assembler-x64.h revision d91b9f7d46489a9ee00f9cb415630299c76a502b
1// Copyright (c) 1994-2006 Sun Microsystems Inc.
2// All Rights Reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met:
7//
8// - Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10//
11// - Redistribution in binary form must reproduce the above copyright
12// notice, this list of conditions and the following disclaimer in the
13// documentation and/or other materials provided with the distribution.
14//
15// - Neither the name of Sun Microsystems or the names of contributors may
16// be used to endorse or promote products derived from this software without
17// specific prior written permission.
18//
19// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31// The original source code covered by the above license above has been
32// modified significantly by Google Inc.
33// Copyright 2006-2009 the V8 project authors. All rights reserved.
34
35// A lightweight X64 Assembler.
36
37#ifndef V8_X64_ASSEMBLER_X64_H_
38#define V8_X64_ASSEMBLER_X64_H_
39
40#include "serialize.h"
41
42namespace v8 {
43namespace internal {
44
45// Utility functions
46
47// Test whether a 64-bit value is in a specific range.
48static inline bool is_uint32(int64_t x) {
49  static const int64_t kUInt32Mask = V8_INT64_C(0xffffffff);
50  return x == (x & kUInt32Mask);
51}
52
53static inline bool is_int32(int64_t x) {
54  static const int64_t kMinIntValue = V8_INT64_C(-0x80000000);
55  return is_uint32(x - kMinIntValue);
56}
57
58static inline bool uint_is_int32(uint64_t x) {
59  static const uint64_t kMaxIntValue = V8_UINT64_C(0x80000000);
60  return x < kMaxIntValue;
61}
62
63static inline bool is_uint32(uint64_t x) {
64  static const uint64_t kMaxUIntValue = V8_UINT64_C(0x100000000);
65  return x < kMaxUIntValue;
66}
67
68// CPU Registers.
69//
70// 1) We would prefer to use an enum, but enum values are assignment-
71// compatible with int, which has caused code-generation bugs.
72//
73// 2) We would prefer to use a class instead of a struct but we don't like
74// the register initialization to depend on the particular initialization
75// order (which appears to be different on OS X, Linux, and Windows for the
76// installed versions of C++ we tried). Using a struct permits C-style
77// "initialization". Also, the Register objects cannot be const as this
78// forces initialization stubs in MSVC, making us dependent on initialization
79// order.
80//
81// 3) By not using an enum, we are possibly preventing the compiler from
82// doing certain constant folds, which may significantly reduce the
83// code generated for some assembly instructions (because they boil down
84// to a few constants). If this is a problem, we could change the code
85// such that we use an enum in optimized mode, and the struct in debug
86// mode. This way we get the compile-time error checking in debug mode
87// and best performance in optimized code.
88//
89
90struct Register {
91  static Register toRegister(int code) {
92    Register r = { code };
93    return r;
94  }
95  bool is_valid() const  { return 0 <= code_ && code_ < 16; }
96  bool is(Register reg) const  { return code_ == reg.code_; }
97  int code() const  {
98    ASSERT(is_valid());
99    return code_;
100  }
101  int bit() const  {
102    return 1 << code_;
103  }
104
105  // Return the high bit of the register code as a 0 or 1.  Used often
106  // when constructing the REX prefix byte.
107  int high_bit() const {
108    return code_ >> 3;
109  }
110  // Return the 3 low bits of the register code.  Used when encoding registers
111  // in modR/M, SIB, and opcode bytes.
112  int low_bits() const {
113    return code_ & 0x7;
114  }
115
116  // (unfortunately we can't make this private in a struct when initializing
117  // by assignment.)
118  int code_;
119};
120
121extern Register rax;
122extern Register rcx;
123extern Register rdx;
124extern Register rbx;
125extern Register rsp;
126extern Register rbp;
127extern Register rsi;
128extern Register rdi;
129extern Register r8;
130extern Register r9;
131extern Register r10;
132extern Register r11;
133extern Register r12;
134extern Register r13;
135extern Register r14;
136extern Register r15;
137extern Register no_reg;
138
139
140struct MMXRegister {
141  bool is_valid() const  { return 0 <= code_ && code_ < 2; }
142  int code() const  {
143    ASSERT(is_valid());
144    return code_;
145  }
146
147  int code_;
148};
149
150extern MMXRegister mm0;
151extern MMXRegister mm1;
152extern MMXRegister mm2;
153extern MMXRegister mm3;
154extern MMXRegister mm4;
155extern MMXRegister mm5;
156extern MMXRegister mm6;
157extern MMXRegister mm7;
158extern MMXRegister mm8;
159extern MMXRegister mm9;
160extern MMXRegister mm10;
161extern MMXRegister mm11;
162extern MMXRegister mm12;
163extern MMXRegister mm13;
164extern MMXRegister mm14;
165extern MMXRegister mm15;
166
167
168struct XMMRegister {
169  bool is_valid() const  { return 0 <= code_ && code_ < 16; }
170  int code() const  {
171    ASSERT(is_valid());
172    return code_;
173  }
174
175  // Return the high bit of the register code as a 0 or 1.  Used often
176  // when constructing the REX prefix byte.
177  int high_bit() const {
178    return code_ >> 3;
179  }
180  // Return the 3 low bits of the register code.  Used when encoding registers
181  // in modR/M, SIB, and opcode bytes.
182  int low_bits() const {
183    return code_ & 0x7;
184  }
185
186  int code_;
187};
188
189extern XMMRegister xmm0;
190extern XMMRegister xmm1;
191extern XMMRegister xmm2;
192extern XMMRegister xmm3;
193extern XMMRegister xmm4;
194extern XMMRegister xmm5;
195extern XMMRegister xmm6;
196extern XMMRegister xmm7;
197extern XMMRegister xmm8;
198extern XMMRegister xmm9;
199extern XMMRegister xmm10;
200extern XMMRegister xmm11;
201extern XMMRegister xmm12;
202extern XMMRegister xmm13;
203extern XMMRegister xmm14;
204extern XMMRegister xmm15;
205
206enum Condition {
207  // any value < 0 is considered no_condition
208  no_condition  = -1,
209
210  overflow      =  0,
211  no_overflow   =  1,
212  below         =  2,
213  above_equal   =  3,
214  equal         =  4,
215  not_equal     =  5,
216  below_equal   =  6,
217  above         =  7,
218  negative      =  8,
219  positive      =  9,
220  parity_even   = 10,
221  parity_odd    = 11,
222  less          = 12,
223  greater_equal = 13,
224  less_equal    = 14,
225  greater       = 15,
226
227  // Fake conditions that are handled by the
228  // opcodes using them.
