utils.h revision 80d68eab642096c1a48b6474d6ec33064b0ad1f5
1// Copyright 2006-2008 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#ifndef V8_UTILS_H_
29#define V8_UTILS_H_
30
31#include <stdlib.h>
32#include <string.h>
33
34namespace v8 {
35namespace internal {
36
37// ----------------------------------------------------------------------------
38// General helper functions
39
40#define IS_POWER_OF_TWO(x) (((x) & ((x) - 1)) == 0)
41
42// Returns true iff x is a power of 2 (or zero). Cannot be used with the
43// maximally negative value of the type T (the -1 overflows).
44template <typename T>
45static inline bool IsPowerOf2(T x) {
46  return IS_POWER_OF_TWO(x);
47}
48
49
50// X must be a power of 2.  Returns the number of trailing zeros.
51template <typename T>
52static inline int WhichPowerOf2(T x) {
53  ASSERT(IsPowerOf2(x));
54  ASSERT(x != 0);
55  if (x < 0) return 31;
56  int bits = 0;
57#ifdef DEBUG
58  int original_x = x;
59#endif
60  if (x >= 0x10000) {
61    bits += 16;
62    x >>= 16;
63  }
64  if (x >= 0x100) {
65    bits += 8;
66    x >>= 8;
67  }
68  if (x >= 0x10) {
69    bits += 4;
70    x >>= 4;
71  }
72  switch (x) {
73    default: UNREACHABLE();
74    case 8: bits++;  // Fall through.
75    case 4: bits++;  // Fall through.
76    case 2: bits++;  // Fall through.
77    case 1: break;
78  }
79  ASSERT_EQ(1 << bits, original_x);
80  return bits;
81  return 0;
82}
83
84
85// The C++ standard leaves the semantics of '>>' undefined for
86// negative signed operands. Most implementations do the right thing,
87// though.
88static inline int ArithmeticShiftRight(int x, int s) {
89  return x >> s;
90}
91
92
93// Compute the 0-relative offset of some absolute value x of type T.
94// This allows conversion of Addresses and integral types into
95// 0-relative int offsets.
96template <typename T>
97static inline intptr_t OffsetFrom(T x) {
98  return x - static_cast<T>(0);
99}
100
101
102// Compute the absolute value of type T for some 0-relative offset x.
103// This allows conversion of 0-relative int offsets into Addresses and
104// integral types.
105template <typename T>
106static inline T AddressFrom(intptr_t x) {
107  return static_cast<T>(static_cast<T>(0) + x);
108}
109
110
111// Return the largest multiple of m which is <= x.
112template <typename T>
113static inline T RoundDown(T x, int m) {
114  ASSERT(IsPowerOf2(m));
115  return AddressFrom<T>(OffsetFrom(x) & -m);
116}
117
118
119// Return the smallest multiple of m which is >= x.
120template <typename T>
121static inline T RoundUp(T x, int m) {
122  return RoundDown(x + m - 1, m);
123}
124
125
126template <typename T>
127static int Compare(const T& a, const T& b) {
128  if (a == b)
129    return 0;
130  else if (a < b)
131    return -1;
132  else
133    return 1;
134}
135
136
137template <typename T>
138static int PointerValueCompare(const T* a, const T* b) {
139  return Compare<T>(*a, *b);
140}
141
142
143// Returns the smallest power of two which is >= x. If you pass in a
144// number that is already a power of two, it is returned as is.
145uint32_t RoundUpToPowerOf2(uint32_t x);
146
147
148template <typename T>
149static inline bool IsAligned(T value, T alignment) {
150  ASSERT(IsPowerOf2(alignment));
151  return (value & (alignment - 1)) == 0;
152}
153
154
155// Returns true if (addr + offset) is aligned.
156static inline bool IsAddressAligned(Address addr,
157                                    intptr_t alignment,
158                                    int offset) {
159  intptr_t offs = OffsetFrom(addr + offset);
160  return IsAligned(offs, alignment);
161}
162
163
164// Returns the maximum of the two parameters.
165template <typename T>
166static T Max(T a, T b) {
167  return a < b ? b : a;
168}
169
170
171// Returns the minimum of the two parameters.
