1// Copyright 2014 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#ifndef V8_S390_MACRO_ASSEMBLER_S390_H_
6#define V8_S390_MACRO_ASSEMBLER_S390_H_
7
8#include "src/assembler.h"
9#include "src/bailout-reason.h"
10#include "src/frames.h"
11#include "src/globals.h"
12
13namespace v8 {
14namespace internal {
15
16// Give alias names to registers for calling conventions.
17const Register kReturnRegister0 = {Register::kCode_r2};
18const Register kReturnRegister1 = {Register::kCode_r3};
19const Register kReturnRegister2 = {Register::kCode_r4};
20const Register kJSFunctionRegister = {Register::kCode_r3};
21const Register kContextRegister = {Register::kCode_r13};
22const Register kAllocateSizeRegister = {Register::kCode_r3};
23const Register kInterpreterAccumulatorRegister = {Register::kCode_r2};
24const Register kInterpreterBytecodeOffsetRegister = {Register::kCode_r6};
25const Register kInterpreterBytecodeArrayRegister = {Register::kCode_r7};
26const Register kInterpreterDispatchTableRegister = {Register::kCode_r8};
27const Register kJavaScriptCallArgCountRegister = {Register::kCode_r2};
28const Register kJavaScriptCallNewTargetRegister = {Register::kCode_r5};
29const Register kRuntimeCallFunctionRegister = {Register::kCode_r3};
30const Register kRuntimeCallArgCountRegister = {Register::kCode_r2};
31
32// ----------------------------------------------------------------------------
33// Static helper functions
34
35// Generate a MemOperand for loading a field from an object.
36inline MemOperand FieldMemOperand(Register object, int offset) {
37  return MemOperand(object, offset - kHeapObjectTag);
38}
39
40// Generate a MemOperand for loading a field from an object.
41inline MemOperand FieldMemOperand(Register object, Register index, int offset) {
42  return MemOperand(object, index, offset - kHeapObjectTag);
43}
44
45// Generate a MemOperand for loading a field from Root register
46inline MemOperand RootMemOperand(Heap::RootListIndex index) {
47  return MemOperand(kRootRegister, index << kPointerSizeLog2);
48}
49
50// Flags used for AllocateHeapNumber
51enum TaggingMode {
52  // Tag the result.
53  TAG_RESULT,
54  // Don't tag
55  DONT_TAG_RESULT
56};
57
58enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
59enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
60enum PointersToHereCheck {
61  kPointersToHereMaybeInteresting,
62  kPointersToHereAreAlwaysInteresting
63};
64enum LinkRegisterStatus { kLRHasNotBeenSaved, kLRHasBeenSaved };
65
66Register GetRegisterThatIsNotOneOf(Register reg1, Register reg2 = no_reg,
67                                   Register reg3 = no_reg,
68                                   Register reg4 = no_reg,
69                                   Register reg5 = no_reg,
70                                   Register reg6 = no_reg);
71
72#ifdef DEBUG
73bool AreAliased(Register reg1, Register reg2, Register reg3 = no_reg,
74                Register reg4 = no_reg, Register reg5 = no_reg,
75                Register reg6 = no_reg, Register reg7 = no_reg,
76                Register reg8 = no_reg, Register reg9 = no_reg,
77                Register reg10 = no_reg);
78#endif
79
80// These exist to provide portability between 32 and 64bit
81#if V8_TARGET_ARCH_S390X
82#define Div divd
83
84// The length of the arithmetic operation is the length
85// of the register.
86
87// Length:
88// H = halfword
89// W = word
90
91// arithmetics and bitwise
92#define AddMI agsi
93#define AddRR agr
94#define SubRR sgr
95#define AndRR ngr
96#define OrRR ogr
97#define XorRR xgr
98#define LoadComplementRR lcgr
99#define LoadNegativeRR lngr
100
101// Distinct Operands
102#define AddP_RRR agrk
103#define AddPImm_RRI aghik
104#define AddLogicalP_RRR algrk
105#define SubP_RRR sgrk
106#define SubLogicalP_RRR slgrk
107#define AndP_RRR ngrk
108#define OrP_RRR ogrk
109#define XorP_RRR xgrk
110
111// Load / Store
112#define LoadRR lgr
113#define LoadAndTestRR ltgr
114#define LoadImmP lghi
115
116// Compare
117#define CmpPH cghi
118#define CmpLogicalPW clgfi
119
120// Shifts
121#define ShiftLeftP sllg
122#define ShiftRightP srlg
123#define ShiftLeftArithP slag
124#define ShiftRightArithP srag
125#else
126
127// arithmetics and bitwise
128// Reg2Reg
129#define AddMI asi
130#define AddRR ar
131#define SubRR sr
132#define AndRR nr
133#define OrRR or_z
134#define XorRR xr
135#define LoadComplementRR lcr
136#define LoadNegativeRR lnr
137
138// Distinct Operands
139#define AddP_RRR ark
140#define AddPImm_RRI ahik
141#define AddLogicalP_RRR alrk
142#define SubP_RRR srk
143#define SubLogicalP_RRR slrk
144#define AndP_RRR nrk
145#define OrP_RRR ork
146#define XorP_RRR xrk
147
148// Load / Store
149#define LoadRR lr
150#define LoadAndTestRR ltr
151#define LoadImmP lhi
152
153// Compare
154#define CmpPH chi
155#define CmpLogicalPW clfi
156
157// Shifts
158#define ShiftLeftP ShiftLeft
159#define ShiftRightP ShiftRight
160#define ShiftLeftArithP ShiftLeftArith
161#define ShiftRightArithP ShiftRightArith
162
163#endif
164
165// MacroAssembler implements a collection of frequently used macros.
166class MacroAssembler : public Assembler {
167 public:
168  MacroAssembler(Isolate* isolate, void* buffer, int size,
169                 CodeObjectRequired create_code_object);
170
171  // Returns the size of a call in instructions.
172  static int CallSize(Register target);
173  int CallSize(Address target, RelocInfo::Mode rmode, Condition cond = al);
174  static int CallSizeNotPredictableCodeSize(Address target,
175                                            RelocInfo::Mode rmode,
176                                            Condition cond = al);
177
178  // Jump, Call, and Ret pseudo instructions implementing inter-working.
179  void Jump(Register target);
180  void JumpToJSEntry(Register target);
181  void Jump(Address target, RelocInfo::Mode rmode, Condition cond = al,
182            CRegister cr = cr7);
183  void Jump(Handle<Code> code, RelocInfo::Mode rmode, Condition cond = al);
184  void Call(Register target);
185  void CallJSEntry(Register target);
186  void Call(Address target, RelocInfo::Mode rmode, Condition cond = al);
187  int CallSize(Handle<Code> code,
188               RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
189               TypeFeedbackId ast_id = TypeFeedbackId::None(),
190               Condition cond = al);
191  void Call(Handle<Code> code, RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
192            TypeFeedbackId ast_id = TypeFeedbackId::None(),
193            Condition cond = al);
194  void Ret() { b(r14); }
195  void Ret(Condition cond) { b(cond, r14); }
196
197  // Emit code that loads |parameter_index|'th parameter from the stack to
198  // the register according to the CallInterfaceDescriptor definition.
199  // |sp_to_caller_sp_offset_in_words| specifies the number of words pushed
200  // below the caller's sp.
201  template <class Descriptor>
202  void LoadParameterFromStack(
203      Register reg, typename Descriptor::ParameterIndices parameter_index,
204      int sp_to_ra_offset_in_words = 0) {
205    DCHECK(Descriptor::kPassLastArgsOnStack);
206    UNIMPLEMENTED();
207  }
208
209  // Emit code to discard a non-negative number of pointer-sized elements
210  // from the stack, clobbering only the sp register.
211  void Drop(int count);
212  void Drop(Register count, Register scratch = r0);
213
214  void Ret(int drop) {
215    Drop(drop);
216    Ret();
217  }
218
219  void Call(Label* target);
220
221  // Register move. May do nothing if the registers are identical.
222  void Move(Register dst, Smi* smi) { LoadSmiLiteral(dst, smi); }
223  void Move(Register dst, Handle<Object> value);
224  void Move(Register dst, Register src, Condition cond = al);
225  void Move(DoubleRegister dst, DoubleRegister src);
226
227  void MultiPush(RegList regs, Register location = sp);
228  void MultiPop(RegList regs, Register location = sp);
229
230  void MultiPushDoubles(RegList dregs, Register location = sp);
231  void MultiPopDoubles(RegList dregs, Register location = sp);
232
233  // Load an object from the root table.
234  void LoadRoot(Register destination, Heap::RootListIndex index,
235                Condition cond = al);
236  // Store an object to the root table.
