1// Copyright 2011 Google Inc. All Rights Reserved.
2//
3// Use of this source code is governed by a BSD-style license
4// that can be found in the COPYING file in the root of the source
5// tree. An additional intellectual property rights grant can be found
6// in the file PATENTS. All contributing project authors may
7// be found in the AUTHORS file in the root of the source tree.
8// -----------------------------------------------------------------------------
9//
10// SSE2 version of speed-critical encoding functions.
11//
12// Author: Christian Duvivier (cduvivier@google.com)
13
14#include "src/dsp/dsp.h"
15
16#if defined(WEBP_USE_SSE2)
17#include <assert.h>
18#include <stdlib.h>  // for abs()
19#include <emmintrin.h>
20
21#include "src/dsp/common_sse2.h"
22#include "src/enc/cost_enc.h"
23#include "src/enc/vp8i_enc.h"
24
25//------------------------------------------------------------------------------
26// Transforms (Paragraph 14.4)
27
28// Does one or two inverse transforms.
29static void ITransform_SSE2(const uint8_t* ref, const int16_t* in, uint8_t* dst,
30                            int do_two) {
31  // This implementation makes use of 16-bit fixed point versions of two
32  // multiply constants:
33  //    K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16
34  //    K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16
35  //
36  // To be able to use signed 16-bit integers, we use the following trick to
37  // have constants within range:
38  // - Associated constants are obtained by subtracting the 16-bit fixed point
39  //   version of one:
40  //      k = K - (1 << 16)  =>  K = k + (1 << 16)
41  //      K1 = 85267  =>  k1 =  20091
42  //      K2 = 35468  =>  k2 = -30068
43  // - The multiplication of a variable by a constant become the sum of the
44  //   variable and the multiplication of that variable by the associated
45  //   constant:
46  //      (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x
47  const __m128i k1 = _mm_set1_epi16(20091);
48  const __m128i k2 = _mm_set1_epi16(-30068);
49  __m128i T0, T1, T2, T3;
50
51  // Load and concatenate the transform coefficients (we'll do two inverse
52  // transforms in parallel). In the case of only one inverse transform, the
53  // second half of the vectors will just contain random value we'll never
54  // use nor store.
55  __m128i in0, in1, in2, in3;
56  {
57    in0 = _mm_loadl_epi64((const __m128i*)&in[0]);
58    in1 = _mm_loadl_epi64((const __m128i*)&in[4]);
59    in2 = _mm_loadl_epi64((const __m128i*)&in[8]);
60    in3 = _mm_loadl_epi64((const __m128i*)&in[12]);
61    // a00 a10 a20 a30   x x x x
62    // a01 a11 a21 a31   x x x x
63    // a02 a12 a22 a32   x x x x
64    // a03 a13 a23 a33   x x x x
65    if (do_two) {
66      const __m128i inB0 = _mm_loadl_epi64((const __m128i*)&in[16]);
67      const __m128i inB1 = _mm_loadl_epi64((const __m128i*)&in[20]);
68      const __m128i inB2 = _mm_loadl_epi64((const __m128i*)&in[24]);
69      const __m128i inB3 = _mm_loadl_epi64((const __m128i*)&in[28]);
70      in0 = _mm_unpacklo_epi64(in0, inB0);
71      in1 = _mm_unpacklo_epi64(in1, inB1);
72      in2 = _mm_unpacklo_epi64(in2, inB2);
73      in3 = _mm_unpacklo_epi64(in3, inB3);
74      // a00 a10 a20 a30   b00 b10 b20 b30
75      // a01 a11 a21 a31   b01 b11 b21 b31
76      // a02 a12 a22 a32   b02 b12 b22 b32
77      // a03 a13 a23 a33   b03 b13 b23 b33
78    }
79  }
80
81  // Vertical pass and subsequent transpose.
82  {
83    // First pass, c and d calculations are longer because of the "trick"
84    // multiplications.
85    const __m128i a = _mm_add_epi16(in0, in2);
86    const __m128i b = _mm_sub_epi16(in0, in2);
87    // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3
88    const __m128i c1 = _mm_mulhi_epi16(in1, k2);
89    const __m128i c2 = _mm_mulhi_epi16(in3, k1);
90    const __m128i c3 = _mm_sub_epi16(in1, in3);
91    const __m128i c4 = _mm_sub_epi16(c1, c2);
92    const __m128i c = _mm_add_epi16(c3, c4);
93    // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3
94    const __m128i d1 = _mm_mulhi_epi16(in1, k1);
95    const __m128i d2 = _mm_mulhi_epi16(in3, k2);
96    const __m128i d3 = _mm_add_epi16(in1, in3);
97    const __m128i d4 = _mm_add_epi16(d1, d2);
98    const __m128i d = _mm_add_epi16(d3, d4);
99
100    // Second pass.
101    const __m128i tmp0 = _mm_add_epi16(a, d);
102    const __m128i tmp1 = _mm_add_epi16(b, c);
103    const __m128i tmp2 = _mm_sub_epi16(b, c);
104    const __m128i tmp3 = _mm_sub_epi16(a, d);
105
106    // Transpose the two 4x4.
107    VP8Transpose_2_4x4_16b(&tmp0, &tmp1, &tmp2, &tmp3, &T0, &T1, &T2, &T3);
108  }
109
110  // Horizontal pass and subsequent transpose.
111  {
112    // First pass, c and d calculations are longer because of the "trick"
113    // multiplications.
114    const __m128i four = _mm_set1_epi16(4);
115    const __m128i dc = _mm_add_epi16(T0, four);
116    const __m128i a =  _mm_add_epi16(dc, T2);
117    const __m128i b =  _mm_sub_epi16(dc, T2);
118    // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3
119    const __m128i c1 = _mm_mulhi_epi16(T1, k2);
120    const __m128i c2 = _mm_mulhi_epi16(T3, k1);
121    const __m128i c3 = _mm_sub_epi16(T1, T3);
122    const __m128i c4 = _mm_sub_epi16(c1, c2);
123    const __m128i c = _mm_add_epi16(c3, c4);
124    // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3
125    const __m128i d1 = _mm_mulhi_epi16(T1, k1);
126    const __m128i d2 = _mm_mulhi_epi16(T3, k2);
127    const __m128i d3 = _mm_add_epi16(T1, T3);
128    const __m128i d4 = _mm_add_epi16(d1, d2);
129    const __m128i d = _mm_add_epi16(d3, d4);
130
131    // Second pass.
132    const __m128i tmp0 = _mm_add_epi16(a, d);
133    const __m128i tmp1 = _mm_add_epi16(b, c);
134    const __m128i tmp2 = _mm_sub_epi16(b, c);
135    const __m128i tmp3 = _mm_sub_epi16(a, d);
136    const __m128i shifted0 = _mm_srai_epi16(tmp0, 3);
137    const __m128i shifted1 = _mm_srai_epi16(tmp1, 3);
138    const __m128i shifted2 = _mm_srai_epi16(tmp2, 3);
139    const __m128i shifted3 = _mm_srai_epi16(tmp3, 3);
140
141    // Transpose the two 4x4.
142    VP8Transpose_2_4x4_16b(&shifted0, &shifted1, &shifted2, &shifted3, &T0, &T1,
143                           &T2, &T3);
144  }
145
146  // Add inverse transform to 'ref' and store.
147  {
148    const __m128i zero = _mm_setzero_si128();
149    // Load the reference(s).
150    __m128i ref0, ref1, ref2, ref3;
151    if (do_two) {
152      // Load eight bytes/pixels per line.
153      ref0 = _mm_loadl_epi64((const __m128i*)&ref[0 * BPS]);
154      ref1 = _mm_loadl_epi64((const __m128i*)&ref[1 * BPS]);
155      ref2 = _mm_loadl_epi64((const __m128i*)&ref[2 * BPS]);
156      ref3 = _mm_loadl_epi64((const __m128i*)&ref[3 * BPS]);
157    } else {
158      // Load four bytes/pixels per line.
159      ref0 = _mm_cvtsi32_si128(WebPMemToUint32(&ref[0 * BPS]));
160      ref1 = _mm_cvtsi32_si128(WebPMemToUint32(&ref[1 * BPS]));
161      ref2 = _mm_cvtsi32_si128(WebPMemToUint32(&ref[2 * BPS]));
162      ref3 = _mm_cvtsi32_si128(WebPMemToUint32(&ref[3 * BPS]));
163    }
164    // Convert to 16b.
165    ref0 = _mm_unpacklo_epi8(ref0, zero);
166    ref1 = _mm_unpacklo_epi8(ref1, zero);
167    ref2 = _mm_unpacklo_epi8(ref2, zero);
168    ref3 = _mm_unpacklo_epi8(ref3, zero);
169    // Add the inverse transform(s).
170    ref0 = _mm_add_epi16(ref0, T0);
171    ref1 = _mm_add_epi16(ref1, T1);
172    ref2 = _mm_add_epi16(ref2, T2);
173    ref3 = _mm_add_epi16(ref3, T3);
174    // Unsigned saturate to 8b.
175    ref0 = _mm_packus_epi16(ref0, ref0);
176    ref1 = _mm_packus_epi16(ref1, ref1);
177    ref2 = _mm_packus_epi16(ref2, ref2);
178    ref3 = _mm_packus_epi16(ref3, ref3);
179    // Store the results.
