macro-assembler-ia32.cc revision 5913587db4c6bab03d97bfe44b06289fd6d7270d
1// Copyright 2006-2009 the V8 project authors. All rights reserved. 2// Redistribution and use in source and binary forms, with or without 3// modification, are permitted provided that the following conditions are 4// met: 5// 6// * Redistributions of source code must retain the above copyright 7// notice, this list of conditions and the following disclaimer. 8// * Redistributions in binary form must reproduce the above 9// copyright notice, this list of conditions and the following 10// disclaimer in the documentation and/or other materials provided 11// with the distribution. 12// * Neither the name of Google Inc. nor the names of its 13// contributors may be used to endorse or promote products derived 14// from this software without specific prior written permission. 15// 16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 28#include "v8.h" 29 30#if defined(V8_TARGET_ARCH_IA32) 31 32#include "bootstrapper.h" 33#include "codegen-inl.h" 34#include "debug.h" 35#include "runtime.h" 36#include "serialize.h" 37 38namespace v8 { 39namespace internal { 40 41// ------------------------------------------------------------------------- 42// MacroAssembler implementation. 43 44MacroAssembler::MacroAssembler(void* buffer, int size) 45 : Assembler(buffer, size), 46 generating_stub_(false), 47 allow_stub_calls_(true), 48 code_object_(Heap::undefined_value()) { 49} 50 51 52void MacroAssembler::RecordWriteHelper(Register object, 53 Register addr, 54 Register scratch) { 55 if (FLAG_debug_code) { 56 // Check that the object is not in new space. 57 Label not_in_new_space; 58 InNewSpace(object, scratch, not_equal, ¬_in_new_space); 59 Abort("new-space object passed to RecordWriteHelper"); 60 bind(¬_in_new_space); 61 } 62 63 // Compute the page start address from the heap object pointer, and reuse 64 // the 'object' register for it. 65 and_(object, ~Page::kPageAlignmentMask); 66 67 // Compute number of region covering addr. See Page::GetRegionNumberForAddress 68 // method for more details. 69 and_(addr, Page::kPageAlignmentMask); 70 shr(addr, Page::kRegionSizeLog2); 71 72 // Set dirty mark for region. 73 bts(Operand(object, Page::kDirtyFlagOffset), addr); 74} 75 76 77void MacroAssembler::InNewSpace(Register object, 78 Register scratch, 79 Condition cc, 80 Label* branch) { 81 ASSERT(cc == equal || cc == not_equal); 82 if (Serializer::enabled()) { 83 // Can't do arithmetic on external references if it might get serialized. 84 mov(scratch, Operand(object)); 85 // The mask isn't really an address. We load it as an external reference in 86 // case the size of the new space is different between the snapshot maker 87 // and the running system. 88 and_(Operand(scratch), Immediate(ExternalReference::new_space_mask())); 89 cmp(Operand(scratch), Immediate(ExternalReference::new_space_start())); 90 j(cc, branch); 91 } else { 92 int32_t new_space_start = reinterpret_cast<int32_t>( 93 ExternalReference::new_space_start().address()); 94 lea(scratch, Operand(object, -new_space_start)); 95 and_(scratch, Heap::NewSpaceMask()); 96 j(cc, branch); 97 } 98} 99 100 101void MacroAssembler::RecordWrite(Register object, 102 int offset, 103 Register value, 104 Register scratch) { 105 // The compiled code assumes that record write doesn't change the 106 // context register, so we check that none of the clobbered 107 // registers are esi. 108 ASSERT(!object.is(esi) && !value.is(esi) && !scratch.is(esi)); 109 110 // First, check if a write barrier is even needed. The tests below 111 // catch stores of Smis and stores into young gen. 112 Label done; 113 114 // Skip barrier if writing a smi. 115 ASSERT_EQ(0, kSmiTag); 116 test(value, Immediate(kSmiTagMask)); 117 j(zero, &done); 118 119 InNewSpace(object, value, equal, &done); 120 121 // The offset is relative to a tagged or untagged HeapObject pointer, 122 // so either offset or offset + kHeapObjectTag must be a 123 // multiple of kPointerSize. 124 ASSERT(IsAligned(offset, kPointerSize) || 125 IsAligned(offset + kHeapObjectTag, kPointerSize)); 126 127 Register dst = scratch; 128 if (offset != 0) { 129 lea(dst, Operand(object, offset)); 130 } else { 131 // Array access: calculate the destination address in the same manner as 132 // KeyedStoreIC::GenerateGeneric. Multiply a smi by 2 to get an offset 133 // into an array of words. 134 ASSERT_EQ(1, kSmiTagSize); 135 ASSERT_EQ(0, kSmiTag); 136 lea(dst, Operand(object, dst, times_half_pointer_size, 137 FixedArray::kHeaderSize - kHeapObjectTag)); 138 } 139 RecordWriteHelper(object, dst, value); 140 141 bind(&done); 142 143 // Clobber all input registers when running with the debug-code flag 144 // turned on to provoke errors. 145 if (FLAG_debug_code) { 146 mov(object, Immediate(BitCast<int32_t>(kZapValue))); 147 mov(value, Immediate(BitCast<int32_t>(kZapValue))); 148 mov(scratch, Immediate(BitCast<int32_t>(kZapValue))); 149 } 150} 151 152 153void MacroAssembler::RecordWrite(Register object, 154 Register address, 155 Register value) { 156 // The compiled code assumes that record write doesn't change the 157 // context register, so we check that none of the clobbered 158 // registers are esi. 159 ASSERT(!object.is(esi) && !value.is(esi) && !address.is(esi)); 160 161 // First, check if a write barrier is even needed. The tests below 162 // catch stores of Smis and stores into young gen. 163 Label done; 164 165 // Skip barrier if writing a smi. 166 ASSERT_EQ(0, kSmiTag); 167 test(value, Immediate(kSmiTagMask)); 168 j(zero, &done); 169 170 InNewSpace(object, value, equal, &done); 171 172 RecordWriteHelper(object, address, value); 173 174 bind(&done); 175 176 // Clobber all input registers when running with the debug-code flag 177 // turned on to provoke errors. 178 if (FLAG_debug_code) { 179 mov(object, Immediate(BitCast<int32_t>(kZapValue))); 180 mov(address, Immediate(BitCast<int32_t>(kZapValue))); 181 mov(value, Immediate(BitCast<int32_t>(kZapValue))); 182 } 183} 184 185 186void MacroAssembler::StackLimitCheck(Label* on_stack_overflow) { 187 cmp(esp, 188 Operand::StaticVariable(ExternalReference::address_of_stack_limit())); 189 j(below, on_stack_overflow); 190} 191 192 193#ifdef ENABLE_DEBUGGER_SUPPORT 194void MacroAssembler::DebugBreak() { 195 Set(eax, Immediate(0)); 196 mov(ebx, Immediate(ExternalReference(Runtime::kDebugBreak))); 197 CEntryStub ces(1); 198 call(ces.GetCode(), RelocInfo::DEBUG_BREAK); 199} 200#endif 201 202 203void MacroAssembler::Set(Register dst, const Immediate& x) { 204 if (x.is_zero()) { 205 xor_(dst, Operand(dst)); // shorter than mov 206 } else { 207 mov(dst, x); 208 } 209} 210 211 212void MacroAssembler::Set(const Operand& dst, const Immediate& x) { 213 mov(dst, x); 214} 215 216 217void MacroAssembler::CmpObjectType(Register heap_object, 218 InstanceType type, 219 Register map) { 220 mov(map, FieldOperand(heap_object, HeapObject::kMapOffset)); 221 CmpInstanceType(map, type); 222} 223 224 225void MacroAssembler::CmpInstanceType(Register map, InstanceType type) { 226 cmpb(FieldOperand(map, Map::kInstanceTypeOffset), 227 static_cast<int8_t>(type)); 228} 229 230 231void