237  void StoreRoot(Register source, Heap::RootListIndex index,
238                 Condition cond = al);
239
240  //--------------------------------------------------------------------------
241  // S390 Macro Assemblers for Instructions
242  //--------------------------------------------------------------------------
243
244  // Arithmetic Operations
245
246  // Add (Register - Immediate)
247  void Add32(Register dst, const Operand& imm);
248  void Add32_RI(Register dst, const Operand& imm);
249  void AddP(Register dst, const Operand& imm);
250  void Add32(Register dst, Register src, const Operand& imm);
251  void Add32_RRI(Register dst, Register src, const Operand& imm);
252  void AddP(Register dst, Register src, const Operand& imm);
253
254  // Add (Register - Register)
255  void Add32(Register dst, Register src);
256  void AddP(Register dst, Register src);
257  void AddP_ExtendSrc(Register dst, Register src);
258  void Add32(Register dst, Register src1, Register src2);
259  void AddP(Register dst, Register src1, Register src2);
260  void AddP_ExtendSrc(Register dst, Register src1, Register src2);
261
262  // Add (Register - Mem)
263  void Add32(Register dst, const MemOperand& opnd);
264  void AddP(Register dst, const MemOperand& opnd);
265  void AddP_ExtendSrc(Register dst, const MemOperand& opnd);
266
267  // Add (Mem - Immediate)
268  void Add32(const MemOperand& opnd, const Operand& imm);
269  void AddP(const MemOperand& opnd, const Operand& imm);
270
271  // Add Logical (Register - Register)
272  void AddLogical32(Register dst, Register src1, Register src2);
273
274  // Add Logical With Carry (Register - Register)
275  void AddLogicalWithCarry32(Register dst, Register src1, Register src2);
276
277  // Add Logical (Register - Immediate)
278  void AddLogical(Register dst, const Operand& imm);
279  void AddLogicalP(Register dst, const Operand& imm);
280
281  // Add Logical (Register - Mem)
282  void AddLogical(Register dst, const MemOperand& opnd);
283  void AddLogicalP(Register dst, const MemOperand& opnd);
284
285  // Subtract (Register - Immediate)
286  void Sub32(Register dst, const Operand& imm);
287  void Sub32_RI(Register dst, const Operand& imm) { Sub32(dst, imm); }
288  void SubP(Register dst, const Operand& imm);
289  void Sub32(Register dst, Register src, const Operand& imm);
290  void Sub32_RRI(Register dst, Register src, const Operand& imm) {
291    Sub32(dst, src, imm);
292  }
293  void SubP(Register dst, Register src, const Operand& imm);
294
295  // Subtract (Register - Register)
296  void Sub32(Register dst, Register src);
297  void SubP(Register dst, Register src);
298  void SubP_ExtendSrc(Register dst, Register src);
299  void Sub32(Register dst, Register src1, Register src2);
300  void SubP(Register dst, Register src1, Register src2);
301  void SubP_ExtendSrc(Register dst, Register src1, Register src2);
302
303  // Subtract (Register - Mem)
304  void Sub32(Register dst, const MemOperand& opnd);
305  void SubP(Register dst, const MemOperand& opnd);
306  void SubP_ExtendSrc(Register dst, const MemOperand& opnd);
307
308  // Subtract Logical (Register - Mem)
309  void SubLogical(Register dst, const MemOperand& opnd);
310  void SubLogicalP(Register dst, const MemOperand& opnd);
311  void SubLogicalP_ExtendSrc(Register dst, const MemOperand& opnd);
312  // Subtract Logical 32-bit
313  void SubLogical32(Register dst, Register src1, Register src2);
314  // Subtract Logical With Borrow 32-bit
315  void SubLogicalWithBorrow32(Register dst, Register src1, Register src2);
316
317  // Multiply
318  void MulP(Register dst, const Operand& opnd);
319  void MulP(Register dst, Register src);
320  void MulP(Register dst, const MemOperand& opnd);
321  void Mul(Register dst, Register src1, Register src2);
322  void Mul32(Register dst, const MemOperand& src1);
323  void Mul32(Register dst, Register src1);
324  void Mul32(Register dst, const Operand& src1);
325  void MulHigh32(Register dst, Register src1, const MemOperand& src2);
326  void MulHigh32(Register dst, Register src1, Register src2);
327  void MulHigh32(Register dst, Register src1, const Operand& src2);
328  void MulHighU32(Register dst, Register src1, const MemOperand& src2);
329  void MulHighU32(Register dst, Register src1, Register src2);
330  void MulHighU32(Register dst, Register src1, const Operand& src2);
331  void Mul32WithOverflowIfCCUnequal(Register dst, Register src1,
332                                    const MemOperand& src2);
333  void Mul32WithOverflowIfCCUnequal(Register dst, Register src1, Register src2);
334  void Mul32WithOverflowIfCCUnequal(Register dst, Register src1,
335                                    const Operand& src2);
336  void Mul64(Register dst, const MemOperand& src1);
337  void Mul64(Register dst, Register src1);
338  void Mul64(Register dst, const Operand& src1);
339  void MulPWithCondition(Register dst, Register src1, Register src2);
340
341  // Divide
342  void DivP(Register dividend, Register divider);
343  void Div32(Register dst, Register src1, const MemOperand& src2);
344  void Div32(Register dst, Register src1, Register src2);
345  void Div32(Register dst, Register src1, const Operand& src2);
346  void DivU32(Register dst, Register src1, const MemOperand& src2);
347  void DivU32(Register dst, Register src1, Register src2);
348  void DivU32(Register dst, Register src1, const Operand& src2);
349
350  // Mod
351  void Mod32(Register dst, Register src1, const MemOperand& src2);
352  void Mod32(Register dst, Register src1, Register src2);
353  void Mod32(Register dst, Register src1, const Operand& src2);
354  void ModU32(Register dst, Register src1, const MemOperand& src2);
355  void ModU32(Register dst, Register src1, Register src2);
356  void ModU32(Register dst, Register src1, const Operand& src2);
357
358  // Square root
359  void Sqrt(DoubleRegister result, DoubleRegister input);
360  void Sqrt(DoubleRegister result, const MemOperand& input);
361
362  // Compare
363  void Cmp32(Register src1, Register src2);
364  void CmpP(Register src1, Register src2);
365  void Cmp32(Register dst, const Operand& opnd);
366  void CmpP(Register dst, const Operand& opnd);
367  void Cmp32(Register dst, const MemOperand& opnd);
368  void CmpP(Register dst, const MemOperand& opnd);
369
370  // Compare Logical
371  void CmpLogical32(Register src1, Register src2);
372  void CmpLogicalP(Register src1, Register src2);
373  void CmpLogical32(Register src1, const Operand& opnd);
374  void CmpLogicalP(Register src1, const Operand& opnd);
375  void CmpLogical32(Register dst, const MemOperand& opnd);
376  void CmpLogicalP(Register dst, const MemOperand& opnd);
377
378  // Compare Logical Byte (CLI/CLIY)
379  void CmpLogicalByte(const MemOperand& mem, const Operand& imm);
380
381  // Load 32bit
382  void Load(Register dst, const MemOperand& opnd);
383  void Load(Register dst, const Operand& opnd);
384  void LoadW(Register dst, const MemOperand& opnd, Register scratch = no_reg);
385  void LoadW(Register dst, Register src);
386  void LoadlW(Register dst, const MemOperand& opnd, Register scratch = no_reg);
387  void LoadlW(Register dst, Register src);
388  void LoadLogicalHalfWordP(Register dst, const MemOperand& opnd);
389  void LoadLogicalHalfWordP(Register dst, Register src);
390  void LoadB(Register dst, const MemOperand& opnd);
391  void LoadB(Register dst, Register src);
392  void LoadlB(Register dst, const MemOperand& opnd);
393  void LoadlB(Register dst, Register src);
394
395  void LoadLogicalReversedWordP(Register dst, const MemOperand& opnd);
396  void LoadLogicalReversedHalfWordP(Register dst, const MemOperand& opnd);
397
398  // Load And Test
399  void LoadAndTest32(Register dst, Register src);
400  void LoadAndTestP_ExtendSrc(Register dst, Register src);
401  void LoadAndTestP(Register dst, Register src);
402
403  void LoadAndTest32(Register dst, const MemOperand& opnd);
404  void LoadAndTestP(Register dst, const MemOperand& opnd);
405
406  // Load Floating Point
407  void LoadDouble(DoubleRegister dst, const MemOperand& opnd);
408  void LoadFloat32(DoubleRegister dst, const MemOperand& opnd);
409  void LoadFloat32ConvertToDouble(DoubleRegister dst, const MemOperand& mem);
410
411  // Load On Condition
412  void LoadOnConditionP(Condition cond, Register dst, Register src);
413
414  void LoadPositiveP(Register result, Register input);
415  void LoadPositive32(Register result, Register input);
416
417  // Store Floating Point
418  void StoreDouble(DoubleRegister dst, const MemOperand& opnd);
419  void StoreFloat32(DoubleRegister dst, const MemOperand& opnd);
420  void StoreDoubleAsFloat32(DoubleRegister src, const MemOperand& mem,
421                            DoubleRegister scratch);
422
423  void Branch(Condition c, const Operand& opnd);
424  void BranchOnCount(Register r1, Label* l);
425
426  // Shifts
427  void ShiftLeft(Register dst, Register src, Register val);
428  void ShiftLeft(Register dst, Register src, const Operand& val);
429  void ShiftRight(Register dst, Register src, Register val);
430  void ShiftRight(Register dst, Register src, const Operand& val);
431  void ShiftLeftArith(Register dst, Register src, Register shift);
432  void ShiftLeftArith(Register dst, Register src, const Operand& val);
433  void ShiftRightArith(Register dst, Register src, Register shift);
434  void ShiftRightArith(Register dst, Register src, const Operand& val);
435
436  void ClearRightImm(Register dst, Register src, const Operand& val);
437
438  // Bitwise operations
439  void And(Register dst, Register src);
440  void AndP(Register dst, Register src);
441  void And(Register dst, Register src1, Register src2);
442  void AndP(Register dst, Register src1, Register src2);
443  void And(Register dst, const MemOperand& opnd);
444  void AndP(Register dst, const MemOperand& opnd);
445  void And(Register dst, const Operand& opnd);
446  void AndP(Register dst, const Operand& opnd);
447  void And(Register dst, Register src, const Operand& opnd);
448  void AndP(Register dst, Register src, const Operand& opnd);
449  void Or(Register dst, Register src);
450  void OrP(Register dst, Register src);
451  void Or(Register dst, Register src1, Register src2);
452  void OrP(Register dst, Register src1, Register src2);
453  void Or(Register dst, const MemOperand& opnd);
454  void OrP(Register dst, const MemOperand& opnd);
455  void Or(Register dst, const Operand& opnd);
456  void OrP(Register dst, const Operand& opnd);
457  void Or(Register dst, Register src, const Operand& opnd);
458  void OrP(Register dst, Register src, const Operand& opnd);
459  void Xor(Register dst, Register src);
460  void XorP(Register dst, Register src);
461  void Xor(Register dst, Register src1, Register src2);
462  void XorP(Register dst, Register src1, Register src2);
463  void Xor(Register dst, const MemOperand& opnd);
464  void XorP(Register dst, const MemOperand& opnd);
465  void Xor(Register dst, const Operand& opnd);
466  void XorP(Register dst, const Operand& opnd);
467  void Xor(Register dst, Register src, const Operand& opnd);
468  void XorP(Register dst, Register src, const Operand& opnd);
469  void Popcnt32(Register dst, Register src);
470  void Not32(Register dst, Register src = no_reg);
471  void Not64(Register dst, Register src = no_reg);
472  void NotP(Register dst, Register src = no_reg);
473
474#ifdef V8_TARGET_ARCH_S390X
475  void Popcnt64(Register dst, Register src);
476#endif
477
478  void mov(Register dst, const Operand& src);
479
480  void CleanUInt32(Register x) {
481#ifdef V8_TARGET_ARCH_S390X
482    llgfr(x, x);
483#endif
484  }
485
486  // ---------------------------------------------------------------------------
487  // GC Support
488
489  void IncrementalMarkingRecordWriteHelper(Register object, Register value,
490                                           Register address);
491
492  enum RememberedSetFinalAction { kReturnAtEnd, kFallThroughAtEnd };
493
494  // Record in the remembered set the fact that we have a pointer to new space
495  // at the address pointed to by the addr register.  Only works if addr is not
496  // in new space.
