assembler-x64.h revision 9dcf7e2f83591d471e88bf7d230651900b8e424b
1// Copyright (c) 1994-2006 Sun Microsystems Inc.
2// All Rights Reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met:
7//
8// - Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10//
11// - Redistribution in binary form must reproduce the above copyright
12// notice, this list of conditions and the following disclaimer in the
13// documentation and/or other materials provided with the distribution.
14//
15// - Neither the name of Sun Microsystems or the names of contributors may
16// be used to endorse or promote products derived from this software without
17// specific prior written permission.
18//
19// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31// The original source code covered by the above license above has been
32// modified significantly by Google Inc.
33// Copyright 2006-2009 the V8 project authors. All rights reserved.
34
35// A lightweight X64 Assembler.
36
37#ifndef V8_X64_ASSEMBLER_X64_H_
38#define V8_X64_ASSEMBLER_X64_H_
39
40#include "serialize.h"
41
42namespace v8 {
43namespace internal {
44
45// Utility functions
46
47// Test whether a 64-bit value is in a specific range.
48static inline bool is_uint32(int64_t x) {
49  static const int64_t kUInt32Mask = V8_INT64_C(0xffffffff);
50  return x == (x & kUInt32Mask);
51}
52
53static inline bool is_int32(int64_t x) {
54  static const int64_t kMinIntValue = V8_INT64_C(-0x80000000);
55  return is_uint32(x - kMinIntValue);
56}
57
58static inline bool uint_is_int32(uint64_t x) {
59  static const uint64_t kMaxIntValue = V8_UINT64_C(0x80000000);
60  return x < kMaxIntValue;
61}
62
63static inline bool is_uint32(uint64_t x) {
64  static const uint64_t kMaxUIntValue = V8_UINT64_C(0x100000000);
65  return x < kMaxUIntValue;
66}
67
68// CPU Registers.
69//
70// 1) We would prefer to use an enum, but enum values are assignment-
71// compatible with int, which has caused code-generation bugs.
72//
73// 2) We would prefer to use a class instead of a struct but we don't like
74// the register initialization to depend on the particular initialization
75// order (which appears to be different on OS X, Linux, and Windows for the
76// installed versions of C++ we tried). Using a struct permits C-style
77// "initialization". Also, the Register objects cannot be const as this
78// forces initialization stubs in MSVC, making us dependent on initialization
79// order.
80//
81// 3) By not using an enum, we are possibly preventing the compiler from
82// doing certain constant folds, which may significantly reduce the
83// code generated for some assembly instructions (because they boil down
84// to a few constants). If this is a problem, we could change the code
85// such that we use an enum in optimized mode, and the struct in debug
86// mode. This way we get the compile-time error checking in debug mode
87// and best performance in optimized code.
88//
89
90struct Register {
91  static Register toRegister(int code) {
92    Register r = { code };
93    return r;
94  }
95  bool is_valid() const  { return 0 <= code_ && code_ < 16; }
96  bool is(Register reg) const  { return code_ == reg.code_; }
97  int code() const  {
98    ASSERT(is_valid());
99    return code_;
100  }
101  int bit() const  {
102    return 1 << code_;
103  }
104
105  // Return the high bit of the register code as a 0 or 1.  Used often
106  // when constructing the REX prefix byte.
107  int high_bit() const {
108    return code_ >> 3;
109  }
110  // Return the 3 low bits of the register code.  Used when encoding registers
111  // in modR/M, SIB, and opcode bytes.
112  int low_bits() const {
113    return code_ & 0x7;
114  }
115
116  // Unfortunately we can't make this private in a struct when initializing
117  // by assignment.
118  int code_;
119};
120
121const Register rax = { 0 };
122const Register rcx = { 1 };
123const Register rdx = { 2 };
124const Register rbx = { 3 };
125const Register rsp = { 4 };
126const Register rbp = { 5 };
127const Register rsi = { 6 };
128const Register rdi = { 7 };
129const Register r8 = { 8 };
130const Register r9 = { 9 };
131const Register r10 = { 10 };
132const Register r11 = { 11 };
133const Register r12 = { 12 };
134const Register r13 = { 13 };
135const Register r14 = { 14 };
136const Register r15 = { 15 };
137const Register no_reg = { -1 };
138
139
140struct XMMRegister {
141  bool is_valid() const  { return 0 <= code_ && code_ < 16; }
142  int code() const  {
143    ASSERT(is_valid());
144    return code_;
145  }
146
147  // Return the high bit of the register code as a 0 or 1.  Used often
148  // when constructing the REX prefix byte.
149  int high_bit() const {
150    return code_ >> 3;
151  }
152  // Return the 3 low bits of the register code.  Used when encoding registers
153  // in modR/M, SIB, and opcode bytes.
154  int low_bits() const {
155    return code_ & 0x7;
156  }
157
158  int code_;
159};
160
161const XMMRegister xmm0 = { 0 };
162const XMMRegister xmm1 = { 1 };
163const XMMRegister xmm2 = { 2 };
164const XMMRegister xmm3 = { 3 };
165const XMMRegister xmm4 = { 4 };
166const XMMRegister xmm5 = { 5 };
167const XMMRegister xmm6 = { 6 };
168const XMMRegister xmm7 = { 7 };
169const XMMRegister xmm8 = { 8 };
170const XMMRegister xmm9 = { 9 };
171const XMMRegister xmm10 = { 10 };
172const XMMRegister xmm11 = { 11 };
173const XMMRegister xmm12 = { 12 };
174const XMMRegister xmm13 = { 13 };
175const XMMRegister xmm14 = { 14 };
176const XMMRegister xmm15 = { 15 };
177
178enum Condition {
179  // any value < 0 is considered no_condition
180  no_condition  = -1,
181
182  overflow      =  0,
183  no_overflow   =  1,
184  below         =  2,
185  above_equal   =  3,
186  equal         =  4,
187  not_equal     =  5,
188  below_equal   =  6,
189  above         =  7,
190  negative      =  8,
191  positive      =  9,
192  parity_even   = 10,
193  parity_odd    = 11,
194  less          = 12,
195  greater_equal = 13,
196  less_equal    = 14,
197  greater       = 15,
198
199  // Fake conditions that are handled by the
200  // opcodes using them.
201  always        = 16,
202  never         = 17,
203  // aliases
204  carry         = below,
205  not_carry     = above_equal,
206  zero          = equal,
207  not_zero      = not_equal,
208  sign          = negative,
209  not_sign      = positive,
210  last_condition = greater
211};
212
213
214// Returns the equivalent of !cc.