MacroAssembler::CheckMap(Register obj, 232 Handle<Map> map, 233 Label* fail, 234 bool is_heap_object) { 235 if (!is_heap_object) { 236 test(obj, Immediate(kSmiTagMask)); 237 j(zero, fail); 238 } 239 cmp(FieldOperand(obj, HeapObject::kMapOffset), Immediate(map)); 240 j(not_equal, fail); 241} 242 243 244Condition MacroAssembler::IsObjectStringType(Register heap_object, 245 Register map, 246 Register instance_type) { 247 mov(map, FieldOperand(heap_object, HeapObject::kMapOffset)); 248 movzx_b(instance_type, FieldOperand(map, Map::kInstanceTypeOffset)); 249 ASSERT(kNotStringTag != 0); 250 test(instance_type, Immediate(kIsNotStringMask)); 251 return zero; 252} 253 254 255void MacroAssembler::IsObjectJSObjectType(Register heap_object, 256 Register map, 257 Register scratch, 258 Label* fail) { 259 mov(map, FieldOperand(heap_object, HeapObject::kMapOffset)); 260 IsInstanceJSObjectType(map, scratch, fail); 261} 262 263 264void MacroAssembler::IsInstanceJSObjectType(Register map, 265 Register scratch, 266 Label* fail) { 267 movzx_b(scratch, FieldOperand(map, Map::kInstanceTypeOffset)); 268 sub(Operand(scratch), Immediate(FIRST_JS_OBJECT_TYPE)); 269 cmp(scratch, LAST_JS_OBJECT_TYPE - FIRST_JS_OBJECT_TYPE); 270 j(above, fail); 271} 272 273 274void MacroAssembler::FCmp() { 275 if (CpuFeatures::IsSupported(CMOV)) { 276 fucomip(); 277 ffree(0); 278 fincstp(); 279 } else { 280 fucompp(); 281 push(eax); 282 fnstsw_ax(); 283 sahf(); 284 pop(eax); 285 } 286} 287 288 289void MacroAssembler::AbortIfNotNumber(Register object) { 290 Label ok; 291 test(object, Immediate(kSmiTagMask)); 292 j(zero, &ok); 293 cmp(FieldOperand(object, HeapObject::kMapOffset), 294 Factory::heap_number_map()); 295 Assert(equal, "Operand not a number"); 296 bind(&ok); 297} 298 299 300void MacroAssembler::AbortIfNotSmi(Register object) { 301 test(object, Immediate(kSmiTagMask)); 302 Assert(equal, "Operand is not a smi"); 303} 304 305 306void MacroAssembler::AbortIfNotString(Register object) { 307 test(object, Immediate(kSmiTagMask)); 308 Assert(not_equal, "Operand is not a string"); 309 push(object); 310 mov(object, FieldOperand(object, HeapObject::kMapOffset)); 311 CmpInstanceType(object, FIRST_NONSTRING_TYPE); 312 pop(object); 313 Assert(below, "Operand is not a string"); 314} 315 316 317void MacroAssembler::AbortIfSmi(Register object) { 318 test(object, Immediate(kSmiTagMask)); 319 Assert(not_equal, "Operand is a smi"); 320} 321 322 323void MacroAssembler::EnterFrame(StackFrame::Type type) { 324 push(ebp); 325 mov(ebp, Operand(esp)); 326 push(esi); 327 push(Immediate(Smi::FromInt(type))); 328 push(Immediate(CodeObject())); 329 if (FLAG_debug_code) { 330 cmp(Operand(esp, 0), Immediate(Factory::undefined_value())); 331 Check(not_equal, "code object not properly patched"); 332 } 333} 334 335 336void MacroAssembler::LeaveFrame(StackFrame::Type type) { 337 if (FLAG_debug_code) { 338 cmp(Operand(ebp, StandardFrameConstants::kMarkerOffset), 339 Immediate(Smi::FromInt(type))); 340 Check(equal, "stack frame types must match"); 341 } 342 leave(); 343} 344 345 346void MacroAssembler::EnterExitFramePrologue() { 347 // Setup the frame structure on the stack. 348 ASSERT(ExitFrameConstants::kCallerSPDisplacement == +2 * kPointerSize); 349 ASSERT(ExitFrameConstants::kCallerPCOffset == +1 * kPointerSize); 350 ASSERT(ExitFrameConstants::kCallerFPOffset == 0 * kPointerSize); 351 push(ebp); 352 mov(ebp, Operand(esp)); 353 354 // Reserve room for entry stack pointer and push the code object. 355 ASSERT(ExitFrameConstants::kSPOffset == -1 * kPointerSize); 356 push(Immediate(0)); // Saved entry sp, patched before call. 357 push(Immediate(CodeObject())); // Accessed from ExitFrame::code_slot. 358 359 // Save the frame pointer and the context in top. 360 ExternalReference c_entry_fp_address(Top::k_c_entry_fp_address); 361 ExternalReference context_address(Top::k_context_address); 362 mov(Operand::StaticVariable(c_entry_fp_address), ebp); 363 mov(Operand::StaticVariable(context_address), esi); 364} 365 366 367void MacroAssembler::EnterExitFrameEpilogue(int argc) { 368 // Reserve space for arguments. 369 sub(Operand(esp), Immediate(argc * kPointerSize)); 370 371 // Get the required frame alignment for the OS. 372 static const int kFrameAlignment = OS::ActivationFrameAlignment(); 373 if (kFrameAlignment > 0) { 374 ASSERT(IsPowerOf2(kFrameAlignment)); 375 and_(esp, -kFrameAlignment); 376 } 377 378 // Patch the saved entry sp. 379 mov(Operand(ebp, ExitFrameConstants::kSPOffset), esp); 380} 381 382 383void MacroAssembler::EnterExitFrame() { 384 EnterExitFramePrologue(); 385 386 // Setup argc and argv in callee-saved registers. 387 int offset = StandardFrameConstants::kCallerSPOffset - kPointerSize; 388 mov(edi, Operand(eax)); 389 lea(esi, Operand(ebp, eax, times_4, offset)); 390 391 EnterExitFrameEpilogue(2); 392} 393 394 395void MacroAssembler::EnterApiExitFrame(int stack_space, 396 int argc) { 397 EnterExitFramePrologue(); 398 399 int offset = StandardFrameConstants::kCallerSPOffset - kPointerSize; 400 lea(esi, Operand(ebp, (stack_space * kPointerSize) + offset)); 401 402 EnterExitFrameEpilogue(argc); 403} 404 405 406void MacroAssembler::LeaveExitFrame() { 407 // Get the return address from the stack and restore the frame pointer. 408 mov(ecx, Operand(ebp, 1 * kPointerSize)); 409 mov(ebp, Operand(ebp, 0 * kPointerSize)); 410 411 // Pop the arguments and the receiver from the caller stack. 412 lea(esp, Operand(esi, 1 * kPointerSize)); 413 414 // Restore current context from top and clear it in debug mode. 415 ExternalReference context_address(Top::k_context_address); 416 mov(esi, Operand::StaticVariable(context_address)); 417#ifdef DEBUG 418 mov(Operand::StaticVariable(context_address), Immediate(0)); 419#endif 420 421 // Push the return address to get ready to return. 422 push(ecx); 423 424 // Clear the top frame. 425 ExternalReference c_entry_fp_address(Top::k_c_entry_fp_address); 426 mov(Operand::StaticVariable(c_entry_fp_address), Immediate(0)); 427} 428 429 430void MacroAssembler::PushTryHandler(CodeLocation try_location, 431 HandlerType type) { 432 // Adjust this code if not the case. 433 ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize); 434 // The pc (return address) is already on TOS. 435 if (try_location == IN_JAVASCRIPT) { 436 if (type == TRY_CATCH_HANDLER) { 437 push(Immediate(StackHandler::TRY_CATCH)); 438 } else { 439 push(Immediate(StackHandler::TRY_FINALLY)); 440 } 441 push(ebp); 442 } else { 443 ASSERT(try_location == IN_JS_ENTRY); 444 // The frame pointer does not point to a JS frame so we save NULL 445 // for ebp. We expect the code throwing an exception to check ebp 446 // before dereferencing it to restore the context. 447 push(Immediate(StackHandler::ENTRY)); 448 push(Immediate(0)); // NULL frame pointer. 449 } 450 // Save the current handler as the next handler. 