497  void RememberedSetHelper(Register object,  // Used for debug code.
498                           Register addr, Register scratch,
499                           SaveFPRegsMode save_fp,
500                           RememberedSetFinalAction and_then);
501
502  void CheckPageFlag(Register object, Register scratch, int mask, Condition cc,
503                     Label* condition_met);
504
505  // Check if object is in new space.  Jumps if the object is not in new space.
506  // The register scratch can be object itself, but scratch will be clobbered.
507  void JumpIfNotInNewSpace(Register object, Register scratch, Label* branch) {
508    InNewSpace(object, scratch, eq, branch);
509  }
510
511  // Check if object is in new space.  Jumps if the object is in new space.
512  // The register scratch can be object itself, but it will be clobbered.
513  void JumpIfInNewSpace(Register object, Register scratch, Label* branch) {
514    InNewSpace(object, scratch, ne, branch);
515  }
516
517  // Check if an object has a given incremental marking color.
518  void HasColor(Register object, Register scratch0, Register scratch1,
519                Label* has_color, int first_bit, int second_bit);
520
521  void JumpIfBlack(Register object, Register scratch0, Register scratch1,
522                   Label* on_black);
523
524  // Checks the color of an object.  If the object is white we jump to the
525  // incremental marker.
526  void JumpIfWhite(Register value, Register scratch1, Register scratch2,
527                   Register scratch3, Label* value_is_white);
528
529  // Notify the garbage collector that we wrote a pointer into an object.
530  // |object| is the object being stored into, |value| is the object being
531  // stored.  value and scratch registers are clobbered by the operation.
532  // The offset is the offset from the start of the object, not the offset from
533  // the tagged HeapObject pointer.  For use with FieldMemOperand(reg, off).
534  void RecordWriteField(
535      Register object, int offset, Register value, Register scratch,
536      LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
537      RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
538      SmiCheck smi_check = INLINE_SMI_CHECK,
539      PointersToHereCheck pointers_to_here_check_for_value =
540          kPointersToHereMaybeInteresting);
541
542  // As above, but the offset has the tag presubtracted.  For use with
543  // MemOperand(reg, off).
544  inline void RecordWriteContextSlot(
545      Register context, int offset, Register value, Register scratch,
546      LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
547      RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
548      SmiCheck smi_check = INLINE_SMI_CHECK,
549      PointersToHereCheck pointers_to_here_check_for_value =
550          kPointersToHereMaybeInteresting) {
551    RecordWriteField(context, offset + kHeapObjectTag, value, scratch,
552                     lr_status, save_fp, remembered_set_action, smi_check,
553                     pointers_to_here_check_for_value);
554  }
555
556  // Notify the garbage collector that we wrote a code entry into a
557  // JSFunction. Only scratch is clobbered by the operation.
558  void RecordWriteCodeEntryField(Register js_function, Register code_entry,
559                                 Register scratch);
560
561  void RecordWriteForMap(Register object, Register map, Register dst,
562                         LinkRegisterStatus lr_status, SaveFPRegsMode save_fp);
563
564  // For a given |object| notify the garbage collector that the slot |address|
565  // has been written.  |value| is the object being stored. The value and
566  // address registers are clobbered by the operation.
567  void RecordWrite(
568      Register object, Register address, Register value,
569      LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
570      RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
571      SmiCheck smi_check = INLINE_SMI_CHECK,
572      PointersToHereCheck pointers_to_here_check_for_value =
573          kPointersToHereMaybeInteresting);
574
575  void push(Register src) {
576    lay(sp, MemOperand(sp, -kPointerSize));
577    StoreP(src, MemOperand(sp));
578  }
579
580  void pop(Register dst) {
581    LoadP(dst, MemOperand(sp));
582    la(sp, MemOperand(sp, kPointerSize));
583  }
584
585  void pop() { la(sp, MemOperand(sp, kPointerSize)); }
586
587  void Push(Register src) { push(src); }
588
589  // Push a handle.
590  void Push(Handle<Object> handle);
591  void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
592
593  // Push two registers.  Pushes leftmost register first (to highest address).
594  void Push(Register src1, Register src2) {
595    lay(sp, MemOperand(sp, -kPointerSize * 2));
596    StoreP(src1, MemOperand(sp, kPointerSize));
597    StoreP(src2, MemOperand(sp, 0));
598  }
599
600  // Push three registers.  Pushes leftmost register first (to highest address).
601  void Push(Register src1, Register src2, Register src3) {
602    lay(sp, MemOperand(sp, -kPointerSize * 3));
603    StoreP(src1, MemOperand(sp, kPointerSize * 2));
604    StoreP(src2, MemOperand(sp, kPointerSize));
605    StoreP(src3, MemOperand(sp, 0));
606  }
607
608  // Push four registers.  Pushes leftmost register first (to highest address).
609  void Push(Register src1, Register src2, Register src3, Register src4) {
610    lay(sp, MemOperand(sp, -kPointerSize * 4));
611    StoreP(src1, MemOperand(sp, kPointerSize * 3));
612    StoreP(src2, MemOperand(sp, kPointerSize * 2));
613    StoreP(src3, MemOperand(sp, kPointerSize));
614    StoreP(src4, MemOperand(sp, 0));
615  }
616
617  // Push five registers.  Pushes leftmost register first (to highest address).
618  void Push(Register src1, Register src2, Register src3, Register src4,
619            Register src5) {
620    DCHECK(!src1.is(src2));
621    DCHECK(!src1.is(src3));
622    DCHECK(!src2.is(src3));
623    DCHECK(!src1.is(src4));
624    DCHECK(!src2.is(src4));
625    DCHECK(!src3.is(src4));
626    DCHECK(!src1.is(src5));
627    DCHECK(!src2.is(src5));
628    DCHECK(!src3.is(src5));
629    DCHECK(!src4.is(src5));
630
631    lay(sp, MemOperand(sp, -kPointerSize * 5));
632    StoreP(src1, MemOperand(sp, kPointerSize * 4));
633    StoreP(src2, MemOperand(sp, kPointerSize * 3));
634    StoreP(src3, MemOperand(sp, kPointerSize * 2));
635    StoreP(src4, MemOperand(sp, kPointerSize));
636    StoreP(src5, MemOperand(sp, 0));
637  }
638
639  void Pop(Register dst) { pop(dst); }
640
641  // Pop two registers. Pops rightmost register first (from lower address).
642  void Pop(Register src1, Register src2) {
643    LoadP(src2, MemOperand(sp, 0));
644    LoadP(src1, MemOperand(sp, kPointerSize));
645    la(sp, MemOperand(sp, 2 * kPointerSize));
646  }
647
648  // Pop three registers.  Pops rightmost register first (from lower address).
649  void Pop(Register src1, Register src2, Register src3) {
650    LoadP(src3, MemOperand(sp, 0));
651    LoadP(src2, MemOperand(sp, kPointerSize));
652    LoadP(src1, MemOperand(sp, 2 * kPointerSize));
653    la(sp, MemOperand(sp, 3 * kPointerSize));
654  }
655
656  // Pop four registers.  Pops rightmost register first (from lower address).
657  void Pop(Register src1, Register src2, Register src3, Register src4) {
658    LoadP(src4, MemOperand(sp, 0));
659    LoadP(src3, MemOperand(sp, kPointerSize));
660    LoadP(src2, MemOperand(sp, 2 * kPointerSize));
661    LoadP(src1, MemOperand(sp, 3 * kPointerSize));
662    la(sp, MemOperand(sp, 4 * kPointerSize));
663  }
664
665  // Pop five registers.  Pops rightmost register first (from lower address).
666  void Pop(Register src1, Register src2, Register src3, Register src4,
667           Register src5) {
668    LoadP(src5, MemOperand(sp, 0));
669    LoadP(src4, MemOperand(sp, kPointerSize));
670    LoadP(src3, MemOperand(sp, 2 * kPointerSize));
671    LoadP(src2, MemOperand(sp, 3 * kPointerSize));
672    LoadP(src1, MemOperand(sp, 4 * kPointerSize));
673    la(sp, MemOperand(sp, 5 * kPointerSize));
674  }
675
676  // Push a fixed frame, consisting of lr, fp, constant pool.
677  void PushCommonFrame(Register marker_reg = no_reg);
678
679  // Push a standard frame, consisting of lr, fp, constant pool,
680  // context and JS function
681  void PushStandardFrame(Register function_reg);
682
683  void PopCommonFrame(Register marker_reg = no_reg);
684
685  // Restore caller's frame pointer and return address prior to being
686  // overwritten by tail call stack preparation.
687  void RestoreFrameStateForTailCall();
688
689  // Push and pop the registers that can hold pointers, as defined by the
690  // RegList constant kSafepointSavedRegisters.
691  void PushSafepointRegisters();
692  void PopSafepointRegisters();
693  // Store value in register src in the safepoint stack slot for
694  // register dst.
695  void StoreToSafepointRegisterSlot(Register src, Register dst);
696  // Load the value of the src register from its safepoint stack slot
697  // into register dst.
698  void LoadFromSafepointRegisterSlot(Register dst, Register src);
699
700  // Flush the I-cache from asm code. You should use CpuFeatures::FlushICache
701  // from C.
702  // Does not handle errors.
703  void FlushICache(Register address, size_t size, Register scratch);
704
705  // If the value is a NaN, canonicalize the value else, do nothing.
