1/*
2 *  Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
3 *
4 *  Use of this source code is governed by a BSD-style license
5 *  that can be found in the LICENSE file in the root of the source
6 *  tree. An additional intellectual property rights grant can be found
7 *  in the file PATENTS.  All contributing project authors may
8 *  be found in the AUTHORS file in the root of the source tree.
9 */
10
11/*
12 * The core AEC algorithm, SSE2 version of speed-critical functions.
13 */
14
15#include <emmintrin.h>
16#include <math.h>
17#include <string.h>  // memset
18
19#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
20#include "webrtc/modules/audio_processing/aec/aec_common.h"
21#include "webrtc/modules/audio_processing/aec/aec_core_internal.h"
22#include "webrtc/modules/audio_processing/aec/aec_rdft.h"
23
24__inline static float MulRe(float aRe, float aIm, float bRe, float bIm) {
25  return aRe * bRe - aIm * bIm;
26}
27
28__inline static float MulIm(float aRe, float aIm, float bRe, float bIm) {
29  return aRe * bIm + aIm * bRe;
30}
31
32static void FilterFarSSE2(
33    int num_partitions,
34    int x_fft_buf_block_pos,
35    float x_fft_buf[2][kExtendedNumPartitions * PART_LEN1],
36    float h_fft_buf[2][kExtendedNumPartitions * PART_LEN1],
37    float y_fft[2][PART_LEN1]) {
38
39  int i;
40  for (i = 0; i < num_partitions; i++) {
41    int j;
42    int xPos = (i + x_fft_buf_block_pos) * PART_LEN1;
43    int pos = i * PART_LEN1;
44    // Check for wrap
45    if (i + x_fft_buf_block_pos >= num_partitions) {
46      xPos -= num_partitions * (PART_LEN1);
47    }
48
49    // vectorized code (four at once)
50    for (j = 0; j + 3 < PART_LEN1; j += 4) {
51      const __m128 x_fft_buf_re = _mm_loadu_ps(&x_fft_buf[0][xPos + j]);
52      const __m128 x_fft_buf_im = _mm_loadu_ps(&x_fft_buf[1][xPos + j]);
53      const __m128 h_fft_buf_re = _mm_loadu_ps(&h_fft_buf[0][pos + j]);
54      const __m128 h_fft_buf_im = _mm_loadu_ps(&h_fft_buf[1][pos + j]);
55      const __m128 y_fft_re = _mm_loadu_ps(&y_fft[0][j]);
56      const __m128 y_fft_im = _mm_loadu_ps(&y_fft[1][j]);
57      const __m128 a = _mm_mul_ps(x_fft_buf_re, h_fft_buf_re);
58      const __m128 b = _mm_mul_ps(x_fft_buf_im, h_fft_buf_im);
59      const __m128 c = _mm_mul_ps(x_fft_buf_re, h_fft_buf_im);
60      const __m128 d = _mm_mul_ps(x_fft_buf_im, h_fft_buf_re);
61      const __m128 e = _mm_sub_ps(a, b);
62      const __m128 f = _mm_add_ps(c, d);
63      const __m128 g = _mm_add_ps(y_fft_re, e);
64      const __m128 h = _mm_add_ps(y_fft_im, f);
65      _mm_storeu_ps(&y_fft[0][j], g);
66      _mm_storeu_ps(&y_fft[1][j], h);
67    }
68    // scalar code for the remaining items.
69    for (; j < PART_LEN1; j++) {
70      y_fft[0][j] += MulRe(x_fft_buf[0][xPos + j],
71                           x_fft_buf[1][xPos + j],
72                           h_fft_buf[0][pos + j],
73                           h_fft_buf[1][pos + j]);
74      y_fft[1][j] += MulIm(x_fft_buf[0][xPos + j],
75                           x_fft_buf[1][xPos + j],
76                           h_fft_buf[0][pos + j],
77                           h_fft_buf[1][pos + j]);
78    }
79  }
80}
81
82static void ScaleErrorSignalSSE2(int extended_filter_enabled,
83                                 float normal_mu,
84                                 float normal_error_threshold,
85                                 float x_pow[PART_LEN1],
86                                 float ef[2][PART_LEN1]) {
87  const __m128 k1e_10f = _mm_set1_ps(1e-10f);
88  const __m128 kMu = extended_filter_enabled ? _mm_set1_ps(kExtendedMu)
89      : _mm_set1_ps(normal_mu);
90  const __m128 kThresh = extended_filter_enabled
91                             ? _mm_set1_ps(kExtendedErrorThreshold)
92                             : _mm_set1_ps(normal_error_threshold);
93
94  int i;
95  // vectorized code (four at once)
96  for (i = 0; i + 3 < PART_LEN1; i += 4) {
97    const __m128 x_pow_local = _mm_loadu_ps(&x_pow[i]);
98    const __m128 ef_re_base = _mm_loadu_ps(&ef[0][i]);
99    const __m128 ef_im_base = _mm_loadu_ps(&ef[1][i]);
100
101    const __m128 xPowPlus = _mm_add_ps(x_pow_local, k1e_10f);
102    __m128 ef_re = _mm_div_ps(ef_re_base, xPowPlus);
103    __m128 ef_im = _mm_div_ps(ef_im_base, xPowPlus);
104    const __m128 ef_re2 = _mm_mul_ps(ef_re, ef_re);
105    const __m128 ef_im2 = _mm_mul_ps(ef_im, ef_im);
106    const __m128 ef_sum2 = _mm_add_ps(ef_re2, ef_im2);
107    const __m128 absEf = _mm_sqrt_ps(ef_sum2);
108    const __m128 bigger = _mm_cmpgt_ps(absEf, kThresh);
109    __m128 absEfPlus = _mm_add_ps(absEf, k1e_10f);
110    const __m128 absEfInv = _mm_div_ps(kThresh, absEfPlus);
111    __m128 ef_re_if = _mm_mul_ps(ef_re, absEfInv);
112    __m128 ef_im_if = _mm_mul_ps(ef_im, absEfInv);
113    ef_re_if = _mm_and_ps(bigger, ef_re_if);
114    ef_im_if = _mm_and_ps(bigger, ef_im_if);
115    ef_re = _mm_andnot_ps(bigger, ef_re);
116    ef_im = _mm_andnot_ps(bigger, ef_im);
117    ef_re = _mm_or_ps(ef_re, ef_re_if);
118    ef_im = _mm_or_ps(ef_im, ef_im_if);
119    ef_re = _mm_mul_ps(ef_re, kMu);
120    ef_im = _mm_mul_ps(ef_im, kMu);
121
122    _mm_storeu_ps(&ef[0][i], ef_re);
123    _mm_storeu_ps(&ef[1][i], ef_im);
124  }
125  // scalar code for the remaining items.
