assembler-x64-inl.h revision f2e3994fa5148cc3d9946666f0b0596290192b0e
1// Copyright 2012 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#ifndef V8_X64_ASSEMBLER_X64_INL_H_
6#define V8_X64_ASSEMBLER_X64_INL_H_
7
8#include "src/x64/assembler-x64.h"
9
10#include "src/base/cpu.h"
11#include "src/debug/debug.h"
12#include "src/v8memory.h"
13
14namespace v8 {
15namespace internal {
16
17bool CpuFeatures::SupportsCrankshaft() { return true; }
18
19
20// -----------------------------------------------------------------------------
21// Implementation of Assembler
22
23
24static const byte kCallOpcode = 0xE8;
25// The length of pushq(rbp), movp(rbp, rsp), Push(rsi) and Push(rdi).
26static const int kNoCodeAgeSequenceLength = kPointerSize == kInt64Size ? 6 : 17;
27
28
29void Assembler::emitl(uint32_t x) {
30  Memory::uint32_at(pc_) = x;
31  pc_ += sizeof(uint32_t);
32}
33
34
35void Assembler::emitp(void* x, RelocInfo::Mode rmode) {
36  uintptr_t value = reinterpret_cast<uintptr_t>(x);
37  Memory::uintptr_at(pc_) = value;
38  if (!RelocInfo::IsNone(rmode)) {
39    RecordRelocInfo(rmode, value);
40  }
41  pc_ += sizeof(uintptr_t);
42}
43
44
45void Assembler::emitq(uint64_t x) {
46  Memory::uint64_at(pc_) = x;
47  pc_ += sizeof(uint64_t);
48}
49
50
51void Assembler::emitw(uint16_t x) {
52  Memory::uint16_at(pc_) = x;
53  pc_ += sizeof(uint16_t);
54}
55
56
57void Assembler::emit_code_target(Handle<Code> target,
58                                 RelocInfo::Mode rmode,
59                                 TypeFeedbackId ast_id) {
60  DCHECK(RelocInfo::IsCodeTarget(rmode) ||
61      rmode == RelocInfo::CODE_AGE_SEQUENCE);
62  if (rmode == RelocInfo::CODE_TARGET && !ast_id.IsNone()) {
63    RecordRelocInfo(RelocInfo::CODE_TARGET_WITH_ID, ast_id.ToInt());
64  } else {
65    RecordRelocInfo(rmode);
66  }
67  int current = code_targets_.length();
68  if (current > 0 && code_targets_.last().is_identical_to(target)) {
69    // Optimization if we keep jumping to the same code target.
70    emitl(current - 1);
71  } else {
72    code_targets_.Add(target);
73    emitl(current);
74  }
75}
76
77
78void Assembler::emit_runtime_entry(Address entry, RelocInfo::Mode rmode) {
79  DCHECK(RelocInfo::IsRuntimeEntry(rmode));
80  RecordRelocInfo(rmode);
81  emitl(static_cast<uint32_t>(entry - isolate()->code_range()->start()));
82}
83
84
85void Assembler::emit_rex_64(Register reg, Register rm_reg) {
86  emit(0x48 | reg.high_bit() << 2 | rm_reg.high_bit());
87}
88
89
90void Assembler::emit_rex_64(XMMRegister reg, Register rm_reg) {
91  emit(0x48 | (reg.code() & 0x8) >> 1 | rm_reg.code() >> 3);
92}
93
94
95void Assembler::emit_rex_64(Register reg, XMMRegister rm_reg) {
96  emit(0x48 | (reg.code() & 0x8) >> 1 | rm_reg.code() >> 3);
97}
98
99
100void Assembler::emit_rex_64(Register reg, const Operand& op) {
101  emit(0x48 | reg.high_bit() << 2 | op.rex_);
102}
103
104
105void Assembler::emit_rex_64(XMMRegister reg, const Operand& op) {
106  emit(0x48 | (reg.code() & 0x8) >> 1 | op.rex_);
107}
108
109
110void Assembler::emit_rex_64(Register rm_reg) {
111  DCHECK_EQ(rm_reg.code() & 0xf, rm_reg.code());
112  emit(0x48 | rm_reg.high_bit());
113}
114
115
116void Assembler::emit_rex_64(const Operand& op) {