706  void CanonicalizeNaN(const DoubleRegister dst, const DoubleRegister src);
707  void CanonicalizeNaN(const DoubleRegister value) {
708    CanonicalizeNaN(value, value);
709  }
710
711  // Converts the integer (untagged smi) in |src| to a double, storing
712  // the result to |dst|
713  void ConvertIntToDouble(Register src, DoubleRegister dst);
714
715  // Converts the unsigned integer (untagged smi) in |src| to
716  // a double, storing the result to |dst|
717  void ConvertUnsignedIntToDouble(Register src, DoubleRegister dst);
718
719  // Converts the integer (untagged smi) in |src| to
720  // a float, storing the result in |dst|
721  void ConvertIntToFloat(Register src, DoubleRegister dst);
722
723  // Converts the unsigned integer (untagged smi) in |src| to
724  // a float, storing the result in |dst|
725  void ConvertUnsignedIntToFloat(Register src, DoubleRegister dst);
726
727#if V8_TARGET_ARCH_S390X
728  void ConvertInt64ToFloat(Register src, DoubleRegister double_dst);
729  void ConvertInt64ToDouble(Register src, DoubleRegister double_dst);
730  void ConvertUnsignedInt64ToFloat(Register src, DoubleRegister double_dst);
731  void ConvertUnsignedInt64ToDouble(Register src, DoubleRegister double_dst);
732#endif
733
734  void MovIntToFloat(DoubleRegister dst, Register src);
735  void MovFloatToInt(Register dst, DoubleRegister src);
736  void MovDoubleToInt64(Register dst, DoubleRegister src);
737  void MovInt64ToDouble(DoubleRegister dst, Register src);
738  // Converts the double_input to an integer.  Note that, upon return,
739  // the contents of double_dst will also hold the fixed point representation.
740  void ConvertFloat32ToInt64(const DoubleRegister double_input,
741#if !V8_TARGET_ARCH_S390X
742                             const Register dst_hi,
743#endif
744                             const Register dst,
745                             const DoubleRegister double_dst,
746                             FPRoundingMode rounding_mode = kRoundToZero);
747
748  // Converts the double_input to an integer.  Note that, upon return,
749  // the contents of double_dst will also hold the fixed point representation.
750  void ConvertDoubleToInt64(const DoubleRegister double_input,
751#if !V8_TARGET_ARCH_S390X
752                            const Register dst_hi,
753#endif
754                            const Register dst, const DoubleRegister double_dst,
755                            FPRoundingMode rounding_mode = kRoundToZero);
756
757  void ConvertFloat32ToInt32(const DoubleRegister double_input,
758                             const Register dst,
759                             const DoubleRegister double_dst,
760                             FPRoundingMode rounding_mode);
761  void ConvertFloat32ToUnsignedInt32(
762      const DoubleRegister double_input, const Register dst,
763      const DoubleRegister double_dst,
764      FPRoundingMode rounding_mode = kRoundToZero);
765#if V8_TARGET_ARCH_S390X
766  // Converts the double_input to an unsigned integer.  Note that, upon return,
767  // the contents of double_dst will also hold the fixed point representation.
768  void ConvertDoubleToUnsignedInt64(
769      const DoubleRegister double_input, const Register dst,
770      const DoubleRegister double_dst,
771      FPRoundingMode rounding_mode = kRoundToZero);
772  void ConvertFloat32ToUnsignedInt64(
773      const DoubleRegister double_input, const Register dst,
774      const DoubleRegister double_dst,
775      FPRoundingMode rounding_mode = kRoundToZero);
776#endif
777
778#if !V8_TARGET_ARCH_S390X
779  void ShiftLeftPair(Register dst_low, Register dst_high, Register src_low,
780                     Register src_high, Register scratch, Register shift);
781  void ShiftLeftPair(Register dst_low, Register dst_high, Register src_low,
782                     Register src_high, uint32_t shift);
783  void ShiftRightPair(Register dst_low, Register dst_high, Register src_low,
784                      Register src_high, Register scratch, Register shift);
785  void ShiftRightPair(Register dst_low, Register dst_high, Register src_low,
786                      Register src_high, uint32_t shift);
787  void ShiftRightArithPair(Register dst_low, Register dst_high,
788                           Register src_low, Register src_high,
789                           Register scratch, Register shift);
790  void ShiftRightArithPair(Register dst_low, Register dst_high,
791                           Register src_low, Register src_high, uint32_t shift);
792#endif
793
794  // Generates function and stub prologue code.
795  void StubPrologue(StackFrame::Type type, Register base = no_reg,
796                    int prologue_offset = 0);
797  void Prologue(bool code_pre_aging, Register base, int prologue_offset = 0);
798
799  // Enter exit frame.
800  // stack_space - extra stack space, used for parameters before call to C.
801  // At least one slot (for the return address) should be provided.
802  void EnterExitFrame(bool save_doubles, int stack_space = 1,
803                      StackFrame::Type frame_type = StackFrame::EXIT);
804
805  // Leave the current exit frame. Expects the return value in r0.
806  // Expect the number of values, pushed prior to the exit frame, to
807  // remove in a register (or no_reg, if there is nothing to remove).
808  void LeaveExitFrame(bool save_doubles, Register argument_count,
809                      bool restore_context,
810                      bool argument_count_is_length = false);
811
812  // Get the actual activation frame alignment for target environment.
813  static int ActivationFrameAlignment();
814
815  void LoadContext(Register dst, int context_chain_length);
816
817  // Load the global object from the current context.
818  void LoadGlobalObject(Register dst) {
819    LoadNativeContextSlot(Context::EXTENSION_INDEX, dst);
820  }
821
822  // Load the global proxy from the current context.
823  void LoadGlobalProxy(Register dst) {
824    LoadNativeContextSlot(Context::GLOBAL_PROXY_INDEX, dst);
825  }
826
827  void LoadNativeContextSlot(int index, Register dst);
828
829  // Load the initial map from the global function. The registers
830  // function and map can be the same, function is then overwritten.
831  void LoadGlobalFunctionInitialMap(Register function, Register map,
832                                    Register scratch);
833
834  void InitializeRootRegister() {
835    ExternalReference roots_array_start =
836        ExternalReference::roots_array_start(isolate());
837    mov(kRootRegister, Operand(roots_array_start));
838  }
839
840  // ----------------------------------------------------------------
841  // new S390 macro-assembler interfaces that are slightly higher level
842  // than assembler-s390 and may generate variable length sequences
843
844  // load a literal signed int value <value> to GPR <dst>
845  void LoadIntLiteral(Register dst, int value);
846
847  // load an SMI value <value> to GPR <dst>
848  void LoadSmiLiteral(Register dst, Smi* smi);
849
850  // load a literal double value <value> to FPR <result>
851  void LoadDoubleLiteral(DoubleRegister result, double value, Register scratch);
852  void LoadDoubleLiteral(DoubleRegister result, uint64_t value,
853                         Register scratch);
854
855  void LoadFloat32Literal(DoubleRegister result, float value, Register scratch);
856
857  void StoreW(Register src, const MemOperand& mem, Register scratch = no_reg);
858
859  void LoadHalfWordP(Register dst, const MemOperand& mem,
860                     Register scratch = no_reg);
861
862  void StoreHalfWord(Register src, const MemOperand& mem,
863                     Register scratch = r0);
864  void StoreByte(Register src, const MemOperand& mem, Register scratch = r0);
865
866  void LoadRepresentation(Register dst, const MemOperand& mem, Representation r,
867                          Register scratch = no_reg);
868  void StoreRepresentation(Register src, const MemOperand& mem,
869                           Representation r, Register scratch = no_reg);
870
871  void AddSmiLiteral(Register dst, Register src, Smi* smi,
872                     Register scratch = r0);
873  void SubSmiLiteral(Register dst, Register src, Smi* smi,
874                     Register scratch = r0);
875  void CmpSmiLiteral(Register src1, Smi* smi, Register scratch);
876  void CmpLogicalSmiLiteral(Register src1, Smi* smi, Register scratch);
877  void AndSmiLiteral(Register dst, Register src, Smi* smi);
878
879  // Set new rounding mode RN to FPSCR
880  void SetRoundingMode(FPRoundingMode RN);
881
882  // reset rounding mode to default (kRoundToNearest)
883  void ResetRoundingMode();
884
885  // These exist to provide portability between 32 and 64bit
886  void LoadP(Register dst, const MemOperand& mem, Register scratch = no_reg);
887  void StoreP(Register src, const MemOperand& mem, Register scratch = no_reg);
888  void StoreP(const MemOperand& mem, const Operand& opnd,
889              Register scratch = no_reg);
890  void LoadMultipleP(Register dst1, Register dst2, const MemOperand& mem);
891  void StoreMultipleP(Register dst1, Register dst2, const MemOperand& mem);
892  void LoadMultipleW(Register dst1, Register dst2, const MemOperand& mem);
893  void StoreMultipleW(Register dst1, Register dst2, const MemOperand& mem);
894
895  // Cleanse pointer address on 31bit by zero out top  bit.
896  // This is a NOP on 64-bit.
897  void CleanseP(Register src) {
898#if (V8_HOST_ARCH_S390 && !(V8_TARGET_ARCH_S390X))
899    nilh(src, Operand(0x7FFF));
900#endif
901  }
902
903  // ---------------------------------------------------------------------------
904  // JavaScript invokes
905
906  // Set up call kind marking in ecx. The method takes ecx as an
907  // explicit first parameter to make the code more readable at the
908  // call sites.
909  // void SetCallKind(Register dst, CallKind kind);
910
911  // Removes current frame and its arguments from the stack preserving
912  // the arguments and a return address pushed to the stack for the next call.
913  // Both |callee_args_count| and |caller_args_count_reg| do not include
914  // receiver. |callee_args_count| is not modified, |caller_args_count_reg|
915  // is trashed.
916  void PrepareForTailCall(const ParameterCount& callee_args_count,
917                          Register caller_args_count_reg, Register scratch0,
918                          Register scratch1);
919
920  // Invoke the JavaScript function code by either calling or jumping.
921  void InvokeFunctionCode(Register function, Register new_target,
922                          const ParameterCount& expected,
923                          const ParameterCount& actual, InvokeFlag flag,
924                          const CallWrapper& call_wrapper);
925
926  // On function call, call into the debugger if necessary.