229  always        = 16,
230  never         = 17,
231  // aliases
232  carry         = below,
233  not_carry     = above_equal,
234  zero          = equal,
235  not_zero      = not_equal,
236  sign          = negative,
237  not_sign      = positive,
238  last_condition = greater
239};
240
241
242// Returns the equivalent of !cc.
243// Negation of the default no_condition (-1) results in a non-default
244// no_condition value (-2). As long as tests for no_condition check
245// for condition < 0, this will work as expected.
246inline Condition NegateCondition(Condition cc);
247
248// Corresponds to transposing the operands of a comparison.
249inline Condition ReverseCondition(Condition cc) {
250  switch (cc) {
251    case below:
252      return above;
253    case above:
254      return below;
255    case above_equal:
256      return below_equal;
257    case below_equal:
258      return above_equal;
259    case less:
260      return greater;
261    case greater:
262      return less;
263    case greater_equal:
264      return less_equal;
265    case less_equal:
266      return greater_equal;
267    default:
268      return cc;
269  };
270}
271
272enum Hint {
273  no_hint = 0,
274  not_taken = 0x2e,
275  taken = 0x3e
276};
277
278// The result of negating a hint is as if the corresponding condition
279// were negated by NegateCondition.  That is, no_hint is mapped to
280// itself and not_taken and taken are mapped to each other.
281inline Hint NegateHint(Hint hint) {
282  return (hint == no_hint)
283      ? no_hint
284      : ((hint == not_taken) ? taken : not_taken);
285}
286
287
288// -----------------------------------------------------------------------------
289// Machine instruction Immediates
290
291class Immediate BASE_EMBEDDED {
292 public:
293  explicit Immediate(int32_t value) : value_(value) {}
294
295 private:
296  int32_t value_;
297
298  friend class Assembler;
299};
300
301
302// -----------------------------------------------------------------------------
303// Machine instruction Operands
304
305enum ScaleFactor {
306  times_1 = 0,
307  times_2 = 1,
308  times_4 = 2,
309  times_8 = 3,
310  times_int_size = times_4,
311  times_half_pointer_size = times_4,
312  times_pointer_size = times_8
313};
314
315
316class Operand BASE_EMBEDDED {
317 public:
318  // [base + disp/r]
319  Operand(Register base, int32_t disp);
320
321  // [base + index*scale + disp/r]
322  Operand(Register base,
323          Register index,
324          ScaleFactor scale,
325          int32_t disp);
326
327  // [index*scale + disp/r]
328  Operand(Register index,
329          ScaleFactor scale,
330          int32_t disp);
331
332 private:
333  byte rex_;
334  byte buf_[10];
335  // The number of bytes in buf_.
336  unsigned int len_;
337  RelocInfo::Mode rmode_;
338
339  // Set the ModR/M byte without an encoded 'reg' register. The
340  // register is encoded later as part of the emit_operand operation.
341  // set_modrm can be called before or after set_sib and set_disp*.
342  inline void set_modrm(int mod, Register rm);
343
344  // Set the SIB byte if one is needed. Sets the length to 2 rather than 1.
345  inline void set_sib(ScaleFactor scale, Register index, Register base);
346
347  // Adds operand displacement fields (offsets added to the memory address).
348  // Needs to be called after set_sib, not before it.
349  inline void set_disp8(int disp);
350  inline void set_disp32(int disp);
351
352  friend class Assembler;
353};
354
355
356// CpuFeatures keeps track of which features are supported by the target CPU.
357// Supported features must be enabled by a Scope before use.
358// Example:
359//   if (CpuFeatures::IsSupported(SSE3)) {
360//     CpuFeatures::Scope fscope(SSE3);
361//     // Generate SSE3 floating point code.
362//   } else {
363//     // Generate standard x87 or SSE2 floating point code.
364//   }
365class CpuFeatures : public AllStatic {
366 public:
367  // Detect features of the target CPU. Set safe defaults if the serializer
368  // is enabled (snapshots must be portable).
369  static void Probe();
370  // Check whether a feature is supported by the target CPU.
371  static bool IsSupported(CpuFeature f) {
372    if (f == SSE2 && !FLAG_enable_sse2) return false;
373    if (f == SSE3 && !FLAG_enable_sse3) return false;
374    if (f == CMOV && !FLAG_enable_cmov) return false;
375    if (f == RDTSC && !FLAG_enable_rdtsc) return false;
376    if (f == SAHF && !FLAG_enable_sahf) return false;
377    return (supported_ & (V8_UINT64_C(1) << f)) != 0;
378  }
379  // Check whether a feature is currently enabled.
380  static bool IsEnabled(CpuFeature f) {
381    return (enabled_ & (V8_UINT64_C(1) << f)) != 0;
382  }
383  // Enable a specified feature within a scope.
384  class Scope BASE_EMBEDDED {
385#ifdef DEBUG
386   public:
387    explicit Scope(CpuFeature f) {
388      uint64_t mask = (V8_UINT64_C(1) << f);
389      ASSERT(CpuFeatures::IsSupported(f));
390      ASSERT(!Serializer::enabled() || (found_by_runtime_probing_ & mask) == 0);
391      old_enabled_ = CpuFeatures::enabled_;
392      CpuFeatures::enabled_ |= mask;
393    }
394    ~Scope() { CpuFeatures::enabled_ = old_enabled_; }
395   private:
396    uint64_t old_enabled_;
397#else
398   public:
399    explicit Scope(CpuFeature f) {}
400#endif
401  };
402 private:
403  // Safe defaults include SSE2 and CMOV for X64. It is always available, if
404  // anyone checks, but they shouldn't need to check.
405  static const uint64_t kDefaultCpuFeatures = (1 << SSE2 | 1 << CMOV);
406  static uint64_t supported_;
407  static uint64_t enabled_;
408  static uint64_t found_by_runtime_probing_;
409};
410
411
412class Assembler : public Malloced {
413 private:
414  // We check before assembling an instruction that there is sufficient
415  // space to write an instruction and its relocation information.