180    if (do_two) {
181      // Store eight bytes/pixels per line.
182      _mm_storel_epi64((__m128i*)&dst[0 * BPS], ref0);
183      _mm_storel_epi64((__m128i*)&dst[1 * BPS], ref1);
184      _mm_storel_epi64((__m128i*)&dst[2 * BPS], ref2);
185      _mm_storel_epi64((__m128i*)&dst[3 * BPS], ref3);
186    } else {
187      // Store four bytes/pixels per line.
188      WebPUint32ToMem(&dst[0 * BPS], _mm_cvtsi128_si32(ref0));
189      WebPUint32ToMem(&dst[1 * BPS], _mm_cvtsi128_si32(ref1));
190      WebPUint32ToMem(&dst[2 * BPS], _mm_cvtsi128_si32(ref2));
191      WebPUint32ToMem(&dst[3 * BPS], _mm_cvtsi128_si32(ref3));
192    }
193  }
194}
195
196static void FTransformPass1_SSE2(const __m128i* const in01,
197                                 const __m128i* const in23,
198                                 __m128i* const out01,
199                                 __m128i* const out32) {
200  const __m128i k937 = _mm_set1_epi32(937);
201  const __m128i k1812 = _mm_set1_epi32(1812);
202
203  const __m128i k88p = _mm_set_epi16(8, 8, 8, 8, 8, 8, 8, 8);
204  const __m128i k88m = _mm_set_epi16(-8, 8, -8, 8, -8, 8, -8, 8);
205  const __m128i k5352_2217p = _mm_set_epi16(2217, 5352, 2217, 5352,
206                                            2217, 5352, 2217, 5352);
207  const __m128i k5352_2217m = _mm_set_epi16(-5352, 2217, -5352, 2217,
208                                            -5352, 2217, -5352, 2217);
209
210  // *in01 = 00 01 10 11 02 03 12 13
211  // *in23 = 20 21 30 31 22 23 32 33
212  const __m128i shuf01_p = _mm_shufflehi_epi16(*in01, _MM_SHUFFLE(2, 3, 0, 1));
213  const __m128i shuf23_p = _mm_shufflehi_epi16(*in23, _MM_SHUFFLE(2, 3, 0, 1));
214  // 00 01 10 11 03 02 13 12
215  // 20 21 30 31 23 22 33 32
216  const __m128i s01 = _mm_unpacklo_epi64(shuf01_p, shuf23_p);
217  const __m128i s32 = _mm_unpackhi_epi64(shuf01_p, shuf23_p);
218  // 00 01 10 11 20 21 30 31
219  // 03 02 13 12 23 22 33 32
220  const __m128i a01 = _mm_add_epi16(s01, s32);
221  const __m128i a32 = _mm_sub_epi16(s01, s32);
222  // [d0 + d3 | d1 + d2 | ...] = [a0 a1 | a0' a1' | ... ]
223  // [d0 - d3 | d1 - d2 | ...] = [a3 a2 | a3' a2' | ... ]
224
225  const __m128i tmp0   = _mm_madd_epi16(a01, k88p);  // [ (a0 + a1) << 3, ... ]
226  const __m128i tmp2   = _mm_madd_epi16(a01, k88m);  // [ (a0 - a1) << 3, ... ]
227  const __m128i tmp1_1 = _mm_madd_epi16(a32, k5352_2217p);
228  const __m128i tmp3_1 = _mm_madd_epi16(a32, k5352_2217m);
229  const __m128i tmp1_2 = _mm_add_epi32(tmp1_1, k1812);
230  const __m128i tmp3_2 = _mm_add_epi32(tmp3_1, k937);
231  const __m128i tmp1   = _mm_srai_epi32(tmp1_2, 9);
232  const __m128i tmp3   = _mm_srai_epi32(tmp3_2, 9);
233  const __m128i s03    = _mm_packs_epi32(tmp0, tmp2);
234  const __m128i s12    = _mm_packs_epi32(tmp1, tmp3);
235  const __m128i s_lo   = _mm_unpacklo_epi16(s03, s12);   // 0 1 0 1 0 1...
236  const __m128i s_hi   = _mm_unpackhi_epi16(s03, s12);   // 2 3 2 3 2 3
237  const __m128i v23    = _mm_unpackhi_epi32(s_lo, s_hi);
238  *out01 = _mm_unpacklo_epi32(s_lo, s_hi);
239  *out32 = _mm_shuffle_epi32(v23, _MM_SHUFFLE(1, 0, 3, 2));  // 3 2 3 2 3 2..
240}
241
242static void FTransformPass2_SSE2(const __m128i* const v01,
243                                 const __m128i* const v32,
244                                 int16_t* out) {
245  const __m128i zero = _mm_setzero_si128();
246  const __m128i seven = _mm_set1_epi16(7);
247  const __m128i k5352_2217 = _mm_set_epi16(5352,  2217, 5352,  2217,
248                                           5352,  2217, 5352,  2217);
249  const __m128i k2217_5352 = _mm_set_epi16(2217, -5352, 2217, -5352,
250                                           2217, -5352, 2217, -5352);
251  const __m128i k12000_plus_one = _mm_set1_epi32(12000 + (1 << 16));
252  const __m128i k51000 = _mm_set1_epi32(51000);
253
254  // Same operations are done on the (0,3) and (1,2) pairs.
255  // a3 = v0 - v3
256  // a2 = v1 - v2
257  const __m128i a32 = _mm_sub_epi16(*v01, *v32);
258  const __m128i a22 = _mm_unpackhi_epi64(a32, a32);
259
260  const __m128i b23 = _mm_unpacklo_epi16(a22, a32);
261  const __m128i c1 = _mm_madd_epi16(b23, k5352_2217);
262  const __m128i c3 = _mm_madd_epi16(b23, k2217_5352);
263  const __m128i d1 = _mm_add_epi32(c1, k12000_plus_one);
264  const __m128i d3 = _mm_add_epi32(c3, k51000);
265  const __m128i e1 = _mm_srai_epi32(d1, 16);
266  const __m128i e3 = _mm_srai_epi32(d3, 16);
267  // f1 = ((b3 * 5352 + b2 * 2217 + 12000) >> 16)
268  // f3 = ((b3 * 2217 - b2 * 5352 + 51000) >> 16)
269  const __m128i f1 = _mm_packs_epi32(e1, e1);
270  const __m128i f3 = _mm_packs_epi32(e3, e3);
271  // g1 = f1 + (a3 != 0);
272  // The compare will return (0xffff, 0) for (==0, !=0). To turn that into the
273  // desired (0, 1), we add one earlier through k12000_plus_one.
274  // -> g1 = f1 + 1 - (a3 == 0)
275  const __m128i g1 = _mm_add_epi16(f1, _mm_cmpeq_epi16(a32, zero));
276
277  // a0 = v0 + v3
278  // a1 = v1 + v2
279  const __m128i a01 = _mm_add_epi16(*v01, *v32);
280  const __m128i a01_plus_7 = _mm_add_epi16(a01, seven);
281  const __m128i a11 = _mm_unpackhi_epi64(a01, a01);
282  const __m128i c0 = _mm_add_epi16(a01_plus_7, a11);
283  const __m128i c2 = _mm_sub_epi16(a01_plus_7, a11);
284  // d0 = (a0 + a1 + 7) >> 4;
285  // d2 = (a0 - a1 + 7) >> 4;
286  const __m128i d0 = _mm_srai_epi16(c0, 4);
287  const __m128i d2 = _mm_srai_epi16(c2, 4);
288
289  const __m128i d0_g1 = _mm_unpacklo_epi64(d0, g1);
290  const __m128i d2_f3 = _mm_unpacklo_epi64(d2, f3);
291  _mm_storeu_si128((__m128i*)&out[0], d0_g1);
292  _mm_storeu_si128((__m128i*)&out[8], d2_f3);
293}
294
295static void FTransform_SSE2(const uint8_t* src, const uint8_t* ref,
296                            int16_t* out) {
297  const __m128i zero = _mm_setzero_si128();
298  // Load src.
299  const __m128i src0 = _mm_loadl_epi64((const __m128i*)&src[0 * BPS]);
300  const __m128i src1 = _mm_loadl_epi64((const __m128i*)&src[1 * BPS]);
301  const __m128i src2 = _mm_loadl_epi64((const __m128i*)&src[2 * BPS]);
302  const __m128i src3 = _mm_loadl_epi64((const __m128i*)&src[3 * BPS]);
303  // 00 01 02 03 *
304  // 10 11 12 13 *
305  // 20 21 22 23 *
306  // 30 31 32 33 *
307  // Shuffle.
308  const __m128i src_0 = _mm_unpacklo_epi16(src0, src1);
309  const __m128i src_1 = _mm_unpacklo_epi16(src2, src3);
310  // 00 01 10 11 02 03 12 13 * * ...
311  // 20 21 30 31 22 22 32 33 * * ...
312
313  // Load ref.
314  const __m128i ref0 = _mm_loadl_epi64((const __m128i*)&ref[0 * BPS]);
315  const __m128i ref1 = _mm_loadl_epi64((const __m128i*)&ref[1 * BPS]);
316  const __m128i ref2 = _mm_loadl_epi64((const __m128i*)&ref[2 * BPS]);
317  const __m128i ref3 = _mm_loadl_epi64((const __m128i*)&ref[3 * BPS]);
318  const __m128i ref_0 = _mm_unpacklo_epi16(ref0, ref1);
319  const __m128i ref_1 = _mm_unpacklo_epi16(ref2, ref3);
320
321  // Convert both to 16 bit.
