space_operand, return_value_operand,
3257                           &context_restore_operand);
3258}
3259
3260
3261void CallApiGetterStub::Generate(MacroAssembler* masm) {
3262  // Build v8::PropertyCallbackInfo::args_ array on the stack and push property
3263  // name below the exit frame to make GC aware of them.
3264  STATIC_ASSERT(PropertyCallbackArguments::kShouldThrowOnErrorIndex == 0);
3265  STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 1);
3266  STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 2);
3267  STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 3);
3268  STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 4);
3269  STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 5);
3270  STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 6);
3271  STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 7);
3272
3273  Register receiver = ApiGetterDescriptor::ReceiverRegister();
3274  Register holder = ApiGetterDescriptor::HolderRegister();
3275  Register callback = ApiGetterDescriptor::CallbackRegister();
3276  Register scratch = r4;
3277  DCHECK(!AreAliased(receiver, holder, callback, scratch));
3278
3279  Register api_function_address = r2;
3280
3281  __ push(receiver);
3282  // Push data from AccessorInfo.
3283  __ ldr(scratch, FieldMemOperand(callback, AccessorInfo::kDataOffset));
3284  __ push(scratch);
3285  __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
3286  __ Push(scratch, scratch);
3287  __ mov(scratch, Operand(ExternalReference::isolate_address(isolate())));
3288  __ Push(scratch, holder);
3289  __ Push(Smi::kZero);  // should_throw_on_error -> false
3290  __ ldr(scratch, FieldMemOperand(callback, AccessorInfo::kNameOffset));
3291  __ push(scratch);
3292  // v8::PropertyCallbackInfo::args_ array and name handle.
3293  const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1;
3294
3295  // Load address of v8::PropertyAccessorInfo::args_ array and name handle.
3296  __ mov(r0, sp);                             // r0 = Handle<Name>
3297  __ add(r1, r0, Operand(1 * kPointerSize));  // r1 = v8::PCI::args_
3298
3299  const int kApiStackSpace = 1;
3300  FrameScope frame_scope(masm, StackFrame::MANUAL);
3301  __ EnterExitFrame(false, kApiStackSpace);
3302
3303  // Create v8::PropertyCallbackInfo object on the stack and initialize
3304  // it's args_ field.
3305  __ str(r1, MemOperand(sp, 1 * kPointerSize));
3306  __ add(r1, sp, Operand(1 * kPointerSize));  // r1 = v8::PropertyCallbackInfo&
3307
3308  ExternalReference thunk_ref =
3309      ExternalReference::invoke_accessor_getter_callback(isolate());
3310
3311  __ ldr(scratch, FieldMemOperand(callback, AccessorInfo::kJsGetterOffset));
3312  __ ldr(api_function_address,
3313         FieldMemOperand(scratch, Foreign::kForeignAddressOffset));
3314
3315  // +3 is to skip prolog, return address and name handle.
3316  MemOperand return_value_operand(
3317      fp, (PropertyCallbackArguments::kReturnValueOffset + 3) * kPointerSize);
3318  CallApiFunctionAndReturn(masm, api_function_address, thunk_ref,
3319                           kStackUnwindSpace, NULL, return_value_operand, NULL);
3320}
3321
3322#undef __
3323
3324}  // namespace internal
3325}  // namespace v8
3326
3327#endif  // V8_TARGET_ARCH_ARM
3328