1/*
2*  xxHash - Fast Hash algorithm
3*  Copyright (C) 2012-2016, Yann Collet
4*
5*  BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
6*
7*  Redistribution and use in source and binary forms, with or without
8*  modification, are permitted provided that the following conditions are
9*  met:
10*
11*  * Redistributions of source code must retain the above copyright
12*  notice, this list of conditions and the following disclaimer.
13*  * Redistributions in binary form must reproduce the above
14*  copyright notice, this list of conditions and the following disclaimer
15*  in the documentation and/or other materials provided with the
16*  distribution.
17*
18*  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19*  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20*  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21*  A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22*  OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23*  SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24*  LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25*  DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26*  THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27*  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28*  OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29*
30*  You can contact the author at :
31*  - xxHash homepage: http://www.xxhash.com
32*  - xxHash source repository : https://github.com/Cyan4973/xxHash
33*/
34
35
36/* *************************************
37*  Tuning parameters
38***************************************/
39/*!XXH_FORCE_MEMORY_ACCESS :
40 * By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable.
41 * Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal.
42 * The below switch allow to select different access method for improved performance.
43 * Method 0 (default) : use `memcpy()`. Safe and portable.
44 * Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable).
45 *            This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`.
46 * Method 2 : direct access. This method doesn't depend on compiler but violate C standard.
47 *            It can generate buggy code on targets which do not support unaligned memory accesses.
48 *            But in some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6)
49 * See http://stackoverflow.com/a/32095106/646947 for details.
50 * Prefer these methods in priority order (0 > 1 > 2)
51 */
52#ifndef XXH_FORCE_MEMORY_ACCESS   /* can be defined externally, on command line for example */
53#  if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) )
54#    define XXH_FORCE_MEMORY_ACCESS 2
55#  elif defined(__INTEL_COMPILER) || \
56  (defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) ))
57#    define XXH_FORCE_MEMORY_ACCESS 1
58#  endif
59#endif
60
61/*!XXH_ACCEPT_NULL_INPUT_POINTER :
62 * If the input pointer is a null pointer, xxHash default behavior is to trigger a memory access error, since it is a bad pointer.
63 * When this option is enabled, xxHash output for null input pointers will be the same as a null-length input.
64 * By default, this option is disabled. To enable it, uncomment below define :
65 */
66/* #define XXH_ACCEPT_NULL_INPUT_POINTER 1 */
67
68/*!XXH_FORCE_NATIVE_FORMAT :
69 * By default, xxHash library provides endian-independent Hash values, based on little-endian convention.
70 * Results are therefore identical for little-endian and big-endian CPU.
71 * This comes at a performance cost for big-endian CPU, since some swapping is required to emulate little-endian format.
72 * Should endian-independence be of no importance for your application, you may set the #define below to 1,
73 * to improve speed for Big-endian CPU.
74 * This option has no impact on Little_Endian CPU.
75 */
76#ifndef XXH_FORCE_NATIVE_FORMAT   /* can be defined externally */
77#  define XXH_FORCE_NATIVE_FORMAT 0
78#endif
79
80/*!XXH_FORCE_ALIGN_CHECK :
81 * This is a minor performance trick, only useful with lots of very small keys.
82 * It means : check for aligned/unaligned input.
83 * The check costs one initial branch per hash;
84 * set it to 0 when the input is guaranteed to be aligned,
85 * or when alignment doesn't matter for performance.