215// Negation of the default no_condition (-1) results in a non-default
216// no_condition value (-2). As long as tests for no_condition check
217// for condition < 0, this will work as expected.
218inline Condition NegateCondition(Condition cc) {
219  return static_cast<Condition>(cc ^ 1);
220}
221
222
223// Corresponds to transposing the operands of a comparison.
224inline Condition ReverseCondition(Condition cc) {
225  switch (cc) {
226    case below:
227      return above;
228    case above:
229      return below;
230    case above_equal:
231      return below_equal;
232    case below_equal:
233      return above_equal;
234    case less:
235      return greater;
236    case greater:
237      return less;
238    case greater_equal:
239      return less_equal;
240    case less_equal:
241      return greater_equal;
242    default:
243      return cc;
244  };
245}
246
247
248enum Hint {
249  no_hint = 0,
250  not_taken = 0x2e,
251  taken = 0x3e
252};
253
254// The result of negating a hint is as if the corresponding condition
255// were negated by NegateCondition.  That is, no_hint is mapped to
256// itself and not_taken and taken are mapped to each other.
257inline Hint NegateHint(Hint hint) {
258  return (hint == no_hint)
259      ? no_hint
260      : ((hint == not_taken) ? taken : not_taken);
261}
262
263
264// -----------------------------------------------------------------------------
265// Machine instruction Immediates
266
267class Immediate BASE_EMBEDDED {
268 public:
269  explicit Immediate(int32_t value) : value_(value) {}
270
271 private:
272  int32_t value_;
273
274  friend class Assembler;
275};
276
277
278// -----------------------------------------------------------------------------
279// Machine instruction Operands
280
281enum ScaleFactor {
282  times_1 = 0,
283  times_2 = 1,
284  times_4 = 2,
285  times_8 = 3,
286  times_int_size = times_4,
287  times_pointer_size = times_8
288};
289
290
291class Operand BASE_EMBEDDED {
292 public:
293  // [base + disp/r]
294  Operand(Register base, int32_t disp);
295
296  // [base + index*scale + disp/r]
297  Operand(Register base,
298          Register index,
299          ScaleFactor scale,
300          int32_t disp);
301
302  // [index*scale + disp/r]
303  Operand(Register index,
304          ScaleFactor scale,
305          int32_t disp);
306
307  // Offset from existing memory operand.
308  // Offset is added to existing displacement as 32-bit signed values and
309  // this must not overflow.
310  Operand(const Operand& base, int32_t offset);
311
312 private:
313  byte rex_;
314  byte buf_[6];
315  // The number of bytes in buf_.
316  unsigned int len_;
317
318  // Set the ModR/M byte without an encoded 'reg' register. The
319  // register is encoded later as part of the emit_operand operation.
320  // set_modrm can be called before or after set_sib and set_disp*.
321  inline void set_modrm(int mod, Register rm);
322
323  // Set the SIB byte if one is needed. Sets the length to 2 rather than 1.
324  inline void set_sib(ScaleFactor scale, Register index, Register base);
325
326  // Adds operand displacement fields (offsets added to the memory address).
327  // Needs to be called after set_sib, not before it.
328  inline void set_disp8(int disp);
329  inline void set_disp32(int disp);
330
331  friend class Assembler;
332};
333
334
335// CpuFeatures keeps track of which features are supported by the target CPU.
336// Supported features must be enabled by a Scope before use.
337// Example:
338//   if (CpuFeatures::IsSupported(SSE3)) {
339//     CpuFeatures::Scope fscope(SSE3);
340//     // Generate SSE3 floating point code.
341//   } else {
342//     // Generate standard x87 or SSE2 floating point code.
343//   }
344class CpuFeatures : public AllStatic {
345 public:
346  // Detect features of the target CPU. Set safe defaults if the serializer
347  // is enabled (snapshots must be portable).
348  static void Probe();
349  // Check whether a feature is supported by the target CPU.
350  static bool IsSupported(CpuFeature f) {
351    if (f == SSE2 && !FLAG_enable_sse2) return false;
352    if (f == SSE3 && !FLAG_enable_sse3) return false;
353    if (f == CMOV && !FLAG_enable_cmov) return false;
354    if (f == RDTSC && !FLAG_enable_rdtsc) return false;
355    if (f == SAHF && !FLAG_enable_sahf) return false;
356    return (supported_ & (V8_UINT64_C(1) << f)) != 0;
357  }
358  // Check whether a feature is currently enabled.
359  static bool IsEnabled(CpuFeature f) {
360    return (enabled_ & (V8_UINT64_C(1) << f)) != 0;
361  }
362  // Enable a specified feature within a scope.
363  class Scope BASE_EMBEDDED {
364#ifdef DEBUG
365   public:
366    explicit Scope(CpuFeature f) {
367      uint64_t mask = (V8_UINT64_C(1) << f);
368      ASSERT(CpuFeatures::IsSupported(f));
369      ASSERT(!Serializer::enabled() || (found_by_runtime_probing_ & mask) == 0);
370      old_enabled_ = CpuFeatures::enabled_;
371      CpuFeatures::enabled_ |= mask;
372    }
373    ~Scope() { CpuFeatures::enabled_ = old_enabled_; }
374   private:
375    uint64_t old_enabled_;
376#else
377   public:
378    explicit Scope(CpuFeature f) {}
379#endif
380  };
381 private:
382  // Safe defaults include SSE2 and CMOV for X64. It is always available, if
383  // anyone checks, but they shouldn't need to check.
384  static const uint64_t kDefaultCpuFeatures = (1 << SSE2 | 1 << CMOV);
385  static uint64_t supported_;
386  static uint64_t enabled_;
387  static uint64_t found_by_runtime_probing_;
388};
389
390
391class Assembler : public Malloced {
392 private:
393  // We check before assembling an instruction that there is sufficient
394  // space to write an instruction and its relocation information.
395  // The relocation writer's position must be kGap bytes above the end of
396  // the generated instructions. This leaves enough space for the
397  // longest possible x64 instruction, 15 bytes, and the longest possible
398  // relocation information encoding, RelocInfoWriter::kMaxLength == 16.
399  // (There is a 15 byte limit on x64 instruction length that rules out some
400  // otherwise valid instructions.)
401  // This allows for a single, fast space check per instruction.