322  const __m128i src_0_16b = _mm_unpacklo_epi8(src_0, zero);
323  const __m128i src_1_16b = _mm_unpacklo_epi8(src_1, zero);
324  const __m128i ref_0_16b = _mm_unpacklo_epi8(ref_0, zero);
325  const __m128i ref_1_16b = _mm_unpacklo_epi8(ref_1, zero);
326
327  // Compute the difference.
328  const __m128i row01 = _mm_sub_epi16(src_0_16b, ref_0_16b);
329  const __m128i row23 = _mm_sub_epi16(src_1_16b, ref_1_16b);
330  __m128i v01, v32;
331
332  // First pass
333  FTransformPass1_SSE2(&row01, &row23, &v01, &v32);
334
335  // Second pass
336  FTransformPass2_SSE2(&v01, &v32, out);
337}
338
339static void FTransform2_SSE2(const uint8_t* src, const uint8_t* ref,
340                             int16_t* out) {
341  const __m128i zero = _mm_setzero_si128();
342
343  // Load src and convert to 16b.
344  const __m128i src0 = _mm_loadl_epi64((const __m128i*)&src[0 * BPS]);
345  const __m128i src1 = _mm_loadl_epi64((const __m128i*)&src[1 * BPS]);
346  const __m128i src2 = _mm_loadl_epi64((const __m128i*)&src[2 * BPS]);
347  const __m128i src3 = _mm_loadl_epi64((const __m128i*)&src[3 * BPS]);
348  const __m128i src_0 = _mm_unpacklo_epi8(src0, zero);
349  const __m128i src_1 = _mm_unpacklo_epi8(src1, zero);
350  const __m128i src_2 = _mm_unpacklo_epi8(src2, zero);
351  const __m128i src_3 = _mm_unpacklo_epi8(src3, zero);
352  // Load ref and convert to 16b.
353  const __m128i ref0 = _mm_loadl_epi64((const __m128i*)&ref[0 * BPS]);
354  const __m128i ref1 = _mm_loadl_epi64((const __m128i*)&ref[1 * BPS]);
355  const __m128i ref2 = _mm_loadl_epi64((const __m128i*)&ref[2 * BPS]);
356  const __m128i ref3 = _mm_loadl_epi64((const __m128i*)&ref[3 * BPS]);
357  const __m128i ref_0 = _mm_unpacklo_epi8(ref0, zero);
358  const __m128i ref_1 = _mm_unpacklo_epi8(ref1, zero);
359  const __m128i ref_2 = _mm_unpacklo_epi8(ref2, zero);
360  const __m128i ref_3 = _mm_unpacklo_epi8(ref3, zero);
361  // Compute difference. -> 00 01 02 03  00' 01' 02' 03'
362  const __m128i diff0 = _mm_sub_epi16(src_0, ref_0);
363  const __m128i diff1 = _mm_sub_epi16(src_1, ref_1);
364  const __m128i diff2 = _mm_sub_epi16(src_2, ref_2);
365  const __m128i diff3 = _mm_sub_epi16(src_3, ref_3);
366
367  // Unpack and shuffle
368  // 00 01 02 03   0 0 0 0
369  // 10 11 12 13   0 0 0 0
370  // 20 21 22 23   0 0 0 0
371  // 30 31 32 33   0 0 0 0
372  const __m128i shuf01l = _mm_unpacklo_epi32(diff0, diff1);
373  const __m128i shuf23l = _mm_unpacklo_epi32(diff2, diff3);
374  const __m128i shuf01h = _mm_unpackhi_epi32(diff0, diff1);
375  const __m128i shuf23h = _mm_unpackhi_epi32(diff2, diff3);
376  __m128i v01l, v32l;
377  __m128i v01h, v32h;
378
379  // First pass
380  FTransformPass1_SSE2(&shuf01l, &shuf23l, &v01l, &v32l);
381  FTransformPass1_SSE2(&shuf01h, &shuf23h, &v01h, &v32h);
382
383  // Second pass
384  FTransformPass2_SSE2(&v01l, &v32l, out + 0);
385  FTransformPass2_SSE2(&v01h, &v32h, out + 16);
386}
387
388static void FTransformWHTRow_SSE2(const int16_t* const in, __m128i* const out) {
389  const __m128i kMult = _mm_set_epi16(-1, 1, -1, 1, 1, 1, 1, 1);
390  const __m128i src0 = _mm_loadl_epi64((__m128i*)&in[0 * 16]);
391  const __m128i src1 = _mm_loadl_epi64((__m128i*)&in[1 * 16]);
392  const __m128i src2 = _mm_loadl_epi64((__m128i*)&in[2 * 16]);
393  const __m128i src3 = _mm_loadl_epi64((__m128i*)&in[3 * 16]);
394  const __m128i A01 = _mm_unpacklo_epi16(src0, src1);  // A0 A1 | ...
395  const __m128i A23 = _mm_unpacklo_epi16(src2, src3);  // A2 A3 | ...
396  const __m128i B0 = _mm_adds_epi16(A01, A23);    // a0 | a1 | ...
397  const __m128i B1 = _mm_subs_epi16(A01, A23);    // a3 | a2 | ...
398  const __m128i C0 = _mm_unpacklo_epi32(B0, B1);  // a0 | a1 | a3 | a2 | ...
399  const __m128i C1 = _mm_unpacklo_epi32(B1, B0);  // a3 | a2 | a0 | a1 | ...
400  const __m128i D = _mm_unpacklo_epi64(C0, C1);   // a0 a1 a3 a2 a3 a2 a0 a1
401  *out = _mm_madd_epi16(D, kMult);
402}
403
404static void FTransformWHT_SSE2(const int16_t* in, int16_t* out) {
405  // Input is 12b signed.
406  __m128i row0, row1, row2, row3;
407  // Rows are 14b signed.
408  FTransformWHTRow_SSE2(in + 0 * 64, &row0);
409  FTransformWHTRow_SSE2(in + 1 * 64, &row1);
410  FTransformWHTRow_SSE2(in + 2 * 64, &row2);
411  FTransformWHTRow_SSE2(in + 3 * 64, &row3);
412
413  {
414    // The a* are 15b signed.
415    const __m128i a0 = _mm_add_epi32(row0, row2);
416    const __m128i a1 = _mm_add_epi32(row1, row3);
417    const __m128i a2 = _mm_sub_epi32(row1, row3);
418    const __m128i a3 = _mm_sub_epi32(row0, row2);
419    const __m128i a0a3 = _mm_packs_epi32(a0, a3);
420    const __m128i a1a2 = _mm_packs_epi32(a1, a2);
421
422    // The b* are 16b signed.
423    const __m128i b0b1 = _mm_add_epi16(a0a3, a1a2);
424    const __m128i b3b2 = _mm_sub_epi16(a0a3, a1a2);
425    const __m128i tmp_b2b3 = _mm_unpackhi_epi64(b3b2, b3b2);
426    const __m128i b2b3 = _mm_unpacklo_epi64(tmp_b2b3, b3b2);
427
428    _mm_storeu_si128((__m128i*)&out[0], _mm_srai_epi16(b0b1, 1));
429    _mm_storeu_si128((__m128i*)&out[8], _mm_srai_epi16(b2b3, 1));
430  }
431}
432
433//------------------------------------------------------------------------------
434// Compute susceptibility based on DCT-coeff histograms:
435// the higher, the "easier" the macroblock is to compress.
436
437static void CollectHistogram_SSE2(const uint8_t* ref, const uint8_t* pred,
438                                  int start_block, int end_block,
439                                  VP8Histogram* const histo) {
440  const __m128i zero = _mm_setzero_si128();
441  const __m128i max_coeff_thresh = _mm_set1_epi16(MAX_COEFF_THRESH);
442  int j;
443  int distribution[MAX_COEFF_THRESH + 1] = { 0 };
444  for (j = start_block; j < end_block; ++j) {
445    int16_t out[16];
446    int k;
447
448    FTransform_SSE2(ref + VP8DspScan[j], pred + VP8DspScan[j], out);
449
450    // Convert coefficients to bin (within out[]).
451    {
452      // Load.
453      const __m128i out0 = _mm_loadu_si128((__m128i*)&out[0]);
454      const __m128i out1 = _mm_loadu_si128((__m128i*)&out[8]);
455      const __m128i d0 = _mm_sub_epi16(zero, out0);
456      const __m128i d1 = _mm_sub_epi16(zero, out1);
457      const __m128i abs0 = _mm_max_epi16(out0, d0);   // abs(v), 16b
458      const __m128i abs1 = _mm_max_epi16(out1, d1);
459      // v = abs(out) >> 3
460      const __m128i v0 = _mm_srai_epi16(abs0, 3);
461      const __m128i v1 = _mm_srai_epi16(abs1, 3);
462      // bin = min(v, MAX_COEFF_THRESH)
463      const __m128i bin0 = _mm_min_epi16(v0, max_coeff_thresh);
464      const __m128i bin1 = _mm_min_epi16(v1, max_coeff_thresh);
465      // Store.