451 push(Operand::StaticVariable(ExternalReference(Top::k_handler_address))); 452 // Link this handler as the new current one. 453 mov(Operand::StaticVariable(ExternalReference(Top::k_handler_address)), esp); 454} 455 456 457void MacroAssembler::PopTryHandler() { 458 ASSERT_EQ(0, StackHandlerConstants::kNextOffset); 459 pop(Operand::StaticVariable(ExternalReference(Top::k_handler_address))); 460 add(Operand(esp), Immediate(StackHandlerConstants::kSize - kPointerSize)); 461} 462 463 464void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg, 465 Register scratch, 466 Label* miss) { 467 Label same_contexts; 468 469 ASSERT(!holder_reg.is(scratch)); 470 471 // Load current lexical context from the stack frame. 472 mov(scratch, Operand(ebp, StandardFrameConstants::kContextOffset)); 473 474 // When generating debug code, make sure the lexical context is set. 475 if (FLAG_debug_code) { 476 cmp(Operand(scratch), Immediate(0)); 477 Check(not_equal, "we should not have an empty lexical context"); 478 } 479 // Load the global context of the current context. 480 int offset = Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize; 481 mov(scratch, FieldOperand(scratch, offset)); 482 mov(scratch, FieldOperand(scratch, GlobalObject::kGlobalContextOffset)); 483 484 // Check the context is a global context. 485 if (FLAG_debug_code) { 486 push(scratch); 487 // Read the first word and compare to global_context_map. 488 mov(scratch, FieldOperand(scratch, HeapObject::kMapOffset)); 489 cmp(scratch, Factory::global_context_map()); 490 Check(equal, "JSGlobalObject::global_context should be a global context."); 491 pop(scratch); 492 } 493 494 // Check if both contexts are the same. 495 cmp(scratch, FieldOperand(holder_reg, JSGlobalProxy::kContextOffset)); 496 j(equal, &same_contexts, taken); 497 498 // Compare security tokens, save holder_reg on the stack so we can use it 499 // as a temporary register. 500 // 501 // TODO(119): avoid push(holder_reg)/pop(holder_reg) 502 push(holder_reg); 503 // Check that the security token in the calling global object is 504 // compatible with the security token in the receiving global 505 // object. 506 mov(holder_reg, FieldOperand(holder_reg, JSGlobalProxy::kContextOffset)); 507 508 // Check the context is a global context. 509 if (FLAG_debug_code) { 510 cmp(holder_reg, Factory::null_value()); 511 Check(not_equal, "JSGlobalProxy::context() should not be null."); 512 513 push(holder_reg); 514 // Read the first word and compare to global_context_map(), 515 mov(holder_reg, FieldOperand(holder_reg, HeapObject::kMapOffset)); 516 cmp(holder_reg, Factory::global_context_map()); 517 Check(equal, "JSGlobalObject::global_context should be a global context."); 518 pop(holder_reg); 519 } 520 521 int token_offset = Context::kHeaderSize + 522 Context::SECURITY_TOKEN_INDEX * kPointerSize; 523 mov(scratch, FieldOperand(scratch, token_offset)); 524 cmp(scratch, FieldOperand(holder_reg, token_offset)); 525 pop(holder_reg); 526 j(not_equal, miss, not_taken); 527 528 bind(&same_contexts); 529} 530 531 532void MacroAssembler::LoadAllocationTopHelper(Register result, 533 Register result_end, 534 Register scratch, 535 AllocationFlags flags) { 536 ExternalReference new_space_allocation_top = 537 ExternalReference::new_space_allocation_top_address(); 538 539 // Just return if allocation top is already known. 540 if ((flags & RESULT_CONTAINS_TOP) != 0) { 541 // No use of scratch if allocation top is provided. 542 ASSERT(scratch.is(no_reg)); 543#ifdef DEBUG 544 // Assert that result actually contains top on entry. 545 cmp(result, Operand::StaticVariable(new_space_allocation_top)); 546 Check(equal, "Unexpected allocation top"); 547#endif 548 return; 549 } 550 551 // Move address of new object to result. Use scratch register if available. 552 if (scratch.is(no_reg)) { 553 mov(result, Operand::StaticVariable(new_space_allocation_top)); 554 } else { 555 ASSERT(!scratch.is(result_end)); 556 mov(Operand(scratch), Immediate(new_space_allocation_top)); 557 mov(result, Operand(scratch, 0)); 558 } 559} 560 561 562void MacroAssembler::UpdateAllocationTopHelper(Register result_end, 563 Register scratch) { 564 if (FLAG_debug_code) { 565 test(result_end, Immediate(kObjectAlignmentMask)); 566 Check(zero, "Unaligned allocation in new space"); 567 } 568 569 ExternalReference new_space_allocation_top = 570 ExternalReference::new_space_allocation_top_address(); 571 572 // Update new top. Use scratch if available. 573 if (scratch.is(no_reg)) { 574 mov(Operand::StaticVariable(new_space_allocation_top), result_end); 575 } else { 576 mov(Operand(scratch, 0), result_end); 577 } 578} 579 580 581void MacroAssembler::AllocateInNewSpace(int object_size, 582 Register result, 583 Register result_end, 584 Register scratch, 585 Label* gc_required, 586 AllocationFlags flags) { 587 if (!FLAG_inline_new) { 588 if (FLAG_debug_code) { 589 // Trash the registers to simulate an allocation failure. 590 mov(result, Immediate(0x7091)); 591 if (result_end.is_valid()) { 592 mov(result_end, Immediate(0x7191)); 593 } 594 if (scratch.is_valid()) { 595 mov(scratch, Immediate(0x7291)); 596 } 597 } 598 jmp(gc_required); 599 return; 600 } 601 ASSERT(!result.is(result_end)); 602 603 // Load address of new object into result. 604 LoadAllocationTopHelper(result, result_end, scratch, flags); 605 606 Register top_reg = result_end.is_valid() ? result_end : result; 607 608 // Calculate new top and bail out if new space is exhausted. 609 ExternalReference new_space_allocation_limit = 610 ExternalReference::new_space_allocation_limit_address(); 611 612 if (top_reg.is(result)) { 613 add(Operand(top_reg), Immediate(object_size)); 614 } else { 615 lea(top_reg, Operand(result, object_size)); 616 } 617 cmp(top_reg, Operand::StaticVariable(new_space_allocation_limit)); 618 j(above, gc_required, not_taken); 619 620 // Update allocation top. 621 UpdateAllocationTopHelper(top_reg, scratch); 622 623 // Tag result if requested. 624 if (top_reg.is(result)) { 625 if ((flags & TAG_OBJECT) != 0) { 626 sub(Operand(result), Immediate(object_size - kHeapObjectTag)); 627 } else { 628 sub(Operand(result), Immediate(object_size)); 629 } 630 } else if ((flags & TAG_OBJECT) != 0) { 631 add(Operand(result), Immediate(kHeapObjectTag)); 632 } 633} 634 635 636void MacroAssembler::AllocateInNewSpace(int header_size, 637 ScaleFactor element_size, 638 Register element_count, 639 Register result, 640 Register result_end, 641 Register scratch, 642 Label* gc_required, 643 AllocationFlags flags) { 644 if (!FLAG_inline_new) { 645 if (FLAG_debug_code) { 646 // Trash the registers to simulate an allocation failure. 647 mov(result, Immediate(0x7091)); 648 mov(result_end, Immediate(0x7191)); 649 if (scratch.is_valid()) { 650 mov(scratch, Immediate(0x7291)); 651 } 652 // Register element_count is not modified by the function. 653 } 654 jmp(gc_required); 655 return; 656 } 657 ASSERT(!result.is(result_end)); 658 659 // Load address of new object into result. 660 LoadAllocationTopHelper(result, result_end, scratch, flags); 661 662 // Calculate new top and bail out if new space is exhausted. 663 ExternalReference new_space_allocation_limit = 664 ExternalReference::new_space_allocation_limit_address(); 665 lea(result_end, Operand(result, element_count, element_size, header_size)); 666 cmp(result_end, Operand::StaticVariable(new_space_allocation_limit)); 667 j(above, gc_required); 668 669 // Tag result if requested. 