927  void CheckDebugHook(Register fun, Register new_target,
928                      const ParameterCount& expected,
929                      const ParameterCount& actual);
930
931  // Invoke the JavaScript function in the given register. Changes the
932  // current context to the context in the function before invoking.
933  void InvokeFunction(Register function, Register new_target,
934                      const ParameterCount& actual, InvokeFlag flag,
935                      const CallWrapper& call_wrapper);
936
937  void InvokeFunction(Register function, const ParameterCount& expected,
938                      const ParameterCount& actual, InvokeFlag flag,
939                      const CallWrapper& call_wrapper);
940
941  void InvokeFunction(Handle<JSFunction> function,
942                      const ParameterCount& expected,
943                      const ParameterCount& actual, InvokeFlag flag,
944                      const CallWrapper& call_wrapper);
945
946  void IsObjectJSStringType(Register object, Register scratch, Label* fail);
947
948  void IsObjectNameType(Register object, Register scratch, Label* fail);
949
950  // Frame restart support
951  void MaybeDropFrames();
952
953  // Exception handling
954
955  // Push a new stack handler and link into stack handler chain.
956  void PushStackHandler();
957
958  // Unlink the stack handler on top of the stack from the stack handler chain.
959  // Must preserve the result register.
960  void PopStackHandler();
961
962  // ---------------------------------------------------------------------------
963  // Inline caching support
964
965  void GetNumberHash(Register t0, Register scratch);
966
967  inline void MarkCode(NopMarkerTypes type) { nop(type); }
968
969  // Check if the given instruction is a 'type' marker.
970  // i.e. check if is is a mov r<type>, r<type> (referenced as nop(type))
971  // These instructions are generated to mark special location in the code,
972  // like some special IC code.
973  static inline bool IsMarkedCode(Instr instr, int type) {
974    DCHECK((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER));
975    return IsNop(instr, type);
976  }
977
978  static inline int GetCodeMarker(Instr instr) {
979    int dst_reg_offset = 12;
980    int dst_mask = 0xf << dst_reg_offset;
981    int src_mask = 0xf;
982    int dst_reg = (instr & dst_mask) >> dst_reg_offset;
983    int src_reg = instr & src_mask;
984    uint32_t non_register_mask = ~(dst_mask | src_mask);
985    uint32_t mov_mask = al | 13 << 21;
986
987    // Return <n> if we have a mov rn rn, else return -1.
988    int type = ((instr & non_register_mask) == mov_mask) &&
989                       (dst_reg == src_reg) && (FIRST_IC_MARKER <= dst_reg) &&
990                       (dst_reg < LAST_CODE_MARKER)
991                   ? src_reg
992                   : -1;
993    DCHECK((type == -1) ||
994           ((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER)));
995    return type;
996  }
997
998  // ---------------------------------------------------------------------------
999  // Allocation support
1000
1001  // Allocate an object in new space or old pointer space. The object_size is
1002  // specified either in bytes or in words if the allocation flag SIZE_IN_WORDS
1003  // is passed. If the space is exhausted control continues at the gc_required
1004  // label. The allocated object is returned in result. If the flag
1005  // tag_allocated_object is true the result is tagged as as a heap object.
1006  // All registers are clobbered also when control continues at the gc_required
1007  // label.
1008  void Allocate(int object_size, Register result, Register scratch1,
1009                Register scratch2, Label* gc_required, AllocationFlags flags);
1010
1011  void Allocate(Register object_size, Register result, Register result_end,
1012                Register scratch, Label* gc_required, AllocationFlags flags);
1013
1014  // FastAllocate is right now only used for folded allocations. It just
1015  // increments the top pointer without checking against limit. This can only
1016  // be done if it was proved earlier that the allocation will succeed.
1017  void FastAllocate(int object_size, Register result, Register scratch1,
1018                    Register scratch2, AllocationFlags flags);
1019
1020  void FastAllocate(Register object_size, Register result, Register result_end,
1021                    Register scratch, AllocationFlags flags);
1022
1023  // Allocates a heap number or jumps to the gc_required label if the young
1024  // space is full and a scavenge is needed. All registers are clobbered also
1025  // when control continues at the gc_required label.
1026  void AllocateHeapNumber(Register result, Register scratch1, Register scratch2,
1027                          Register heap_number_map, Label* gc_required,
1028                          MutableMode mode = IMMUTABLE);
1029  void AllocateHeapNumberWithValue(Register result, DoubleRegister value,
1030                                   Register scratch1, Register scratch2,
1031                                   Register heap_number_map,
1032                                   Label* gc_required);
1033
1034  // Allocate and initialize a JSValue wrapper with the specified {constructor}
1035  // and {value}.
1036  void AllocateJSValue(Register result, Register constructor, Register value,
1037                       Register scratch1, Register scratch2,
1038                       Label* gc_required);
1039
1040  // Initialize fields with filler values.  |count| fields starting at
1041  // |current_address| are overwritten with the value in |filler|.  At the end
1042  // the loop, |current_address| points at the next uninitialized field.
1043  // |count| is assumed to be non-zero.
1044  void InitializeNFieldsWithFiller(Register current_address, Register count,
1045                                   Register filler);
1046
1047  // Initialize fields with filler values.  Fields starting at |current_address|
1048  // not including |end_address| are overwritten with the value in |filler|.  At
1049  // the end the loop, |current_address| takes the value of |end_address|.
1050  void InitializeFieldsWithFiller(Register current_address,
1051                                  Register end_address, Register filler);
1052
1053  // ---------------------------------------------------------------------------
1054  // Support functions.
1055
1056  // Machine code version of Map::GetConstructor().
1057  // |temp| holds |result|'s map when done, and |temp2| its instance type.
1058  void GetMapConstructor(Register result, Register map, Register temp,
1059                         Register temp2);
1060
1061  // Compare object type for heap object.  heap_object contains a non-Smi
1062  // whose object type should be compared with the given type.  This both
1063  // sets the flags and leaves the object type in the type_reg register.
1064  // It leaves the map in the map register (unless the type_reg and map register
1065  // are the same register).  It leaves the heap object in the heap_object
1066  // register unless the heap_object register is the same register as one of the
1067  // other registers.
1068  // Type_reg can be no_reg. In that case ip is used.
1069  void CompareObjectType(Register heap_object, Register map, Register type_reg,
1070                         InstanceType type);
1071
1072  // Compare instance type in a map.  map contains a valid map object whose
1073  // object type should be compared with the given type.  This both
1074  // sets the flags and leaves the object type in the type_reg register.
1075  void CompareInstanceType(Register map, Register type_reg, InstanceType type);
1076
1077  // Compare an object's map with the specified map and its transitioned
1078  // elements maps if mode is ALLOW_ELEMENT_TRANSITION_MAPS. Condition flags are
1079  // set with result of map compare. If multiple map compares are required, the
1080  // compare sequences branches to early_success.
1081  void CompareMap(Register obj, Register scratch, Handle<Map> map,
1082                  Label* early_success);
1083
1084  // As above, but the map of the object is already loaded into the register
1085  // which is preserved by the code generated.
1086  void CompareMap(Register obj_map, Handle<Map> map, Label* early_success);
1087
1088  // Check if the map of an object is equal to a specified map and branch to
1089  // label if not. Skip the smi check if not required (object is known to be a
1090  // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
1091  // against maps that are ElementsKind transition maps of the specified map.
1092  void CheckMap(Register obj, Register scratch, Handle<Map> map, Label* fail,
1093                SmiCheckType smi_check_type);
1094
1095  void CheckMap(Register obj, Register scratch, Heap::RootListIndex index,
1096                Label* fail, SmiCheckType smi_check_type);
1097
1098  // Check if the map of an object is equal to a specified weak map and branch
1099  // to a specified target if equal. Skip the smi check if not required
1100  // (object is known to be a heap object)
1101  void DispatchWeakMap(Register obj, Register scratch1, Register scratch2,
1102                       Handle<WeakCell> cell, Handle<Code> success,
1103                       SmiCheckType smi_check_type);
1104
1105  // Compare the given value and the value of weak cell.
1106  void CmpWeakValue(Register value, Handle<WeakCell> cell, Register scratch,
1107                    CRegister cr = cr7);
1108
1109  void GetWeakValue(Register value, Handle<WeakCell> cell);
1110
1111  // Load the value of the weak cell in the value register. Branch to the given
1112  // miss label if the weak cell was cleared.
1113  void LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss);
1114
1115  // Compare the object in a register to a value from the root list.
1116  // Uses the ip register as scratch.
1117  void CompareRoot(Register obj, Heap::RootListIndex index);
1118  void PushRoot(Heap::RootListIndex index) {
1119    LoadRoot(r0, index);
1120    Push(r0);
1121  }
1122
1123  // Compare the object in a register to a value and jump if they are equal.
1124  void JumpIfRoot(Register with, Heap::RootListIndex index, Label* if_equal) {
1125    CompareRoot(with, index);
1126    beq(if_equal);
1127  }
1128
1129  // Compare the object in a register to a value and jump if they are not equal.
1130  void JumpIfNotRoot(Register with, Heap::RootListIndex index,
1131                     Label* if_not_equal) {
1132    CompareRoot(with, index);
1133    bne(if_not_equal);
1134  }
1135
1136  // Load and check the instance type of an object for being a string.
1137  // Loads the type into the second argument register.
1138  // Returns a condition that will be enabled if the object was a string.
1139  Condition IsObjectStringType(Register obj, Register type) {
1140    LoadP(type, FieldMemOperand(obj, HeapObject::kMapOffset));
1141    LoadlB(type, FieldMemOperand(type, Map::kInstanceTypeOffset));
1142    mov(r0, Operand(kIsNotStringMask));
1143    AndP(r0, type);
1144    DCHECK_EQ(0u, kStringTag);
1145    return eq;
1146  }
1147
1148  // Get the number of least significant bits from a register
1149  void GetLeastBitsFromSmi(Register dst, Register src, int num_least_bits);
1150  void GetLeastBitsFromInt32(Register dst, Register src, int mun_least_bits);
1151
1152  // Load the value of a smi object into a FP double register. The register
1153  // scratch1 can be the same register as smi in which case smi will hold the
1154  // untagged value afterwards.
1155  void SmiToDouble(DoubleRegister value, Register smi);
1156
1157  // Check if a double can be exactly represented as a signed 32-bit integer.