86 */
87#ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */
88#  if defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64)
89#    define XXH_FORCE_ALIGN_CHECK 0
90#  else
91#    define XXH_FORCE_ALIGN_CHECK 1
92#  endif
93#endif
94
95
96/* *************************************
97*  Includes & Memory related functions
98***************************************/
99/*! Modify the local functions below should you wish to use some other memory routines
100*   for malloc(), free() */
101#include <stdlib.h>
102static void* XXH_malloc(size_t s) { return malloc(s); }
103static void  XXH_free  (void* p)  { free(p); }
104/*! and for memcpy() */
105#include <string.h>
106static void* XXH_memcpy(void* dest, const void* src, size_t size) { return memcpy(dest,src,size); }
107
108#define XXH_STATIC_LINKING_ONLY
109#include "xxhash.h"
110
111
112/* *************************************
113*  Compiler Specific Options
114***************************************/
115#ifdef _MSC_VER    /* Visual Studio */
116#  pragma warning(disable : 4127)      /* disable: C4127: conditional expression is constant */
117#  define FORCE_INLINE static __forceinline
118#else
119#  if defined (__cplusplus) || defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L   /* C99 */
120#    ifdef __GNUC__
121#      define FORCE_INLINE static inline __attribute__((always_inline))
122#    else
123#      define FORCE_INLINE static inline
124#    endif
125#  else
126#    define FORCE_INLINE static
127#  endif /* __STDC_VERSION__ */
128#endif
129
130
131/* *************************************
132*  Basic Types
133***************************************/
134#ifndef MEM_MODULE
135# if !defined (__VMS) && (defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
136#   include <stdint.h>
137    typedef uint8_t  BYTE;
138    typedef uint16_t U16;
139    typedef uint32_t U32;
140# else
141    typedef unsigned char      BYTE;
142    typedef unsigned short     U16;
143    typedef unsigned int       U32;
144# endif
145#endif
146
147#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
148
149/* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */
150static U32 XXH_read32(const void* memPtr) { return *(const U32*) memPtr; }
151
152#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
153
154/* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
155/* currently only defined for gcc and icc */
156typedef union { U32 u32; } __attribute__((packed)) unalign;
157static U32 XXH_read32(const void* ptr) { return ((const unalign*)ptr)->u32; }
158
159#else
160
161/* portable and safe solution. Generally efficient.
162 * see : http://stackoverflow.com/a/32095106/646947
163 */
164static U32 XXH_read32(const void* memPtr)
165{
166    U32 val;
167    memcpy(&val, memPtr, sizeof(val));
168    return val;
169}
170
171#endif   /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
172
173
174/* ****************************************
175*  Compiler-specific Functions and Macros
176******************************************/
177#define XXH_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
178
179/* Note : although _rotl exists for minGW (GCC under windows), performance seems poor */
180#if defined(_MSC_VER)
181#  define XXH_rotl32(x,r) _rotl(x,r)
182#  define XXH_rotl64(x,r) _rotl64(x,r)
183#else
184#  define XXH_rotl32(x,r) ((x << r) | (x >> (32 - r)))
185#  define XXH_rotl64(x,r) ((x << r) | (x >> (64 - r)))
186#endif
187
188#if defined(_MSC_VER)     /* Visual Studio */
189#  define XXH_swap32 _byteswap_ulong
190#elif XXH_GCC_VERSION >= 403
191#  define XXH_swap32 __builtin_bswap32
192#else
193static U32 XXH_swap32 (U32 x)
194{
195    return  ((x << 24) & 0xff000000 ) |
196            ((x <<  8) & 0x00ff0000 ) |
197            ((x >>  8) & 0x0000ff00 ) |
198            ((x >> 24) & 0x000000ff );
199}
200#endif
201
202
203/* *************************************
204*  Architecture Macros
205***************************************/
206typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess;
207
208/* XXH_CPU_LITTLE_ENDIAN can be defined externally, for example on the compiler command line */
209#ifndef XXH_CPU_LITTLE_ENDIAN
210    static const int g_one = 1;
211#   define XXH_CPU_LITTLE_ENDIAN   (*(const char*)(&g_one))
212#endif
213
214
215/* ***************************
216*  Memory reads
217*****************************/
218typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment;
219
220FORCE_INLINE U32 XXH_readLE32_align(const void* ptr, XXH_endianess endian, XXH_alignment align)
221{
222    if (align==XXH_unaligned)