670 if ((flags & TAG_OBJECT) != 0) { 671 lea(result, Operand(result, kHeapObjectTag)); 672 } 673 674 // Update allocation top. 675 UpdateAllocationTopHelper(result_end, scratch); 676} 677 678 679void MacroAssembler::AllocateInNewSpace(Register object_size, 680 Register result, 681 Register result_end, 682 Register scratch, 683 Label* gc_required, 684 AllocationFlags flags) { 685 if (!FLAG_inline_new) { 686 if (FLAG_debug_code) { 687 // Trash the registers to simulate an allocation failure. 688 mov(result, Immediate(0x7091)); 689 mov(result_end, Immediate(0x7191)); 690 if (scratch.is_valid()) { 691 mov(scratch, Immediate(0x7291)); 692 } 693 // object_size is left unchanged by this function. 694 } 695 jmp(gc_required); 696 return; 697 } 698 ASSERT(!result.is(result_end)); 699 700 // Load address of new object into result. 701 LoadAllocationTopHelper(result, result_end, scratch, flags); 702 703 // Calculate new top and bail out if new space is exhausted. 704 ExternalReference new_space_allocation_limit = 705 ExternalReference::new_space_allocation_limit_address(); 706 if (!object_size.is(result_end)) { 707 mov(result_end, object_size); 708 } 709 add(result_end, Operand(result)); 710 cmp(result_end, Operand::StaticVariable(new_space_allocation_limit)); 711 j(above, gc_required, not_taken); 712 713 // Tag result if requested. 714 if ((flags & TAG_OBJECT) != 0) { 715 lea(result, Operand(result, kHeapObjectTag)); 716 } 717 718 // Update allocation top. 719 UpdateAllocationTopHelper(result_end, scratch); 720} 721 722 723void MacroAssembler::UndoAllocationInNewSpace(Register object) { 724 ExternalReference new_space_allocation_top = 725 ExternalReference::new_space_allocation_top_address(); 726 727 // Make sure the object has no tag before resetting top. 728 and_(Operand(object), Immediate(~kHeapObjectTagMask)); 729#ifdef DEBUG 730 cmp(object, Operand::StaticVariable(new_space_allocation_top)); 731 Check(below, "Undo allocation of non allocated memory"); 732#endif 733 mov(Operand::StaticVariable(new_space_allocation_top), object); 734} 735 736 737void MacroAssembler::AllocateHeapNumber(Register result, 738 Register scratch1, 739 Register scratch2, 740 Label* gc_required) { 741 // Allocate heap number in new space. 742 AllocateInNewSpace(HeapNumber::kSize, 743 result, 744 scratch1, 745 scratch2, 746 gc_required, 747 TAG_OBJECT); 748 749 // Set the map. 750 mov(FieldOperand(result, HeapObject::kMapOffset), 751 Immediate(Factory::heap_number_map())); 752} 753 754 755void MacroAssembler::AllocateTwoByteString(Register result, 756 Register length, 757 Register scratch1, 758 Register scratch2, 759 Register scratch3, 760 Label* gc_required) { 761 // Calculate the number of bytes needed for the characters in the string while 762 // observing object alignment. 763 ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0); 764 ASSERT(kShortSize == 2); 765 // scratch1 = length * 2 + kObjectAlignmentMask. 766 lea(scratch1, Operand(length, length, times_1, kObjectAlignmentMask)); 767 and_(Operand(scratch1), Immediate(~kObjectAlignmentMask)); 768 769 // Allocate two byte string in new space. 770 AllocateInNewSpace(SeqTwoByteString::kHeaderSize, 771 times_1, 772 scratch1, 773 result, 774 scratch2, 775 scratch3, 776 gc_required, 777 TAG_OBJECT); 778 779 // Set the map, length and hash field. 780 mov(FieldOperand(result, HeapObject::kMapOffset), 781 Immediate(Factory::string_map())); 782 mov(scratch1, length); 783 SmiTag(scratch1); 784 mov(FieldOperand(result, String::kLengthOffset), scratch1); 785 mov(FieldOperand(result, String::kHashFieldOffset), 786 Immediate(String::kEmptyHashField)); 787} 788 789 790void MacroAssembler::AllocateAsciiString(Register result, 791 Register length, 792 Register scratch1, 793 Register scratch2, 794 Register scratch3, 795 Label* gc_required) { 796 // Calculate the number of bytes needed for the characters in the string while 797 // observing object alignment. 798 ASSERT((SeqAsciiString::kHeaderSize & kObjectAlignmentMask) == 0); 799 mov(scratch1, length); 800 ASSERT(kCharSize == 1); 801 add(Operand(scratch1), Immediate(kObjectAlignmentMask)); 802 and_(Operand(scratch1), Immediate(~kObjectAlignmentMask)); 803 804 // Allocate ascii string in new space. 805 AllocateInNewSpace(SeqAsciiString::kHeaderSize, 806 times_1, 807 scratch1, 808 result, 809 scratch2, 810 scratch3, 811 gc_required, 812 TAG_OBJECT); 813 814 // Set the map, length and hash field. 815 mov(FieldOperand(result, HeapObject::kMapOffset), 816 Immediate(Factory::ascii_string_map())); 817 mov(scratch1, length); 818 SmiTag(scratch1); 819 mov(FieldOperand(result, String::kLengthOffset), scratch1); 820 mov(FieldOperand(result, String::kHashFieldOffset), 821 Immediate(String::kEmptyHashField)); 822} 823 824 825void MacroAssembler::AllocateAsciiString(Register result, 826 int length, 827 Register scratch1, 828 Register scratch2, 829 Label* gc_required) { 830 ASSERT(length > 0); 831 832 // Allocate ascii string in new space. 833 AllocateInNewSpace(SeqAsciiString::SizeFor(length), 834 result, 835 scratch1, 836 scratch2, 837 gc_required, 838 TAG_OBJECT); 839 840 // Set the map, length and hash field. 841 mov(FieldOperand(result, HeapObject::kMapOffset), 842 Immediate(Factory::ascii_string_map())); 843 mov(FieldOperand(result, String::kLengthOffset), 844 Immediate(Smi::FromInt(length))); 845 mov(FieldOperand(result, String::kHashFieldOffset), 846 Immediate(String::kEmptyHashField)); 847} 848 849 850void MacroAssembler::AllocateConsString(Register result, 851 Register scratch1, 852 Register scratch2, 853 Label* gc_required) { 854 // Allocate heap number in new space. 855 AllocateInNewSpace(ConsString::kSize, 856 result, 857 scratch1, 858 scratch2, 859 gc_required, 860 TAG_OBJECT); 861 862 // Set the map. The other fields are left uninitialized. 863 mov(FieldOperand(result, HeapObject::kMapOffset), 864 Immediate(Factory::cons_string_map())); 865} 866 867 868void MacroAssembler::AllocateAsciiConsString(Register result, 869 Register scratch1, 870 Register scratch2, 871 Label* gc_required) { 872 // Allocate heap number in new space. 873 AllocateInNewSpace(ConsString::kSize, 874 result, 875 scratch1, 876 scratch2, 877 gc_required, 878 TAG_OBJECT); 879 880 // Set the map. The other fields are left uninitialized. 881 mov(FieldOperand(result, HeapObject::kMapOffset), 882 Immediate(Factory::cons_ascii_string_map())); 883} 884 885 886void MacroAssembler::NegativeZeroTest(CodeGenerator* cgen, 887 Register result, 888 Register op, 889 JumpTarget* then_target) { 890 JumpTarget ok; 891 test(result, Operand(result)); 892 ok.Branch(not_zero, taken); 893 test(op, Operand(op)); 894 then_target->Branch(sign, not_taken); 895 ok.Bind(); 896} 897 898 899void MacroAssembler::NegativeZeroTest(Register result, 900 Register op, 901 Label* then_label) { 902 Label ok; 903 test(result, Operand(result)); 904 j(not_zero, &ok, taken); 905 test(op, Operand(op)); 906 j(sign, then_label, not_taken); 907 bind(&ok); 908} 909 910 911void MacroAssembler::NegativeZeroTest(Register result, 912 Register op1, 913 Register op2, 914 Register scratch, 915 Label* then_label) { 916 Label ok; 917 test(result, Operand(result)); 918 j(not_zero, &ok, taken); 919 mov(scratch, Operand(op1)); 920 or_(scratch, Operand(op2)); 921 j(sign, then_label, not_taken); 922 bind(&ok); 923} 924 925 926void MacroAssembler::TryGetFunctionPrototype(Register function, 927 Register result, 928 Register scratch, 929 Label* miss) { 930 // Check that the receiver isn't a smi. 931 test(function, Immediate(kSmiTagMask)); 932 j(zero, miss, not_taken); 933 934 // Check that the function really is a function. 