1158  // CR_EQ in cr7 is set if true.
1159  void TestDoubleIsInt32(DoubleRegister double_input, Register scratch1,
1160                         Register scratch2, DoubleRegister double_scratch);
1161
1162  // Check if a double is equal to -0.0.
1163  // CR_EQ in cr7 holds the result.
1164  void TestDoubleIsMinusZero(DoubleRegister input, Register scratch1,
1165                             Register scratch2);
1166
1167  // Check the sign of a double.
1168  // CR_LT in cr7 holds the result.
1169  void TestDoubleSign(DoubleRegister input, Register scratch);
1170  void TestHeapNumberSign(Register input, Register scratch);
1171
1172  // Try to convert a double to a signed 32-bit integer.
1173  // CR_EQ in cr7 is set and result assigned if the conversion is exact.
1174  void TryDoubleToInt32Exact(Register result, DoubleRegister double_input,
1175                             Register scratch, DoubleRegister double_scratch);
1176
1177  // Floor a double and writes the value to the result register.
1178  // Go to exact if the conversion is exact (to be able to test -0),
1179  // fall through calling code if an overflow occurred, else go to done.
1180  // In return, input_high is loaded with high bits of input.
1181  void TryInt32Floor(Register result, DoubleRegister double_input,
1182                     Register input_high, Register scratch,
1183                     DoubleRegister double_scratch, Label* done, Label* exact);
1184
1185  // Performs a truncating conversion of a floating point number as used by
1186  // the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it
1187  // succeeds, otherwise falls through if result is saturated. On return
1188  // 'result' either holds answer, or is clobbered on fall through.
1189  //
1190  // Only public for the test code in test-code-stubs-arm.cc.
1191  void TryInlineTruncateDoubleToI(Register result, DoubleRegister input,
1192                                  Label* done);
1193
1194  // Performs a truncating conversion of a floating point number as used by
1195  // the JS bitwise operations. See ECMA-262 9.5: ToInt32.
1196  // Exits with 'result' holding the answer.
1197  void TruncateDoubleToI(Register result, DoubleRegister double_input);
1198
1199  // Performs a truncating conversion of a heap number as used by
1200  // the JS bitwise operations. See ECMA-262 9.5: ToInt32. 'result' and 'input'
1201  // must be different registers.  Exits with 'result' holding the answer.
1202  void TruncateHeapNumberToI(Register result, Register object);
1203
1204  // Converts the smi or heap number in object to an int32 using the rules
1205  // for ToInt32 as described in ECMAScript 9.5.: the value is truncated
1206  // and brought into the range -2^31 .. +2^31 - 1. 'result' and 'input' must be
1207  // different registers.
1208  void TruncateNumberToI(Register object, Register result,
1209                         Register heap_number_map, Register scratch1,
1210                         Label* not_int32);
1211
1212  // ---------------------------------------------------------------------------
1213  // Runtime calls
1214
1215  // Call a code stub.
1216  void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None(),
1217                Condition cond = al);
1218
1219  // Call a code stub.
1220  void TailCallStub(CodeStub* stub, Condition cond = al);
1221
1222  // Call a runtime routine.
1223  void CallRuntime(const Runtime::Function* f, int num_arguments,
1224                   SaveFPRegsMode save_doubles = kDontSaveFPRegs);
1225  void CallRuntimeSaveDoubles(Runtime::FunctionId fid) {
1226    const Runtime::Function* function = Runtime::FunctionForId(fid);
1227    CallRuntime(function, function->nargs, kSaveFPRegs);
1228  }
1229
1230  // Convenience function: Same as above, but takes the fid instead.
1231  void CallRuntime(Runtime::FunctionId fid,
1232                   SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
1233    const Runtime::Function* function = Runtime::FunctionForId(fid);
1234    CallRuntime(function, function->nargs, save_doubles);
1235  }
1236
1237  // Convenience function: Same as above, but takes the fid instead.
1238  void CallRuntime(Runtime::FunctionId fid, int num_arguments,
1239                   SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
1240    CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles);
1241  }
1242
1243  // Convenience function: call an external reference.
1244  void CallExternalReference(const ExternalReference& ext, int num_arguments);
1245
1246  // Convenience function: tail call a runtime routine (jump).
1247  void TailCallRuntime(Runtime::FunctionId fid);
1248
1249  int CalculateStackPassedWords(int num_reg_arguments,
1250                                int num_double_arguments);
1251
1252  // Before calling a C-function from generated code, align arguments on stack.
1253  // After aligning the frame, non-register arguments must be stored in
1254  // sp[0], sp[4], etc., not pushed. The argument count assumes all arguments
1255  // are word sized. If double arguments are used, this function assumes that
1256  // all double arguments are stored before core registers; otherwise the
1257  // correct alignment of the double values is not guaranteed.
1258  // Some compilers/platforms require the stack to be aligned when calling
1259  // C++ code.
1260  // Needs a scratch register to do some arithmetic. This register will be
1261  // trashed.
1262  void PrepareCallCFunction(int num_reg_arguments, int num_double_registers,
1263                            Register scratch);
1264  void PrepareCallCFunction(int num_reg_arguments, Register scratch);
1265
1266  // There are two ways of passing double arguments on ARM, depending on
1267  // whether soft or hard floating point ABI is used. These functions
1268  // abstract parameter passing for the three different ways we call
1269  // C functions from generated code.
1270  void MovToFloatParameter(DoubleRegister src);
1271  void MovToFloatParameters(DoubleRegister src1, DoubleRegister src2);
1272  void MovToFloatResult(DoubleRegister src);
1273
1274  // Calls a C function and cleans up the space for arguments allocated
1275  // by PrepareCallCFunction. The called function is not allowed to trigger a
1276  // garbage collection, since that might move the code and invalidate the
1277  // return address (unless this is somehow accounted for by the called
1278  // function).
1279  void CallCFunction(ExternalReference function, int num_arguments);
1280  void CallCFunction(Register function, int num_arguments);
1281  void CallCFunction(ExternalReference function, int num_reg_arguments,
1282                     int num_double_arguments);
1283  void CallCFunction(Register function, int num_reg_arguments,
1284                     int num_double_arguments);
1285
1286  void MovFromFloatParameter(DoubleRegister dst);
1287  void MovFromFloatResult(DoubleRegister dst);
1288
1289  // Jump to a runtime routine.
1290  void JumpToExternalReference(const ExternalReference& builtin,
1291                               bool builtin_exit_frame = false);
1292
1293  Handle<Object> CodeObject() {
1294    DCHECK(!code_object_.is_null());
1295    return code_object_;
1296  }
1297
1298  // Emit code for a truncating division by a constant. The dividend register is
1299  // unchanged and ip gets clobbered. Dividend and result must be different.
1300  void TruncatingDiv(Register result, Register dividend, int32_t divisor);
1301
1302  // ---------------------------------------------------------------------------
1303  // StatsCounter support
1304
1305  void SetCounter(StatsCounter* counter, int value, Register scratch1,
1306                  Register scratch2);
1307  void IncrementCounter(StatsCounter* counter, int value, Register scratch1,
1308                        Register scratch2);
1309  void DecrementCounter(StatsCounter* counter, int value, Register scratch1,
1310                        Register scratch2);
1311
1312  // ---------------------------------------------------------------------------
1313  // Debugging
1314
1315  // Calls Abort(msg) if the condition cond is not satisfied.
1316  // Use --debug_code to enable.
1317  void Assert(Condition cond, BailoutReason reason, CRegister cr = cr7);
1318  void AssertFastElements(Register elements);
1319
1320  // Like Assert(), but always enabled.
1321  void Check(Condition cond, BailoutReason reason, CRegister cr = cr7);
1322
1323  // Print a message to stdout and abort execution.
1324  void Abort(BailoutReason reason);
1325
1326  // Verify restrictions about code generated in stubs.
1327  void set_generating_stub(bool value) { generating_stub_ = value; }
1328  bool generating_stub() { return generating_stub_; }
1329  void set_has_frame(bool value) { has_frame_ = value; }
1330  bool has_frame() { return has_frame_; }
1331  inline bool AllowThisStubCall(CodeStub* stub);
1332
1333  // ---------------------------------------------------------------------------
1334  // Number utilities
1335
1336  // Check whether the value of reg is a power of two and not zero. If not
1337  // control continues at the label not_power_of_two. If reg is a power of two
1338  // the register scratch contains the value of (reg - 1) when control falls
1339  // through.
1340  void JumpIfNotPowerOfTwoOrZero(Register reg, Register scratch,
1341                                 Label* not_power_of_two_or_zero);
1342  // Check whether the value of reg is a power of two and not zero.
1343  // Control falls through if it is, with scratch containing the mask
1344  // value (reg - 1).
1345  // Otherwise control jumps to the 'zero_and_neg' label if the value of reg is
1346  // zero or negative, or jumps to the 'not_power_of_two' label if the value is
1347  // strictly positive but not a power of two.
1348  void JumpIfNotPowerOfTwoOrZeroAndNeg(Register reg, Register scratch,
1349                                       Label* zero_and_neg,
1350                                       Label* not_power_of_two);
1351
1352  // ---------------------------------------------------------------------------
1353  // Bit testing/extraction
1354  //
1355  // Bit numbering is such that the least significant bit is bit 0
1356  // (for consistency between 32/64-bit).
1357
1358  // Extract consecutive bits (defined by rangeStart - rangeEnd) from src
1359  // and place them into the least significant bits of dst.
1360  inline void ExtractBitRange(Register dst, Register src, int rangeStart,
1361                              int rangeEnd) {
1362    DCHECK(rangeStart >= rangeEnd && rangeStart < kBitsPerPointer);
1363
1364    // Try to use RISBG if possible.
1365    if (CpuFeatures::IsSupported(GENERAL_INSTR_EXT)) {
1366      int shiftAmount = (64 - rangeEnd) % 64;  // Convert to shift left.
1367      int endBit = 63;  // End is always LSB after shifting.
1368      int startBit = 63 - rangeStart + rangeEnd;
1369      risbg(dst, src, Operand(startBit), Operand(endBit), Operand(shiftAmount),
1370            true);
1371    } else {
1372      if (rangeEnd > 0)  // Don't need to shift if rangeEnd is zero.