466      _mm_storeu_si128((__m128i*)&out[0], bin0);
467      _mm_storeu_si128((__m128i*)&out[8], bin1);
468    }
469
470    // Convert coefficients to bin.
471    for (k = 0; k < 16; ++k) {
472      ++distribution[out[k]];
473    }
474  }
475  VP8SetHistogramData(distribution, histo);
476}
477
478//------------------------------------------------------------------------------
479// Intra predictions
480
481// helper for chroma-DC predictions
482static WEBP_INLINE void Put8x8uv_SSE2(uint8_t v, uint8_t* dst) {
483  int j;
484  const __m128i values = _mm_set1_epi8(v);
485  for (j = 0; j < 8; ++j) {
486    _mm_storel_epi64((__m128i*)(dst + j * BPS), values);
487  }
488}
489
490static WEBP_INLINE void Put16_SSE2(uint8_t v, uint8_t* dst) {
491  int j;
492  const __m128i values = _mm_set1_epi8(v);
493  for (j = 0; j < 16; ++j) {
494    _mm_store_si128((__m128i*)(dst + j * BPS), values);
495  }
496}
497
498static WEBP_INLINE void Fill_SSE2(uint8_t* dst, int value, int size) {
499  if (size == 4) {
500    int j;
501    for (j = 0; j < 4; ++j) {
502      memset(dst + j * BPS, value, 4);
503    }
504  } else if (size == 8) {
505    Put8x8uv_SSE2(value, dst);
506  } else {
507    Put16_SSE2(value, dst);
508  }
509}
510
511static WEBP_INLINE void VE8uv_SSE2(uint8_t* dst, const uint8_t* top) {
512  int j;
513  const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
514  for (j = 0; j < 8; ++j) {
515    _mm_storel_epi64((__m128i*)(dst + j * BPS), top_values);
516  }
517}
518
519static WEBP_INLINE void VE16_SSE2(uint8_t* dst, const uint8_t* top) {
520  const __m128i top_values = _mm_load_si128((const __m128i*)top);
521  int j;
522  for (j = 0; j < 16; ++j) {
523    _mm_store_si128((__m128i*)(dst + j * BPS), top_values);
524  }
525}
526
527static WEBP_INLINE void VerticalPred_SSE2(uint8_t* dst,
528                                          const uint8_t* top, int size) {
529  if (top != NULL) {
530    if (size == 8) {
531      VE8uv_SSE2(dst, top);
532    } else {
533      VE16_SSE2(dst, top);
534    }
535  } else {
536    Fill_SSE2(dst, 127, size);
537  }
538}
539
540static WEBP_INLINE void HE8uv_SSE2(uint8_t* dst, const uint8_t* left) {
541  int j;
542  for (j = 0; j < 8; ++j) {
543    const __m128i values = _mm_set1_epi8(left[j]);
544    _mm_storel_epi64((__m128i*)dst, values);
545    dst += BPS;
546  }
547}
548
549static WEBP_INLINE void HE16_SSE2(uint8_t* dst, const uint8_t* left) {
550  int j;
551  for (j = 0; j < 16; ++j) {
552    const __m128i values = _mm_set1_epi8(left[j]);
553    _mm_store_si128((__m128i*)dst, values);
554    dst += BPS;
555  }
556}
557
558static WEBP_INLINE void HorizontalPred_SSE2(uint8_t* dst,
559                                            const uint8_t* left, int size) {
560  if (left != NULL) {
561    if (size == 8) {
562      HE8uv_SSE2(dst, left);
563    } else {
564      HE16_SSE2(dst, left);
565    }
566  } else {
567    Fill_SSE2(dst, 129, size);
568  }
569}
570
571static WEBP_INLINE void TM_SSE2(uint8_t* dst, const uint8_t* left,
572                                const uint8_t* top, int size) {
573  const __m128i zero = _mm_setzero_si128();
574  int y;
575  if (size == 8) {
576    const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
577    const __m128i top_base = _mm_unpacklo_epi8(top_values, zero);
578    for (y = 0; y < 8; ++y, dst += BPS) {
579      const int val = left[y] - left[-1];
580      const __m128i base = _mm_set1_epi16(val);
581      const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero);
582      _mm_storel_epi64((__m128i*)dst, out);
583    }
584  } else {
585    const __m128i top_values = _mm_load_si128((const __m128i*)top);
586    const __m128i top_base_0 = _mm_unpacklo_epi8(top_values, zero);
587    const __m128i top_base_1 = _mm_unpackhi_epi8(top_values, zero);
588    for (y = 0; y < 16; ++y, dst += BPS) {
589      const int val = left[y] - left[-1];
590      const __m128i base = _mm_set1_epi16(val);
591      const __m128i out_0 = _mm_add_epi16(base, top_base_0);
592      const __m128i out_1 = _mm_add_epi16(base, top_base_1);
593      const __m128i out = _mm_packus_epi16(out_0, out_1);
594      _mm_store_si128((__m128i*)dst, out);
595    }
596  }
597}
598
599static WEBP_INLINE void TrueMotion_SSE2(uint8_t* dst, const uint8_t* left,
600                                        const uint8_t* top, int size) {
601  if (left != NULL) {
602    if (top != NULL) {
603      TM_SSE2(dst, left, top, size);
604    } else {
605      HorizontalPred_SSE2(dst, left, size);
606    }
607  } else {
608    // true motion without left samples (hence: with default 129 value)
609    // is equivalent to VE prediction where you just copy the top samples.
610    // Note that if top samples are not available, the default value is
611    // then 129, and not 127 as in the VerticalPred case.
612    if (top != NULL) {
613      VerticalPred_SSE2(dst, top, size);
614    } else {
615      Fill_SSE2(dst, 129, size);
616    }
617  }
618}
619
620static WEBP_INLINE void DC8uv_SSE2(uint8_t* dst, const uint8_t* left,
621                                   const uint8_t* top) {
622  const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
623  const __m128i left_values = _mm_loadl_epi64((const __m128i*)left);
624  const __m128i combined = _mm_unpacklo_epi64(top_values, left_values);
625  const int DC = VP8HorizontalAdd8b(&combined) + 8;
626  Put8x8uv_SSE2(DC >> 4, dst);
627}
628
629static WEBP_INLINE void DC8uvNoLeft_SSE2(uint8_t* dst, const uint8_t* top) {
630  const __m128i zero = _mm_setzero_si128();
631  const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
632  const __m128i sum = _mm_sad_epu8(top_values, zero);
633  const int DC = _mm_cvtsi128_si32(sum) + 4;
634  Put8x8uv_SSE2(DC >> 3, dst);
635}
636
637static WEBP_INLINE void DC8uvNoTop_SSE2(uint8_t* dst, const uint8_t* left) {
638  // 'left' is contiguous so we can reuse the top summation.
639  DC8uvNoLeft_SSE2(dst, left);
640}
641
642static WEBP_INLINE void DC8uvNoTopLeft_SSE2(uint8_t* dst) {
643  Put8x8uv_SSE2(0x80, dst);
644}
645
646static WEBP_INLINE void DC8uvMode_SSE2(uint8_t* dst, const uint8_t* left,
647                                       const uint8_t* top) {
648  if (top != NULL) {
649    if (left != NULL) {  // top and left present
650      DC8uv_SSE2(dst, left, top);
651    } else {  // top, but no left
652      DC8uvNoLeft_SSE2(dst, top);
653    }
654  } else if (left != NULL) {  // left but no top
655    DC8uvNoTop_SSE2(dst, left);
656  } else {  // no top, no left, nothing.
657    DC8uvNoTopLeft_SSE2(dst);
658  }
659}
660
661static WEBP_INLINE void DC16_SSE2(uint8_t* dst, const uint8_t* left,
662                                  const uint8_t* top) {
663  const __m128i top_row = _mm_load_si128((const __m128i*)top);
664  const __m128i left_row = _mm_load_si128((const __m128i*)left);
665  const int DC =
666      VP8HorizontalAdd8b(&top_row) + VP8HorizontalAdd8b(&left_row) + 16;
667  Put16_SSE2(DC >> 5, dst);
668}
669
670static WEBP_INLINE void DC16NoLeft_SSE2(uint8_t* dst, const uint8_t* top) {
671  const __m128i top_row = _mm_load_si128((const __m128i*)top);
672  const int DC = VP8HorizontalAdd8b(&top_row) + 8;
673  Put16_SSE2(DC >> 4, dst);
674}
675
676static WEBP_INLINE void DC16NoTop_SSE2(uint8_t* dst, const uint8_t* left) {
677  // 'left' is contiguous so we can reuse the top summation.
678  DC16NoLeft_SSE2(dst, left);
679}
680
681static WEBP_INLINE void DC16NoTopLeft_SSE2(uint8_t* dst) {
682  Put16_SSE2(0x80, dst);
683}
684
685static WEBP_INLINE void DC16Mode_SSE2(uint8_t* dst, const uint8_t* left,
686                                      const uint8_t* top) {
687  if (top != NULL) {
688    if (left != NULL) {  // top and left present
689      DC16_SSE2(dst, left, top);
690    } else {  // top, but no left
691      DC16NoLeft_SSE2(dst, top);
692    }
693  } else if (left != NULL) {  // left but no top
694    DC16NoTop_SSE2(dst, left);
695  } else {  // no top, no left, nothing.