935 CmpObjectType(function, JS_FUNCTION_TYPE, result); 936 j(not_equal, miss, not_taken); 937 938 // Make sure that the function has an instance prototype. 939 Label non_instance; 940 movzx_b(scratch, FieldOperand(result, Map::kBitFieldOffset)); 941 test(scratch, Immediate(1 << Map::kHasNonInstancePrototype)); 942 j(not_zero, &non_instance, not_taken); 943 944 // Get the prototype or initial map from the function. 945 mov(result, 946 FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); 947 948 // If the prototype or initial map is the hole, don't return it and 949 // simply miss the cache instead. This will allow us to allocate a 950 // prototype object on-demand in the runtime system. 951 cmp(Operand(result), Immediate(Factory::the_hole_value())); 952 j(equal, miss, not_taken); 953 954 // If the function does not have an initial map, we're done. 955 Label done; 956 CmpObjectType(result, MAP_TYPE, scratch); 957 j(not_equal, &done); 958 959 // Get the prototype from the initial map. 960 mov(result, FieldOperand(result, Map::kPrototypeOffset)); 961 jmp(&done); 962 963 // Non-instance prototype: Fetch prototype from constructor field 964 // in initial map. 965 bind(&non_instance); 966 mov(result, FieldOperand(result, Map::kConstructorOffset)); 967 968 // All done. 969 bind(&done); 970} 971 972 973void MacroAssembler::CallStub(CodeStub* stub) { 974 ASSERT(allow_stub_calls()); // Calls are not allowed in some stubs. 975 call(stub->GetCode(), RelocInfo::CODE_TARGET); 976} 977 978 979MaybeObject* MacroAssembler::TryCallStub(CodeStub* stub) { 980 ASSERT(allow_stub_calls()); // Calls are not allowed in some stubs. 981 Object* result; 982 { MaybeObject* maybe_result = stub->TryGetCode(); 983 if (!maybe_result->ToObject(&result)) return maybe_result; 984 } 985 call(Handle<Code>(Code::cast(result)), RelocInfo::CODE_TARGET); 986 return result; 987} 988 989 990void MacroAssembler::TailCallStub(CodeStub* stub) { 991 ASSERT(allow_stub_calls()); // Calls are not allowed in some stubs. 992 jmp(stub->GetCode(), RelocInfo::CODE_TARGET); 993} 994 995 996MaybeObject* MacroAssembler::TryTailCallStub(CodeStub* stub) { 997 ASSERT(allow_stub_calls()); // Calls are not allowed in some stubs. 998 Object* result; 999 { MaybeObject* maybe_result = stub->TryGetCode(); 1000 if (!maybe_result->ToObject(&result)) return maybe_result; 1001 } 1002 jmp(Handle<Code>(Code::cast(result)), RelocInfo::CODE_TARGET); 1003 return result; 1004} 1005 1006 1007void MacroAssembler::StubReturn(int argc) { 1008 ASSERT(argc >= 1 && generating_stub()); 1009 ret((argc - 1) * kPointerSize); 1010} 1011 1012 1013void MacroAssembler::IllegalOperation(int num_arguments) { 1014 if (num_arguments > 0) { 1015 add(Operand(esp), Immediate(num_arguments * kPointerSize)); 1016 } 1017 mov(eax, Immediate(Factory::undefined_value())); 1018} 1019 1020 1021void MacroAssembler::IndexFromHash(Register hash, Register index) { 1022 // The assert checks that the constants for the maximum number of digits 1023 // for an array index cached in the hash field and the number of bits 1024 // reserved for it does not conflict. 1025 ASSERT(TenToThe(String::kMaxCachedArrayIndexLength) < 1026 (1 << String::kArrayIndexValueBits)); 1027 // We want the smi-tagged index in key. kArrayIndexValueMask has zeros in 1028 // the low kHashShift bits. 1029 and_(hash, String::kArrayIndexValueMask); 1030 STATIC_ASSERT(String::kHashShift >= kSmiTagSize && kSmiTag == 0); 1031 if (String::kHashShift > kSmiTagSize) { 1032 shr(hash, String::kHashShift - kSmiTagSize); 1033 } 1034 if (!index.is(hash)) { 1035 mov(index, hash); 1036 } 1037} 1038 1039 1040void MacroAssembler::CallRuntime(Runtime::FunctionId id, int num_arguments) { 1041 CallRuntime(Runtime::FunctionForId(id), num_arguments); 1042} 1043 1044 1045MaybeObject* MacroAssembler::TryCallRuntime(Runtime::FunctionId id, 1046 int num_arguments) { 1047 return TryCallRuntime(Runtime::FunctionForId(id), num_arguments); 1048} 1049 1050 1051void MacroAssembler::CallRuntime(Runtime::Function* f, int num_arguments) { 1052 // If the expected number of arguments of the runtime function is 1053 // constant, we check that the actual number of arguments match the 1054 // expectation. 1055 if (f->nargs >= 0 && f->nargs != num_arguments) { 1056 IllegalOperation(num_arguments); 1057 return; 1058 } 1059 1060 // TODO(1236192): Most runtime routines don't need the number of 1061 // arguments passed in because it is constant. At some point we 1062 // should remove this need and make the runtime routine entry code 1063 // smarter. 1064 Set(eax, Immediate(num_arguments)); 1065 mov(ebx, Immediate(ExternalReference(f))); 1066 CEntryStub ces(1); 1067 CallStub(&ces); 1068} 1069 1070 1071MaybeObject* MacroAssembler::TryCallRuntime(Runtime::Function* f, 1072 int num_arguments) { 1073 if (f->nargs >= 0 && f->nargs != num_arguments) { 1074 IllegalOperation(num_arguments); 1075 // Since we did not call the stub, there was no allocation failure. 1076 // Return some non-failure object. 1077 return Heap::undefined_value(); 1078 } 1079 1080 // TODO(1236192): Most runtime routines don't need the number of 1081 // arguments passed in because it is constant. At some point we 1082 // should remove this need and make the runtime routine entry code 1083 // smarter. 1084 Set(eax, Immediate(num_arguments)); 1085 mov(ebx, Immediate(ExternalReference(f))); 1086 CEntryStub ces(1); 1087 return TryCallStub(&ces); 1088} 1089 1090 1091void MacroAssembler::CallExternalReference(ExternalReference ref, 1092 int num_arguments) { 1093 mov(eax, Immediate(num_arguments)); 1094 mov(ebx, Immediate(ref)); 1095 1096 CEntryStub stub(1); 1097 CallStub(&stub); 1098} 1099 1100 1101void MacroAssembler::TailCallExternalReference(const ExternalReference& ext, 1102 int num_arguments, 1103 int result_size) { 1104 // TODO(1236192): Most runtime routines don't need the number of 1105 // arguments passed in because it is constant. At some point we 1106 // should remove this need and make the runtime routine entry code 1107 // smarter. 1108 Set(eax, Immediate(num_arguments)); 1109 JumpToExternalReference(ext); 1110} 1111 1112 1113void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid, 1114 int num_arguments, 1115 int result_size) { 1116 TailCallExternalReference(ExternalReference(fid), num_arguments, result_size); 1117} 1118 1119 1120// If true, a Handle<T> passed by value is passed and returned by 1121// using the location_ field directly. If false, it is passed and 1122// returned as a pointer to a handle. 1123#ifdef USING_BSD_ABI 1124static const bool kPassHandlesDirectly = true; 1125#else 1126static const bool kPassHandlesDirectly = false; 1127#endif 1128 1129 1130Operand ApiParameterOperand(int index) { 1131 return Operand(esp, (index + (kPassHandlesDirectly ? 