172template <typename T>
173static T Min(T a, T b) {
174  return a < b ? a : b;
175}
176
177
178inline int StrLength(const char* string) {
179  size_t length = strlen(string);
180  ASSERT(length == static_cast<size_t>(static_cast<int>(length)));
181  return static_cast<int>(length);
182}
183
184
185// ----------------------------------------------------------------------------
186// BitField is a help template for encoding and decode bitfield with
187// unsigned content.
188template<class T, int shift, int size>
189class BitField {
190 public:
191  // Tells whether the provided value fits into the bit field.
192  static bool is_valid(T value) {
193    return (static_cast<uint32_t>(value) & ~((1U << (size)) - 1)) == 0;
194  }
195
196  // Returns a uint32_t mask of bit field.
197  static uint32_t mask() {
198    // To use all bits of a uint32 in a bitfield without compiler warnings we
199    // have to compute 2^32 without using a shift count of 32.
200    return ((1U << shift) << size) - (1U << shift);
201  }
202
203  // Returns a uint32_t with the bit field value encoded.
204  static uint32_t encode(T value) {
205    ASSERT(is_valid(value));
206    return static_cast<uint32_t>(value) << shift;
207  }
208
209  // Extracts the bit field from the value.
210  static T decode(uint32_t value) {
211    return static_cast<T>((value & mask()) >> shift);
212  }
213};
214
215
216// ----------------------------------------------------------------------------
217// Hash function.
218
219uint32_t ComputeIntegerHash(uint32_t key);
220
221
222// ----------------------------------------------------------------------------
223// I/O support.
224
225// Our version of printf(). Avoids compilation errors that we get
226// with standard printf when attempting to print pointers, etc.
227// (the errors are due to the extra compilation flags, which we
228// want elsewhere).
229void PrintF(const char* format, ...);
230
231// Our version of fflush.
232void Flush();
233
234
235// Read a line of characters after printing the prompt to stdout. The resulting
236// char* needs to be disposed off with DeleteArray by the caller.
237char* ReadLine(const char* prompt);
238
239
240// Read and return the raw bytes in a file. the size of the buffer is returned
241// in size.
242// The returned buffer must be freed by the caller.
243byte* ReadBytes(const char* filename, int* size, bool verbose = true);
244
245
246// Write size chars from str to the file given by filename.
247// The file is overwritten. Returns the number of chars written.
248int WriteChars(const char* filename,
249               const char* str,
250               int size,
251               bool verbose = true);
252
253
254// Write size bytes to the file given by filename.
255// The file is overwritten. Returns the number of bytes written.
256int WriteBytes(const char* filename,
257               const byte* bytes,
258               int size,
259               bool verbose = true);
260
261
262// Write the C code
263// const char* <varname> = "<str>";
264// const int <varname>_len = <len>;
265// to the file given by filename. Only the first len chars are written.
266int WriteAsCFile(const char* filename, const char* varname,
267                 const char* str, int size, bool verbose = true);
268
269
270// ----------------------------------------------------------------------------
271// Miscellaneous
272
273// A static resource holds a static instance that can be reserved in
274// a local scope using an instance of Access.  Attempts to re-reserve
275// the instance will cause an error.
276template <typename T>
277class StaticResource {
278 public:
279  StaticResource() : is_reserved_(false)  {}
280
281 private:
282  template <typename S> friend class Access;
283  T instance_;
284  bool is_reserved_;
285};
286
287
288// Locally scoped access to a static resource.
289template <typename T>
290class Access {
291 public:
292  explicit Access(StaticResource<T>* resource)
293    : resource_(resource)
294    , instance_(&resource->instance_) {
295    ASSERT(!resource->is_reserved_);
296    resource->is_reserved_ = true;
297  }
298
299  ~Access() {
300    resource_->is_reserved_ = false;
301    resource_ = NULL;
302    instance_ = NULL;
303  }
304
305  T* value()  { return instance_; }
306  T* operator -> ()  { return instance_; }
307
308 private:
309  StaticResource<T>* resource_;
310  T* instance_;
311};
312
313
314template <typename T>
315class Vector {
316 public:
317  Vector() : start_(NULL), length_(0) {}
318  Vector(T* data, int length) : start_(data), length_(length) {
319    ASSERT(length == 0 || (length > 0 && data != NULL));
320  }
321
322  static Vector<T> New(int length) {
323    return Vector<T>(NewArray<T>(length), length);
324  }
325
326  // Returns a vector using the same backing storage as this one,
327  // spanning from and including 'from', to but not including 'to'.