416  // The relocation writer's position must be kGap bytes above the end of
417  // the generated instructions. This leaves enough space for the
418  // longest possible x64 instruction, 15 bytes, and the longest possible
419  // relocation information encoding, RelocInfoWriter::kMaxLength == 16.
420  // (There is a 15 byte limit on x64 instruction length that rules out some
421  // otherwise valid instructions.)
422  // This allows for a single, fast space check per instruction.
423  static const int kGap = 32;
424
425 public:
426  // Create an assembler. Instructions and relocation information are emitted
427  // into a buffer, with the instructions starting from the beginning and the
428  // relocation information starting from the end of the buffer. See CodeDesc
429  // for a detailed comment on the layout (globals.h).
430  //
431  // If the provided buffer is NULL, the assembler allocates and grows its own
432  // buffer, and buffer_size determines the initial buffer size. The buffer is
433  // owned by the assembler and deallocated upon destruction of the assembler.
434  //
435  // If the provided buffer is not NULL, the assembler uses the provided buffer
436  // for code generation and assumes its size to be buffer_size. If the buffer
437  // is too small, a fatal error occurs. No deallocation of the buffer is done
438  // upon destruction of the assembler.
439  Assembler(void* buffer, int buffer_size);
440  ~Assembler();
441
442  // GetCode emits any pending (non-emitted) code and fills the descriptor
443  // desc. GetCode() is idempotent; it returns the same result if no other
444  // Assembler functions are invoked in between GetCode() calls.
445  void GetCode(CodeDesc* desc);
446
447  // Read/Modify the code target in the relative branch/call instruction at pc.
448  // On the x64 architecture, we use relative jumps with a 32-bit displacement
449  // to jump to other Code objects in the Code space in the heap.
450  // Jumps to C functions are done indirectly through a 64-bit register holding
451  // the absolute address of the target.
452  // These functions convert between absolute Addresses of Code objects and
453  // the relative displacements stored in the code.
454  static inline Address target_address_at(Address pc);
455  static inline void set_target_address_at(Address pc, Address target);
456
457  // This sets the branch destination (which is in the instruction on x64).
458  // This is for calls and branches within generated code.
459  inline static void set_target_at(Address instruction_payload,
460                                   Address target) {
461    set_target_address_at(instruction_payload, target);
462  }
463
464  // This sets the branch destination (which is a load instruction on x64).
465  // This is for calls and branches to runtime code.
466  inline static void set_external_target_at(Address instruction_payload,
467                                            Address target) {
468    *reinterpret_cast<Address*>(instruction_payload) = target;
469  }
470
471  inline Handle<Object> code_target_object_handle_at(Address pc);
472  // Number of bytes taken up by the branch target in the code.
473  static const int kCallTargetSize = 4;      // Use 32-bit displacement.
474  static const int kExternalTargetSize = 8;  // Use 64-bit absolute.
475  // Distance between the address of the code target in the call instruction
476  // and the return address pushed on the stack.
477  static const int kCallTargetAddressOffset = 4;  // Use 32-bit displacement.
478  // Distance between the start of the JS return sequence and where the
479  // 32-bit displacement of a near call would be, relative to the pushed
480  // return address.  TODO: Use return sequence length instead.
481  // Should equal Debug::kX64JSReturnSequenceLength - kCallTargetAddressOffset;
482  static const int kPatchReturnSequenceAddressOffset = 13 - 4;
483  // TODO(X64): Rename this, removing the "Real", after changing the above.
484  static const int kRealPatchReturnSequenceAddressOffset = 2;
485
486  // The x64 JS return sequence is padded with int3 to make it large
487  // enough to hold a call instruction when the debugger patches it.
488  static const int kCallInstructionLength = 13;
489  static const int kJSReturnSequenceLength = 13;
490
491  // ---------------------------------------------------------------------------
492  // Code generation
493  //
494  // Function names correspond one-to-one to x64 instruction mnemonics.
495  // Unless specified otherwise, instructions operate on 64-bit operands.
496  //
497  // If we need versions of an assembly instruction that operate on different
498  // width arguments, we add a single-letter suffix specifying the width.
499  // This is done for the following instructions: mov, cmp, inc, dec,
500  // add, sub, and test.
501  // There are no versions of these instructions without the suffix.
502  // - Instructions on 8-bit (byte) operands/registers have a trailing 'b'.
503  // - Instructions on 16-bit (word) operands/registers have a trailing 'w'.
504  // - Instructions on 32-bit (doubleword) operands/registers use 'l'.
505  // - Instructions on 64-bit (quadword) operands/registers use 'q'.
506  //
507  // Some mnemonics, such as "and", are the same as C++ keywords.
508  // Naming conflicts with C++ keywords are resolved by adding a trailing '_'.
509
510  // Insert the smallest number of nop instructions
511  // possible to align the pc offset to a multiple
512  // of m. m must be a power of 2.
513  void Align(int m);
514
515  // Stack
516  void pushfq();
517  void popfq();
518
519  void push(Immediate value);
520  void push(Register src);
521  void push(const Operand& src);
522  void push(Label* label, RelocInfo::Mode relocation_mode);
523
524  void pop(Register dst);
525  void pop(const Operand& dst);
526
527  void enter(Immediate size);
528  void leave();
529
530  // Moves
531  void movb(Register dst, const Operand& src);
532  void movb(Register dst, Immediate imm);
533  void movb(const Operand& dst, Register src);
534
535  // Move the low 16 bits of a 64-bit register value to a 16-bit
536  // memory location.
537  void movw(const Operand& dst, Register src);
538
539  void movl(Register dst, Register src);
540  void movl(Register dst, const Operand& src);
541  void movl(const Operand& dst, Register src);
542  void movl(const Operand& dst, Immediate imm);
543  // Load a 32-bit immediate value, zero-extended to 64 bits.
544  void movl(Register dst, Immediate imm32);
545
546  // Move 64 bit register value to 64-bit memory location.
547  void movq(const Operand& dst, Register src);
548  // Move 64 bit memory location to 64-bit register value.
549  void movq(Register dst, const Operand& src);
550  void movq(Register dst, Register src);
551  // Sign extends immediate 32-bit value to 64 bits.