0 : 1)) * kPointerSize); 1132} 1133 1134 1135void MacroAssembler::PrepareCallApiFunction(int stack_space, int argc) { 1136 if (kPassHandlesDirectly) { 1137 EnterApiExitFrame(stack_space, argc); 1138 // When handles as passed directly we don't have to allocate extra 1139 // space for and pass an out parameter. 1140 } else { 1141 // We allocate two additional slots: return value and pointer to it. 1142 EnterApiExitFrame(stack_space, argc + 2); 1143 } 1144} 1145 1146 1147void MacroAssembler::CallApiFunctionAndReturn(ApiFunction* function, int argc) { 1148 if (!kPassHandlesDirectly) { 1149 // The argument slots are filled as follows: 1150 // 1151 // n + 1: output cell 1152 // n: arg n 1153 // ... 1154 // 1: arg1 1155 // 0: pointer to the output cell 1156 // 1157 // Note that this is one more "argument" than the function expects 1158 // so the out cell will have to be popped explicitly after returning 1159 // from the function. The out cell contains Handle. 1160 lea(eax, Operand(esp, (argc + 1) * kPointerSize)); // pointer to out cell. 1161 mov(Operand(esp, 0 * kPointerSize), eax); // output. 1162 mov(Operand(esp, (argc + 1) * kPointerSize), Immediate(0)); // out cell. 1163 } 1164 1165 ExternalReference next_address = 1166 ExternalReference::handle_scope_next_address(); 1167 ExternalReference limit_address = 1168 ExternalReference::handle_scope_limit_address(); 1169 ExternalReference level_address = 1170 ExternalReference::handle_scope_level_address(); 1171 1172 // Allocate HandleScope in callee-save registers. 1173 mov(ebx, Operand::StaticVariable(next_address)); 1174 mov(edi, Operand::StaticVariable(limit_address)); 1175 add(Operand::StaticVariable(level_address), Immediate(1)); 1176 1177 // Call the api function! 1178 call(function->address(), RelocInfo::RUNTIME_ENTRY); 1179 1180 if (!kPassHandlesDirectly) { 1181 // The returned value is a pointer to the handle holding the result. 1182 // Dereference this to get to the location. 1183 mov(eax, Operand(eax, 0)); 1184 } 1185 1186 Label empty_handle; 1187 Label prologue; 1188 Label promote_scheduled_exception; 1189 Label delete_allocated_handles; 1190 Label leave_exit_frame; 1191 1192 // Check if the result handle holds 0. 1193 test(eax, Operand(eax)); 1194 j(zero, &empty_handle, not_taken); 1195 // It was non-zero. Dereference to get the result value. 1196 mov(eax, Operand(eax, 0)); 1197 bind(&prologue); 1198 // No more valid handles (the result handle was the last one). Restore 1199 // previous handle scope. 1200 mov(Operand::StaticVariable(next_address), ebx); 1201 sub(Operand::StaticVariable(level_address), Immediate(1)); 1202 Assert(above_equal, "Invalid HandleScope level"); 1203 cmp(edi, Operand::StaticVariable(limit_address)); 1204 j(not_equal, &delete_allocated_handles, not_taken); 1205 bind(&leave_exit_frame); 1206 1207 // Check if the function scheduled an exception. 1208 ExternalReference scheduled_exception_address = 1209 ExternalReference::scheduled_exception_address(); 1210 cmp(Operand::StaticVariable(scheduled_exception_address), 1211 Immediate(Factory::the_hole_value())); 1212 j(not_equal, &promote_scheduled_exception, not_taken); 1213 LeaveExitFrame(); 1214 ret(0); 1215 bind(&promote_scheduled_exception); 1216 TailCallRuntime(Runtime::kPromoteScheduledException, 0, 1); 1217 bind(&empty_handle); 1218 // It was zero; the result is undefined. 1219 mov(eax, Factory::undefined_value()); 1220 jmp(&prologue); 1221 1222 // HandleScope limit has changed. Delete allocated extensions. 1223 bind(&delete_allocated_handles); 1224 mov(Operand::StaticVariable(limit_address), edi); 1225 mov(edi, eax); 1226 mov(eax, Immediate(ExternalReference::delete_handle_scope_extensions())); 1227 call(Operand(eax)); 1228 mov(eax, edi); 1229 jmp(&leave_exit_frame); 1230} 1231 1232 1233void MacroAssembler::JumpToExternalReference(const ExternalReference& ext) { 1234 // Set the entry point and jump to the C entry runtime stub. 1235 mov(ebx, Immediate(ext)); 1236 CEntryStub ces(1); 1237 jmp(ces.GetCode(), RelocInfo::CODE_TARGET); 1238} 1239 1240 1241void MacroAssembler::InvokePrologue(const ParameterCount& expected, 1242 const ParameterCount& actual, 1243 Handle<Code> code_constant, 1244 const Operand& code_operand, 1245 Label* done, 1246 InvokeFlag flag) { 1247 bool definitely_matches = false; 1248 Label invoke; 1249 if (expected.is_immediate()) { 1250 ASSERT(actual.is_immediate()); 1251 if (expected.immediate() == actual.immediate()) { 1252 definitely_matches = true; 1253 } else { 1254 mov(eax, actual.immediate()); 1255 const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel; 1256 if (expected.immediate() == sentinel) { 1257 // Don't worry about adapting arguments for builtins that 1258 // don't want that done. Skip adaption code by making it look 1259 // like we have a match between expected and actual number of 1260 // arguments. 1261 definitely_matches = true; 1262 } else { 1263 mov(ebx, expected.immediate()); 1264 } 1265 } 1266 } else { 1267 if (actual.is_immediate()) { 1268 // Expected is in register, actual is immediate. This is the 1269 // case when we invoke function values without going through the 1270 // IC mechanism. 1271 cmp(expected.reg(), actual.immediate()); 1272 j(equal, &invoke); 1273 ASSERT(expected.reg().is(ebx)); 1274 mov(eax, actual.immediate()); 1275 } else if (!expected.reg().is(actual.reg())) { 1276 // Both expected and actual are in (different) registers. This 1277 // is the case when we invoke functions using call and apply. 1278 cmp(expected.reg(), Operand(actual.reg())); 1279 j(equal, &invoke); 1280 ASSERT(actual.reg().is(eax)); 1281 ASSERT(expected.reg().is(ebx)); 1282 } 1283 } 1284 1285 if (!definitely_matches) { 1286 Handle<Code> adaptor = 1287 Handle<Code>(Builtins::builtin(Builtins::ArgumentsAdaptorTrampoline)); 1288 if (!code_constant.is_null()) { 1289 mov(edx, Immediate(code_constant)); 1290 add(Operand(edx), Immediate(Code::kHeaderSize - kHeapObjectTag)); 1291 } else if (!code_operand.is_reg(edx)) { 1292 mov(edx, code_operand); 1293 } 1294 1295 if (flag == CALL_FUNCTION) { 1296 call(adaptor, RelocInfo::CODE_TARGET); 1297 jmp(done); 1298 } else { 1299 jmp(adaptor, RelocInfo::CODE_TARGET); 1300 } 1301 bind(&invoke); 1302 } 1303} 1304 1305 1306void MacroAssembler::InvokeCode(const Operand& code, 1307 const ParameterCount& expected, 1308 const ParameterCount& actual, 1309 InvokeFlag flag) { 1310 Label done; 1311 InvokePrologue(expected, actual, Handle<Code>::null(), code, &done, flag); 1312 if (flag == CALL_FUNCTION) { 1313 call(code); 1314 } else { 1315 ASSERT(flag == JUMP_FUNCTION); 1316 jmp(code); 1317 } 1318 bind(&done); 1319} 1320 1321 1322void MacroAssembler::InvokeCode(Handle<Code> code, 1323 const ParameterCount& expected, 1324 const ParameterCount& actual, 1325 RelocInfo::Mode rmode, 1326 InvokeFlag flag) { 1327 Label done; 1328 Operand dummy(eax); 1329 InvokePrologue(expected, actual, code, dummy, &done, flag); 1330 if (flag == CALL_FUNCTION) { 1331 call(code, rmode); 1332 } else { 1333 ASSERT(flag == JUMP_FUNCTION); 1334 jmp(code, rmode); 1335 } 1336 bind(&done); 1337} 1338 1339 1340void MacroAssembler::InvokeFunction(Register fun, 1341 const ParameterCount& actual, 1342 InvokeFlag flag) { 1343 ASSERT(fun.is(edi)); 1344 mov(edx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); 1345 mov(esi, FieldOperand(edi, JSFunction::kContextOffset)); 1346 mov(ebx, FieldOperand(edx, SharedFunctionInfo::kFormalParameterCountOffset)); 1347 SmiUntag(ebx); 1348 1349 ParameterCount expected(ebx); 1350 InvokeCode(FieldOperand(edi, JSFunction::kCodeEntryOffset), 1351 expected, actual, flag); 1352} 1353 1354 1355void MacroAssembler::InvokeFunction(JSFunction* function, 1356 const ParameterCount& actual, 1357 InvokeFlag flag) { 1358 ASSERT(function->is_compiled()); 1359 // Get the function and setup the context. 