402  static const int kGap = 32;
403
404 public:
405  // Create an assembler. Instructions and relocation information are emitted
406  // into a buffer, with the instructions starting from the beginning and the
407  // relocation information starting from the end of the buffer. See CodeDesc
408  // for a detailed comment on the layout (globals.h).
409  //
410  // If the provided buffer is NULL, the assembler allocates and grows its own
411  // buffer, and buffer_size determines the initial buffer size. The buffer is
412  // owned by the assembler and deallocated upon destruction of the assembler.
413  //
414  // If the provided buffer is not NULL, the assembler uses the provided buffer
415  // for code generation and assumes its size to be buffer_size. If the buffer
416  // is too small, a fatal error occurs. No deallocation of the buffer is done
417  // upon destruction of the assembler.
418  Assembler(void* buffer, int buffer_size);
419  ~Assembler();
420
421  // GetCode emits any pending (non-emitted) code and fills the descriptor
422  // desc. GetCode() is idempotent; it returns the same result if no other
423  // Assembler functions are invoked in between GetCode() calls.
424  void GetCode(CodeDesc* desc);
425
426  // Read/Modify the code target in the relative branch/call instruction at pc.
427  // On the x64 architecture, we use relative jumps with a 32-bit displacement
428  // to jump to other Code objects in the Code space in the heap.
429  // Jumps to C functions are done indirectly through a 64-bit register holding
430  // the absolute address of the target.
431  // These functions convert between absolute Addresses of Code objects and
432  // the relative displacements stored in the code.
433  static inline Address target_address_at(Address pc);
434  static inline void set_target_address_at(Address pc, Address target);
435
436  // This sets the branch destination (which is in the instruction on x64).
437  // This is for calls and branches within generated code.
438  inline static void set_target_at(Address instruction_payload,
439                                   Address target) {
440    set_target_address_at(instruction_payload, target);
441  }
442
443  // This sets the branch destination (which is a load instruction on x64).
444  // This is for calls and branches to runtime code.
445  inline static void set_external_target_at(Address instruction_payload,
446                                            Address target) {
447    *reinterpret_cast<Address*>(instruction_payload) = target;
448  }
449
450  inline Handle<Object> code_target_object_handle_at(Address pc);
451  // Number of bytes taken up by the branch target in the code.
452  static const int kCallTargetSize = 4;      // Use 32-bit displacement.
453  static const int kExternalTargetSize = 8;  // Use 64-bit absolute.
454  // Distance between the address of the code target in the call instruction
455  // and the return address pushed on the stack.
456  static const int kCallTargetAddressOffset = 4;  // Use 32-bit displacement.
457  // Distance between the start of the JS return sequence and where the
458  // 32-bit displacement of a near call would be, relative to the pushed
459  // return address.  TODO: Use return sequence length instead.
460  // Should equal Debug::kX64JSReturnSequenceLength - kCallTargetAddressOffset;
461  static const int kPatchReturnSequenceAddressOffset = 13 - 4;
462  // Distance between start of patched debug break slot and where the
463  // 32-bit displacement of a near call would be, relative to the pushed
464  // return address.  TODO: Use return sequence length instead.
465  // Should equal Debug::kX64JSReturnSequenceLength - kCallTargetAddressOffset;
466  static const int kPatchDebugBreakSlotAddressOffset = 13 - 4;
467  // TODO(X64): Rename this, removing the "Real", after changing the above.
468  static const int kRealPatchReturnSequenceAddressOffset = 2;
469
470  // The x64 JS return sequence is padded with int3 to make it large
471  // enough to hold a call instruction when the debugger patches it.
472  static const int kCallInstructionLength = 13;
473  static const int kJSReturnSequenceLength = 13;
474
475  // The debug break slot must be able to contain a call instruction.
476  static const int kDebugBreakSlotLength = kCallInstructionLength;
477
478
479  // ---------------------------------------------------------------------------
480  // Code generation
481  //
482  // Function names correspond one-to-one to x64 instruction mnemonics.
483  // Unless specified otherwise, instructions operate on 64-bit operands.
484  //
485  // If we need versions of an assembly instruction that operate on different
486  // width arguments, we add a single-letter suffix specifying the width.
487  // This is done for the following instructions: mov, cmp, inc, dec,
488  // add, sub, and test.
489  // There are no versions of these instructions without the suffix.
490  // - Instructions on 8-bit (byte) operands/registers have a trailing 'b'.
491  // - Instructions on 16-bit (word) operands/registers have a trailing 'w'.
492  // - Instructions on 32-bit (doubleword) operands/registers use 'l'.
493  // - Instructions on 64-bit (quadword) operands/registers use 'q'.
494  //
495  // Some mnemonics, such as "and", are the same as C++ keywords.
496  // Naming conflicts with C++ keywords are resolved by adding a trailing '_'.
497
498  // Insert the smallest number of nop instructions
499  // possible to align the pc offset to a multiple
500  // of m. m must be a power of 2.
501  void Align(int m);
502  // Aligns code to something that's optimal for a jump target for the platform.
503  void CodeTargetAlign();
504
505  // Stack
506  void pushfq();
507  void popfq();
508
509  void push(Immediate value);
510  void push(Register src);
511  void push(const Operand& src);
512  void push(Label* label, RelocInfo::Mode relocation_mode);
513
514  void pop(Register dst);
515  void pop(const Operand& dst);
516
517  void enter(Immediate size);
518  void leave();
519
520  // Moves
521  void movb(Register dst, const Operand& src);
522  void movb(Register dst, Immediate imm);
523  void movb(const Operand& dst, Register src);
524
525  // Move the low 16 bits of a 64-bit register value to a 16-bit
526  // memory location.
527  void movw(const Operand& dst, Register src);
528
529  void movl(Register dst, Register src);
530  void movl(Register dst, const Operand& src);
531  void movl(const Operand& dst, Register src);
532  void movl(const Operand& dst, Immediate imm);
533  // Load a 32-bit immediate value, zero-extended to 64 bits.
534  void movl(Register dst, Immediate imm32);
535
536  // Move 64 bit register value to 64-bit memory location.
537  void movq(const Operand& dst, Register src);
538  // Move 64 bit memory location to 64-bit register value.
539  void movq(Register dst, const Operand& src);
540  void movq(Register dst, Register src);
541  // Sign extends immediate 32-bit value to 64 bits.
542  void movq(Register dst, Immediate x);
543  // Move the offset of the label location relative to the current
544  // position (after the move) to the destination.
545  void movl(const Operand& dst, Label* src);
546
547  // Move sign extended immediate to memory location.