552  void movq(Register dst, Immediate x);
553  // Move the offset of the label location relative to the current
554  // position (after the move) to the destination.
555  void movl(const Operand& dst, Label* src);
556
557  // Move sign extended immediate to memory location.
558  void movq(const Operand& dst, Immediate value);
559  // New x64 instructions to load a 64-bit immediate into a register.
560  // All 64-bit immediates must have a relocation mode.
561  void movq(Register dst, void* ptr, RelocInfo::Mode rmode);
562  void movq(Register dst, int64_t value, RelocInfo::Mode rmode);
563  void movq(Register dst, const char* s, RelocInfo::Mode rmode);
564  // Moves the address of the external reference into the register.
565  void movq(Register dst, ExternalReference ext);
566  void movq(Register dst, Handle<Object> handle, RelocInfo::Mode rmode);
567
568  void movsxbq(Register dst, const Operand& src);
569  void movsxwq(Register dst, const Operand& src);
570  void movsxlq(Register dst, Register src);
571  void movsxlq(Register dst, const Operand& src);
572  void movzxbq(Register dst, const Operand& src);
573  void movzxbl(Register dst, const Operand& src);
574  void movzxwq(Register dst, const Operand& src);
575  void movzxwl(Register dst, const Operand& src);
576
577  // Repeated moves.
578
579  void repmovsb();
580  void repmovsw();
581  void repmovsl();
582  void repmovsq();
583
584  // New x64 instruction to load from an immediate 64-bit pointer into RAX.
585  void load_rax(void* ptr, RelocInfo::Mode rmode);
586  void load_rax(ExternalReference ext);
587
588  // Conditional moves.
589  void cmovq(Condition cc, Register dst, Register src);
590  void cmovq(Condition cc, Register dst, const Operand& src);
591  void cmovl(Condition cc, Register dst, Register src);
592  void cmovl(Condition cc, Register dst, const Operand& src);
593
594  // Exchange two registers
595  void xchg(Register dst, Register src);
596
597  // Arithmetics
598  void addl(Register dst, Register src) {
599    if (dst.low_bits() == 4) {  // Forces SIB byte.
600      arithmetic_op_32(0x01, src, dst);
601    } else {
602      arithmetic_op_32(0x03, dst, src);
603    }
604  }
605
606  void addl(Register dst, Immediate src) {
607    immediate_arithmetic_op_32(0x0, dst, src);
608  }
609
610  void addl(Register dst, const Operand& src) {
611    arithmetic_op_32(0x03, dst, src);
612  }
613
614  void addl(const Operand& dst, Immediate src) {
615    immediate_arithmetic_op_32(0x0, dst, src);
616  }
617
618  void addq(Register dst, Register src) {
619    arithmetic_op(0x03, dst, src);
620  }
621
622  void addq(Register dst, const Operand& src) {
623    arithmetic_op(0x03, dst, src);
624  }
625
626  void addq(const Operand& dst, Register src) {
627    arithmetic_op(0x01, src, dst);
628  }
629
630  void addq(Register dst, Immediate src) {
631    immediate_arithmetic_op(0x0, dst, src);
632  }
633
634  void addq(const Operand& dst, Immediate src) {
635    immediate_arithmetic_op(0x0, dst, src);
636  }
637
638  void cmpb(Register dst, Immediate src) {
639    immediate_arithmetic_op_8(0x7, dst, src);
640  }
641
642  void cmpb_al(Immediate src);
643
644  void cmpb(Register dst, Register src) {
645    arithmetic_op(0x3A, dst, src);
646  }
647
648  void cmpb(Register dst, const Operand& src) {
649    arithmetic_op(0x3A, dst, src);
650  }
651
652  void cmpb(const Operand& dst, Register src) {
653    arithmetic_op(0x38, src, dst);
654  }
655
656  void cmpb(const Operand& dst, Immediate src) {
657    immediate_arithmetic_op_8(0x7, dst, src);
658  }
659
660  void cmpw(const Operand& dst, Immediate src) {
661    immediate_arithmetic_op_16(0x7, dst, src);
662  }
663
664  void cmpw(Register dst, Immediate src) {
665    immediate_arithmetic_op_16(0x7, dst, src);
666  }
667
668  void cmpw(Register dst, const Operand& src) {
669    arithmetic_op_16(0x3B, dst, src);
670  }
671
672  void cmpw(Register dst, Register src) {
673    arithmetic_op_16(0x3B, dst, src);
674  }
675
676  void cmpw(const Operand& dst, Register src) {
677    arithmetic_op_16(0x39, src, dst);
678  }
679
680  void cmpl(Register dst, Register src) {
681    arithmetic_op_32(0x3B, dst, src);
682  }
683
684  void cmpl(Register dst, const Operand& src) {
685    arithmetic_op_32(0x3B, dst, src);
686  }
687
688  void cmpl(const Operand& dst, Register src) {
689    arithmetic_op_32(0x39, src, dst);
690  }
691
692  void cmpl(Register dst, Immediate src) {
693    immediate_arithmetic_op_32(0x7, dst, src);
694  }
695
696  void cmpl(const Operand& dst, Immediate src) {
697    immediate_arithmetic_op_32(0x7, dst, src);
698  }
699
700  void cmpq(Register dst, Register src) {
701    arithmetic_op(0x3B, dst, src);
702  }
703
704  void cmpq(Register dst, const Operand& src) {
705    arithmetic_op(0x3B, dst, src);
706  }
707
708  void cmpq(const Operand& dst, Register src) {
709    arithmetic_op(0x39, src, dst);
710  }
711
712  void cmpq(Register dst, Immediate src) {
713    immediate_arithmetic_op(0x7, dst, src);
714  }
715
716  void cmpq(const Operand& dst, Immediate src) {
717    immediate_arithmetic_op(0x7, dst, src);
718  }
719
720  void and_(Register dst, Register src) {
721    arithmetic_op(0x23, dst, src);
722  }
723
724  void and_(Register dst, const Operand& src) {
725    arithmetic_op(0x23, dst, src);
726  }
727
728  void and_(const Operand& dst, Register src) {
729    arithmetic_op(0x21, src, dst);
730  }
731
732  void and_(Register dst, Immediate src) {
733    immediate_arithmetic_op(0x4, dst, src);
734  }
735
736  void and_(const Operand& dst, Immediate src) {
737    immediate_arithmetic_op(0x4, dst, src);
738  }
739
740  void andl(Register dst, Immediate src) {
741    immediate_arithmetic_op_32(0x4, dst, src);
742  }
743
744  void andl(Register dst, Register src) {
745    arithmetic_op_32(0x23, dst, src);
746  }
747
748
749  void decq(Register dst);
750  void decq(const Operand& dst);
751  void decl(Register dst);
752  void decl(const Operand& dst);
753  void decb(Register dst);
754  void decb(const Operand& dst);
755
756  // Sign-extends rax into rdx:rax.