696    DC16NoTopLeft_SSE2(dst);
697  }
698}
699
700//------------------------------------------------------------------------------
701// 4x4 predictions
702
703#define DST(x, y) dst[(x) + (y) * BPS]
704#define AVG3(a, b, c) (((a) + 2 * (b) + (c) + 2) >> 2)
705#define AVG2(a, b) (((a) + (b) + 1) >> 1)
706
707// We use the following 8b-arithmetic tricks:
708//     (a + 2 * b + c + 2) >> 2 = (AC + b + 1) >> 1
709//   where: AC = (a + c) >> 1 = [(a + c + 1) >> 1] - [(a^c) & 1]
710// and:
711//     (a + 2 * b + c + 2) >> 2 = (AB + BC + 1) >> 1 - (ab|bc)&lsb
712//   where: AC = (a + b + 1) >> 1,   BC = (b + c + 1) >> 1
713//   and ab = a ^ b, bc = b ^ c, lsb = (AC^BC)&1
714
715static WEBP_INLINE void VE4_SSE2(uint8_t* dst,
716                                 const uint8_t* top) {  // vertical
717  const __m128i one = _mm_set1_epi8(1);
718  const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(top - 1));
719  const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1);
720  const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2);
721  const __m128i a = _mm_avg_epu8(ABCDEFGH, CDEFGH00);
722  const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGH00), one);
723  const __m128i b = _mm_subs_epu8(a, lsb);
724  const __m128i avg = _mm_avg_epu8(b, BCDEFGH0);
725  const uint32_t vals = _mm_cvtsi128_si32(avg);
726  int i;
727  for (i = 0; i < 4; ++i) {
728    WebPUint32ToMem(dst + i * BPS, vals);
729  }
730}
731
732static WEBP_INLINE void HE4_SSE2(uint8_t* dst,
733                                 const uint8_t* top) {  // horizontal
734  const int X = top[-1];
735  const int I = top[-2];
736  const int J = top[-3];
737  const int K = top[-4];
738  const int L = top[-5];
739  WebPUint32ToMem(dst + 0 * BPS, 0x01010101U * AVG3(X, I, J));
740  WebPUint32ToMem(dst + 1 * BPS, 0x01010101U * AVG3(I, J, K));
741  WebPUint32ToMem(dst + 2 * BPS, 0x01010101U * AVG3(J, K, L));
742  WebPUint32ToMem(dst + 3 * BPS, 0x01010101U * AVG3(K, L, L));
743}
744
745static WEBP_INLINE void DC4_SSE2(uint8_t* dst, const uint8_t* top) {
746  uint32_t dc = 4;
747  int i;
748  for (i = 0; i < 4; ++i) dc += top[i] + top[-5 + i];
749  Fill_SSE2(dst, dc >> 3, 4);
750}
751
752static WEBP_INLINE void LD4_SSE2(uint8_t* dst,
753                                 const uint8_t* top) {  // Down-Left
754  const __m128i one = _mm_set1_epi8(1);
755  const __m128i ABCDEFGH = _mm_loadl_epi64((const __m128i*)top);
756  const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1);
757  const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2);
758  const __m128i CDEFGHH0 = _mm_insert_epi16(CDEFGH00, top[7], 3);
759  const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, CDEFGHH0);
760  const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGHH0), one);
761  const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
762  const __m128i abcdefg = _mm_avg_epu8(avg2, BCDEFGH0);
763  WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(               abcdefg    ));
764  WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1)));
765  WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2)));
766  WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3)));
767}
768
769static WEBP_INLINE void VR4_SSE2(uint8_t* dst,
770                                 const uint8_t* top) {  // Vertical-Right
771  const __m128i one = _mm_set1_epi8(1);
772  const int I = top[-2];
773  const int J = top[-3];
774  const int K = top[-4];
775  const int X = top[-1];
776  const __m128i XABCD = _mm_loadl_epi64((const __m128i*)(top - 1));
777  const __m128i ABCD0 = _mm_srli_si128(XABCD, 1);
778  const __m128i abcd = _mm_avg_epu8(XABCD, ABCD0);
779  const __m128i _XABCD = _mm_slli_si128(XABCD, 1);
780  const __m128i IXABCD = _mm_insert_epi16(_XABCD, I | (X << 8), 0);
781  const __m128i avg1 = _mm_avg_epu8(IXABCD, ABCD0);
782  const __m128i lsb = _mm_and_si128(_mm_xor_si128(IXABCD, ABCD0), one);
783  const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
784  const __m128i efgh = _mm_avg_epu8(avg2, XABCD);
785  WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(               abcd    ));
786  WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(               efgh    ));
787  WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(abcd, 1)));
788  WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(efgh, 1)));
789
790  // these two are hard to implement in SSE2, so we keep the C-version:
791  DST(0, 2) = AVG3(J, I, X);
792  DST(0, 3) = AVG3(K, J, I);
793}
794
795static WEBP_INLINE void VL4_SSE2(uint8_t* dst,
796                                 const uint8_t* top) {  // Vertical-Left
797  const __m128i one = _mm_set1_epi8(1);
798  const __m128i ABCDEFGH = _mm_loadl_epi64((const __m128i*)top);
799  const __m128i BCDEFGH_ = _mm_srli_si128(ABCDEFGH, 1);
800  const __m128i CDEFGH__ = _mm_srli_si128(ABCDEFGH, 2);
801  const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, BCDEFGH_);
802  const __m128i avg2 = _mm_avg_epu8(CDEFGH__, BCDEFGH_);
803  const __m128i avg3 = _mm_avg_epu8(avg1, avg2);
804  const __m128i lsb1 = _mm_and_si128(_mm_xor_si128(avg1, avg2), one);
805  const __m128i ab = _mm_xor_si128(ABCDEFGH, BCDEFGH_);
806  const __m128i bc = _mm_xor_si128(CDEFGH__, BCDEFGH_);
807  const __m128i abbc = _mm_or_si128(ab, bc);
808  const __m128i lsb2 = _mm_and_si128(abbc, lsb1);
809  const __m128i avg4 = _mm_subs_epu8(avg3, lsb2);
810  const uint32_t extra_out = _mm_cvtsi128_si32(_mm_srli_si128(avg4, 4));
811  WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(               avg1    ));
812  WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(               avg4    ));
813  WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg1, 1)));
814  WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg4, 1)));
815
816  // these two are hard to get and irregular
817  DST(3, 2) = (extra_out >> 0) & 0xff;
818  DST(3, 3) = (extra_out >> 8) & 0xff;
819}
820
821static WEBP_INLINE void RD4_SSE2(uint8_t* dst,
822                                 const uint8_t* top) {  // Down-right
823  const __m128i one = _mm_set1_epi8(1);
824  const __m128i LKJIXABC = _mm_loadl_epi64((const __m128i*)(top - 5));
825  const __m128i LKJIXABCD = _mm_insert_epi16(LKJIXABC, top[3], 4);
826  const __m128i KJIXABCD_ = _mm_srli_si128(LKJIXABCD, 1);
827  const __m128i JIXABCD__ = _mm_srli_si128(LKJIXABCD, 2);
828  const __m128i avg1 = _mm_avg_epu8(JIXABCD__, LKJIXABCD);
829  const __m128i lsb = _mm_and_si128(_mm_xor_si128(JIXABCD__, LKJIXABCD), one);
830  const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
831  const __m128i abcdefg = _mm_avg_epu8(avg2, KJIXABCD_);
832  WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(               abcdefg    ));
833  WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1)));
834  WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2)));
835  WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3)));
836}
837
838static WEBP_INLINE void HU4_SSE2(uint8_t* dst, const uint8_t* top) {
839  const int I = top[-2];
840  const int J = top[-3];
841  const int K = top[-4];
842  const int L = top[-5];
843  DST(0, 0) =             AVG2(I, J);
844  DST(2, 0) = DST(0, 1) = AVG2(J, K);
845  DST(2, 1) = DST(0, 2) = AVG2(K, L);
846  DST(1, 0) =             AVG3(I, J, K);
847  DST(3, 0) = DST(1, 1) = AVG3(J, K, L);
848  DST(3, 1) = DST(1, 2) = AVG3(K, L, L);
849  DST(3, 2) = DST(2, 2) =