328  Vector<T> SubVector(int from, int to) {
329    ASSERT(to <= length_);
330    ASSERT(from < to);
331    ASSERT(0 <= from);
332    return Vector<T>(start() + from, to - from);
333  }
334
335  // Returns the length of the vector.
336  int length() const { return length_; }
337
338  // Returns whether or not the vector is empty.
339  bool is_empty() const { return length_ == 0; }
340
341  // Returns the pointer to the start of the data in the vector.
342  T* start() const { return start_; }
343
344  // Access individual vector elements - checks bounds in debug mode.
345  T& operator[](int index) const {
346    ASSERT(0 <= index && index < length_);
347    return start_[index];
348  }
349
350  T& first() { return start_[0]; }
351
352  T& last() { return start_[length_ - 1]; }
353
354  // Returns a clone of this vector with a new backing store.
355  Vector<T> Clone() const {
356    T* result = NewArray<T>(length_);
357    for (int i = 0; i < length_; i++) result[i] = start_[i];
358    return Vector<T>(result, length_);
359  }
360
361  void Sort(int (*cmp)(const T*, const T*)) {
362    typedef int (*RawComparer)(const void*, const void*);
363    qsort(start(),
364          length(),
365          sizeof(T),
366          reinterpret_cast<RawComparer>(cmp));
367  }
368
369  void Sort() {
370    Sort(PointerValueCompare<T>);
371  }
372
373  void Truncate(int length) {
374    ASSERT(length <= length_);
375    length_ = length;
376  }
377
378  // Releases the array underlying this vector. Once disposed the
379  // vector is empty.
380  void Dispose() {
381    DeleteArray(start_);
382    start_ = NULL;
383    length_ = 0;
384  }
385
386  inline Vector<T> operator+(int offset) {
387    ASSERT(offset < length_);
388    return Vector<T>(start_ + offset, length_ - offset);
389  }
390
391  // Factory method for creating empty vectors.
392  static Vector<T> empty() { return Vector<T>(NULL, 0); }
393
394 protected:
395  void set_start(T* start) { start_ = start; }
396
397 private:
398  T* start_;
399  int length_;
400};
401
402
403// A temporary assignment sets a (non-local) variable to a value on
404// construction and resets it the value on destruction.
405template <typename T>
406class TempAssign {
407 public:
408  TempAssign(T* var, T value): var_(var), old_value_(*var) {
409    *var = value;
410  }
411
412  ~TempAssign() { *var_ = old_value_; }
413
414 private:
415  T* var_;
416  T old_value_;
417};
418
419
420template <typename T, int kSize>
421class EmbeddedVector : public Vector<T> {
422 public:
423  EmbeddedVector() : Vector<T>(buffer_, kSize) { }
424
425  // When copying, make underlying Vector to reference our buffer.
426  EmbeddedVector(const EmbeddedVector& rhs)
427      : Vector<T>(rhs) {
428    memcpy(buffer_, rhs.buffer_, sizeof(T) * kSize);
429    set_start(buffer_);
430  }
431
432  EmbeddedVector& operator=(const EmbeddedVector& rhs) {
433    if (this == &rhs) return *this;
434    Vector<T>::operator=(rhs);
435    memcpy(buffer_, rhs.buffer_, sizeof(T) * kSize);
436    this->set_start(buffer_);
437    return *this;
438  }
439
440 private:
441  T buffer_[kSize];
442};
443
444
445template <typename T>
446class ScopedVector : public Vector<T> {
447 public:
448  explicit ScopedVector(int length) : Vector<T>(NewArray<T>(length), length) { }
449  ~ScopedVector() {
450    DeleteArray(this->start());
451  }
452
453 private:
454  DISALLOW_IMPLICIT_CONSTRUCTORS(ScopedVector);
455};
456
457
458inline Vector<const char> CStrVector(const char* data) {
459  return Vector<const char>(data, StrLength(data));
460}
461
462inline Vector<char> MutableCStrVector(char* data) {
463  return Vector<char>(data, StrLength(data));
464}
465
466inline Vector<char> MutableCStrVector(char* data, int max) {
467  int length = StrLength(data);
468  return Vector<char>(data, (length < max) ? length : max);
469}
470
471template <typename T>
472inline Vector< Handle<Object> > HandleVector(v8::internal::Handle<T>* elms,
473                                             int length) {
474  return Vector< Handle<Object> >(
475      reinterpret_cast<v8::internal::Handle<Object>*>(elms), length);
476}
477
478
479/*
480 * A class that collects values into a backing store.