757  void cqo();
758  // Sign-extends eax into edx:eax.
759  void cdq();
760
761  // Divide rdx:rax by src.  Quotient in rax, remainder in rdx.
762  void idivq(Register src);
763  // Divide edx:eax by lower 32 bits of src.  Quotient in eax, rem. in edx.
764  void idivl(Register src);
765
766  // Signed multiply instructions.
767  void imul(Register src);                               // rdx:rax = rax * src.
768  void imul(Register dst, Register src);                 // dst = dst * src.
769  void imul(Register dst, const Operand& src);           // dst = dst * src.
770  void imul(Register dst, Register src, Immediate imm);  // dst = src * imm.
771  // Multiply 32 bit registers
772  void imull(Register dst, Register src);                // dst = dst * src.
773
774  void incq(Register dst);
775  void incq(const Operand& dst);
776  void incl(const Operand& dst);
777
778  void lea(Register dst, const Operand& src);
779
780  // Multiply rax by src, put the result in rdx:rax.
781  void mul(Register src);
782
783  void neg(Register dst);
784  void neg(const Operand& dst);
785  void negl(Register dst);
786
787  void not_(Register dst);
788  void not_(const Operand& dst);
789
790  void or_(Register dst, Register src) {
791    arithmetic_op(0x0B, dst, src);
792  }
793
794  void orl(Register dst, Register src) {
795    arithmetic_op_32(0x0B, dst, src);
796  }
797
798  void or_(Register dst, const Operand& src) {
799    arithmetic_op(0x0B, dst, src);
800  }
801
802  void or_(const Operand& dst, Register src) {
803    arithmetic_op(0x09, src, dst);
804  }
805
806  void or_(Register dst, Immediate src) {
807    immediate_arithmetic_op(0x1, dst, src);
808  }
809
810  void orl(Register dst, Immediate src) {
811    immediate_arithmetic_op_32(0x1, dst, src);
812  }
813
814  void or_(const Operand& dst, Immediate src) {
815    immediate_arithmetic_op(0x1, dst, src);
816  }
817
818  void orl(const Operand& dst, Immediate src) {
819    immediate_arithmetic_op_32(0x1, dst, src);
820  }
821
822
823  void rcl(Register dst, Immediate imm8) {
824    shift(dst, imm8, 0x2);
825  }
826
827  void rol(Register dst, Immediate imm8) {
828    shift(dst, imm8, 0x0);
829  }
830
831  void rcr(Register dst, Immediate imm8) {
832    shift(dst, imm8, 0x3);
833  }
834
835  void ror(Register dst, Immediate imm8) {
836    shift(dst, imm8, 0x1);
837  }
838
839  // Shifts dst:src left by cl bits, affecting only dst.
840  void shld(Register dst, Register src);
841
842  // Shifts src:dst right by cl bits, affecting only dst.
843  void shrd(Register dst, Register src);
844
845  // Shifts dst right, duplicating sign bit, by shift_amount bits.
846  // Shifting by 1 is handled efficiently.
847  void sar(Register dst, Immediate shift_amount) {
848    shift(dst, shift_amount, 0x7);
849  }
850
851  // Shifts dst right, duplicating sign bit, by shift_amount bits.
852  // Shifting by 1 is handled efficiently.
853  void sarl(Register dst, Immediate shift_amount) {
854    shift_32(dst, shift_amount, 0x7);
855  }
856
857  // Shifts dst right, duplicating sign bit, by cl % 64 bits.
858  void sar_cl(Register dst) {
859    shift(dst, 0x7);
860  }
861
862  // Shifts dst right, duplicating sign bit, by cl % 64 bits.
863  void sarl_cl(Register dst) {
864    shift_32(dst, 0x7);
865  }
866
867  void shl(Register dst, Immediate shift_amount) {
868    shift(dst, shift_amount, 0x4);
869  }
870
871  void shl_cl(Register dst) {
872    shift(dst, 0x4);
873  }
874
875  void shll_cl(Register dst) {
876    shift_32(dst, 0x4);
877  }
878
879  void shll(Register dst, Immediate shift_amount) {
880    shift_32(dst, shift_amount, 0x4);
881  }
882
883  void shr(Register dst, Immediate shift_amount) {
884    shift(dst, shift_amount, 0x5);
885  }
886
887  void shr_cl(Register dst) {
888    shift(dst, 0x5);
889  }
890
891  void shrl_cl(Register dst) {
892    shift_32(dst, 0x5);
893  }
894
895  void shrl(Register dst, Immediate shift_amount) {
896    shift_32(dst, shift_amount, 0x5);
897  }
898
899  void store_rax(void* dst, RelocInfo::Mode mode);
900  void store_rax(ExternalReference ref);
901
902  void subq(Register dst, Register src) {
903    arithmetic_op(0x2B, dst, src);
904  }
905
906  void subq(Register dst, const Operand& src) {
907    arithmetic_op(0x2B, dst, src);
908  }
909
910  void subq(const Operand& dst, Register src) {
911    arithmetic_op(0x29, src, dst);
912  }
913
914  void subq(Register dst, Immediate src) {
915    immediate_arithmetic_op(0x5, dst, src);
916  }
917
918  void subq(const Operand& dst, Immediate src) {
919    immediate_arithmetic_op(0x5, dst, src);
920  }
921
922  void subl(Register dst, Register src) {
923    arithmetic_op_32(0x2B, dst, src);
924  }
925
926  void subl(Register dst, const Operand& src) {
927    arithmetic_op_32(0x2B, dst, src);
928  }
929
930  void subl(const Operand& dst, Immediate src) {
931    immediate_arithmetic_op_32(0x5, dst, src);
932  }
933
934  void subl(Register dst, Immediate src) {
935    immediate_arithmetic_op_32(0x5, dst, src);
936  }
937
938  void subb(Register dst, Immediate src) {
939    immediate_arithmetic_op_8(0x5, dst, src);
940  }
941
942  void testb(Register dst, Register src);
943  void testb(Register reg, Immediate mask);
944  void testb(const Operand& op, Immediate mask);
945  void testb(const Operand& op, Register reg);
946  void testl(Register dst, Register src);
947  void testl(Register reg, Immediate mask);
948  void testl(const Operand& op, Immediate mask);
949  void testq(const Operand& op, Register reg);
950  void testq(Register dst, Register src);
951  void testq(Register dst, Immediate mask);
952
953  void xor_(Register dst, Register src) {
954    if (dst.code() == src.code()) {
955      arithmetic_op_32(0x33, dst, src);
956    } else {
957      arithmetic_op(0x33, dst, src);
958    }
959  }
960
961  void xorl(Register dst, Register src) {
962    arithmetic_op_32(0x33, dst, src);
963  }
964
965  void xor_(Register dst, const Operand& src) {
966    arithmetic_op(0x33, dst, src);
967  }
968
969  void xor_(const Operand& dst, Register src) {
970    arithmetic_op(0x31, src, dst);
971  }
972
973  void xor_(Register dst, Immediate src) {
974    immediate_arithmetic_op(0x6, dst, src);
975  }
976
977  void xor_(const Operand& dst, Immediate src) {
978    immediate_arithmetic_op(0x6, dst, src);
979  }
980
981  // Bit operations.