850  DST(0, 3) = DST(1, 3) = DST(2, 3) = DST(3, 3) = L;
851}
852
853static WEBP_INLINE void HD4_SSE2(uint8_t* dst, const uint8_t* top) {
854  const int X = top[-1];
855  const int I = top[-2];
856  const int J = top[-3];
857  const int K = top[-4];
858  const int L = top[-5];
859  const int A = top[0];
860  const int B = top[1];
861  const int C = top[2];
862
863  DST(0, 0) = DST(2, 1) = AVG2(I, X);
864  DST(0, 1) = DST(2, 2) = AVG2(J, I);
865  DST(0, 2) = DST(2, 3) = AVG2(K, J);
866  DST(0, 3)             = AVG2(L, K);
867
868  DST(3, 0)             = AVG3(A, B, C);
869  DST(2, 0)             = AVG3(X, A, B);
870  DST(1, 0) = DST(3, 1) = AVG3(I, X, A);
871  DST(1, 1) = DST(3, 2) = AVG3(J, I, X);
872  DST(1, 2) = DST(3, 3) = AVG3(K, J, I);
873  DST(1, 3)             = AVG3(L, K, J);
874}
875
876static WEBP_INLINE void TM4_SSE2(uint8_t* dst, const uint8_t* top) {
877  const __m128i zero = _mm_setzero_si128();
878  const __m128i top_values = _mm_cvtsi32_si128(WebPMemToUint32(top));
879  const __m128i top_base = _mm_unpacklo_epi8(top_values, zero);
880  int y;
881  for (y = 0; y < 4; ++y, dst += BPS) {
882    const int val = top[-2 - y] - top[-1];
883    const __m128i base = _mm_set1_epi16(val);
884    const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero);
885    WebPUint32ToMem(dst, _mm_cvtsi128_si32(out));
886  }
887}
888
889#undef DST
890#undef AVG3
891#undef AVG2
892
893//------------------------------------------------------------------------------
894// luma 4x4 prediction
895
896// Left samples are top[-5 .. -2], top_left is top[-1], top are
897// located at top[0..3], and top right is top[4..7]
898static void Intra4Preds_SSE2(uint8_t* dst, const uint8_t* top) {
899  DC4_SSE2(I4DC4 + dst, top);
900  TM4_SSE2(I4TM4 + dst, top);
901  VE4_SSE2(I4VE4 + dst, top);
902  HE4_SSE2(I4HE4 + dst, top);
903  RD4_SSE2(I4RD4 + dst, top);
904  VR4_SSE2(I4VR4 + dst, top);
905  LD4_SSE2(I4LD4 + dst, top);
906  VL4_SSE2(I4VL4 + dst, top);
907  HD4_SSE2(I4HD4 + dst, top);
908  HU4_SSE2(I4HU4 + dst, top);
909}
910
911//------------------------------------------------------------------------------
912// Chroma 8x8 prediction (paragraph 12.2)
913
914static void IntraChromaPreds_SSE2(uint8_t* dst, const uint8_t* left,
915                                  const uint8_t* top) {
916  // U block
917  DC8uvMode_SSE2(C8DC8 + dst, left, top);
918  VerticalPred_SSE2(C8VE8 + dst, top, 8);
919  HorizontalPred_SSE2(C8HE8 + dst, left, 8);
920  TrueMotion_SSE2(C8TM8 + dst, left, top, 8);
921  // V block
922  dst += 8;
923  if (top != NULL) top += 8;
924  if (left != NULL) left += 16;
925  DC8uvMode_SSE2(C8DC8 + dst, left, top);
926  VerticalPred_SSE2(C8VE8 + dst, top, 8);
927  HorizontalPred_SSE2(C8HE8 + dst, left, 8);
928  TrueMotion_SSE2(C8TM8 + dst, left, top, 8);
929}
930
931//------------------------------------------------------------------------------
932// luma 16x16 prediction (paragraph 12.3)
933
934static void Intra16Preds_SSE2(uint8_t* dst,
935                              const uint8_t* left, const uint8_t* top) {
936  DC16Mode_SSE2(I16DC16 + dst, left, top);
937  VerticalPred_SSE2(I16VE16 + dst, top, 16);
938  HorizontalPred_SSE2(I16HE16 + dst, left, 16);
939  TrueMotion_SSE2(I16TM16 + dst, left, top, 16);
940}
941
942//------------------------------------------------------------------------------
943// Metric
944
945static WEBP_INLINE void SubtractAndAccumulate_SSE2(const __m128i a,
946                                                   const __m128i b,
947                                                   __m128i* const sum) {
948  // take abs(a-b) in 8b
949  const __m128i a_b = _mm_subs_epu8(a, b);
950  const __m128i b_a = _mm_subs_epu8(b, a);
951  const __m128i abs_a_b = _mm_or_si128(a_b, b_a);
952  // zero-extend to 16b
953  const __m128i zero = _mm_setzero_si128();
954  const __m128i C0 = _mm_unpacklo_epi8(abs_a_b, zero);
955  const __m128i C1 = _mm_unpackhi_epi8(abs_a_b, zero);
956  // multiply with self
957  const __m128i sum1 = _mm_madd_epi16(C0, C0);
958  const __m128i sum2 = _mm_madd_epi16(C1, C1);
959  *sum = _mm_add_epi32(sum1, sum2);
960}
961
962static WEBP_INLINE int SSE_16xN_SSE2(const uint8_t* a, const uint8_t* b,
963                                     int num_pairs) {
964  __m128i sum = _mm_setzero_si128();
965  int32_t tmp[4];
966  int i;
967
968  for (i = 0; i < num_pairs; ++i) {
969    const __m128i a0 = _mm_loadu_si128((const __m128i*)&a[BPS * 0]);
970    const __m128i b0 = _mm_loadu_si128((const __m128i*)&b[BPS * 0]);
971    const __m128i a1 = _mm_loadu_si128((const __m128i*)&a[BPS * 1]);
972    const __m128i b1 = _mm_loadu_si128((const __m128i*)&b[BPS * 1]);
973    __m128i sum1, sum2;
974    SubtractAndAccumulate_SSE2(a0, b0, &sum1);
975    SubtractAndAccumulate_SSE2(a1, b1, &sum2);
976    sum = _mm_add_epi32(sum, _mm_add_epi32(sum1, sum2));
977    a += 2 * BPS;
978    b += 2 * BPS;
979  }
980  _mm_storeu_si128((__m128i*)tmp, sum);
981  return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
982}
983
984static int SSE16x16_SSE2(const uint8_t* a, const uint8_t* b) {
985  return SSE_16xN_SSE2(a, b, 8);
986}
987
988static int SSE16x8_SSE2(const uint8_t* a, const uint8_t* b) {
989  return SSE_16xN_SSE2(a, b, 4);
990}
991
992#define LOAD_8x16b(ptr) \
993  _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(ptr)), zero)
994
995static int SSE8x8_SSE2(const uint8_t* a, const uint8_t* b) {
996  const __m128i zero = _mm_setzero_si128();
997  int num_pairs = 4;
998  __m128i sum = zero;
999  int32_t tmp[4];
1000  while (num_pairs-- > 0) {
1001    const __m128i a0 = LOAD_8x16b(&a[BPS * 0]);
1002    const __m128i a1 = LOAD_8x16b(&a[BPS * 1]);
1003    const __m128i b0 = LOAD_8x16b(&b[BPS * 0]);
1004    const __m128i b1 = LOAD_8x16b(&b[BPS * 1]);
1005    // subtract
1006    const __m128i c0 = _mm_subs_epi16(a0, b0);
1007    const __m128i c1 = _mm_subs_epi16(a1, b1);
1008    // multiply/accumulate with self
1009    const __m128i d0 = _mm_madd_epi16(c0, c0);
1010    const __m128i d1 = _mm_madd_epi16(c1, c1);
1011    // collect
1012    const __m128i sum01 = _mm_add_epi32(d0, d1);
1013    sum = _mm_add_epi32(sum, sum01);
1014    a += 2 * BPS;
1015    b += 2 * BPS;
1016  }
1017  _mm_storeu_si128((__m128i*)tmp, sum);
1018  return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
1019}
1020#undef LOAD_8x16b
1021
1022static int SSE4x4_SSE2(const uint8_t* a, const uint8_t* b) {
1023  const __m128i zero = _mm_setzero_si128();
1024
1025  // Load values. Note that we read 8 pixels instead of 4,
1026  // but the a/b buffers are over-allocated to that effect.
1027  const __m128i a0 = _mm_loadl_epi64((const __m128i*)&a[BPS * 0]);
1028  const __m128i a1 = _mm_loadl_epi64((const __m128i*)&a[BPS * 1]);
1029  const __m128i a2 = _mm_loadl_epi64((const __m128i*)&a[BPS * 2]);
1030  const __m128i a3 = _mm_loadl_epi64((const __m128i*)&a[BPS * 3]);
1031  const __m128i b0 = _mm_loadl_epi64((const __m128i*)&b[BPS * 0]);
1032  const __m128i b1 = _mm_loadl_epi64((const __m128i*)&b[BPS * 1]);
1033  const __m128i b2 = _mm_loadl_epi64((const __m128i*)&b[BPS * 2]);
1034  const __m128i b3 = _mm_loadl_epi64((const __m128i*)&b[BPS * 3]);
1035  // Combine pair of lines.
1036  const __m128i a01 = _mm_unpacklo_epi32(a0, a1);
1037  const __m128i a23 = _mm_unpacklo_epi32(a2, a3);
1038  const __m128i b01 = _mm_unpacklo_epi32(b0, b1);
1039  const __m128i b23 = _mm_unpacklo_epi32(b2, b3);
1040  // Convert to 16b.