1360 mov(edi, Immediate(Handle<JSFunction>(function))); 1361 mov(esi, FieldOperand(edi, JSFunction::kContextOffset)); 1362 // Invoke the cached code. 1363 Handle<Code> code(function->code()); 1364 ParameterCount expected(function->shared()->formal_parameter_count()); 1365 InvokeCode(code, expected, actual, RelocInfo::CODE_TARGET, flag); 1366} 1367 1368 1369void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id, InvokeFlag flag) { 1370 // Calls are not allowed in some stubs. 1371 ASSERT(flag == JUMP_FUNCTION || allow_stub_calls()); 1372 1373 // Rely on the assertion to check that the number of provided 1374 // arguments match the expected number of arguments. Fake a 1375 // parameter count to avoid emitting code to do the check. 1376 ParameterCount expected(0); 1377 GetBuiltinFunction(edi, id); 1378 InvokeCode(FieldOperand(edi, JSFunction::kCodeEntryOffset), 1379 expected, expected, flag); 1380} 1381 1382void MacroAssembler::GetBuiltinFunction(Register target, 1383 Builtins::JavaScript id) { 1384 // Load the JavaScript builtin function from the builtins object. 1385 mov(target, Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX))); 1386 mov(target, FieldOperand(target, GlobalObject::kBuiltinsOffset)); 1387 mov(target, FieldOperand(target, 1388 JSBuiltinsObject::OffsetOfFunctionWithId(id))); 1389} 1390 1391void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) { 1392 ASSERT(!target.is(edi)); 1393 // Load the JavaScript builtin function from the builtins object. 1394 GetBuiltinFunction(edi, id); 1395 // Load the code entry point from the function into the target register. 1396 mov(target, FieldOperand(edi, JSFunction::kCodeEntryOffset)); 1397} 1398 1399 1400void MacroAssembler::LoadContext(Register dst, int context_chain_length) { 1401 if (context_chain_length > 0) { 1402 // Move up the chain of contexts to the context containing the slot. 1403 mov(dst, Operand(esi, Context::SlotOffset(Context::CLOSURE_INDEX))); 1404 // Load the function context (which is the incoming, outer context). 1405 mov(dst, FieldOperand(dst, JSFunction::kContextOffset)); 1406 for (int i = 1; i < context_chain_length; i++) { 1407 mov(dst, Operand(dst, Context::SlotOffset(Context::CLOSURE_INDEX))); 1408 mov(dst, FieldOperand(dst, JSFunction::kContextOffset)); 1409 } 1410 // The context may be an intermediate context, not a function context. 1411 mov(dst, Operand(dst, Context::SlotOffset(Context::FCONTEXT_INDEX))); 1412 } else { // Slot is in the current function context. 1413 // The context may be an intermediate context, not a function context. 1414 mov(dst, Operand(esi, Context::SlotOffset(Context::FCONTEXT_INDEX))); 1415 } 1416} 1417 1418 1419void MacroAssembler::LoadGlobalFunction(int index, Register function) { 1420 // Load the global or builtins object from the current context. 1421 mov(function, Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX))); 1422 // Load the global context from the global or builtins object. 1423 mov(function, FieldOperand(function, GlobalObject::kGlobalContextOffset)); 1424 // Load the function from the global context. 1425 mov(function, Operand(function, Context::SlotOffset(index))); 1426} 1427 1428 1429void MacroAssembler::LoadGlobalFunctionInitialMap(Register function, 1430 Register map) { 1431 // Load the initial map. The global functions all have initial maps. 1432 mov(map, FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); 1433 if (FLAG_debug_code) { 1434 Label ok, fail; 1435 CheckMap(map, Factory::meta_map(), &fail, false); 1436 jmp(&ok); 1437 bind(&fail); 1438 Abort("Global functions must have initial map"); 1439 bind(&ok); 1440 } 1441} 1442 1443 1444void MacroAssembler::Ret() { 1445 ret(0); 1446} 1447 1448 1449void MacroAssembler::Drop(int stack_elements) { 1450 if (stack_elements > 0) { 1451 add(Operand(esp), Immediate(stack_elements * kPointerSize)); 1452 } 1453} 1454 1455 1456void MacroAssembler::Move(Register dst, Register src) { 1457 if (!dst.is(src)) { 1458 mov(dst, src); 1459 } 1460} 1461 1462 1463void MacroAssembler::Move(Register dst, Handle<Object> value) { 1464 mov(dst, value); 1465} 1466 1467 1468void MacroAssembler::SetCounter(StatsCounter* counter, int value) { 1469 if (FLAG_native_code_counters && counter->Enabled()) { 1470 mov(Operand::StaticVariable(ExternalReference(counter)), Immediate(value)); 1471 } 1472} 1473 1474 1475void MacroAssembler::IncrementCounter(StatsCounter* counter, int value) { 1476 ASSERT(value > 0); 1477 if (FLAG_native_code_counters && counter->Enabled()) { 1478 Operand operand = Operand::StaticVariable(ExternalReference(counter)); 1479 if (value == 1) { 1480 inc(operand); 1481 } else { 1482 add(operand, Immediate(value)); 1483 } 1484 } 1485} 1486 1487 1488void MacroAssembler::DecrementCounter(StatsCounter* counter, int value) { 1489 ASSERT(value > 0); 1490 if (FLAG_native_code_counters && counter->Enabled()) { 1491 Operand operand = Operand::StaticVariable(ExternalReference(counter)); 1492 if (value == 1) { 1493 dec(operand); 1494 } else { 1495 sub(operand, Immediate(value)); 1496 } 1497 } 1498} 1499 1500 1501void MacroAssembler::IncrementCounter(Condition cc, 1502 StatsCounter* counter, 1503 int value) { 1504 ASSERT(value > 0); 1505 if (FLAG_native_code_counters && counter->Enabled()) { 1506 Label skip; 1507 j(NegateCondition(cc), &skip); 1508 pushfd(); 1509 IncrementCounter(counter, value); 1510 popfd(); 1511 bind(&skip); 1512 } 1513} 1514 1515 1516void MacroAssembler::DecrementCounter(Condition cc, 1517 StatsCounter* counter, 1518 int value) { 1519 ASSERT(value > 0); 1520 if (FLAG_native_code_counters && counter->Enabled()) { 1521 Label skip; 1522 j(NegateCondition(cc), &skip); 1523 pushfd(); 1524 DecrementCounter(counter, value); 1525 popfd(); 1526 bind(&skip); 1527 } 1528} 1529 1530 1531void MacroAssembler::Assert(Condition cc, const char* msg) { 1532 if (FLAG_debug_code) Check(cc, msg); 1533} 1534 1535 1536void MacroAssembler::AssertFastElements(Register elements) { 1537 if (FLAG_debug_code) { 1538 Label ok; 1539 cmp(FieldOperand(elements, HeapObject::kMapOffset), 1540 Immediate(Factory::fixed_array_map())); 1541 j(equal, &ok); 1542 cmp(FieldOperand(elements, HeapObject::kMapOffset), 1543 Immediate(Factory::fixed_cow_array_map())); 1544 j(equal, &ok); 1545 Abort("JSObject with fast elements map has slow elements"); 1546 bind(&ok); 1547 } 1548} 1549 1550 1551void MacroAssembler::Check(Condition cc, const char* msg) { 1552 Label L; 1553 j(cc, &L, taken); 1554 Abort(msg); 1555 // will not return here 1556 bind(&L); 1557} 1558 1559 1560void MacroAssembler::CheckStackAlignment() { 1561 int frame_alignment = OS::ActivationFrameAlignment(); 1562 int frame_alignment_mask = frame_alignment - 1; 1563 if (frame_alignment > kPointerSize) { 1564 ASSERT(IsPowerOf2(frame_alignment)); 1565 Label alignment_as_expected; 1566 test(esp, Immediate(frame_alignment_mask)); 1567 j(zero, &alignment_as_expected); 1568 // Abort if stack is not aligned. 