481 * Specialized versions of the class can allow access to the backing store
482 * in different ways.
483 * There is no guarantee that the backing store is contiguous (and, as a
484 * consequence, no guarantees that consecutively added elements are adjacent
485 * in memory). The collector may move elements unless it has guaranteed not
486 * to.
487 */
488template <typename T, int growth_factor = 2, int max_growth = 1 * MB>
489class Collector {
490 public:
491  explicit Collector(int initial_capacity = kMinCapacity)
492      : index_(0), size_(0) {
493    if (initial_capacity < kMinCapacity) {
494      initial_capacity = kMinCapacity;
495    }
496    current_chunk_ = Vector<T>::New(initial_capacity);
497  }
498
499  virtual ~Collector() {
500    // Free backing store (in reverse allocation order).
501    current_chunk_.Dispose();
502    for (int i = chunks_.length() - 1; i >= 0; i--) {
503      chunks_.at(i).Dispose();
504    }
505  }
506
507  // Add a single element.
508  inline void Add(T value) {
509    if (index_ >= current_chunk_.length()) {
510      Grow(1);
511    }
512    current_chunk_[index_] = value;
513    index_++;
514    size_++;
515  }
516
517  // Add a block of contiguous elements and return a Vector backed by the
518  // memory area.
519  // A basic Collector will keep this vector valid as long as the Collector
520  // is alive.
521  inline Vector<T> AddBlock(int size, T initial_value) {
522    ASSERT(size > 0);
523    if (size > current_chunk_.length() - index_) {
524      Grow(size);
525    }
526    T* position = current_chunk_.start() + index_;
527    index_ += size;
528    size_ += size;
529    for (int i = 0; i < size; i++) {
530      position[i] = initial_value;
531    }
532    return Vector<T>(position, size);
533  }
534
535
536  // Write the contents of the collector into the provided vector.
537  void WriteTo(Vector<T> destination) {
538    ASSERT(size_ <= destination.length());
539    int position = 0;
540    for (int i = 0; i < chunks_.length(); i++) {
541      Vector<T> chunk = chunks_.at(i);
542      for (int j = 0; j < chunk.length(); j++) {
543        destination[position] = chunk[j];
544        position++;
545      }
546    }
547    for (int i = 0; i < index_; i++) {
548      destination[position] = current_chunk_[i];
549      position++;
550    }
551  }
552
553  // Allocate a single contiguous vector, copy all the collected
554  // elements to the vector, and return it.
555  // The caller is responsible for freeing the memory of the returned
556  // vector (e.g., using Vector::Dispose).
557  Vector<T> ToVector() {
558    Vector<T> new_store = Vector<T>::New(size_);
559    WriteTo(new_store);
560    return new_store;
561  }
562
563  // Resets the collector to be empty.
564  virtual void Reset() {
565    for (int i = chunks_.length() - 1; i >= 0; i--) {
566      chunks_.at(i).Dispose();
567    }
568    chunks_.Rewind(0);
569    index_ = 0;
570    size_ = 0;
571  }
572
573  // Total number of elements added to collector so far.
574  inline int size() { return size_; }
575
576 protected:
577  static const int kMinCapacity = 16;
578  List<Vector<T> > chunks_;
579  Vector<T> current_chunk_;  // Block of memory currently being written into.
580  int index_;  // Current index in current chunk.
581  int size_;  // Total number of elements in collector.
582
583  // Creates a new current chunk, and stores the old chunk in the chunks_ list.
584  void Grow(int min_capacity) {
585    ASSERT(growth_factor > 1);
586    int growth = current_chunk_.length() * (growth_factor - 1);
587    if (growth > max_growth) {
588      growth = max_growth;
589    }
590    int new_capacity = current_chunk_.length() + growth;
591    if (new_capacity < min_capacity) {
592      new_capacity = min_capacity + growth;
593    }
594    Vector<T> new_chunk = Vector<T>::New(new_capacity);
595    int new_index = PrepareGrow(new_chunk);
596    if (index_ > 0) {
597      chunks_.Add(current_chunk_.SubVector(0, index_));
598    } else {
599      // Can happen if the call to PrepareGrow moves everything into
600      // the new chunk.