223        return endian==XXH_littleEndian ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr));
224    else
225        return endian==XXH_littleEndian ? *(const U32*)ptr : XXH_swap32(*(const U32*)ptr);
226}
227
228FORCE_INLINE U32 XXH_readLE32(const void* ptr, XXH_endianess endian)
229{
230    return XXH_readLE32_align(ptr, endian, XXH_unaligned);
231}
232
233static U32 XXH_readBE32(const void* ptr)
234{
235    return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr);
236}
237
238
239/* *************************************
240*  Macros
241***************************************/
242#define XXH_STATIC_ASSERT(c)   { enum { XXH_static_assert = 1/(int)(!!(c)) }; }    /* use only *after* variable declarations */
243XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; }
244
245
246/* *******************************************************************
247*  32-bits hash functions
248*********************************************************************/
249static const U32 PRIME32_1 = 2654435761U;
250static const U32 PRIME32_2 = 2246822519U;
251static const U32 PRIME32_3 = 3266489917U;
252static const U32 PRIME32_4 =  668265263U;
253static const U32 PRIME32_5 =  374761393U;
254
255static U32 XXH32_round(U32 seed, U32 input)
256{
257    seed += input * PRIME32_2;
258    seed  = XXH_rotl32(seed, 13);
259    seed *= PRIME32_1;
260    return seed;
261}
262
263FORCE_INLINE U32 XXH32_endian_align(const void* input, size_t len, U32 seed, XXH_endianess endian, XXH_alignment align)
264{
265    const BYTE* p = (const BYTE*)input;
266    const BYTE* bEnd = p + len;
267    U32 h32;
268#define XXH_get32bits(p) XXH_readLE32_align(p, endian, align)
269
270#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
271    if (p==NULL) {
272        len=0;
273        bEnd=p=(const BYTE*)(size_t)16;
274    }
275#endif
276
277    if (len>=16) {
278        const BYTE* const limit = bEnd - 16;
279        U32 v1 = seed + PRIME32_1 + PRIME32_2;
280        U32 v2 = seed + PRIME32_2;
281        U32 v3 = seed + 0;
282        U32 v4 = seed - PRIME32_1;
283
284        do {
285            v1 = XXH32_round(v1, XXH_get32bits(p)); p+=4;
286            v2 = XXH32_round(v2, XXH_get32bits(p)); p+=4;
287            v3 = XXH32_round(v3, XXH_get32bits(p)); p+=4;
288            v4 = XXH32_round(v4, XXH_get32bits(p)); p+=4;
289        } while (p<=limit);
290
291        h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18);
292    } else {
293        h32  = seed + PRIME32_5;
294    }
295
296    h32 += (U32) len;
297
298    while (p+4<=bEnd) {
299        h32 += XXH_get32bits(p) * PRIME32_3;
300        h32  = XXH_rotl32(h32, 17) * PRIME32_4 ;
301        p+=4;
302    }
303
304    while (p<bEnd) {
305        h32 += (*p) * PRIME32_5;
306        h32 = XXH_rotl32(h32, 11) * PRIME32_1 ;
307        p++;
308    }
309
310    h32 ^= h32 >> 15;
311    h32 *= PRIME32_2;
312    h32 ^= h32 >> 13;
313    h32 *= PRIME32_3;
314    h32 ^= h32 >> 16;
315
316    return h32;
317}
318
319
320XXH_PUBLIC_API unsigned int XXH32 (const void* input, size_t len, unsigned int seed)
321{
322#if 0
323    /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
324    XXH32_state_t state;
325    XXH32_reset(&state, seed);
326    XXH32_update(&state, input, len);
327    return XXH32_digest(&state);
328#else
329    XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
330
331    if (XXH_FORCE_ALIGN_CHECK) {
332        if ((((size_t)input) & 3) == 0) {   /* Input is 4-bytes aligned, leverage the speed benefit */
333            if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
334                return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
335            else
336                return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
337    }   }
338
339    if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
340        return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
341    else
342        return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
343#endif
344}
345
346
347
348/*======   Hash streaming   ======*/
349
350XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void)
351{
352    return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t));
353}
354XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr)
355{
356    XXH_free(statePtr);
357    return XXH_OK;
358}
359
360XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dstState, const XXH32_state_t* srcState)
361{
362    memcpy(dstState, srcState, sizeof(*dstState));
363}
364
365XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, unsigned int seed)