1373        ShiftRightP(dst, src, Operand(rangeEnd));
1374      else if (!dst.is(src))  // If we didn't shift, we might need to copy
1375        LoadRR(dst, src);
1376      int width = rangeStart - rangeEnd + 1;
1377#if V8_TARGET_ARCH_S390X
1378      uint64_t mask = (static_cast<uint64_t>(1) << width) - 1;
1379      nihf(dst, Operand(mask >> 32));
1380      nilf(dst, Operand(mask & 0xFFFFFFFF));
1381      ltgr(dst, dst);
1382#else
1383      uint32_t mask = (1 << width) - 1;
1384      AndP(dst, Operand(mask));
1385#endif
1386    }
1387  }
1388
1389  inline void ExtractBit(Register dst, Register src, uint32_t bitNumber) {
1390    ExtractBitRange(dst, src, bitNumber, bitNumber);
1391  }
1392
1393  // Extract consecutive bits (defined by mask) from src and place them
1394  // into the least significant bits of dst.
1395  inline void ExtractBitMask(Register dst, Register src, uintptr_t mask,
1396                             RCBit rc = LeaveRC) {
1397    int start = kBitsPerPointer - 1;
1398    int end;
1399    uintptr_t bit = (1L << start);
1400
1401    while (bit && (mask & bit) == 0) {
1402      start--;
1403      bit >>= 1;
1404    }
1405    end = start;
1406    bit >>= 1;
1407
1408    while (bit && (mask & bit)) {
1409      end--;
1410      bit >>= 1;
1411    }
1412
1413    // 1-bits in mask must be contiguous
1414    DCHECK(bit == 0 || (mask & ((bit << 1) - 1)) == 0);
1415
1416    ExtractBitRange(dst, src, start, end);
1417  }
1418
1419  // Test single bit in value.
1420  inline void TestBit(Register value, int bitNumber, Register scratch = r0) {
1421    ExtractBitRange(scratch, value, bitNumber, bitNumber);
1422  }
1423
1424  // Test consecutive bit range in value.  Range is defined by
1425  // rangeStart - rangeEnd.
1426  inline void TestBitRange(Register value, int rangeStart, int rangeEnd,
1427                           Register scratch = r0) {
1428    ExtractBitRange(scratch, value, rangeStart, rangeEnd);
1429  }
1430
1431  // Test consecutive bit range in value.  Range is defined by mask.
1432  inline void TestBitMask(Register value, uintptr_t mask,
1433                          Register scratch = r0) {
1434    ExtractBitMask(scratch, value, mask, SetRC);
1435  }
1436
1437  // ---------------------------------------------------------------------------
1438  // Smi utilities
1439
1440  // Shift left by kSmiShift
1441  void SmiTag(Register reg) { SmiTag(reg, reg); }
1442  void SmiTag(Register dst, Register src) {
1443    ShiftLeftP(dst, src, Operand(kSmiShift));
1444  }
1445
1446#if !V8_TARGET_ARCH_S390X
1447  // Test for overflow < 0: use BranchOnOverflow() or BranchOnNoOverflow().
1448  void SmiTagCheckOverflow(Register reg, Register overflow);
1449  void SmiTagCheckOverflow(Register dst, Register src, Register overflow);
1450
1451  inline void JumpIfNotSmiCandidate(Register value, Register scratch,
1452                                    Label* not_smi_label) {
1453    // High bits must be identical to fit into an Smi
1454    STATIC_ASSERT(kSmiShift == 1);
1455    AddP(scratch, value, Operand(0x40000000u));
1456    CmpP(scratch, Operand::Zero());
1457    blt(not_smi_label);
1458  }
1459#endif
1460  inline void TestUnsignedSmiCandidate(Register value, Register scratch) {
1461    // The test is different for unsigned int values. Since we need
1462    // the value to be in the range of a positive smi, we can't
1463    // handle any of the high bits being set in the value.
1464    TestBitRange(value, kBitsPerPointer - 1, kBitsPerPointer - 1 - kSmiShift,
1465                 scratch);
1466  }
1467  inline void JumpIfNotUnsignedSmiCandidate(Register value, Register scratch,
1468                                            Label* not_smi_label) {
1469    TestUnsignedSmiCandidate(value, scratch);
1470    bne(not_smi_label /*, cr0*/);
1471  }
1472
1473  void SmiUntag(Register reg) { SmiUntag(reg, reg); }
1474
1475  void SmiUntag(Register dst, Register src) {
1476    ShiftRightArithP(dst, src, Operand(kSmiShift));
1477  }
1478
1479  void SmiToPtrArrayOffset(Register dst, Register src) {
1480#if V8_TARGET_ARCH_S390X
1481    STATIC_ASSERT(kSmiTag == 0 && kSmiShift > kPointerSizeLog2);
1482    ShiftRightArithP(dst, src, Operand(kSmiShift - kPointerSizeLog2));
1483#else
1484    STATIC_ASSERT(kSmiTag == 0 && kSmiShift < kPointerSizeLog2);
1485    ShiftLeftP(dst, src, Operand(kPointerSizeLog2 - kSmiShift));
1486#endif
1487  }
1488
1489  void SmiToByteArrayOffset(Register dst, Register src) { SmiUntag(dst, src); }
1490
1491  void SmiToShortArrayOffset(Register dst, Register src) {
1492#if V8_TARGET_ARCH_S390X
1493    STATIC_ASSERT(kSmiTag == 0 && kSmiShift > 1);
1494    ShiftRightArithP(dst, src, Operand(kSmiShift - 1));
1495#else
1496    STATIC_ASSERT(kSmiTag == 0 && kSmiShift == 1);
1497    if (!dst.is(src)) {
1498      LoadRR(dst, src);
1499    }
1500#endif
1501  }
1502
1503  void SmiToIntArrayOffset(Register dst, Register src) {
1504#if V8_TARGET_ARCH_S390X
1505    STATIC_ASSERT(kSmiTag == 0 && kSmiShift > 2);
1506    ShiftRightArithP(dst, src, Operand(kSmiShift - 2));
1507#else
1508    STATIC_ASSERT(kSmiTag == 0 && kSmiShift < 2);
1509    ShiftLeftP(dst, src, Operand(2 - kSmiShift));
1510#endif
1511  }
1512
1513#define SmiToFloatArrayOffset SmiToIntArrayOffset
1514
1515  void SmiToDoubleArrayOffset(Register dst, Register src) {
1516#if V8_TARGET_ARCH_S390X
1517    STATIC_ASSERT(kSmiTag == 0 && kSmiShift > kDoubleSizeLog2);
1518    ShiftRightArithP(dst, src, Operand(kSmiShift - kDoubleSizeLog2));
1519#else
1520    STATIC_ASSERT(kSmiTag == 0 && kSmiShift < kDoubleSizeLog2);
1521    ShiftLeftP(dst, src, Operand(kDoubleSizeLog2 - kSmiShift));
1522#endif
1523  }
1524
1525  void SmiToArrayOffset(Register dst, Register src, int elementSizeLog2) {
1526    if (kSmiShift < elementSizeLog2) {
1527      ShiftLeftP(dst, src, Operand(elementSizeLog2 - kSmiShift));
1528    } else if (kSmiShift > elementSizeLog2) {
1529      ShiftRightArithP(dst, src, Operand(kSmiShift - elementSizeLog2));
1530    } else if (!dst.is(src)) {
1531      LoadRR(dst, src);
1532    }
1533  }
1534
1535  void IndexToArrayOffset(Register dst, Register src, int elementSizeLog2,
1536                          bool isSmi, bool keyMaybeNegative) {
1537    if (isSmi) {
1538      SmiToArrayOffset(dst, src, elementSizeLog2);
1539    } else if (keyMaybeNegative ||
1540          !CpuFeatures::IsSupported(GENERAL_INSTR_EXT)) {
1541#if V8_TARGET_ARCH_S390X
1542      // If array access is dehoisted, the key, being an int32, can contain
1543      // a negative value, as needs to be sign-extended to 64-bit for
1544      // memory access.
1545      //
1546      // src (key) is a 32-bit integer.  Sign extension ensures
1547      // upper 32-bit does not contain garbage before being used to
1548      // reference memory.
1549      lgfr(src, src);
1550#endif
1551      ShiftLeftP(dst, src, Operand(elementSizeLog2));
1552    } else {
1553      // Small optimization to reduce pathlength.  After Bounds Check,
1554      // the key is guaranteed to be non-negative.  Leverage RISBG,
1555      // which also performs zero-extension.
1556      risbg(dst, src, Operand(32 - elementSizeLog2),
1557            Operand(63 - elementSizeLog2), Operand(elementSizeLog2),
1558            true);
1559    }
1560  }
1561
1562  // Untag the source value into destination and jump if source is a smi.
1563  // Souce and destination can be the same register.
1564  void UntagAndJumpIfSmi(Register dst, Register src, Label* smi_case);
1565
1566  inline void TestIfSmi(Register value) { tmll(value, Operand(1)); }
1567
1568  inline void TestIfSmi(MemOperand value) {
1569    if (is_uint12(value.offset())) {
1570      tm(value, Operand(1));
1571    } else if (is_int20(value.offset())) {
1572      tmy(value, Operand(1));
1573    } else {
1574      LoadB(r0, value);
1575      tmll(r0, Operand(1));
1576    }
1577  }
1578
1579  inline void TestIfPositiveSmi(Register value, Register scratch) {
1580    STATIC_ASSERT((kSmiTagMask | kSmiSignMask) ==
1581                  (intptr_t)(1UL << (kBitsPerPointer - 1) | 1));
1582    mov(scratch, Operand(kIntptrSignBit | kSmiTagMask));
1583    AndP(scratch, value);
1584  }
1585
1586  // Jump the register contains a smi.
1587  inline void JumpIfSmi(Register value, Label* smi_label) {
1588    TestIfSmi(value);
1589    beq(smi_label /*, cr0*/);  // branch if SMI
1590  }
1591  // Jump if either of the registers contain a non-smi.
1592  inline void JumpIfNotSmi(Register value, Label* not_smi_label) {
1593    TestIfSmi(value);
1594    bne(not_smi_label /*, cr0*/);
1595  }
1596  // Jump if either of the registers contain a non-smi.