601      current_chunk_.Dispose();
602    }
603    current_chunk_ = new_chunk;
604    index_ = new_index;
605    ASSERT(index_ + min_capacity <= current_chunk_.length());
606  }
607
608  // Before replacing the current chunk, give a subclass the option to move
609  // some of the current data into the new chunk. The function may update
610  // the current index_ value to represent data no longer in the current chunk.
611  // Returns the initial index of the new chunk (after copied data).
612  virtual int PrepareGrow(Vector<T> new_chunk)  {
613    return 0;
614  }
615};
616
617
618/*
619 * A collector that allows sequences of values to be guaranteed to
620 * stay consecutive.
621 * If the backing store grows while a sequence is active, the current
622 * sequence might be moved, but after the sequence is ended, it will
623 * not move again.
624 * NOTICE: Blocks allocated using Collector::AddBlock(int) can move
625 * as well, if inside an active sequence where another element is added.
626 */
627template <typename T, int growth_factor = 2, int max_growth = 1 * MB>
628class SequenceCollector : public Collector<T, growth_factor, max_growth> {
629 public:
630  explicit SequenceCollector(int initial_capacity)
631      : Collector<T, growth_factor, max_growth>(initial_capacity),
632        sequence_start_(kNoSequence) { }
633
634  virtual ~SequenceCollector() {}
635
636  void StartSequence() {
637    ASSERT(sequence_start_ == kNoSequence);
638    sequence_start_ = this->index_;
639  }
640
641  Vector<T> EndSequence() {
642    ASSERT(sequence_start_ != kNoSequence);
643    int sequence_start = sequence_start_;
644    sequence_start_ = kNoSequence;
645    if (sequence_start == this->index_) return Vector<T>();
646    return this->current_chunk_.SubVector(sequence_start, this->index_);
647  }
648
649  // Drops the currently added sequence, and all collected elements in it.
650  void DropSequence() {
651    ASSERT(sequence_start_ != kNoSequence);
652    int sequence_length = this->index_ - sequence_start_;
653    this->index_ = sequence_start_;
654    this->size_ -= sequence_length;
655    sequence_start_ = kNoSequence;
656  }
657
658  virtual void Reset() {
659    sequence_start_ = kNoSequence;
660    this->Collector<T, growth_factor, max_growth>::Reset();
661  }
662
663 private:
664  static const int kNoSequence = -1;
665  int sequence_start_;
666
667  // Move the currently active sequence to the new chunk.
668  virtual int PrepareGrow(Vector<T> new_chunk) {
669    if (sequence_start_ != kNoSequence) {
670      int sequence_length = this->index_ - sequence_start_;
671      // The new chunk is always larger than the current chunk, so there
672      // is room for the copy.
673      ASSERT(sequence_length < new_chunk.length());
674      for (int i = 0; i < sequence_length; i++) {
675        new_chunk[i] = this->current_chunk_[sequence_start_ + i];
676      }
677      this->index_ = sequence_start_;
678      sequence_start_ = 0;
679      return sequence_length;
680    }
681    return 0;
682  }
683};
684
685
686// Simple support to read a file into a 0-terminated C-string.
687// The returned buffer must be freed by the caller.
688// On return, *exits tells whether the file existed.
689Vector<const char> ReadFile(const char* filename,
690                            bool* exists,
691                            bool verbose = true);
692
693
694// Simple wrapper that allows an ExternalString to refer to a
695// Vector<const char>. Doesn't assume ownership of the data.
696class AsciiStringAdapter: public v8::String::ExternalAsciiStringResource {
697 public:
698  explicit AsciiStringAdapter(Vector<const char> data) : data_(data) {}
699
700  virtual const char* data() const { return data_.start(); }
701
702  virtual size_t length() const { return data_.length(); }
703
704 private:
705  Vector<const char> data_;
706};
707
708
709// Helper class for building result strings in a character buffer. The
710// purpose of the class is to use safe operations that checks the
711// buffer bounds on all operations in debug mode.
712class StringBuilder {
713 public:
714  // Create a string builder with a buffer of the given size. The
715  // buffer is allocated through NewArray<char> and must be
716  // deallocated by the caller of Finalize().