366{
367    XXH32_state_t state;   /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
368    memset(&state, 0, sizeof(state)-4);   /* do not write into reserved, for future removal */
369    state.v1 = seed + PRIME32_1 + PRIME32_2;
370    state.v2 = seed + PRIME32_2;
371    state.v3 = seed + 0;
372    state.v4 = seed - PRIME32_1;
373    memcpy(statePtr, &state, sizeof(state));
374    return XXH_OK;
375}
376
377
378FORCE_INLINE XXH_errorcode XXH32_update_endian (XXH32_state_t* state, const void* input, size_t len, XXH_endianess endian)
379{
380    const BYTE* p = (const BYTE*)input;
381    const BYTE* const bEnd = p + len;
382
383#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
384    if (input==NULL) return XXH_ERROR;
385#endif
386
387    state->total_len_32 += (unsigned)len;
388    state->large_len |= (len>=16) | (state->total_len_32>=16);
389
390    if (state->memsize + len < 16)  {   /* fill in tmp buffer */
391        XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, len);
392        state->memsize += (unsigned)len;
393        return XXH_OK;
394    }
395
396    if (state->memsize) {   /* some data left from previous update */
397        XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, 16-state->memsize);
398        {   const U32* p32 = state->mem32;
399            state->v1 = XXH32_round(state->v1, XXH_readLE32(p32, endian)); p32++;
400            state->v2 = XXH32_round(state->v2, XXH_readLE32(p32, endian)); p32++;
401            state->v3 = XXH32_round(state->v3, XXH_readLE32(p32, endian)); p32++;
402            state->v4 = XXH32_round(state->v4, XXH_readLE32(p32, endian));
403        }
404        p += 16-state->memsize;
405        state->memsize = 0;
406    }
407
408    if (p <= bEnd-16) {
409        const BYTE* const limit = bEnd - 16;
410        U32 v1 = state->v1;
411        U32 v2 = state->v2;
412        U32 v3 = state->v3;
413        U32 v4 = state->v4;
414
415        do {
416            v1 = XXH32_round(v1, XXH_readLE32(p, endian)); p+=4;
417            v2 = XXH32_round(v2, XXH_readLE32(p, endian)); p+=4;
418            v3 = XXH32_round(v3, XXH_readLE32(p, endian)); p+=4;
419            v4 = XXH32_round(v4, XXH_readLE32(p, endian)); p+=4;
420        } while (p<=limit);
421
422        state->v1 = v1;
423        state->v2 = v2;
424        state->v3 = v3;
425        state->v4 = v4;
426    }
427
428    if (p < bEnd) {
429        XXH_memcpy(state->mem32, p, (size_t)(bEnd-p));
430        state->memsize = (unsigned)(bEnd-p);
431    }
432
433    return XXH_OK;
434}
435
436XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* state_in, const void* input, size_t len)
437{
438    XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
439
440    if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
441        return XXH32_update_endian(state_in, input, len, XXH_littleEndian);
442    else
443        return XXH32_update_endian(state_in, input, len, XXH_bigEndian);
444}
445
446
447
448FORCE_INLINE U32 XXH32_digest_endian (const XXH32_state_t* state, XXH_endianess endian)
449{
450    const BYTE * p = (const BYTE*)state->mem32;
451    const BYTE* const bEnd = (const BYTE*)(state->mem32) + state->memsize;
452    U32 h32;
453
454    if (state->large_len) {
455        h32 = XXH_rotl32(state->v1, 1) + XXH_rotl32(state->v2, 7) + XXH_rotl32(state->v3, 12) + XXH_rotl32(state->v4, 18);
456    } else {
457        h32 = state->v3 /* == seed */ + PRIME32_5;
458    }
459
460    h32 += state->total_len_32;
461
462    while (p+4<=bEnd) {
463        h32 += XXH_readLE32(p, endian) * PRIME32_3;
464        h32  = XXH_rotl32(h32, 17) * PRIME32_4;
465        p+=4;
466    }
467
468    while (p<bEnd) {
469        h32 += (*p) * PRIME32_5;
470        h32  = XXH_rotl32(h32, 11) * PRIME32_1;
471        p++;
472    }
473
474    h32 ^= h32 >> 15;
475    h32 *= PRIME32_2;
476    h32 ^= h32 >> 13;
477    h32 *= PRIME32_3;
478    h32 ^= h32 >> 16;
479
480    return h32;
481}
482
483
484XXH_PUBLIC_API unsigned int XXH32_digest (const XXH32_state_t* state_in)
485{
486    XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
487
488    if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
489        return XXH32_digest_endian(state_in, XXH_littleEndian);
490    else
491        return XXH32_digest_endian(state_in, XXH_bigEndian);
492}
493
494
495/*======   Canonical representation   ======*/
496
497/*! Default XXH result types are basic unsigned 32 and 64 bits.
498*   The canonical representation follows human-readable write convention, aka big-endian (large digits first).