548  void movq(const Operand& dst, Immediate value);
549  // New x64 instructions to load a 64-bit immediate into a register.
550  // All 64-bit immediates must have a relocation mode.
551  void movq(Register dst, void* ptr, RelocInfo::Mode rmode);
552  void movq(Register dst, int64_t value, RelocInfo::Mode rmode);
553  void movq(Register dst, const char* s, RelocInfo::Mode rmode);
554  // Moves the address of the external reference into the register.
555  void movq(Register dst, ExternalReference ext);
556  void movq(Register dst, Handle<Object> handle, RelocInfo::Mode rmode);
557
558  void movsxbq(Register dst, const Operand& src);
559  void movsxwq(Register dst, const Operand& src);
560  void movsxlq(Register dst, Register src);
561  void movsxlq(Register dst, const Operand& src);
562  void movzxbq(Register dst, const Operand& src);
563  void movzxbl(Register dst, const Operand& src);
564  void movzxwq(Register dst, const Operand& src);
565  void movzxwl(Register dst, const Operand& src);
566
567  // Repeated moves.
568
569  void repmovsb();
570  void repmovsw();
571  void repmovsl();
572  void repmovsq();
573
574  // New x64 instruction to load from an immediate 64-bit pointer into RAX.
575  void load_rax(void* ptr, RelocInfo::Mode rmode);
576  void load_rax(ExternalReference ext);
577
578  // Conditional moves.
579  void cmovq(Condition cc, Register dst, Register src);
580  void cmovq(Condition cc, Register dst, const Operand& src);
581  void cmovl(Condition cc, Register dst, Register src);
582  void cmovl(Condition cc, Register dst, const Operand& src);
583
584  // Exchange two registers
585  void xchg(Register dst, Register src);
586
587  // Arithmetics
588  void addl(Register dst, Register src) {
589    arithmetic_op_32(0x03, dst, src);
590  }
591
592  void addl(Register dst, Immediate src) {
593    immediate_arithmetic_op_32(0x0, dst, src);
594  }
595
596  void addl(Register dst, const Operand& src) {
597    arithmetic_op_32(0x03, dst, src);
598  }
599
600  void addl(const Operand& dst, Immediate src) {
601    immediate_arithmetic_op_32(0x0, dst, src);
602  }
603
604  void addq(Register dst, Register src) {
605    arithmetic_op(0x03, dst, src);
606  }
607
608  void addq(Register dst, const Operand& src) {
609    arithmetic_op(0x03, dst, src);
610  }
611
612  void addq(const Operand& dst, Register src) {
613    arithmetic_op(0x01, src, dst);
614  }
615
616  void addq(Register dst, Immediate src) {
617    immediate_arithmetic_op(0x0, dst, src);
618  }
619
620  void addq(const Operand& dst, Immediate src) {
621    immediate_arithmetic_op(0x0, dst, src);
622  }
623
624  void sbbl(Register dst, Register src) {
625    arithmetic_op_32(0x1b, dst, src);
626  }
627
628  void cmpb(Register dst, Immediate src) {
629    immediate_arithmetic_op_8(0x7, dst, src);
630  }
631
632  void cmpb_al(Immediate src);
633
634  void cmpb(Register dst, Register src) {
635    arithmetic_op(0x3A, dst, src);
636  }
637
638  void cmpb(Register dst, const Operand& src) {
639    arithmetic_op(0x3A, dst, src);
640  }
641
642  void cmpb(const Operand& dst, Register src) {
643    arithmetic_op(0x38, src, dst);
644  }
645
646  void cmpb(const Operand& dst, Immediate src) {
647    immediate_arithmetic_op_8(0x7, dst, src);
648  }
649
650  void cmpw(const Operand& dst, Immediate src) {
651    immediate_arithmetic_op_16(0x7, dst, src);
652  }
653
654  void cmpw(Register dst, Immediate src) {
655    immediate_arithmetic_op_16(0x7, dst, src);
656  }
657
658  void cmpw(Register dst, const Operand& src) {
659    arithmetic_op_16(0x3B, dst, src);
660  }
661
662  void cmpw(Register dst, Register src) {
663    arithmetic_op_16(0x3B, dst, src);
664  }
665
666  void cmpw(const Operand& dst, Register src) {
667    arithmetic_op_16(0x39, src, dst);
668  }
669
670  void cmpl(Register dst, Register src) {
671    arithmetic_op_32(0x3B, dst, src);
672  }
673
674  void cmpl(Register dst, const Operand& src) {
675    arithmetic_op_32(0x3B, dst, src);
676  }
677
678  void cmpl(const Operand& dst, Register src) {
679    arithmetic_op_32(0x39, src, dst);
680  }
681
682  void cmpl(Register dst, Immediate src) {
683    immediate_arithmetic_op_32(0x7, dst, src);
684  }
685
686  void cmpl(const Operand& dst, Immediate src) {
687    immediate_arithmetic_op_32(0x7, dst, src);
688  }
689
690  void cmpq(Register dst, Register src) {
691    arithmetic_op(0x3B, dst, src);
692  }
693
694  void cmpq(Register dst, const Operand& src) {
695    arithmetic_op(0x3B, dst, src);
696  }
697
698  void cmpq(const Operand& dst, Register src) {
699    arithmetic_op(0x39, src, dst);
700  }
701
702  void cmpq(Register dst, Immediate src) {
703    immediate_arithmetic_op(0x7, dst, src);
704  }
705
706  void cmpq(const Operand& dst, Immediate src) {
707    immediate_arithmetic_op(0x7, dst, src);
708  }
709
710  void and_(Register dst, Register src) {
711    arithmetic_op(0x23, dst, src);
712  }
713
714  void and_(Register dst, const Operand& src) {
715    arithmetic_op(0x23, dst, src);
716  }
717
718  void and_(const Operand& dst, Register src) {
719    arithmetic_op(0x21, src, dst);
720  }
721
722  void and_(Register dst, Immediate src) {
723    immediate_arithmetic_op(0x4, dst, src);
724  }
725
726  void and_(const Operand& dst, Immediate src) {
727    immediate_arithmetic_op(0x4, dst, src);
728  }
729
730  void andl(Register dst, Immediate src) {
731    immediate_arithmetic_op_32(0x4, dst, src);
732  }
733
734  void andl(Register dst, Register src) {
735    arithmetic_op_32(0x23, dst, src);
736  }
737
738  void andb(Register dst, Immediate src) {
739    immediate_arithmetic_op_8(0x4, dst, src);
740  }
741
742  void decq(Register dst);
743  void decq(const Operand& dst);
744  void decl(Register dst);
745  void decl(const Operand& dst);
746  void decb(Register dst);
747  void decb(const Operand& dst);
748
749  // Sign-extends rax into rdx:rax.