717  explicit StringBuilder(int size);
718
719  StringBuilder(char* buffer, int size)
720      : buffer_(buffer, size), position_(0) { }
721
722  ~StringBuilder() { if (!is_finalized()) Finalize(); }
723
724  int size() const { return buffer_.length(); }
725
726  // Get the current position in the builder.
727  int position() const {
728    ASSERT(!is_finalized());
729    return position_;
730  }
731
732  // Reset the position.
733  void Reset() { position_ = 0; }
734
735  // Add a single character to the builder. It is not allowed to add
736  // 0-characters; use the Finalize() method to terminate the string
737  // instead.
738  void AddCharacter(char c) {
739    ASSERT(c != '\0');
740    ASSERT(!is_finalized() && position_ < buffer_.length());
741    buffer_[position_++] = c;
742  }
743
744  // Add an entire string to the builder. Uses strlen() internally to
745  // compute the length of the input string.
746  void AddString(const char* s);
747
748  // Add the first 'n' characters of the given string 's' to the
749  // builder. The input string must have enough characters.
750  void AddSubstring(const char* s, int n);
751
752  // Add formatted contents to the builder just like printf().
753  void AddFormatted(const char* format, ...);
754
755  // Add character padding to the builder. If count is non-positive,
756  // nothing is added to the builder.
757  void AddPadding(char c, int count);
758
759  // Finalize the string by 0-terminating it and returning the buffer.
760  char* Finalize();
761
762 private:
763  Vector<char> buffer_;
764  int position_;
765
766  bool is_finalized() const { return position_ < 0; }
767
768  DISALLOW_IMPLICIT_CONSTRUCTORS(StringBuilder);
769};
770
771
772// Custom memcpy implementation for platforms where the standard version
773// may not be good enough.
774// TODO(lrn): Check whether some IA32 platforms should be excluded.
775#if defined(V8_TARGET_ARCH_IA32)
776
777// TODO(lrn): Extend to other platforms as needed.
778
779typedef void (*MemCopyFunction)(void* dest, const void* src, size_t size);
780
781// Implemented in codegen-<arch>.cc.
782MemCopyFunction CreateMemCopyFunction();
783
784// Copy memory area to disjoint memory area.
785static inline void MemCopy(void* dest, const void* src, size_t size) {
786  static MemCopyFunction memcopy = CreateMemCopyFunction();
787  (*memcopy)(dest, src, size);
788#ifdef DEBUG
789  CHECK_EQ(0, memcmp(dest, src, size));
790#endif
791}
792
793
794// Limit below which the extra overhead of the MemCopy function is likely
795// to outweigh the benefits of faster copying.
796// TODO(lrn): Try to find a more precise value.
797static const int kMinComplexMemCopy = 64;
798
799#else  // V8_TARGET_ARCH_IA32
800
801static inline void MemCopy(void* dest, const void* src, size_t size) {
802  memcpy(dest, src, size);
803}
804
805static const int kMinComplexMemCopy = 256;
806
807#endif  // V8_TARGET_ARCH_IA32
808
809
810// Copy from ASCII/16bit chars to ASCII/16bit chars.
811template <typename sourcechar, typename sinkchar>
812static inline void CopyChars(sinkchar* dest, const sourcechar* src, int chars) {
813  sinkchar* limit = dest + chars;
814#ifdef V8_HOST_CAN_READ_UNALIGNED
815  if (sizeof(*dest) == sizeof(*src)) {
816    if (chars >= static_cast<int>(kMinComplexMemCopy / sizeof(*dest))) {
817      MemCopy(dest, src, chars * sizeof(*dest));
818      return;
819    }
820    // Number of characters in a uintptr_t.
821    static const int kStepSize = sizeof(uintptr_t) / sizeof(*dest);  // NOLINT
822    while (dest <= limit - kStepSize) {
823      *reinterpret_cast<uintptr_t*>(dest) =
824          *reinterpret_cast<const uintptr_t*>(src);
825      dest += kStepSize;
826      src += kStepSize;
827    }
828  }
829#endif
830  while (dest < limit) {
831    *dest++ = static_cast<sinkchar>(*src++);
832  }
833}
834
835
836// Compare ASCII/16bit chars to ASCII/16bit chars.