499*   These functions allow transformation of hash result into and from its canonical format.
500*   This way, hash values can be written into a file or buffer, and remain comparable across different systems and programs.
501*/
502
503XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash)
504{
505    XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t));
506    if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash);
507    memcpy(dst, &hash, sizeof(*dst));
508}
509
510XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src)
511{
512    return XXH_readBE32(src);
513}
514
515
516#ifndef XXH_NO_LONG_LONG
517
518/* *******************************************************************
519*  64-bits hash functions
520*********************************************************************/
521
522/*======   Memory access   ======*/
523
524#ifndef MEM_MODULE
525# define MEM_MODULE
526# if !defined (__VMS) && (defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
527#   include <stdint.h>
528    typedef uint64_t U64;
529# else
530    typedef unsigned long long U64;   /* if your compiler doesn't support unsigned long long, replace by another 64-bit type here. Note that xxhash.h will also need to be updated. */
531# endif
532#endif
533
534
535#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
536
537/* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */
538static U64 XXH_read64(const void* memPtr) { return *(const U64*) memPtr; }
539
540#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
541
542/* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
543/* currently only defined for gcc and icc */
544typedef union { U32 u32; U64 u64; } __attribute__((packed)) unalign64;
545static U64 XXH_read64(const void* ptr) { return ((const unalign64*)ptr)->u64; }
546
547#else
548
549/* portable and safe solution. Generally efficient.
550 * see : http://stackoverflow.com/a/32095106/646947
551 */
552
553static U64 XXH_read64(const void* memPtr)
554{
555    U64 val;
556    memcpy(&val, memPtr, sizeof(val));
557    return val;
558}
559
560#endif   /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
561
562#if defined(_MSC_VER)     /* Visual Studio */
563#  define XXH_swap64 _byteswap_uint64
564#elif XXH_GCC_VERSION >= 403
565#  define XXH_swap64 __builtin_bswap64
566#else
567static U64 XXH_swap64 (U64 x)
568{
569    return  ((x << 56) & 0xff00000000000000ULL) |
570            ((x << 40) & 0x00ff000000000000ULL) |
571            ((x << 24) & 0x0000ff0000000000ULL) |
572            ((x << 8)  & 0x000000ff00000000ULL) |
573            ((x >> 8)  & 0x00000000ff000000ULL) |
574            ((x >> 24) & 0x0000000000ff0000ULL) |
575            ((x >> 40) & 0x000000000000ff00ULL) |
576            ((x >> 56) & 0x00000000000000ffULL);
577}
578#endif
579
580FORCE_INLINE U64 XXH_readLE64_align(const void* ptr, XXH_endianess endian, XXH_alignment align)
581{
582    if (align==XXH_unaligned)
583        return endian==XXH_littleEndian ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr));
584    else
585        return endian==XXH_littleEndian ? *(const U64*)ptr : XXH_swap64(*(const U64*)ptr);
586}
587
588FORCE_INLINE U64 XXH_readLE64(const void* ptr, XXH_endianess endian)
589{
590    return XXH_readLE64_align(ptr, endian, XXH_unaligned);
591}
592
593static U64 XXH_readBE64(const void* ptr)
594{
595    return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr);
596}
597
598
599/*======   xxh64   ======*/
600
601static const U64 PRIME64_1 = 11400714785074694791ULL;
602static const U64 PRIME64_2 = 14029467366897019727ULL;
603static const U64 PRIME64_3 =  1609587929392839161ULL;
604static const U64 PRIME64_4 =  9650029242287828579ULL;
605static const U64 PRIME64_5 =  2870177450012600261ULL;
606
607static U64 XXH64_round(U64 acc, U64 input)
608{
609    acc += input * PRIME64_2;
610    acc  = XXH_rotl64(acc, 31);
611    acc *= PRIME64_1;
612    return acc;
613}
614
615static U64 XXH64_mergeRound(U64 acc, U64 val)
616{
617    val  = XXH64_round(0, val);
618    acc ^= val;
619    acc  = acc * PRIME64_1 + PRIME64_4;
620    return acc;
621}
622
623FORCE_INLINE U64 XXH64_endian_align(const void* input, size_t len, U64 seed, XXH_endianess endian, XXH_alignment align)
624{
625    const BYTE* p = (const BYTE*)input;