982  void bt(const Operand& dst, Register src);
983  void bts(const Operand& dst, Register src);
984
985  // Miscellaneous
986  void clc();
987  void cpuid();
988  void hlt();
989  void int3();
990  void nop();
991  void nop(int n);
992  void rdtsc();
993  void ret(int imm16);
994  void setcc(Condition cc, Register reg);
995
996  // Label operations & relative jumps (PPUM Appendix D)
997  //
998  // Takes a branch opcode (cc) and a label (L) and generates
999  // either a backward branch or a forward branch and links it
1000  // to the label fixup chain. Usage:
1001  //
1002  // Label L;    // unbound label
1003  // j(cc, &L);  // forward branch to unbound label
1004  // bind(&L);   // bind label to the current pc
1005  // j(cc, &L);  // backward branch to bound label
1006  // bind(&L);   // illegal: a label may be bound only once
1007  //
1008  // Note: The same Label can be used for forward and backward branches
1009  // but it may be bound only once.
1010
1011  void bind(Label* L);  // binds an unbound label L to the current code position
1012
1013  // Calls
1014  // Call near relative 32-bit displacement, relative to next instruction.
1015  void call(Label* L);
1016  void call(Handle<Code> target, RelocInfo::Mode rmode);
1017
1018  // Call near absolute indirect, address in register
1019  void call(Register adr);
1020
1021  // Call near indirect
1022  void call(const Operand& operand);
1023
1024  // Jumps
1025  // Jump short or near relative.
1026  // Use a 32-bit signed displacement.
1027  void jmp(Label* L);  // unconditional jump to L
1028  void jmp(Handle<Code> target, RelocInfo::Mode rmode);
1029
1030  // Jump near absolute indirect (r64)
1031  void jmp(Register adr);
1032
1033  // Jump near absolute indirect (m64)
1034  void jmp(const Operand& src);
1035
1036  // Conditional jumps
1037  void j(Condition cc, Label* L);
1038  void j(Condition cc, Handle<Code> target, RelocInfo::Mode rmode);
1039
1040  // Floating-point operations
1041  void fld(int i);
1042
1043  void fld1();
1044  void fldz();
1045
1046  void fld_s(const Operand& adr);
1047  void fld_d(const Operand& adr);
1048
1049  void fstp_s(const Operand& adr);
1050  void fstp_d(const Operand& adr);
1051  void fstp(int index);
1052
1053  void fild_s(const Operand& adr);
1054  void fild_d(const Operand& adr);
1055
1056  void fist_s(const Operand& adr);
1057
1058  void fistp_s(const Operand& adr);
1059  void fistp_d(const Operand& adr);
1060
1061  void fisttp_s(const Operand& adr);
1062  void fisttp_d(const Operand& adr);
1063
1064  void fabs();
1065  void fchs();
1066
1067  void fadd(int i);
1068  void fsub(int i);
1069  void fmul(int i);
1070  void fdiv(int i);
1071
1072  void fisub_s(const Operand& adr);
1073
1074  void faddp(int i = 1);
1075  void fsubp(int i = 1);
1076  void fsubrp(int i = 1);
1077  void fmulp(int i = 1);
1078  void fdivp(int i = 1);
1079  void fprem();
1080  void fprem1();
1081
1082  void fxch(int i = 1);
1083  void fincstp();
1084  void ffree(int i = 0);
1085
1086  void ftst();
1087  void fucomp(int i);
1088  void fucompp();
1089  void fucomi(int i);
1090  void fucomip();
1091
1092  void fcompp();
1093  void fnstsw_ax();
1094  void fwait();
1095  void fnclex();
1096
1097  void fsin();
1098  void fcos();
1099
1100  void frndint();
1101
1102  void sahf();
1103
1104  // SSE2 instructions
1105  void movsd(const Operand& dst, XMMRegister src);
1106  void movsd(XMMRegister src, XMMRegister dst);
1107  void movsd(XMMRegister src, const Operand& dst);
1108
1109  void cvttss2si(Register dst, const Operand& src);
1110  void cvttsd2si(Register dst, const Operand& src);
1111
1112  void cvtlsi2sd(XMMRegister dst, const Operand& src);
1113  void cvtlsi2sd(XMMRegister dst, Register src);
1114  void cvtqsi2sd(XMMRegister dst, const Operand& src);
1115  void cvtqsi2sd(XMMRegister dst, Register src);
1116
1117  void addsd(XMMRegister dst, XMMRegister src);
1118  void subsd(XMMRegister dst, XMMRegister src);
1119  void mulsd(XMMRegister dst, XMMRegister src);
1120  void divsd(XMMRegister dst, XMMRegister src);
1121
1122
1123  void emit_sse_operand(XMMRegister dst, XMMRegister src);
1124  void emit_sse_operand(XMMRegister reg, const Operand& adr);
1125  void emit_sse_operand(XMMRegister dst, Register src);
1126
1127  // Use either movsd or movlpd.