117  emit(0x48 | op.rex_);
118}
119
120
121void Assembler::emit_rex_32(Register reg, Register rm_reg) {
122  emit(0x40 | reg.high_bit() << 2 | rm_reg.high_bit());
123}
124
125
126void Assembler::emit_rex_32(Register reg, const Operand& op) {
127  emit(0x40 | reg.high_bit() << 2  | op.rex_);
128}
129
130
131void Assembler::emit_rex_32(Register rm_reg) {
132  emit(0x40 | rm_reg.high_bit());
133}
134
135
136void Assembler::emit_rex_32(const Operand& op) {
137  emit(0x40 | op.rex_);
138}
139
140
141void Assembler::emit_optional_rex_32(Register reg, Register rm_reg) {
142  byte rex_bits = reg.high_bit() << 2 | rm_reg.high_bit();
143  if (rex_bits != 0) emit(0x40 | rex_bits);
144}
145
146
147void Assembler::emit_optional_rex_32(Register reg, const Operand& op) {
148  byte rex_bits =  reg.high_bit() << 2 | op.rex_;
149  if (rex_bits != 0) emit(0x40 | rex_bits);
150}
151
152
153void Assembler::emit_optional_rex_32(XMMRegister reg, const Operand& op) {
154  byte rex_bits =  (reg.code() & 0x8) >> 1 | op.rex_;
155  if (rex_bits != 0) emit(0x40 | rex_bits);
156}
157
158
159void Assembler::emit_optional_rex_32(XMMRegister reg, XMMRegister base) {
160  byte rex_bits =  (reg.code() & 0x8) >> 1 | (base.code() & 0x8) >> 3;
161  if (rex_bits != 0) emit(0x40 | rex_bits);
162}
163
164
165void Assembler::emit_optional_rex_32(XMMRegister reg, Register base) {
166  byte rex_bits =  (reg.code() & 0x8) >> 1 | (base.code() & 0x8) >> 3;
167  if (rex_bits != 0) emit(0x40 | rex_bits);
168}
169
170
171void Assembler::emit_optional_rex_32(Register reg, XMMRegister base) {
172  byte rex_bits =  (reg.code() & 0x8) >> 1 | (base.code() & 0x8) >> 3;
173  if (rex_bits != 0) emit(0x40 | rex_bits);
174}
175
176
177void Assembler::emit_optional_rex_32(Register rm_reg) {
178  if (rm_reg.high_bit()) emit(0x41);
179}
180
181
182void Assembler::emit_optional_rex_32(XMMRegister rm_reg) {
183  if (rm_reg.high_bit()) emit(0x41);
184}
185
186
187void Assembler::emit_optional_rex_32(const Operand& op) {
188  if (op.rex_ != 0) emit(0x40 | op.rex_);
189}
190
191
192// byte 1 of 3-byte VEX
193void Assembler::emit_vex3_byte1(XMMRegister reg, XMMRegister rm,
194                                LeadingOpcode m) {
195  byte rxb = ~((reg.high_bit() << 2) | rm.high_bit()) << 5;
196  emit(rxb | m);
197}
198
199
200// byte 1 of 3-byte VEX
201void Assembler::emit_vex3_byte1(XMMRegister reg, const Operand& rm,
202                                LeadingOpcode m) {
203  byte rxb = ~((reg.high_bit() << 2) | rm.rex_) << 5;
204  emit(rxb | m);
205}
206
207
208// byte 1 of 2-byte VEX
209void Assembler::emit_vex2_byte1(XMMRegister reg, XMMRegister v, VectorLength l,
210                                SIMDPrefix pp) {
211  byte rv = ~((reg.high_bit() << 4) | v.code()) << 3;
212  emit(rv | l | pp);
213}
214
215
216// byte 2 of 3-byte VEX
217void Assembler::emit_vex3_byte2(VexW w, XMMRegister v, VectorLength l,
218                                SIMDPrefix pp) {
219  emit(w | ((~v.code() & 0xf) << 3) | l | pp);
220}
221
222
223void Assembler::emit_vex_prefix(XMMRegister reg, XMMRegister vreg,
224                                XMMRegister rm, VectorLength l, SIMDPrefix pp,
225                                LeadingOpcode mm, VexW w) {