750  void cqo();
751  // Sign-extends eax into edx:eax.
752  void cdq();
753
754  // Divide rdx:rax by src.  Quotient in rax, remainder in rdx.
755  void idivq(Register src);
756  // Divide edx:eax by lower 32 bits of src.  Quotient in eax, rem. in edx.
757  void idivl(Register src);
758
759  // Signed multiply instructions.
760  void imul(Register src);                               // rdx:rax = rax * src.
761  void imul(Register dst, Register src);                 // dst = dst * src.
762  void imul(Register dst, const Operand& src);           // dst = dst * src.
763  void imul(Register dst, Register src, Immediate imm);  // dst = src * imm.
764  // Signed 32-bit multiply instructions.
765  void imull(Register dst, Register src);                 // dst = dst * src.
766  void imull(Register dst, Register src, Immediate imm);  // dst = src * imm.
767
768  void incq(Register dst);
769  void incq(const Operand& dst);
770  void incl(Register dst);
771  void incl(const Operand& dst);
772
773  void lea(Register dst, const Operand& src);
774  void leal(Register dst, const Operand& src);
775
776  // Multiply rax by src, put the result in rdx:rax.
777  void mul(Register src);
778
779  void neg(Register dst);
780  void neg(const Operand& dst);
781  void negl(Register dst);
782
783  void not_(Register dst);
784  void not_(const Operand& dst);
785  void notl(Register dst);
786
787  void or_(Register dst, Register src) {
788    arithmetic_op(0x0B, dst, src);
789  }
790
791  void orl(Register dst, Register src) {
792    arithmetic_op_32(0x0B, dst, src);
793  }
794
795  void or_(Register dst, const Operand& src) {
796    arithmetic_op(0x0B, dst, src);
797  }
798
799  void or_(const Operand& dst, Register src) {
800    arithmetic_op(0x09, src, dst);
801  }
802
803  void or_(Register dst, Immediate src) {
804    immediate_arithmetic_op(0x1, dst, src);
805  }
806
807  void orl(Register dst, Immediate src) {
808    immediate_arithmetic_op_32(0x1, dst, src);
809  }
810
811  void or_(const Operand& dst, Immediate src) {
812    immediate_arithmetic_op(0x1, dst, src);
813  }
814
815  void orl(const Operand& dst, Immediate src) {
816    immediate_arithmetic_op_32(0x1, dst, src);
817  }
818
819
820  void rcl(Register dst, Immediate imm8) {
821    shift(dst, imm8, 0x2);
822  }
823
824  void rol(Register dst, Immediate imm8) {
825    shift(dst, imm8, 0x0);
826  }
827
828  void rcr(Register dst, Immediate imm8) {
829    shift(dst, imm8, 0x3);
830  }
831
832  void ror(Register dst, Immediate imm8) {
833    shift(dst, imm8, 0x1);
834  }
835
836  // Shifts dst:src left by cl bits, affecting only dst.
837  void shld(Register dst, Register src);
838
839  // Shifts src:dst right by cl bits, affecting only dst.
840  void shrd(Register dst, Register src);
841
842  // Shifts dst right, duplicating sign bit, by shift_amount bits.
843  // Shifting by 1 is handled efficiently.
844  void sar(Register dst, Immediate shift_amount) {
845    shift(dst, shift_amount, 0x7);
846  }
847
848  // Shifts dst right, duplicating sign bit, by shift_amount bits.
849  // Shifting by 1 is handled efficiently.
850  void sarl(Register dst, Immediate shift_amount) {
851    shift_32(dst, shift_amount, 0x7);
852  }
853
854  // Shifts dst right, duplicating sign bit, by cl % 64 bits.
855  void sar_cl(Register dst) {
856    shift(dst, 0x7);
857  }
858
859  // Shifts dst right, duplicating sign bit, by cl % 64 bits.
860  void sarl_cl(Register dst) {
861    shift_32(dst, 0x7);
862  }
863
864  void shl(Register dst, Immediate shift_amount) {
865    shift(dst, shift_amount, 0x4);
866  }
867
868  void shl_cl(Register dst) {
869    shift(dst, 0x4);
870  }
871
872  void shll_cl(Register dst) {
873    shift_32(dst, 0x4);
874  }
875
876  void shll(Register dst, Immediate shift_amount) {
877    shift_32(dst, shift_amount, 0x4);
878  }
879
880  void shr(Register dst, Immediate shift_amount) {
881    shift(dst, shift_amount, 0x5);
882  }
883
884  void shr_cl(Register dst) {
885    shift(dst, 0x5);
886  }
887
888  void shrl_cl(Register dst) {
889    shift_32(dst, 0x5);
890  }
891
892  void shrl(Register dst, Immediate shift_amount) {
893    shift_32(dst, shift_amount, 0x5);
894  }
895
896  void store_rax(void* dst, RelocInfo::Mode mode);
897  void store_rax(ExternalReference ref);
898
899  void subq(Register dst, Register src) {
900    arithmetic_op(0x2B, dst, src);
901  }
902
903  void subq(Register dst, const Operand& src) {
904    arithmetic_op(0x2B, dst, src);
905  }
906
907  void subq(const Operand& dst, Register src) {
908    arithmetic_op(0x29, src, dst);
909  }
910
911  void subq(Register dst, Immediate src) {
912    immediate_arithmetic_op(0x5, dst, src);
913  }
914
915  void subq(const Operand& dst, Immediate src) {
916    immediate_arithmetic_op(0x5, dst, src);
917  }
918
919  void subl(Register dst, Register src) {
920    arithmetic_op_32(0x2B, dst, src);
921  }
922
923  void subl(Register dst, const Operand& src) {
924    arithmetic_op_32(0x2B, dst, src);
925  }
926
927  void subl(const Operand& dst, Immediate src) {
928    immediate_arithmetic_op_32(0x5, dst, src);
929  }
930
931  void subl(Register dst, Immediate src) {
932    immediate_arithmetic_op_32(0x5, dst, src);
933  }
934
935  void subb(Register dst, Immediate src) {
936    immediate_arithmetic_op_8(0x5, dst, src);
937  }
938
939  void testb(Register dst, Register src);
940  void testb(Register reg, Immediate mask);
941  void testb(const Operand& op, Immediate mask);
942  void testb(const Operand& op, Register reg);
943  void testl(Register dst, Register src);
944  void testl(Register reg, Immediate mask);
945  void testl(const Operand& op, Immediate mask);
946  void testq(const Operand& op, Register reg);
947  void testq(Register dst, Register src);
948  void testq(Register dst, Immediate mask);
949
950  void xor_(Register dst, Register src) {
951    if (dst.code() == src.code()) {
952      arithmetic_op_32(0x33, dst, src);
953    } else {
954      arithmetic_op(0x33, dst, src);
955    }
956  }
957
958  void xorl(Register dst, Register src) {
959    arithmetic_op_32(0x33, dst, src);
960  }
961
962  void xor_(Register dst, const Operand& src) {
963    arithmetic_op(0x33, dst, src);
964  }
965
966  void xor_(const Operand& dst, Register src) {
967    arithmetic_op(0x31, src, dst);
968  }
969
970  void xor_(Register dst, Immediate src) {
971    immediate_arithmetic_op(0x6, dst, src);
972  }
973
974  void xor_(const Operand& dst, Immediate src) {
975    immediate_arithmetic_op(0x6, dst, src);
976  }
977
978  // Bit operations.