1128  // void movdbl(XMMRegister dst, const Operand& src);
1129  // void movdbl(const Operand& dst, XMMRegister src);
1130
1131  // Debugging
1132  void Print();
1133
1134  // Check the code size generated from label to here.
1135  int SizeOfCodeGeneratedSince(Label* l) { return pc_offset() - l->pos(); }
1136
1137  // Mark address of the ExitJSFrame code.
1138  void RecordJSReturn();
1139
1140  // Record a comment relocation entry that can be used by a disassembler.
1141  // Use --debug_code to enable.
1142  void RecordComment(const char* msg);
1143
1144  void RecordPosition(int pos);
1145  void RecordStatementPosition(int pos);
1146  void WriteRecordedPositions();
1147
1148  int pc_offset() const  { return static_cast<int>(pc_ - buffer_); }
1149  int current_statement_position() const { return current_statement_position_; }
1150  int current_position() const  { return current_position_; }
1151
1152  // Check if there is less than kGap bytes available in the buffer.
1153  // If this is the case, we need to grow the buffer before emitting
1154  // an instruction or relocation information.
1155  inline bool buffer_overflow() const {
1156    return pc_ >= reloc_info_writer.pos() - kGap;
1157  }
1158
1159  // Get the number of bytes available in the buffer.
1160  inline int available_space() const {
1161    return static_cast<int>(reloc_info_writer.pos() - pc_);
1162  }
1163
1164  // Avoid overflows for displacements etc.
1165  static const int kMaximalBufferSize = 512*MB;
1166  static const int kMinimalBufferSize = 4*KB;
1167
1168 protected:
1169  // void movsd(XMMRegister dst, const Operand& src);
1170  // void movsd(const Operand& dst, XMMRegister src);
1171
1172  // void emit_sse_operand(XMMRegister reg, const Operand& adr);
1173  // void emit_sse_operand(XMMRegister dst, XMMRegister src);
1174
1175
1176 private:
1177  byte* addr_at(int pos)  { return buffer_ + pos; }
1178  byte byte_at(int pos)  { return buffer_[pos]; }
1179  uint32_t long_at(int pos)  {
1180    return *reinterpret_cast<uint32_t*>(addr_at(pos));
1181  }
1182  void long_at_put(int pos, uint32_t x)  {
1183    *reinterpret_cast<uint32_t*>(addr_at(pos)) = x;
1184  }
1185
1186  // code emission
1187  void GrowBuffer();
1188
1189  void emit(byte x) { *pc_++ = x; }
1190  inline void emitl(uint32_t x);
1191  inline void emitq(uint64_t x, RelocInfo::Mode rmode);
1192  inline void emitw(uint16_t x);
1193  inline void emit_code_target(Handle<Code> target, RelocInfo::Mode rmode);
1194  void emit(Immediate x) { emitl(x.value_); }
1195
1196  // Emits a REX prefix that encodes a 64-bit operand size and
1197  // the top bit of both register codes.
1198  // High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B.
1199  // REX.W is set.
1200  inline void emit_rex_64(Register reg, Register rm_reg);
1201  inline void emit_rex_64(XMMRegister reg, Register rm_reg);
1202
1203  // Emits a REX prefix that encodes a 64-bit operand size and
1204  // the top bit of the destination, index, and base register codes.
1205  // The high bit of reg is used for REX.R, the high bit of op's base
1206  // register is used for REX.B, and the high bit of op's index register
1207  // is used for REX.X.  REX.W is set.
1208  inline void emit_rex_64(Register reg, const Operand& op);
1209  inline void emit_rex_64(XMMRegister reg, const Operand& op);
1210
1211  // Emits a REX prefix that encodes a 64-bit operand size and
1212  // the top bit of the register code.
1213  // The high bit of register is used for REX.B.
1214  // REX.W is set and REX.R and REX.X are clear.
1215  inline void emit_rex_64(Register rm_reg);
1216
1217  // Emits a REX prefix that encodes a 64-bit operand size and
1218  // the top bit of the index and base register codes.
1219  // The high bit of op's base register is used for REX.B, and the high
1220  // bit of op's index register is used for REX.X.
1221  // REX.W is set and REX.R clear.
1222  inline void emit_rex_64(const Operand& op);
1223
1224  // Emit a REX prefix that only sets REX.W to choose a 64-bit operand size.
1225  void emit_rex_64() { emit(0x48); }
1226
1227  // High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B.
1228  // REX.W is clear.
1229  inline void emit_rex_32(Register reg, Register rm_reg);
1230
1231  // The high bit of reg is used for REX.R, the high bit of op's base
1232  // register is used for REX.B, and the high bit of op's index register
1233  // is used for REX.X.  REX.W is cleared.
1234  inline void emit_rex_32(Register reg, const Operand& op);
1235
1236  // High bit of rm_reg goes to REX.B.
1237  // REX.W, REX.R and REX.X are clear.
1238  inline void emit_rex_32(Register rm_reg);
1239
1240  // High bit of base goes to REX.B and high bit of index to REX.X.
1241  // REX.W and REX.R are clear.
1242  inline void emit_rex_32(const Operand& op);
1243
1244  // High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B.
1245  // REX.W is cleared.  If no REX bits are set, no byte is emitted.
1246  inline void emit_optional_rex_32(Register reg, Register rm_reg);
1247
1248  // The high bit of reg is used for REX.R, the high bit of op's base
1249  // register is used for REX.B, and the high bit of op's index register
1250  // is used for REX.X.  REX.W is cleared.  If no REX bits are set, nothing
1251  // is emitted.
1252  inline void emit_optional_rex_32(Register reg, const Operand& op);
1253
1254  // As for emit_optional_rex_32(Register, Register), except that
1255  // the registers are XMM registers.
1256  inline void emit_optional_rex_32(XMMRegister reg, XMMRegister base);
1257
1258  // As for emit_optional_rex_32(Register, Register), except that
1259  // the registers are XMM registers.
1260  inline void emit_optional_rex_32(XMMRegister reg, Register base);
1261
1262  // As for emit_optional_rex_32(Register, const Operand&), except that
1263  // the register is an XMM register.