1041  const __m128i a01s = _mm_unpacklo_epi8(a01, zero);
1042  const __m128i a23s = _mm_unpacklo_epi8(a23, zero);
1043  const __m128i b01s = _mm_unpacklo_epi8(b01, zero);
1044  const __m128i b23s = _mm_unpacklo_epi8(b23, zero);
1045  // subtract, square and accumulate
1046  const __m128i d0 = _mm_subs_epi16(a01s, b01s);
1047  const __m128i d1 = _mm_subs_epi16(a23s, b23s);
1048  const __m128i e0 = _mm_madd_epi16(d0, d0);
1049  const __m128i e1 = _mm_madd_epi16(d1, d1);
1050  const __m128i sum = _mm_add_epi32(e0, e1);
1051
1052  int32_t tmp[4];
1053  _mm_storeu_si128((__m128i*)tmp, sum);
1054  return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
1055}
1056
1057//------------------------------------------------------------------------------
1058
1059static void Mean16x4_SSE2(const uint8_t* ref, uint32_t dc[4]) {
1060  const __m128i mask = _mm_set1_epi16(0x00ff);
1061  const __m128i a0 = _mm_loadu_si128((const __m128i*)&ref[BPS * 0]);
1062  const __m128i a1 = _mm_loadu_si128((const __m128i*)&ref[BPS * 1]);
1063  const __m128i a2 = _mm_loadu_si128((const __m128i*)&ref[BPS * 2]);
1064  const __m128i a3 = _mm_loadu_si128((const __m128i*)&ref[BPS * 3]);
1065  const __m128i b0 = _mm_srli_epi16(a0, 8);     // hi byte
1066  const __m128i b1 = _mm_srli_epi16(a1, 8);
1067  const __m128i b2 = _mm_srli_epi16(a2, 8);
1068  const __m128i b3 = _mm_srli_epi16(a3, 8);
1069  const __m128i c0 = _mm_and_si128(a0, mask);   // lo byte
1070  const __m128i c1 = _mm_and_si128(a1, mask);
1071  const __m128i c2 = _mm_and_si128(a2, mask);
1072  const __m128i c3 = _mm_and_si128(a3, mask);
1073  const __m128i d0 = _mm_add_epi32(b0, c0);
1074  const __m128i d1 = _mm_add_epi32(b1, c1);
1075  const __m128i d2 = _mm_add_epi32(b2, c2);
1076  const __m128i d3 = _mm_add_epi32(b3, c3);
1077  const __m128i e0 = _mm_add_epi32(d0, d1);
1078  const __m128i e1 = _mm_add_epi32(d2, d3);
1079  const __m128i f0 = _mm_add_epi32(e0, e1);
1080  uint16_t tmp[8];
1081  _mm_storeu_si128((__m128i*)tmp, f0);
1082  dc[0] = tmp[0] + tmp[1];
1083  dc[1] = tmp[2] + tmp[3];
1084  dc[2] = tmp[4] + tmp[5];
1085  dc[3] = tmp[6] + tmp[7];
1086}
1087
1088//------------------------------------------------------------------------------
1089// Texture distortion
1090//
1091// We try to match the spectral content (weighted) between source and
1092// reconstructed samples.
1093
1094// Hadamard transform
1095// Returns the weighted sum of the absolute value of transformed coefficients.
1096// w[] contains a row-major 4 by 4 symmetric matrix.
1097static int TTransform_SSE2(const uint8_t* inA, const uint8_t* inB,
1098                           const uint16_t* const w) {
1099  int32_t sum[4];
1100  __m128i tmp_0, tmp_1, tmp_2, tmp_3;
1101  const __m128i zero = _mm_setzero_si128();
1102
1103  // Load and combine inputs.
1104  {
1105    const __m128i inA_0 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 0]);
1106    const __m128i inA_1 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 1]);
1107    const __m128i inA_2 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 2]);
1108    const __m128i inA_3 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 3]);
1109    const __m128i inB_0 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 0]);
1110    const __m128i inB_1 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 1]);
1111    const __m128i inB_2 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 2]);
1112    const __m128i inB_3 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 3]);
1113
1114    // Combine inA and inB (we'll do two transforms in parallel).
1115    const __m128i inAB_0 = _mm_unpacklo_epi32(inA_0, inB_0);
1116    const __m128i inAB_1 = _mm_unpacklo_epi32(inA_1, inB_1);
1117    const __m128i inAB_2 = _mm_unpacklo_epi32(inA_2, inB_2);
1118    const __m128i inAB_3 = _mm_unpacklo_epi32(inA_3, inB_3);
1119    tmp_0 = _mm_unpacklo_epi8(inAB_0, zero);
1120    tmp_1 = _mm_unpacklo_epi8(inAB_1, zero);
1121    tmp_2 = _mm_unpacklo_epi8(inAB_2, zero);
1122    tmp_3 = _mm_unpacklo_epi8(inAB_3, zero);
1123    // a00 a01 a02 a03   b00 b01 b02 b03
1124    // a10 a11 a12 a13   b10 b11 b12 b13
1125    // a20 a21 a22 a23   b20 b21 b22 b23
1126    // a30 a31 a32 a33   b30 b31 b32 b33
1127  }
1128
1129  // Vertical pass first to avoid a transpose (vertical and horizontal passes
1130  // are commutative because w/kWeightY is symmetric) and subsequent transpose.
1131  {
1132    // Calculate a and b (two 4x4 at once).
1133    const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
1134    const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
1135    const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
1136    const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
1137    const __m128i b0 = _mm_add_epi16(a0, a1);
1138    const __m128i b1 = _mm_add_epi16(a3, a2);
1139    const __m128i b2 = _mm_sub_epi16(a3, a2);
1140    const __m128i b3 = _mm_sub_epi16(a0, a1);
1141    // a00 a01 a02 a03   b00 b01 b02 b03
1142    // a10 a11 a12 a13   b10 b11 b12 b13
1143    // a20 a21 a22 a23   b20 b21 b22 b23
1144    // a30 a31 a32 a33   b30 b31 b32 b33
1145
1146    // Transpose the two 4x4.
1147    VP8Transpose_2_4x4_16b(&b0, &b1, &b2, &b3, &tmp_0, &tmp_1, &tmp_2, &tmp_3);
1148  }
1149
1150  // Horizontal pass and difference of weighted sums.
1151  {
1152    // Load all inputs.
1153    const __m128i w_0 = _mm_loadu_si128((const __m128i*)&w[0]);
1154    const __m128i w_8 = _mm_loadu_si128((const __m128i*)&w[8]);
1155
1156    // Calculate a and b (two 4x4 at once).
1157    const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
1158    const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
1159    const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
1160    const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
1161    const __m128i b0 = _mm_add_epi16(a0, a1);
1162    const __m128i b1 = _mm_add_epi16(a3, a2);
1163    const __m128i b2 = _mm_sub_epi16(a3, a2);
1164    const __m128i b3 = _mm_sub_epi16(a0, a1);
1165
1166    // Separate the transforms of inA and inB.
1167    __m128i A_b0 = _mm_unpacklo_epi64(b0, b1);
1168    __m128i A_b2 = _mm_unpacklo_epi64(b2, b3);
1169    __m128i B_b0 = _mm_unpackhi_epi64(b0, b1);
1170    __m128i B_b2 = _mm_unpackhi_epi64(b2, b3);
1171
1172    {
1173      const __m128i d0 = _mm_sub_epi16(zero, A_b0);
1174      const __m128i d1 = _mm_sub_epi16(zero, A_b2);
1175      const __m128i d2 = _mm_sub_epi16(zero, B_b0);
1176      const __m128i d3 = _mm_sub_epi16(zero, B_b2);
1177      A_b0 = _mm_max_epi16(A_b0, d0);   // abs(v), 16b
1178      A_b2 = _mm_max_epi16(A_b2, d1);
1179      B_b0 = _mm_max_epi16(B_b0, d2);
1180      B_b2 = _mm_max_epi16(B_b2, d3);
1181    }
1182
1183    // weighted sums
1184    A_b0 = _mm_madd_epi16(A_b0, w_0);
1185    A_b2 = _mm_madd_epi16(A_b2, w_8);
1186    B_b0 = _mm_madd_epi16(B_b0, w_0);
1187    B_b2 = _mm_madd_epi16(B_b2, w_8);
1188    A_b0 = _mm_add_epi32(A_b0, A_b2);
1189    B_b0 = _mm_add_epi32(B_b0, B_b2);
1190
1191    // difference of weighted sums
1192    A_b0 = _mm_sub_epi32(A_b0, B_b0);
1193    _mm_storeu_si128((__m128i*)&sum[0], A_b0);
1194  }
1195  return sum[0] + sum[1] + sum[2] + sum[3];
1196}
1197
1198static int Disto4x4_SSE2(const uint8_t* const a, const uint8_t* const b,
1199                         const uint16_t* const w) {
1200  const int diff_sum = TTransform_SSE2(a, b, w);
1201  return abs(diff_sum) >> 5;
1202}
1203
1204static int Disto16x16_SSE2(const uint8_t* const a, const uint8_t* const b,
1205                           const uint16_t* const w) {
1206  int D = 0;
1207  int x, y;
1208  for (y = 0; y < 16 * BPS; y += 4 * BPS) {
1209    for (x = 0; x < 16; x += 4) {
1210      D += Disto4x4_SSE2(a + x + y, b + x + y, w);
1211    }
1212  }
1213  return D;
1214}
1215
1216//------------------------------------------------------------------------------
1217// Quantization
1218//
1219
1220static WEBP_INLINE int DoQuantizeBlock_SSE2(int16_t in[16], int16_t out[16],
1221                                            const uint16_t* const sharpen,
1222                                            const VP8Matrix* const mtx) {
1223  const __m128i max_coeff_2047 = _mm_set1_epi16(MAX_LEVEL);
1224  const __m128i zero = _mm_setzero_si128();
1225  __m128i coeff0, coeff8;
1226  __m128i out0, out8;
1227  __m128i packed_out;
1228
1229  // Load all inputs.