837template <typename lchar, typename rchar>
838static inline int CompareChars(const lchar* lhs, const rchar* rhs, int chars) {
839  const lchar* limit = lhs + chars;
840#ifdef V8_HOST_CAN_READ_UNALIGNED
841  if (sizeof(*lhs) == sizeof(*rhs)) {
842    // Number of characters in a uintptr_t.
843    static const int kStepSize = sizeof(uintptr_t) / sizeof(*lhs);  // NOLINT
844    while (lhs <= limit - kStepSize) {
845      if (*reinterpret_cast<const uintptr_t*>(lhs) !=
846          *reinterpret_cast<const uintptr_t*>(rhs)) {
847        break;
848      }
849      lhs += kStepSize;
850      rhs += kStepSize;
851    }
852  }
853#endif
854  while (lhs < limit) {
855    int r = static_cast<int>(*lhs) - static_cast<int>(*rhs);
856    if (r != 0) return r;
857    ++lhs;
858    ++rhs;
859  }
860  return 0;
861}
862
863
864template <typename T>
865static inline void MemsetPointer(T** dest, T* value, int counter) {
866#if defined(V8_HOST_ARCH_IA32)
867#define STOS "stosl"
868#elif defined(V8_HOST_ARCH_X64)
869#define STOS "stosq"
870#endif
871
872#if defined(__GNUC__) && defined(STOS)
873  asm volatile(
874      "cld;"
875      "rep ; " STOS
876      : "+&c" (counter), "+&D" (dest)
877      : "a" (value)
878      : "memory", "cc");
879#else
880  for (int i = 0; i < counter; i++) {
881    dest[i] = value;
882  }
883#endif
884
885#undef STOS
886}
887
888
889// Copies data from |src| to |dst|.  The data spans MUST not overlap.
890inline void CopyWords(Object** dst, Object** src, int num_words) {
891  ASSERT(Min(dst, src) + num_words <= Max(dst, src));
892  ASSERT(num_words > 0);
893
894  // Use block copying memcpy if the segment we're copying is
895  // enough to justify the extra call/setup overhead.
896  static const int kBlockCopyLimit = 16;
897
898  if (num_words >= kBlockCopyLimit) {
899    memcpy(dst, src, num_words * kPointerSize);
900  } else {
901    int remaining = num_words;
902    do {
903      remaining--;
904      *dst++ = *src++;
905    } while (remaining > 0);
906  }
907}
908
909
910// Calculate 10^exponent.
911int TenToThe(int exponent);
912
913
914// The type-based aliasing rule allows the compiler to assume that pointers of
915// different types (for some definition of different) never alias each other.
916// Thus the following code does not work:
917//
918// float f = foo();
919// int fbits = *(int*)(&f);
920//
921// The compiler 'knows' that the int pointer can't refer to f since the types
922// don't match, so the compiler may cache f in a register, leaving random data
923// in fbits.  Using C++ style casts makes no difference, however a pointer to
924// char data is assumed to alias any other pointer.  This is the 'memcpy
925// exception'.
926//
927// Bit_cast uses the memcpy exception to move the bits from a variable of one
928// type of a variable of another type.  Of course the end result is likely to
929// be implementation dependent.  Most compilers (gcc-4.2 and MSVC 2005)
930// will completely optimize BitCast away.
931//
932// There is an additional use for BitCast.
933// Recent gccs will warn when they see casts that may result in breakage due to
934// the type-based aliasing rule.  If you have checked that there is no breakage
935// you can use BitCast to cast one pointer type to another.  This confuses gcc
936// enough that it can no longer see that you have cast one pointer type to
937// another thus avoiding the warning.
938template <class Dest, class Source>
939inline Dest BitCast(const Source& source) {
940  // Compile time assertion: sizeof(Dest) == sizeof(Source)
941  // A compile error here means your Dest and Source have different sizes.
942  typedef char VerifySizesAreEqual[sizeof(Dest) == sizeof(Source) ? 1 : -1];
943
944  Dest dest;
945  memcpy(&dest, &source, sizeof(dest));
946  return dest;
947}
948
949template <class Dest, class Source>
950inline Dest BitCast(Source* source) {
951  return BitCast<Dest>(reinterpret_cast<uintptr_t>(source));
952}
953
954} }  // namespace v8::internal
955
956#endif  // V8_UTILS_H_
957