1569 int3(); 1570 bind(&alignment_as_expected); 1571 } 1572} 1573 1574 1575void MacroAssembler::Abort(const char* msg) { 1576 // We want to pass the msg string like a smi to avoid GC 1577 // problems, however msg is not guaranteed to be aligned 1578 // properly. Instead, we pass an aligned pointer that is 1579 // a proper v8 smi, but also pass the alignment difference 1580 // from the real pointer as a smi. 1581 intptr_t p1 = reinterpret_cast<intptr_t>(msg); 1582 intptr_t p0 = (p1 & ~kSmiTagMask) + kSmiTag; 1583 ASSERT(reinterpret_cast<Object*>(p0)->IsSmi()); 1584#ifdef DEBUG 1585 if (msg != NULL) { 1586 RecordComment("Abort message: "); 1587 RecordComment(msg); 1588 } 1589#endif 1590 // Disable stub call restrictions to always allow calls to abort. 1591 set_allow_stub_calls(true); 1592 1593 push(eax); 1594 push(Immediate(p0)); 1595 push(Immediate(reinterpret_cast<intptr_t>(Smi::FromInt(p1 - p0)))); 1596 CallRuntime(Runtime::kAbort, 2); 1597 // will not return here 1598 int3(); 1599} 1600 1601 1602void MacroAssembler::JumpIfNotNumber(Register reg, 1603 TypeInfo info, 1604 Label* on_not_number) { 1605 if (FLAG_debug_code) AbortIfSmi(reg); 1606 if (!info.IsNumber()) { 1607 cmp(FieldOperand(reg, HeapObject::kMapOffset), 1608 Factory::heap_number_map()); 1609 j(not_equal, on_not_number); 1610 } 1611} 1612 1613 1614void MacroAssembler::ConvertToInt32(Register dst, 1615 Register source, 1616 Register scratch, 1617 TypeInfo info, 1618 Label* on_not_int32) { 1619 if (FLAG_debug_code) { 1620 AbortIfSmi(source); 1621 AbortIfNotNumber(source); 1622 } 1623 if (info.IsInteger32()) { 1624 cvttsd2si(dst, FieldOperand(source, HeapNumber::kValueOffset)); 1625 } else { 1626 Label done; 1627 bool push_pop = (scratch.is(no_reg) && dst.is(source)); 1628 ASSERT(!scratch.is(source)); 1629 if (push_pop) { 1630 push(dst); 1631 scratch = dst; 1632 } 1633 if (scratch.is(no_reg)) scratch = dst; 1634 cvttsd2si(scratch, FieldOperand(source, HeapNumber::kValueOffset)); 1635 cmp(scratch, 0x80000000u); 1636 if (push_pop) { 1637 j(not_equal, &done); 1638 pop(dst); 1639 jmp(on_not_int32); 1640 } else { 1641 j(equal, on_not_int32); 1642 } 1643 1644 bind(&done); 1645 if (push_pop) { 1646 add(Operand(esp), Immediate(kPointerSize)); // Pop. 1647 } 1648 if (!scratch.is(dst)) { 1649 mov(dst, scratch); 1650 } 1651 } 1652} 1653 1654 1655void MacroAssembler::LoadPowerOf2(XMMRegister dst, 1656 Register scratch, 1657 int power) { 1658 ASSERT(is_uintn(power + HeapNumber::kExponentBias, 1659 HeapNumber::kExponentBits)); 1660 mov(scratch, Immediate(power + HeapNumber::kExponentBias)); 1661 movd(dst, Operand(scratch)); 1662 psllq(dst, HeapNumber::kMantissaBits); 1663} 1664 1665 1666void MacroAssembler::JumpIfInstanceTypeIsNotSequentialAscii( 1667 Register instance_type, 1668 Register scratch, 1669 Label* failure) { 1670 if (!scratch.is(instance_type)) { 1671 mov(scratch, instance_type); 1672 } 1673 and_(scratch, 1674 kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask); 1675 cmp(scratch, kStringTag | kSeqStringTag | kAsciiStringTag); 1676 j(not_equal, failure); 1677} 1678 1679 1680void MacroAssembler::JumpIfNotBothSequentialAsciiStrings(Register object1, 1681 Register object2, 1682 Register scratch1, 1683 Register scratch2, 1684 Label* failure) { 1685 // Check that both objects are not smis. 1686 ASSERT_EQ(0, kSmiTag); 1687 mov(scratch1, Operand(object1)); 1688 and_(scratch1, Operand(object2)); 1689 test(scratch1, Immediate(kSmiTagMask)); 1690 j(zero, failure); 1691 1692 // Load instance type for both strings. 1693 mov(scratch1, FieldOperand(object1, HeapObject::kMapOffset)); 1694 mov(scratch2, FieldOperand(object2, HeapObject::kMapOffset)); 1695 movzx_b(scratch1, FieldOperand(scratch1, Map::kInstanceTypeOffset)); 1696 movzx_b(scratch2, FieldOperand(scratch2, Map::kInstanceTypeOffset)); 1697 1698 // Check that both are flat ascii strings. 1699 const int kFlatAsciiStringMask = 1700 kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask; 1701 const int kFlatAsciiStringTag = ASCII_STRING_TYPE; 1702 // Interleave bits from both instance types and compare them in one check. 1703 ASSERT_EQ(0, kFlatAsciiStringMask & (kFlatAsciiStringMask << 3)); 1704 and_(scratch1, kFlatAsciiStringMask); 1705 and_(scratch2, kFlatAsciiStringMask); 1706 lea(scratch1, Operand(scratch1, scratch2, times_8, 0)); 1707 cmp(scratch1, kFlatAsciiStringTag | (kFlatAsciiStringTag << 3)); 1708 j(not_equal, failure); 1709} 1710 1711 1712void MacroAssembler::PrepareCallCFunction(int num_arguments, Register scratch) { 1713 int frameAlignment = OS::ActivationFrameAlignment(); 1714 if (frameAlignment != 0) { 1715 // Make stack end at alignment and make room for num_arguments words 1716 // and the original value of esp. 1717 mov(scratch, esp); 1718 sub(Operand(esp), Immediate((num_arguments + 1) * kPointerSize)); 1719 ASSERT(IsPowerOf2(frameAlignment)); 1720 and_(esp, -frameAlignment); 1721 mov(Operand(esp, num_arguments * kPointerSize), scratch); 1722 } else { 1723 sub(Operand(esp), Immediate(num_arguments * kPointerSize)); 1724 } 1725} 1726 1727 1728void MacroAssembler::CallCFunction(ExternalReference function, 1729 int num_arguments) { 1730 // Trashing eax is ok as it will be the return value. 1731 mov(Operand(eax), Immediate(function)); 1732 CallCFunction(eax, num_arguments); 1733} 1734 1735 1736void MacroAssembler::CallCFunction(Register function, 1737 int num_arguments) { 1738 // Check stack alignment. 1739 if (FLAG_debug_code) { 1740 CheckStackAlignment(); 1741 } 1742 1743 call(Operand(function)); 1744 if (OS::ActivationFrameAlignment() != 0) { 1745 mov(esp, Operand(esp, num_arguments * kPointerSize)); 1746 } else { 1747 add(Operand(esp), Immediate(num_arguments * sizeof(int32_t))); 1748 } 1749} 1750 1751 1752CodePatcher::CodePatcher(byte* address, int size) 1753 : address_(address), size_(size), masm_(address, size + Assembler::kGap) { 1754 // Create a new macro assembler pointing to the address of the code to patch. 1755 // The size is adjusted with kGap on order for the assembler to generate size 1756 // bytes of instructions without failing with buffer size constraints. 1757 ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap); 1758} 1759 1760 1761CodePatcher::~CodePatcher() { 1762 // Indicate that code has changed. 1763 CPU::FlushICache(address_, size_); 1764 1765 // Check that the code was patched as expected. 1766 ASSERT(masm_.pc_ == address_ + size_); 1767 ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap); 1768} 1769 1770 1771} } // namespace v8::internal 1772 1773#endif // V8_TARGET_ARCH_IA32 1774