1230  __m128i in0 = _mm_loadu_si128((__m128i*)&in[0]);
1231  __m128i in8 = _mm_loadu_si128((__m128i*)&in[8]);
1232  const __m128i iq0 = _mm_loadu_si128((const __m128i*)&mtx->iq_[0]);
1233  const __m128i iq8 = _mm_loadu_si128((const __m128i*)&mtx->iq_[8]);
1234  const __m128i q0 = _mm_loadu_si128((const __m128i*)&mtx->q_[0]);
1235  const __m128i q8 = _mm_loadu_si128((const __m128i*)&mtx->q_[8]);
1236
1237  // extract sign(in)  (0x0000 if positive, 0xffff if negative)
1238  const __m128i sign0 = _mm_cmpgt_epi16(zero, in0);
1239  const __m128i sign8 = _mm_cmpgt_epi16(zero, in8);
1240
1241  // coeff = abs(in) = (in ^ sign) - sign
1242  coeff0 = _mm_xor_si128(in0, sign0);
1243  coeff8 = _mm_xor_si128(in8, sign8);
1244  coeff0 = _mm_sub_epi16(coeff0, sign0);
1245  coeff8 = _mm_sub_epi16(coeff8, sign8);
1246
1247  // coeff = abs(in) + sharpen
1248  if (sharpen != NULL) {
1249    const __m128i sharpen0 = _mm_loadu_si128((const __m128i*)&sharpen[0]);
1250    const __m128i sharpen8 = _mm_loadu_si128((const __m128i*)&sharpen[8]);
1251    coeff0 = _mm_add_epi16(coeff0, sharpen0);
1252    coeff8 = _mm_add_epi16(coeff8, sharpen8);
1253  }
1254
1255  // out = (coeff * iQ + B) >> QFIX
1256  {
1257    // doing calculations with 32b precision (QFIX=17)
1258    // out = (coeff * iQ)
1259    const __m128i coeff_iQ0H = _mm_mulhi_epu16(coeff0, iq0);
1260    const __m128i coeff_iQ0L = _mm_mullo_epi16(coeff0, iq0);
1261    const __m128i coeff_iQ8H = _mm_mulhi_epu16(coeff8, iq8);
1262    const __m128i coeff_iQ8L = _mm_mullo_epi16(coeff8, iq8);
1263    __m128i out_00 = _mm_unpacklo_epi16(coeff_iQ0L, coeff_iQ0H);
1264    __m128i out_04 = _mm_unpackhi_epi16(coeff_iQ0L, coeff_iQ0H);
1265    __m128i out_08 = _mm_unpacklo_epi16(coeff_iQ8L, coeff_iQ8H);
1266    __m128i out_12 = _mm_unpackhi_epi16(coeff_iQ8L, coeff_iQ8H);
1267    // out = (coeff * iQ + B)
1268    const __m128i bias_00 = _mm_loadu_si128((const __m128i*)&mtx->bias_[0]);
1269    const __m128i bias_04 = _mm_loadu_si128((const __m128i*)&mtx->bias_[4]);
1270    const __m128i bias_08 = _mm_loadu_si128((const __m128i*)&mtx->bias_[8]);
1271    const __m128i bias_12 = _mm_loadu_si128((const __m128i*)&mtx->bias_[12]);
1272    out_00 = _mm_add_epi32(out_00, bias_00);
1273    out_04 = _mm_add_epi32(out_04, bias_04);
1274    out_08 = _mm_add_epi32(out_08, bias_08);
1275    out_12 = _mm_add_epi32(out_12, bias_12);
1276    // out = QUANTDIV(coeff, iQ, B, QFIX)
1277    out_00 = _mm_srai_epi32(out_00, QFIX);
1278    out_04 = _mm_srai_epi32(out_04, QFIX);
1279    out_08 = _mm_srai_epi32(out_08, QFIX);
1280    out_12 = _mm_srai_epi32(out_12, QFIX);
1281
1282    // pack result as 16b
1283    out0 = _mm_packs_epi32(out_00, out_04);
1284    out8 = _mm_packs_epi32(out_08, out_12);
1285
1286    // if (coeff > 2047) coeff = 2047
1287    out0 = _mm_min_epi16(out0, max_coeff_2047);
1288    out8 = _mm_min_epi16(out8, max_coeff_2047);
1289  }
1290
1291  // get sign back (if (sign[j]) out_n = -out_n)
1292  out0 = _mm_xor_si128(out0, sign0);
1293  out8 = _mm_xor_si128(out8, sign8);
1294  out0 = _mm_sub_epi16(out0, sign0);
1295  out8 = _mm_sub_epi16(out8, sign8);
1296
1297  // in = out * Q
1298  in0 = _mm_mullo_epi16(out0, q0);
1299  in8 = _mm_mullo_epi16(out8, q8);
1300
1301  _mm_storeu_si128((__m128i*)&in[0], in0);
1302  _mm_storeu_si128((__m128i*)&in[8], in8);
1303
1304  // zigzag the output before storing it.
1305  //
1306  // The zigzag pattern can almost be reproduced with a small sequence of
1307  // shuffles. After it, we only need to swap the 7th (ending up in third
1308  // position instead of twelfth) and 8th values.
1309  {
1310    __m128i outZ0, outZ8;
1311    outZ0 = _mm_shufflehi_epi16(out0,  _MM_SHUFFLE(2, 1, 3, 0));
1312    outZ0 = _mm_shuffle_epi32  (outZ0, _MM_SHUFFLE(3, 1, 2, 0));
1313    outZ0 = _mm_shufflehi_epi16(outZ0, _MM_SHUFFLE(3, 1, 0, 2));
1314    outZ8 = _mm_shufflelo_epi16(out8,  _MM_SHUFFLE(3, 0, 2, 1));
1315    outZ8 = _mm_shuffle_epi32  (outZ8, _MM_SHUFFLE(3, 1, 2, 0));
1316    outZ8 = _mm_shufflelo_epi16(outZ8, _MM_SHUFFLE(1, 3, 2, 0));
1317    _mm_storeu_si128((__m128i*)&out[0], outZ0);
1318    _mm_storeu_si128((__m128i*)&out[8], outZ8);
1319    packed_out = _mm_packs_epi16(outZ0, outZ8);
1320  }
1321  {
1322    const int16_t outZ_12 = out[12];
1323    const int16_t outZ_3 = out[3];
1324    out[3] = outZ_12;
1325    out[12] = outZ_3;
1326  }
1327
1328  // detect if all 'out' values are zeroes or not
1329  return (_mm_movemask_epi8(_mm_cmpeq_epi8(packed_out, zero)) != 0xffff);
1330}
1331
1332static int QuantizeBlock_SSE2(int16_t in[16], int16_t out[16],
1333                              const VP8Matrix* const mtx) {
1334  return DoQuantizeBlock_SSE2(in, out, &mtx->sharpen_[0], mtx);
1335}
1336
1337static int QuantizeBlockWHT_SSE2(int16_t in[16], int16_t out[16],
1338                                 const VP8Matrix* const mtx) {
1339  return DoQuantizeBlock_SSE2(in, out, NULL, mtx);
1340}
1341
1342static int Quantize2Blocks_SSE2(int16_t in[32], int16_t out[32],
1343                                const VP8Matrix* const mtx) {
1344  int nz;
1345  const uint16_t* const sharpen = &mtx->sharpen_[0];
1346  nz  = DoQuantizeBlock_SSE2(in + 0 * 16, out + 0 * 16, sharpen, mtx) << 0;
1347  nz |= DoQuantizeBlock_SSE2(in + 1 * 16, out + 1 * 16, sharpen, mtx) << 1;
1348  return nz;
1349}
1350
1351//------------------------------------------------------------------------------
1352// Entry point
1353
1354extern void VP8EncDspInitSSE2(void);
1355
1356WEBP_TSAN_IGNORE_FUNCTION void VP8EncDspInitSSE2(void) {
1357  VP8CollectHistogram = CollectHistogram_SSE2;
1358  VP8EncPredLuma16 = Intra16Preds_SSE2;
1359  VP8EncPredChroma8 = IntraChromaPreds_SSE2;
1360  VP8EncPredLuma4 = Intra4Preds_SSE2;
1361  VP8EncQuantizeBlock = QuantizeBlock_SSE2;
1362  VP8EncQuantize2Blocks = Quantize2Blocks_SSE2;
1363  VP8EncQuantizeBlockWHT = QuantizeBlockWHT_SSE2;
1364  VP8ITransform = ITransform_SSE2;
1365  VP8FTransform = FTransform_SSE2;
1366  VP8FTransform2 = FTransform2_SSE2;
1367  VP8FTransformWHT = FTransformWHT_SSE2;
1368  VP8SSE16x16 = SSE16x16_SSE2;
1369  VP8SSE16x8 = SSE16x8_SSE2;
1370  VP8SSE8x8 = SSE8x8_SSE2;
1371  VP8SSE4x4 = SSE4x4_SSE2;
1372  VP8TDisto4x4 = Disto4x4_SSE2;
1373  VP8TDisto16x16 = Disto16x16_SSE2;
1374  VP8Mean16x4 = Mean16x4_SSE2;
1375}
1376
1377#else  // !WEBP_USE_SSE2
1378
1379WEBP_DSP_INIT_STUB(VP8EncDspInitSSE2)
1380
1381#endif  // WEBP_USE_SSE2
1382