979  void bt(const Operand& dst, Register src);
980  void bts(const Operand& dst, Register src);
981
982  // Miscellaneous
983  void clc();
984  void cpuid();
985  void hlt();
986  void int3();
987  void nop();
988  void nop(int n);
989  void rdtsc();
990  void ret(int imm16);
991  void setcc(Condition cc, Register reg);
992
993  // Label operations & relative jumps (PPUM Appendix D)
994  //
995  // Takes a branch opcode (cc) and a label (L) and generates
996  // either a backward branch or a forward branch and links it
997  // to the label fixup chain. Usage:
998  //
999  // Label L;    // unbound label
1000  // j(cc, &L);  // forward branch to unbound label
1001  // bind(&L);   // bind label to the current pc
1002  // j(cc, &L);  // backward branch to bound label
1003  // bind(&L);   // illegal: a label may be bound only once
1004  //
1005  // Note: The same Label can be used for forward and backward branches
1006  // but it may be bound only once.
1007
1008  void bind(Label* L);  // binds an unbound label L to the current code position
1009
1010  // Calls
1011  // Call near relative 32-bit displacement, relative to next instruction.
1012  void call(Label* L);
1013  void call(Handle<Code> target, RelocInfo::Mode rmode);
1014
1015  // Call near absolute indirect, address in register
1016  void call(Register adr);
1017
1018  // Call near indirect
1019  void call(const Operand& operand);
1020
1021  // Jumps
1022  // Jump short or near relative.
1023  // Use a 32-bit signed displacement.
1024  void jmp(Label* L);  // unconditional jump to L
1025  void jmp(Handle<Code> target, RelocInfo::Mode rmode);
1026
1027  // Jump near absolute indirect (r64)
1028  void jmp(Register adr);
1029
1030  // Jump near absolute indirect (m64)
1031  void jmp(const Operand& src);
1032
1033  // Conditional jumps
1034  void j(Condition cc, Label* L);
1035  void j(Condition cc, Handle<Code> target, RelocInfo::Mode rmode);
1036
1037  // Floating-point operations
1038  void fld(int i);
1039
1040  void fld1();
1041  void fldz();
1042  void fldpi();
1043
1044  void fld_s(const Operand& adr);
1045  void fld_d(const Operand& adr);
1046
1047  void fstp_s(const Operand& adr);
1048  void fstp_d(const Operand& adr);
1049  void fstp(int index);
1050
1051  void fild_s(const Operand& adr);
1052  void fild_d(const Operand& adr);
1053
1054  void fist_s(const Operand& adr);
1055
1056  void fistp_s(const Operand& adr);
1057  void fistp_d(const Operand& adr);
1058
1059  void fisttp_s(const Operand& adr);
1060  void fisttp_d(const Operand& adr);
1061
1062  void fabs();
1063  void fchs();
1064
1065  void fadd(int i);
1066  void fsub(int i);
1067  void fmul(int i);
1068  void fdiv(int i);
1069
1070  void fisub_s(const Operand& adr);
1071
1072  void faddp(int i = 1);
1073  void fsubp(int i = 1);
1074  void fsubrp(int i = 1);
1075  void fmulp(int i = 1);
1076  void fdivp(int i = 1);
1077  void fprem();
1078  void fprem1();
1079
1080  void fxch(int i = 1);
1081  void fincstp();
1082  void ffree(int i = 0);
1083
1084  void ftst();
1085  void fucomp(int i);
1086  void fucompp();
1087  void fucomi(int i);
1088  void fucomip();
1089
1090  void fcompp();
1091  void fnstsw_ax();
1092  void fwait();
1093  void fnclex();
1094
1095  void fsin();
1096  void fcos();
1097
1098  void frndint();
1099
1100  void sahf();
1101
1102  // SSE2 instructions
1103  void movd(XMMRegister dst, Register src);
1104  void movd(Register dst, XMMRegister src);
1105  void movq(XMMRegister dst, Register src);
1106  void movq(Register dst, XMMRegister src);
1107  void extractps(Register dst, XMMRegister src, byte imm8);
1108
1109  void movsd(const Operand& dst, XMMRegister src);
1110  void movsd(XMMRegister dst, XMMRegister src);
1111  void movsd(XMMRegister dst, const Operand& src);
1112
1113  void cvttss2si(Register dst, const Operand& src);
1114  void cvttsd2si(Register dst, const Operand& src);
1115  void cvttsd2siq(Register dst, XMMRegister src);
1116
1117  void cvtlsi2sd(XMMRegister dst, const Operand& src);
1118  void cvtlsi2sd(XMMRegister dst, Register src);
1119  void cvtqsi2sd(XMMRegister dst, const Operand& src);
1120  void cvtqsi2sd(XMMRegister dst, Register src);
1121
1122  void cvtss2sd(XMMRegister dst, XMMRegister src);
1123
1124  void addsd(XMMRegister dst, XMMRegister src);
1125  void subsd(XMMRegister dst, XMMRegister src);
1126  void mulsd(XMMRegister dst, XMMRegister src);
1127  void divsd(XMMRegister dst, XMMRegister src);
1128
1129  void xorpd(XMMRegister dst, XMMRegister src);
1130  void sqrtsd(XMMRegister dst, XMMRegister src);
1131
1132  void ucomisd(XMMRegister dst, XMMRegister src);
1133
1134  // The first argument is the reg field, the second argument is the r/m field.