226  if (rm.high_bit() || mm != k0F || w != kW0) {
227    emit_vex3_byte0();
228    emit_vex3_byte1(reg, rm, mm);
229    emit_vex3_byte2(w, vreg, l, pp);
230  } else {
231    emit_vex2_byte0();
232    emit_vex2_byte1(reg, vreg, l, pp);
233  }
234}
235
236
237void Assembler::emit_vex_prefix(Register reg, Register vreg, Register rm,
238                                VectorLength l, SIMDPrefix pp, LeadingOpcode mm,
239                                VexW w) {
240  XMMRegister ireg = {reg.code()};
241  XMMRegister ivreg = {vreg.code()};
242  XMMRegister irm = {rm.code()};
243  emit_vex_prefix(ireg, ivreg, irm, l, pp, mm, w);
244}
245
246
247void Assembler::emit_vex_prefix(XMMRegister reg, XMMRegister vreg,
248                                const Operand& rm, VectorLength l,
249                                SIMDPrefix pp, LeadingOpcode mm, VexW w) {
250  if (rm.rex_ || mm != k0F || w != kW0) {
251    emit_vex3_byte0();
252    emit_vex3_byte1(reg, rm, mm);
253    emit_vex3_byte2(w, vreg, l, pp);
254  } else {
255    emit_vex2_byte0();
256    emit_vex2_byte1(reg, vreg, l, pp);
257  }
258}
259
260
261void Assembler::emit_vex_prefix(Register reg, Register vreg, const Operand& rm,
262                                VectorLength l, SIMDPrefix pp, LeadingOpcode mm,
263                                VexW w) {
264  XMMRegister ireg = {reg.code()};
265  XMMRegister ivreg = {vreg.code()};
266  emit_vex_prefix(ireg, ivreg, rm, l, pp, mm, w);
267}
268
269
270Address Assembler::target_address_at(Address pc, Address constant_pool) {
271  return Memory::int32_at(pc) + pc + 4;
272}
273
274
275void Assembler::set_target_address_at(Isolate* isolate, Address pc,
276                                      Address constant_pool, Address target,
277                                      ICacheFlushMode icache_flush_mode) {
278  Memory::int32_at(pc) = static_cast<int32_t>(target - pc - 4);
279  if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
280    Assembler::FlushICache(isolate, pc, sizeof(int32_t));
281  }
282}
283
284
285void Assembler::deserialization_set_target_internal_reference_at(
286    Isolate* isolate, Address pc, Address target, RelocInfo::Mode mode) {
287  Memory::Address_at(pc) = target;
288}
289
290
291Address Assembler::target_address_from_return_address(Address pc) {
292  return pc - kCallTargetAddressOffset;
293}
294
295
296Handle<Object> Assembler::code_target_object_handle_at(Address pc) {
297  return code_targets_[Memory::int32_at(pc)];
298}
299
300
301Address Assembler::runtime_entry_at(Address pc) {
302  return Memory::int32_at(pc) + isolate()->code_range()->start();
303}
304
305// -----------------------------------------------------------------------------
306// Implementation of RelocInfo
307
308// The modes possibly affected by apply must be in kApplyMask.
309void RelocInfo::apply(intptr_t delta) {
310  if (IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)) {
311    Memory::int32_at(pc_) -= static_cast<int32_t>(delta);
312  } else if (IsCodeAgeSequence(rmode_)) {
313    if (*pc_ == kCallOpcode) {
314      int32_t* p = reinterpret_cast<int32_t*>(pc_ + 1);
315      *p -= static_cast<int32_t>(delta);  // Relocate entry.