626    const BYTE* bEnd = p + len;
627    U64 h64;
628#define XXH_get64bits(p) XXH_readLE64_align(p, endian, align)
629
630#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
631    if (p==NULL) {
632        len=0;
633        bEnd=p=(const BYTE*)(size_t)32;
634    }
635#endif
636
637    if (len>=32) {
638        const BYTE* const limit = bEnd - 32;
639        U64 v1 = seed + PRIME64_1 + PRIME64_2;
640        U64 v2 = seed + PRIME64_2;
641        U64 v3 = seed + 0;
642        U64 v4 = seed - PRIME64_1;
643
644        do {
645            v1 = XXH64_round(v1, XXH_get64bits(p)); p+=8;
646            v2 = XXH64_round(v2, XXH_get64bits(p)); p+=8;
647            v3 = XXH64_round(v3, XXH_get64bits(p)); p+=8;
648            v4 = XXH64_round(v4, XXH_get64bits(p)); p+=8;
649        } while (p<=limit);
650
651        h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
652        h64 = XXH64_mergeRound(h64, v1);
653        h64 = XXH64_mergeRound(h64, v2);
654        h64 = XXH64_mergeRound(h64, v3);
655        h64 = XXH64_mergeRound(h64, v4);
656
657    } else {
658        h64  = seed + PRIME64_5;
659    }
660
661    h64 += (U64) len;
662
663    while (p+8<=bEnd) {
664        U64 const k1 = XXH64_round(0, XXH_get64bits(p));
665        h64 ^= k1;
666        h64  = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
667        p+=8;
668    }
669
670    if (p+4<=bEnd) {
671        h64 ^= (U64)(XXH_get32bits(p)) * PRIME64_1;
672        h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
673        p+=4;
674    }
675
676    while (p<bEnd) {
677        h64 ^= (*p) * PRIME64_5;
678        h64 = XXH_rotl64(h64, 11) * PRIME64_1;
679        p++;
680    }
681
682    h64 ^= h64 >> 33;
683    h64 *= PRIME64_2;
684    h64 ^= h64 >> 29;
685    h64 *= PRIME64_3;
686    h64 ^= h64 >> 32;
687
688    return h64;
689}
690
691
692XXH_PUBLIC_API unsigned long long XXH64 (const void* input, size_t len, unsigned long long seed)
693{
694#if 0
695    /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
696    XXH64_state_t state;
697    XXH64_reset(&state, seed);
698    XXH64_update(&state, input, len);
699    return XXH64_digest(&state);
700#else
701    XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
702
703    if (XXH_FORCE_ALIGN_CHECK) {
704        if ((((size_t)input) & 7)==0) {  /* Input is aligned, let's leverage the speed advantage */
705            if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
706                return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
707            else
708                return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
709    }   }
710
711    if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
712        return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
713    else
714        return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
715#endif
716}
717
718/*======   Hash Streaming   ======*/
719
720XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void)
721{
722    return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t));
723}
724XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr)
725{
726    XXH_free(statePtr);
727    return XXH_OK;
728}
729
730XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* dstState, const XXH64_state_t* srcState)
731{
732    memcpy(dstState, srcState, sizeof(*dstState));
733}
734
735XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, unsigned long long seed)
736{
737    XXH64_state_t state;   /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
738    memset(&state, 0, sizeof(state)-8);   /* do not write into reserved, for future removal */
739    state.v1 = seed + PRIME64_1 + PRIME64_2;
740    state.v2 = seed + PRIME64_2;
741    state.v3 = seed + 0;
742    state.v4 = seed - PRIME64_1;
743    memcpy(statePtr, &state, sizeof(state));
744    return XXH_OK;
745}
746
747FORCE_INLINE XXH_errorcode XXH64_update_endian (XXH64_state_t* state, const void* input, size_t len, XXH_endianess endian)
748{
749    const BYTE* p = (const BYTE*)input;
750    const BYTE* const bEnd = p + len;
751
752#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
753    if (input==NULL) return XXH_ERROR;
754#endif
755
756    state->total_len += len;
757
758    if (state->memsize + len < 32) {  /* fill in tmp buffer */