1135  void emit_sse_operand(XMMRegister dst, XMMRegister src);
1136  void emit_sse_operand(XMMRegister reg, const Operand& adr);
1137  void emit_sse_operand(XMMRegister dst, Register src);
1138  void emit_sse_operand(Register dst, XMMRegister src);
1139
1140  // Use either movsd or movlpd.
1141  // void movdbl(XMMRegister dst, const Operand& src);
1142  // void movdbl(const Operand& dst, XMMRegister src);
1143
1144  // Debugging
1145  void Print();
1146
1147  // Check the code size generated from label to here.
1148  int SizeOfCodeGeneratedSince(Label* l) { return pc_offset() - l->pos(); }
1149
1150  // Mark address of the ExitJSFrame code.
1151  void RecordJSReturn();
1152
1153  // Mark address of a debug break slot.
1154  void RecordDebugBreakSlot();
1155
1156  // Record a comment relocation entry that can be used by a disassembler.
1157  // Use --debug_code to enable.
1158  void RecordComment(const char* msg);
1159
1160  void RecordPosition(int pos);
1161  void RecordStatementPosition(int pos);
1162  bool WriteRecordedPositions();
1163
1164  int pc_offset() const  { return static_cast<int>(pc_ - buffer_); }
1165  int current_statement_position() const { return current_statement_position_; }
1166  int current_position() const  { return current_position_; }
1167
1168  // Check if there is less than kGap bytes available in the buffer.
1169  // If this is the case, we need to grow the buffer before emitting
1170  // an instruction or relocation information.
1171  inline bool buffer_overflow() const {
1172    return pc_ >= reloc_info_writer.pos() - kGap;
1173  }
1174
1175  // Get the number of bytes available in the buffer.
1176  inline int available_space() const {
1177    return static_cast<int>(reloc_info_writer.pos() - pc_);
1178  }
1179
1180  static bool IsNop(Address addr) { return *addr == 0x90; }
1181
1182  // Avoid overflows for displacements etc.
1183  static const int kMaximalBufferSize = 512*MB;
1184  static const int kMinimalBufferSize = 4*KB;
1185
1186 private:
1187  byte* addr_at(int pos)  { return buffer_ + pos; }
1188  byte byte_at(int pos)  { return buffer_[pos]; }
1189  uint32_t long_at(int pos)  {
1190    return *reinterpret_cast<uint32_t*>(addr_at(pos));
1191  }
1192  void long_at_put(int pos, uint32_t x)  {
1193    *reinterpret_cast<uint32_t*>(addr_at(pos)) = x;
1194  }
1195
1196  // code emission
1197  void GrowBuffer();
1198
1199  void emit(byte x) { *pc_++ = x; }
1200  inline void emitl(uint32_t x);
1201  inline void emitq(uint64_t x, RelocInfo::Mode rmode);
1202  inline void emitw(uint16_t x);
1203  inline void emit_code_target(Handle<Code> target, RelocInfo::Mode rmode);
1204  void emit(Immediate x) { emitl(x.value_); }
1205
1206  // Emits a REX prefix that encodes a 64-bit operand size and
1207  // the top bit of both register codes.
1208  // High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B.
1209  // REX.W is set.
1210  inline void emit_rex_64(XMMRegister reg, Register rm_reg);
1211  inline void emit_rex_64(Register reg, XMMRegister rm_reg);
1212  inline void emit_rex_64(Register reg, Register rm_reg);
1213
1214  // Emits a REX prefix that encodes a 64-bit operand size and
1215  // the top bit of the destination, index, and base register codes.
1216  // The high bit of reg is used for REX.R, the high bit of op's base
1217  // register is used for REX.B, and the high bit of op's index register
1218  // is used for REX.X.  REX.W is set.
1219  inline void emit_rex_64(Register reg, const Operand& op);
1220  inline void emit_rex_64(XMMRegister reg, const Operand& op);
1221
1222  // Emits a REX prefix that encodes a 64-bit operand size and
1223  // the top bit of the register code.
1224  // The high bit of register is used for REX.B.
1225  // REX.W is set and REX.R and REX.X are clear.
1226  inline void emit_rex_64(Register rm_reg);
1227
1228  // Emits a REX prefix that encodes a 64-bit operand size and
1229  // the top bit of the index and base register codes.
1230  // The high bit of op's base register is used for REX.B, and the high
1231  // bit of op's index register is used for REX.X.
1232  // REX.W is set and REX.R clear.
1233  inline void emit_rex_64(const Operand& op);
1234
1235  // Emit a REX prefix that only sets REX.W to choose a 64-bit operand size.
1236  void emit_rex_64() { emit(0x48); }
1237
1238  // High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B.
1239  // REX.W is clear.
1240  inline void emit_rex_32(Register reg, Register rm_reg);
1241
1242  // The high bit of reg is used for REX.R, the high bit of op's base
1243  // register is used for REX.B, and the high bit of op's index register
1244  // is used for REX.X.  REX.W is cleared.
1245  inline void emit_rex_32(Register reg, const Operand& op);
1246
1247  // High bit of rm_reg goes to REX.B.
1248  // REX.W, REX.R and REX.X are clear.
1249  inline void emit_rex_32(Register rm_reg);
1250
1251  // High bit of base goes to REX.B and high bit of index to REX.X.
1252  // REX.W and REX.R are clear.
1253  inline void emit_rex_32(const Operand& op);
1254
1255  // High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B.
1256  // REX.W is cleared.  If no REX bits are set, no byte is emitted.
1257  inline void emit_optional_rex_32(Register reg, Register rm_reg);
1258
1259  // The high bit of reg is used for REX.R, the high bit of op's base
1260  // register is used for REX.B, and the high bit of op's index register
1261  // is used for REX.X.  REX.W is cleared.  If no REX bits are set, nothing
1262  // is emitted.
1263  inline void emit_optional_rex_32(Register reg, const Operand& op);
1264
1265  // As for emit_optional_rex_32(Register, Register), except that
1266  // the registers are XMM registers.
1267  inline void emit_optional_rex_32(XMMRegister reg, XMMRegister base);
1268
1269  // As for emit_optional_rex_32(Register, Register), except that
1270  // one of the registers is an XMM registers.
1271  inline void emit_optional_rex_32(XMMRegister reg, Register base);
1272
1273  // As for emit_optional_rex_32(Register, Register), except that
1274  // one of the registers is an XMM registers.