1264  inline void emit_optional_rex_32(XMMRegister reg, const Operand& op);
1265
1266  // Optionally do as emit_rex_32(Register) if the register number has
1267  // the high bit set.
1268  inline void emit_optional_rex_32(Register rm_reg);
1269
1270  // Optionally do as emit_rex_32(const Operand&) if the operand register
1271  // numbers have a high bit set.
1272  inline void emit_optional_rex_32(const Operand& op);
1273
1274
1275  // Emit the ModR/M byte, and optionally the SIB byte and
1276  // 1- or 4-byte offset for a memory operand.  Also encodes
1277  // the second operand of the operation, a register or operation
1278  // subcode, into the reg field of the ModR/M byte.
1279  void emit_operand(Register reg, const Operand& adr) {
1280    emit_operand(reg.low_bits(), adr);
1281  }
1282
1283  // Emit the ModR/M byte, and optionally the SIB byte and
1284  // 1- or 4-byte offset for a memory operand.  Also used to encode
1285  // a three-bit opcode extension into the ModR/M byte.
1286  void emit_operand(int rm, const Operand& adr);
1287
1288  // Emit a ModR/M byte with registers coded in the reg and rm_reg fields.
1289  void emit_modrm(Register reg, Register rm_reg) {
1290    emit(0xC0 | reg.low_bits() << 3 | rm_reg.low_bits());
1291  }
1292
1293  // Emit a ModR/M byte with an operation subcode in the reg field and
1294  // a register in the rm_reg field.
1295  void emit_modrm(int code, Register rm_reg) {
1296    ASSERT(is_uint3(code));
1297    emit(0xC0 | code << 3 | rm_reg.low_bits());
1298  }
1299
1300  // Emit the code-object-relative offset of the label's position
1301  inline void emit_code_relative_offset(Label* label);
1302
1303  // Emit machine code for one of the operations ADD, ADC, SUB, SBC,
1304  // AND, OR, XOR, or CMP.  The encodings of these operations are all
1305  // similar, differing just in the opcode or in the reg field of the
1306  // ModR/M byte.
1307  void arithmetic_op_16(byte opcode, Register reg, Register rm_reg);
1308  void arithmetic_op_16(byte opcode, Register reg, const Operand& rm_reg);
1309  void arithmetic_op_32(byte opcode, Register reg, Register rm_reg);
1310  void arithmetic_op_32(byte opcode, Register reg, const Operand& rm_reg);
1311  void arithmetic_op(byte opcode, Register reg, Register rm_reg);
1312  void arithmetic_op(byte opcode, Register reg, const Operand& rm_reg);
1313  void immediate_arithmetic_op(byte subcode, Register dst, Immediate src);
1314  void immediate_arithmetic_op(byte subcode, const Operand& dst, Immediate src);
1315  // Operate on a byte in memory or register.
1316  void immediate_arithmetic_op_8(byte subcode,
1317                                 Register dst,
1318                                 Immediate src);
1319  void immediate_arithmetic_op_8(byte subcode,
1320                                 const Operand& dst,
1321                                 Immediate src);
1322  // Operate on a word in memory or register.
1323  void immediate_arithmetic_op_16(byte subcode,
1324                                  Register dst,
1325                                  Immediate src);
1326  void immediate_arithmetic_op_16(byte subcode,
1327                                  const Operand& dst,
1328                                  Immediate src);
1329  // Operate on a 32-bit word in memory or register.
1330  void immediate_arithmetic_op_32(byte subcode,
1331                                  Register dst,
1332                                  Immediate src);
1333  void immediate_arithmetic_op_32(byte subcode,
1334                                  const Operand& dst,
1335                                  Immediate src);
1336
1337  // Emit machine code for a shift operation.
1338  void shift(Register dst, Immediate shift_amount, int subcode);
1339  void shift_32(Register dst, Immediate shift_amount, int subcode);
1340  // Shift dst by cl % 64 bits.
1341  void shift(Register dst, int subcode);
1342  void shift_32(Register dst, int subcode);
1343
1344  void emit_farith(int b1, int b2, int i);
1345
1346  // labels
1347  // void print(Label* L);
1348  void bind_to(Label* L, int pos);
1349  void link_to(Label* L, Label* appendix);
1350
1351  // record reloc info for current pc_
1352  void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
1353
1354  friend class CodePatcher;
1355  friend class EnsureSpace;
1356  friend class RegExpMacroAssemblerX64;
1357
1358  // Code buffer:
1359  // The buffer into which code and relocation info are generated.
1360  byte* buffer_;
1361  int buffer_size_;
1362  // True if the assembler owns the buffer, false if buffer is external.
1363  bool own_buffer_;
1364  // A previously allocated buffer of kMinimalBufferSize bytes, or NULL.
1365  static byte* spare_buffer_;
1366
1367  // code generation
1368  byte* pc_;  // the program counter; moves forward
1369  RelocInfoWriter reloc_info_writer;
1370
1371  List< Handle<Code> > code_targets_;
1372  // push-pop elimination
1373  byte* last_pc_;
1374
1375  // source position information
1376  int current_statement_position_;
1377  int current_position_;
1378  int written_statement_position_;
1379  int written_position_;
1380};
1381
1382
1383// Helper class that ensures that there is enough space for generating
1384// instructions and relocation information.  The constructor makes
1385// sure that there is enough space and (in debug mode) the destructor
1386// checks that we did not generate too much.
1387class EnsureSpace BASE_EMBEDDED {
1388 public:
1389  explicit EnsureSpace(Assembler* assembler) : assembler_(assembler) {
1390    if (assembler_->buffer_overflow()) assembler_->GrowBuffer();
1391#ifdef DEBUG
1392    space_before_ = assembler_->available_space();
1393#endif
1394  }
1395
1396#ifdef DEBUG
1397  ~EnsureSpace() {
1398    int bytes_generated = space_before_ - assembler_->available_space();
1399    ASSERT(bytes_generated < assembler_->kGap);
1400  }
1401#endif
1402
1403 private:
1404  Assembler* assembler_;
1405#ifdef DEBUG
1406  int space_before_;
1407#endif
1408};
1409
1410} }  // namespace v8::internal
1411
1412#endif  // V8_X64_ASSEMBLER_X64_H_
1413