316    }
317  } else if (IsInternalReference(rmode_)) {
318    // absolute code pointer inside code object moves with the code object.
319    Memory::Address_at(pc_) += delta;
320  }
321}
322
323
324Address RelocInfo::target_address() {
325  DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
326  return Assembler::target_address_at(pc_, host_);
327}
328
329
330Address RelocInfo::target_address_address() {
331  DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)
332                              || rmode_ == EMBEDDED_OBJECT
333                              || rmode_ == EXTERNAL_REFERENCE);
334  return reinterpret_cast<Address>(pc_);
335}
336
337
338Address RelocInfo::constant_pool_entry_address() {
339  UNREACHABLE();
340  return NULL;
341}
342
343
344int RelocInfo::target_address_size() {
345  if (IsCodedSpecially()) {
346    return Assembler::kSpecialTargetSize;
347  } else {
348    return kPointerSize;
349  }
350}
351
352
353void RelocInfo::set_target_address(Address target,
354                                   WriteBarrierMode write_barrier_mode,
355                                   ICacheFlushMode icache_flush_mode) {
356  DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
357  Assembler::set_target_address_at(isolate_, pc_, host_, target,
358                                   icache_flush_mode);
359  if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL &&
360      IsCodeTarget(rmode_)) {
361    Object* target_code = Code::GetCodeFromTargetAddress(target);
362    host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
363        host(), this, HeapObject::cast(target_code));
364  }
365}
366
367
368Object* RelocInfo::target_object() {
369  DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
370  return Memory::Object_at(pc_);
371}
372
373
374Handle<Object> RelocInfo::target_object_handle(Assembler* origin) {
375  DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
376  if (rmode_ == EMBEDDED_OBJECT) {
377    return Memory::Object_Handle_at(pc_);
378  } else {
379    return origin->code_target_object_handle_at(pc_);
380  }
381}
382
383
384Address RelocInfo::target_external_reference() {
385  DCHECK(rmode_ == RelocInfo::EXTERNAL_REFERENCE);
386  return Memory::Address_at(pc_);
387}
388
389
390Address RelocInfo::target_internal_reference() {
391  DCHECK(rmode_ == INTERNAL_REFERENCE);
392  return Memory::Address_at(pc_);
393}
394
395
396Address RelocInfo::target_internal_reference_address() {
397  DCHECK(rmode_ == INTERNAL_REFERENCE);
398  return reinterpret_cast<Address>(pc_);
399}
400
401
402void RelocInfo::set_target_object(Object* target,
403                                  WriteBarrierMode write_barrier_mode,
404                                  ICacheFlushMode icache_flush_mode) {
405  DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
406  Memory::Object_at(pc_) = target;
407  if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
408    Assembler::FlushICache(isolate_, pc_, sizeof(Address));
409  }
410  if (write_barrier_mode == UPDATE_WRITE_BARRIER &&
411      host() != NULL &&
412      target->IsHeapObject()) {
413    host()->GetHeap()->incremental_marking()->RecordWrite(
414        host(), &Memory::Object_at(pc_), HeapObject::cast(target));
415  }
416}
417
418
419Address RelocInfo::target_runtime_entry(Assembler* origin) {
420  DCHECK(IsRuntimeEntry(rmode_));
421  return origin->runtime_entry_at(pc_);
422}
423
424
425void RelocInfo::set_target_runtime_entry(Address target,
426                                         WriteBarrierMode write_barrier_mode,
427                                         ICacheFlushMode icache_flush_mode) {
428  DCHECK(IsRuntimeEntry(rmode_));
429  if (target_address() != target) {
430    set_target_address(target, write_barrier_mode, icache_flush_mode);
431  }
432}
433
434
435Handle<Cell> RelocInfo::target_cell_handle() {
436  DCHECK(rmode_ == RelocInfo::CELL);
437  Address address = Memory::Address_at(pc_);
438  return Handle<Cell>(reinterpret_cast<Cell**>(address));
439}
440
441
442Cell* RelocInfo::target_cell() {
443  DCHECK(rmode_ == RelocInfo::CELL);
444  return Cell::FromValueAddress(Memory::Address_at(pc_));
445}
446
447
448void RelocInfo::set_target_cell(Cell* cell,
449                                WriteBarrierMode write_barrier_mode,
450                                ICacheFlushMode icache_flush_mode) {
451  DCHECK(rmode_ == RelocInfo::CELL);
452  Address address = cell->address() + Cell::kValueOffset;
453  Memory::Address_at(pc_) = address;
454  if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
455    Assembler::FlushICache(isolate_, pc_, sizeof(Address));
456  }
457  if (write_barrier_mode == UPDATE_WRITE_BARRIER &&
458      host() != NULL) {
459    // TODO(1550) We are passing NULL as a slot because cell can never be on
460    // evacuation candidate.