1275  inline void emit_optional_rex_32(Register reg, XMMRegister base);
1276
1277  // As for emit_optional_rex_32(Register, const Operand&), except that
1278  // the register is an XMM register.
1279  inline void emit_optional_rex_32(XMMRegister reg, const Operand& op);
1280
1281  // Optionally do as emit_rex_32(Register) if the register number has
1282  // the high bit set.
1283  inline void emit_optional_rex_32(Register rm_reg);
1284
1285  // Optionally do as emit_rex_32(const Operand&) if the operand register
1286  // numbers have a high bit set.
1287  inline void emit_optional_rex_32(const Operand& op);
1288
1289
1290  // Emit the ModR/M byte, and optionally the SIB byte and
1291  // 1- or 4-byte offset for a memory operand.  Also encodes
1292  // the second operand of the operation, a register or operation
1293  // subcode, into the reg field of the ModR/M byte.
1294  void emit_operand(Register reg, const Operand& adr) {
1295    emit_operand(reg.low_bits(), adr);
1296  }
1297
1298  // Emit the ModR/M byte, and optionally the SIB byte and
1299  // 1- or 4-byte offset for a memory operand.  Also used to encode
1300  // a three-bit opcode extension into the ModR/M byte.
1301  void emit_operand(int rm, const Operand& adr);
1302
1303  // Emit a ModR/M byte with registers coded in the reg and rm_reg fields.
1304  void emit_modrm(Register reg, Register rm_reg) {
1305    emit(0xC0 | reg.low_bits() << 3 | rm_reg.low_bits());
1306  }
1307
1308  // Emit a ModR/M byte with an operation subcode in the reg field and
1309  // a register in the rm_reg field.
1310  void emit_modrm(int code, Register rm_reg) {
1311    ASSERT(is_uint3(code));
1312    emit(0xC0 | code << 3 | rm_reg.low_bits());
1313  }
1314
1315  // Emit the code-object-relative offset of the label's position
1316  inline void emit_code_relative_offset(Label* label);
1317
1318  // Emit machine code for one of the operations ADD, ADC, SUB, SBC,
1319  // AND, OR, XOR, or CMP.  The encodings of these operations are all
1320  // similar, differing just in the opcode or in the reg field of the
1321  // ModR/M byte.
1322  void arithmetic_op_16(byte opcode, Register reg, Register rm_reg);
1323  void arithmetic_op_16(byte opcode, Register reg, const Operand& rm_reg);
1324  void arithmetic_op_32(byte opcode, Register reg, Register rm_reg);
1325  void arithmetic_op_32(byte opcode, Register reg, const Operand& rm_reg);
1326  void arithmetic_op(byte opcode, Register reg, Register rm_reg);
1327  void arithmetic_op(byte opcode, Register reg, const Operand& rm_reg);
1328  void immediate_arithmetic_op(byte subcode, Register dst, Immediate src);
1329  void immediate_arithmetic_op(byte subcode, const Operand& dst, Immediate src);
1330  // Operate on a byte in memory or register.
1331  void immediate_arithmetic_op_8(byte subcode,
1332                                 Register dst,
1333                                 Immediate src);
1334  void immediate_arithmetic_op_8(byte subcode,
1335                                 const Operand& dst,
1336                                 Immediate src);
1337  // Operate on a word in memory or register.
1338  void immediate_arithmetic_op_16(byte subcode,
1339                                  Register dst,
1340                                  Immediate src);
1341  void immediate_arithmetic_op_16(byte subcode,
1342                                  const Operand& dst,
1343                                  Immediate src);
1344  // Operate on a 32-bit word in memory or register.
1345  void immediate_arithmetic_op_32(byte subcode,
1346                                  Register dst,
1347                                  Immediate src);
1348  void immediate_arithmetic_op_32(byte subcode,
1349                                  const Operand& dst,
1350                                  Immediate src);
1351
1352  // Emit machine code for a shift operation.
1353  void shift(Register dst, Immediate shift_amount, int subcode);
1354  void shift_32(Register dst, Immediate shift_amount, int subcode);
1355  // Shift dst by cl % 64 bits.
1356  void shift(Register dst, int subcode);
1357  void shift_32(Register dst, int subcode);
1358
1359  void emit_farith(int b1, int b2, int i);
1360
1361  // labels
1362  // void print(Label* L);
1363  void bind_to(Label* L, int pos);
1364  void link_to(Label* L, Label* appendix);
1365
1366  // record reloc info for current pc_
1367  void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
1368
1369  friend class CodePatcher;
1370  friend class EnsureSpace;
1371  friend class RegExpMacroAssemblerX64;
1372
1373  // Code buffer:
1374  // The buffer into which code and relocation info are generated.
1375  byte* buffer_;
1376  int buffer_size_;
1377  // True if the assembler owns the buffer, false if buffer is external.
1378  bool own_buffer_;
1379  // A previously allocated buffer of kMinimalBufferSize bytes, or NULL.
1380  static byte* spare_buffer_;
1381
1382  // code generation
1383  byte* pc_;  // the program counter; moves forward
1384  RelocInfoWriter reloc_info_writer;
1385
1386  List< Handle<Code> > code_targets_;
1387  // push-pop elimination
1388  byte* last_pc_;
1389
1390  // source position information
1391  int current_statement_position_;
1392  int current_position_;
1393  int written_statement_position_;
1394  int written_position_;
1395};
1396
1397
1398// Helper class that ensures that there is enough space for generating
1399// instructions and relocation information.  The constructor makes
1400// sure that there is enough space and (in debug mode) the destructor
1401// checks that we did not generate too much.
1402class EnsureSpace BASE_EMBEDDED {
1403 public:
1404  explicit EnsureSpace(Assembler* assembler) : assembler_(assembler) {
1405    if (assembler_->buffer_overflow()) assembler_->GrowBuffer();
1406#ifdef DEBUG
1407    space_before_ = assembler_->available_space();
1408#endif
1409  }
1410
1411#ifdef DEBUG
1412  ~EnsureSpace() {
1413    int bytes_generated = space_before_ - assembler_->available_space();
1414    ASSERT(bytes_generated < assembler_->kGap);
1415  }
1416#endif
1417
1418 private:
1419  Assembler* assembler_;
1420#ifdef DEBUG
1421  int space_before_;
1422#endif
1423};
1424
1425} }  // namespace v8::internal
1426
1427#endif  // V8_X64_ASSEMBLER_X64_H_
1428