759        XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, len);
760        state->memsize += (U32)len;
761        return XXH_OK;
762    }
763
764    if (state->memsize) {   /* tmp buffer is full */
765        XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, 32-state->memsize);
766        state->v1 = XXH64_round(state->v1, XXH_readLE64(state->mem64+0, endian));
767        state->v2 = XXH64_round(state->v2, XXH_readLE64(state->mem64+1, endian));
768        state->v3 = XXH64_round(state->v3, XXH_readLE64(state->mem64+2, endian));
769        state->v4 = XXH64_round(state->v4, XXH_readLE64(state->mem64+3, endian));
770        p += 32-state->memsize;
771        state->memsize = 0;
772    }
773
774    if (p+32 <= bEnd) {
775        const BYTE* const limit = bEnd - 32;
776        U64 v1 = state->v1;
777        U64 v2 = state->v2;
778        U64 v3 = state->v3;
779        U64 v4 = state->v4;
780
781        do {
782            v1 = XXH64_round(v1, XXH_readLE64(p, endian)); p+=8;
783            v2 = XXH64_round(v2, XXH_readLE64(p, endian)); p+=8;
784            v3 = XXH64_round(v3, XXH_readLE64(p, endian)); p+=8;
785            v4 = XXH64_round(v4, XXH_readLE64(p, endian)); p+=8;
786        } while (p<=limit);
787
788        state->v1 = v1;
789        state->v2 = v2;
790        state->v3 = v3;
791        state->v4 = v4;
792    }
793
794    if (p < bEnd) {
795        XXH_memcpy(state->mem64, p, (size_t)(bEnd-p));
796        state->memsize = (unsigned)(bEnd-p);
797    }
798
799    return XXH_OK;
800}
801
802XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* state_in, const void* input, size_t len)
803{
804    XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
805
806    if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
807        return XXH64_update_endian(state_in, input, len, XXH_littleEndian);
808    else
809        return XXH64_update_endian(state_in, input, len, XXH_bigEndian);
810}
811
812FORCE_INLINE U64 XXH64_digest_endian (const XXH64_state_t* state, XXH_endianess endian)
813{
814    const BYTE * p = (const BYTE*)state->mem64;
815    const BYTE* const bEnd = (const BYTE*)state->mem64 + state->memsize;
816    U64 h64;
817
818    if (state->total_len >= 32) {
819        U64 const v1 = state->v1;
820        U64 const v2 = state->v2;
821        U64 const v3 = state->v3;
822        U64 const v4 = state->v4;
823
824        h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
825        h64 = XXH64_mergeRound(h64, v1);
826        h64 = XXH64_mergeRound(h64, v2);
827        h64 = XXH64_mergeRound(h64, v3);
828        h64 = XXH64_mergeRound(h64, v4);
829    } else {
830        h64  = state->v3 + PRIME64_5;
831    }
832
833    h64 += (U64) state->total_len;
834
835    while (p+8<=bEnd) {
836        U64 const k1 = XXH64_round(0, XXH_readLE64(p, endian));
837        h64 ^= k1;
838        h64  = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
839        p+=8;
840    }
841
842    if (p+4<=bEnd) {
843        h64 ^= (U64)(XXH_readLE32(p, endian)) * PRIME64_1;
844        h64  = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
845        p+=4;
846    }
847
848    while (p<bEnd) {
849        h64 ^= (*p) * PRIME64_5;
850        h64  = XXH_rotl64(h64, 11) * PRIME64_1;
851        p++;
852    }
853
854    h64 ^= h64 >> 33;
855    h64 *= PRIME64_2;
856    h64 ^= h64 >> 29;
857    h64 *= PRIME64_3;
858    h64 ^= h64 >> 32;
859
860    return h64;
861}
862
863XXH_PUBLIC_API unsigned long long XXH64_digest (const XXH64_state_t* state_in)
864{
865    XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
866
867    if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
868        return XXH64_digest_endian(state_in, XXH_littleEndian);
869    else
870        return XXH64_digest_endian(state_in, XXH_bigEndian);
871}
872
873
874/*====== Canonical representation   ======*/
875
876XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash)
877{
878    XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t));
879    if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash);
880    memcpy(dst, &hash, sizeof(*dst));
881}
882
883XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src)
884{
885    return XXH_readBE64(src);
886}
887
888#endif  /* XXH_NO_LONG_LONG */
889