461    host()->GetHeap()->incremental_marking()->RecordWrite(
462        host(), NULL, cell);
463  }
464}
465
466
467void RelocInfo::WipeOut() {
468  if (IsEmbeddedObject(rmode_) || IsExternalReference(rmode_) ||
469      IsInternalReference(rmode_)) {
470    Memory::Address_at(pc_) = NULL;
471  } else if (IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)) {
472    // Effectively write zero into the relocation.
473    Assembler::set_target_address_at(isolate_, pc_, host_,
474                                     pc_ + sizeof(int32_t));
475  } else {
476    UNREACHABLE();
477  }
478}
479
480
481bool RelocInfo::IsPatchedReturnSequence() {
482  // The recognized call sequence is:
483  //  movq(kScratchRegister, address); call(kScratchRegister);
484  // It only needs to be distinguished from a return sequence
485  //  movq(rsp, rbp); pop(rbp); ret(n); int3 *6
486  // The 11th byte is int3 (0xCC) in the return sequence and
487  // REX.WB (0x48+register bit) for the call sequence.
488  return pc_[Assembler::kMoveAddressIntoScratchRegisterInstructionLength] !=
489         0xCC;
490}
491
492
493bool RelocInfo::IsPatchedDebugBreakSlotSequence() {
494  return !Assembler::IsNop(pc());
495}
496
497
498Handle<Object> RelocInfo::code_age_stub_handle(Assembler* origin) {
499  DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
500  DCHECK(*pc_ == kCallOpcode);
501  return origin->code_target_object_handle_at(pc_ + 1);
502}
503
504
505Code* RelocInfo::code_age_stub() {
506  DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
507  DCHECK(*pc_ == kCallOpcode);
508  return Code::GetCodeFromTargetAddress(
509      Assembler::target_address_at(pc_ + 1, host_));
510}
511
512
513void RelocInfo::set_code_age_stub(Code* stub,
514                                  ICacheFlushMode icache_flush_mode) {
515  DCHECK(*pc_ == kCallOpcode);
516  DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
517  Assembler::set_target_address_at(
518      isolate_, pc_ + 1, host_, stub->instruction_start(), icache_flush_mode);
519}
520
521
522Address RelocInfo::debug_call_address() {
523  DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
524  return Memory::Address_at(pc_ + Assembler::kPatchDebugBreakSlotAddressOffset);
525}
526
527
528void RelocInfo::set_debug_call_address(Address target) {
529  DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
530  Memory::Address_at(pc_ + Assembler::kPatchDebugBreakSlotAddressOffset) =
531      target;
532  Assembler::FlushICache(isolate_,
533                         pc_ + Assembler::kPatchDebugBreakSlotAddressOffset,
534                         sizeof(Address));
535  if (host() != NULL) {
536    Object* target_code = Code::GetCodeFromTargetAddress(target);
537    host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
538        host(), this, HeapObject::cast(target_code));
539  }
540}
541
542
543void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) {
544  RelocInfo::Mode mode = rmode();
545  if (mode == RelocInfo::EMBEDDED_OBJECT) {
546    visitor->VisitEmbeddedPointer(this);
547    Assembler::FlushICache(isolate, pc_, sizeof(Address));
548  } else if (RelocInfo::IsCodeTarget(mode)) {
549    visitor->VisitCodeTarget(this);