1597  void JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi);
1598  // Jump if either of the registers contain a smi.
1599  void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi);
1600
1601  // Abort execution if argument is a number, enabled via --debug-code.
1602  void AssertNotNumber(Register object);
1603
1604  // Abort execution if argument is a smi, enabled via --debug-code.
1605  void AssertNotSmi(Register object);
1606  void AssertSmi(Register object);
1607
1608#if V8_TARGET_ARCH_S390X
1609  inline void TestIfInt32(Register value, Register scratch) {
1610    // High bits must be identical to fit into an 32-bit integer
1611    lgfr(scratch, value);
1612    CmpP(scratch, value);
1613  }
1614#else
1615  inline void TestIfInt32(Register hi_word, Register lo_word,
1616                          Register scratch) {
1617    // High bits must be identical to fit into an 32-bit integer
1618    ShiftRightArith(scratch, lo_word, Operand(31));
1619    CmpP(scratch, hi_word);
1620  }
1621#endif
1622
1623#if V8_TARGET_ARCH_S390X
1624  // Ensure it is permissable to read/write int value directly from
1625  // upper half of the smi.
1626  STATIC_ASSERT(kSmiTag == 0);
1627  STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 32);
1628#endif
1629#if V8_TARGET_LITTLE_ENDIAN
1630#define SmiWordOffset(offset) (offset + kPointerSize / 2)
1631#else
1632#define SmiWordOffset(offset) offset
1633#endif
1634
1635  // Abort execution if argument is not a string, enabled via --debug-code.
1636  void AssertString(Register object);
1637
1638  // Abort execution if argument is not a name, enabled via --debug-code.
1639  void AssertName(Register object);
1640
1641  void AssertFunction(Register object);
1642
1643  // Abort execution if argument is not a JSBoundFunction,
1644  // enabled via --debug-code.
1645  void AssertBoundFunction(Register object);
1646
1647  // Abort execution if argument is not a JSGeneratorObject,
1648  // enabled via --debug-code.
1649  void AssertGeneratorObject(Register object);
1650
1651  // Abort execution if argument is not a JSReceiver, enabled via --debug-code.
1652  void AssertReceiver(Register object);
1653
1654  // Abort execution if argument is not undefined or an AllocationSite, enabled
1655  // via --debug-code.
1656  void AssertUndefinedOrAllocationSite(Register object, Register scratch);
1657
1658  // Abort execution if reg is not the root value with the given index,
1659  // enabled via --debug-code.
1660  void AssertIsRoot(Register reg, Heap::RootListIndex index);
1661
1662  // ---------------------------------------------------------------------------
1663  // HeapNumber utilities
1664
1665  void JumpIfNotHeapNumber(Register object, Register heap_number_map,
1666                           Register scratch, Label* on_not_heap_number);
1667
1668  // ---------------------------------------------------------------------------
1669  // String utilities
1670
1671  // Checks if both objects are sequential one-byte strings and jumps to label
1672  // if either is not. Assumes that neither object is a smi.
1673  void JumpIfNonSmisNotBothSequentialOneByteStrings(Register object1,
1674                                                    Register object2,
1675                                                    Register scratch1,
1676                                                    Register scratch2,
1677                                                    Label* failure);
1678
1679  // Checks if both objects are sequential one-byte strings and jumps to label
1680  // if either is not.
1681  void JumpIfNotBothSequentialOneByteStrings(Register first, Register second,
1682                                             Register scratch1,
1683                                             Register scratch2,
1684                                             Label* not_flat_one_byte_strings);
1685
1686  // Checks if both instance types are sequential one-byte strings and jumps to
1687  // label if either is not.
1688  void JumpIfBothInstanceTypesAreNotSequentialOneByte(
1689      Register first_object_instance_type, Register second_object_instance_type,
1690      Register scratch1, Register scratch2, Label* failure);
1691
1692  void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name);
1693
1694  void EmitSeqStringSetCharCheck(Register string, Register index,
1695                                 Register value, uint32_t encoding_mask);
1696
1697  // ---------------------------------------------------------------------------
1698  // Patching helpers.
1699
1700  void ClampUint8(Register output_reg, Register input_reg);
1701
1702  // Saturate a value into 8-bit unsigned integer
1703  //   if input_value < 0, output_value is 0
1704  //   if input_value > 255, output_value is 255
1705  //   otherwise output_value is the (int)input_value (round to nearest)
1706  void ClampDoubleToUint8(Register result_reg, DoubleRegister input_reg,
1707                          DoubleRegister temp_double_reg);
1708
1709  void LoadInstanceDescriptors(Register map, Register descriptors);
1710  void EnumLength(Register dst, Register map);
1711  void NumberOfOwnDescriptors(Register dst, Register map);
1712  void LoadAccessor(Register dst, Register holder, int accessor_index,
1713                    AccessorComponent accessor);
1714
1715  template <typename Field>
1716  void DecodeField(Register dst, Register src) {
1717    ExtractBitRange(dst, src, Field::kShift + Field::kSize - 1, Field::kShift);
1718  }
1719
1720  template <typename Field>
1721  void DecodeField(Register reg) {
1722    DecodeField<Field>(reg, reg);
1723  }
1724
1725  template <typename Field>
1726  void DecodeFieldToSmi(Register dst, Register src) {
1727    // TODO(joransiu): Optimize into single instruction
1728    DecodeField<Field>(dst, src);
1729    SmiTag(dst);
1730  }
1731
1732  template <typename Field>
1733  void DecodeFieldToSmi(Register reg) {
1734    DecodeFieldToSmi<Field>(reg, reg);
1735  }
1736
1737  // Load the type feedback vector from a JavaScript frame.
1738  void EmitLoadFeedbackVector(Register vector);
1739
1740  // Activation support.
1741  void EnterFrame(StackFrame::Type type,
1742                  bool load_constant_pool_pointer_reg = false);
1743  // Returns the pc offset at which the frame ends.
1744  int LeaveFrame(StackFrame::Type type, int stack_adjustment = 0);
1745
1746  void EnterBuiltinFrame(Register context, Register target, Register argc);
1747  void LeaveBuiltinFrame(Register context, Register target, Register argc);
1748
1749  // Expects object in r2 and returns map with validated enum cache
1750  // in r2.  Assumes that any other register can be used as a scratch.
1751  void CheckEnumCache(Label* call_runtime);
1752
1753  // AllocationMemento support. Arrays may have an associated
1754  // AllocationMemento object that can be checked for in order to pretransition
1755  // to another type.
1756  // On entry, receiver_reg should point to the array object.
1757  // scratch_reg gets clobbered.
1758  // If allocation info is present, condition flags are set to eq.
1759  void TestJSArrayForAllocationMemento(Register receiver_reg,
1760                                       Register scratch_reg,
1761                                       Register scratch2_reg,
1762                                       Label* no_memento_found);
1763
1764 private:
1765  static const int kSmiShift = kSmiTagSize + kSmiShiftSize;
1766
1767  void CallCFunctionHelper(Register function, int num_reg_arguments,
1768                           int num_double_arguments);
1769
1770  void Jump(intptr_t target, RelocInfo::Mode rmode, Condition cond = al,
1771            CRegister cr = cr7);
1772
1773  // Helper functions for generating invokes.
1774  void InvokePrologue(const ParameterCount& expected,
1775                      const ParameterCount& actual, Label* done,
1776                      bool* definitely_mismatches, InvokeFlag flag,
1777                      const CallWrapper& call_wrapper);
1778
1779  // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
1780  void InNewSpace(Register object, Register scratch,
1781                  Condition cond,  // eq for new space, ne otherwise.
1782                  Label* branch);
1783
1784  // Helper for finding the mark bits for an address.  Afterwards, the
1785  // bitmap register points at the word with the mark bits and the mask
1786  // the position of the first bit.  Leaves addr_reg unchanged.
1787  inline void GetMarkBits(Register addr_reg, Register bitmap_reg,
1788                          Register mask_reg);
1789
1790  static const RegList kSafepointSavedRegisters;
1791  static const int kNumSafepointSavedRegisters;
1792
1793  // Compute memory operands for safepoint stack slots.
1794  static int SafepointRegisterStackIndex(int reg_code);
1795  MemOperand SafepointRegisterSlot(Register reg);
1796  MemOperand SafepointRegistersAndDoublesSlot(Register reg);
1797
1798  bool generating_stub_;
1799  bool has_frame_;
1800  // This handle will be patched with the code object on installation.
1801  Handle<Object> code_object_;
1802
1803  // Needs access to SafepointRegisterStackIndex for compiled frame
1804  // traversal.
1805  friend class StandardFrame;
1806};
1807
1808// The code patcher is used to patch (typically) small parts of code e.g. for
1809// debugging and other types of instrumentation. When using the code patcher
1810// the exact number of bytes specified must be emitted. It is not legal to emit
1811// relocation information. If any of these constraints are violated it causes
1812// an assertion to fail.
1813class CodePatcher {
1814 public:
1815  enum FlushICache { FLUSH, DONT_FLUSH };
1816
1817  CodePatcher(Isolate* isolate, byte* address, int instructions,
1818              FlushICache flush_cache = FLUSH);
1819  ~CodePatcher();
1820
1821  // Macro assembler to emit code.
1822  MacroAssembler* masm() { return &masm_; }
1823
1824 private:
1825  byte* address_;            // The address of the code being patched.
1826  int size_;                 // Number of bytes of the expected patch size.
1827  MacroAssembler masm_;      // Macro assembler used to generate the code.
1828  FlushICache flush_cache_;  // Whether to flush the I cache after patching.
1829};
1830
1831// -----------------------------------------------------------------------------
1832// Static helper functions.
1833
1834inline MemOperand ContextMemOperand(Register context, int index = 0) {
1835  return MemOperand(context, Context::SlotOffset(index));
1836}
1837
1838inline MemOperand NativeContextMemOperand() {
1839  return ContextMemOperand(cp, Context::NATIVE_CONTEXT_INDEX);
1840}
1841
1842#define ACCESS_MASM(masm) masm->
1843
1844}  // namespace internal
1845}  // namespace v8
1846
1847#endif  // V8_S390_MACRO_ASSEMBLER_S390_H_
1848