550  } else if (mode == RelocInfo::CELL) {
551    visitor->VisitCell(this);
552  } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
553    visitor->VisitExternalReference(this);
554  } else if (mode == RelocInfo::INTERNAL_REFERENCE) {
555    visitor->VisitInternalReference(this);
556  } else if (RelocInfo::IsCodeAgeSequence(mode)) {
557    visitor->VisitCodeAgeSequence(this);
558  } else if (RelocInfo::IsDebugBreakSlot(mode) &&
559             IsPatchedDebugBreakSlotSequence()) {
560    visitor->VisitDebugTarget(this);
561  } else if (RelocInfo::IsRuntimeEntry(mode)) {
562    visitor->VisitRuntimeEntry(this);
563  }
564}
565
566
567template<typename StaticVisitor>
568void RelocInfo::Visit(Heap* heap) {
569  RelocInfo::Mode mode = rmode();
570  if (mode == RelocInfo::EMBEDDED_OBJECT) {
571    StaticVisitor::VisitEmbeddedPointer(heap, this);
572    Assembler::FlushICache(heap->isolate(), pc_, sizeof(Address));
573  } else if (RelocInfo::IsCodeTarget(mode)) {
574    StaticVisitor::VisitCodeTarget(heap, this);
575  } else if (mode == RelocInfo::CELL) {
576    StaticVisitor::VisitCell(heap, this);
577  } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
578    StaticVisitor::VisitExternalReference(this);
579  } else if (mode == RelocInfo::INTERNAL_REFERENCE) {
580    StaticVisitor::VisitInternalReference(this);
581  } else if (RelocInfo::IsCodeAgeSequence(mode)) {
582    StaticVisitor::VisitCodeAgeSequence(heap, this);
583  } else if (RelocInfo::IsDebugBreakSlot(mode) &&
584             IsPatchedDebugBreakSlotSequence()) {
585    StaticVisitor::VisitDebugTarget(heap, this);
586  } else if (RelocInfo::IsRuntimeEntry(mode)) {
587    StaticVisitor::VisitRuntimeEntry(this);
588  }
589}
590
591
592// -----------------------------------------------------------------------------
593// Implementation of Operand
594
595void Operand::set_modrm(int mod, Register rm_reg) {
596  DCHECK(is_uint2(mod));
597  buf_[0] = mod << 6 | rm_reg.low_bits();
598  // Set REX.B to the high bit of rm.code().
599  rex_ |= rm_reg.high_bit();
600}
601
602
603void Operand::set_sib(ScaleFactor scale, Register index, Register base) {
604  DCHECK(len_ == 1);
605  DCHECK(is_uint2(scale));
606  // Use SIB with no index register only for base rsp or r12. Otherwise we
607  // would skip the SIB byte entirely.
608  DCHECK(!index.is(rsp) || base.is(rsp) || base.is(r12));
609  buf_[1] = (scale << 6) | (index.low_bits() << 3) | base.low_bits();
610  rex_ |= index.high_bit() << 1 | base.high_bit();
611  len_ = 2;
612}
613
614void Operand::set_disp8(int disp) {
615  DCHECK(is_int8(disp));
616  DCHECK(len_ == 1 || len_ == 2);
617  int8_t* p = reinterpret_cast<int8_t*>(&buf_[len_]);
618  *p = disp;
619  len_ += sizeof(int8_t);
620}
621
622void Operand::set_disp32(int disp) {
623  DCHECK(len_ == 1 || len_ == 2);
624  int32_t* p = reinterpret_cast<int32_t*>(&buf_[len_]);
625  *p = disp;
626  len_ += sizeof(int32_t);
627}
628
629void Operand::set_disp64(int64_t disp) {
630  DCHECK_EQ(1, len_);
631  int64_t* p = reinterpret_cast<int64_t*>(&buf_[len_]);
632  *p = disp;
633  len_ += sizeof(disp);
634}
635}  // namespace internal
636}  // namespace v8
637
638#endif  // V8_X64_ASSEMBLER_X64_INL_H_
639