126  {
127    const float mu =
128        extended_filter_enabled ? kExtendedMu : normal_mu;
129    const float error_threshold = extended_filter_enabled
130                                      ? kExtendedErrorThreshold
131                                      : normal_error_threshold;
132    for (; i < (PART_LEN1); i++) {
133      float abs_ef;
134      ef[0][i] /= (x_pow[i] + 1e-10f);
135      ef[1][i] /= (x_pow[i] + 1e-10f);
136      abs_ef = sqrtf(ef[0][i] * ef[0][i] + ef[1][i] * ef[1][i]);
137
138      if (abs_ef > error_threshold) {
139        abs_ef = error_threshold / (abs_ef + 1e-10f);
140        ef[0][i] *= abs_ef;
141        ef[1][i] *= abs_ef;
142      }
143
144      // Stepsize factor
145      ef[0][i] *= mu;
146      ef[1][i] *= mu;
147    }
148  }
149}
150
151static void FilterAdaptationSSE2(
152    int num_partitions,
153    int x_fft_buf_block_pos,
154    float x_fft_buf[2][kExtendedNumPartitions * PART_LEN1],
155    float e_fft[2][PART_LEN1],
156    float h_fft_buf[2][kExtendedNumPartitions * PART_LEN1]) {
157  float fft[PART_LEN2];
158  int i, j;
159  for (i = 0; i < num_partitions; i++) {
160    int xPos = (i + x_fft_buf_block_pos) * (PART_LEN1);
161    int pos = i * PART_LEN1;
162    // Check for wrap
163    if (i + x_fft_buf_block_pos >= num_partitions) {
164      xPos -= num_partitions * PART_LEN1;
165    }
166
167    // Process the whole array...
168    for (j = 0; j < PART_LEN; j += 4) {
169      // Load x_fft_buf and e_fft.
170      const __m128 x_fft_buf_re = _mm_loadu_ps(&x_fft_buf[0][xPos + j]);
171      const __m128 x_fft_buf_im = _mm_loadu_ps(&x_fft_buf[1][xPos + j]);
172      const __m128 e_fft_re = _mm_loadu_ps(&e_fft[0][j]);
173      const __m128 e_fft_im = _mm_loadu_ps(&e_fft[1][j]);
174      // Calculate the product of conjugate(x_fft_buf) by e_fft.
175      //   re(conjugate(a) * b) = aRe * bRe + aIm * bIm
176      //   im(conjugate(a) * b)=  aRe * bIm - aIm * bRe
177      const __m128 a = _mm_mul_ps(x_fft_buf_re, e_fft_re);
178      const __m128 b = _mm_mul_ps(x_fft_buf_im, e_fft_im);
179      const __m128 c = _mm_mul_ps(x_fft_buf_re, e_fft_im);
180      const __m128 d = _mm_mul_ps(x_fft_buf_im, e_fft_re);
181      const __m128 e = _mm_add_ps(a, b);
182      const __m128 f = _mm_sub_ps(c, d);
183      // Interleave real and imaginary parts.
184      const __m128 g = _mm_unpacklo_ps(e, f);
185      const __m128 h = _mm_unpackhi_ps(e, f);
186      // Store
187      _mm_storeu_ps(&fft[2 * j + 0], g);
188      _mm_storeu_ps(&fft[2 * j + 4], h);
189    }
190    // ... and fixup the first imaginary entry.
191    fft[1] = MulRe(x_fft_buf[0][xPos + PART_LEN],
192                   -x_fft_buf[1][xPos + PART_LEN],
193                   e_fft[0][PART_LEN],
194                   e_fft[1][PART_LEN]);
195
196    aec_rdft_inverse_128(fft);
197    memset(fft + PART_LEN, 0, sizeof(float) * PART_LEN);
198
199    // fft scaling
200    {
201      float scale = 2.0f / PART_LEN2;
202      const __m128 scale_ps = _mm_load_ps1(&scale);
203      for (j = 0; j < PART_LEN; j += 4) {
204        const __m128 fft_ps = _mm_loadu_ps(&fft[j]);
205        const __m128 fft_scale = _mm_mul_ps(fft_ps, scale_ps);
206        _mm_storeu_ps(&fft[j], fft_scale);
207      }
208    }
209    aec_rdft_forward_128(fft);
210
211    {
212      float wt1 = h_fft_buf[1][pos];
213      h_fft_buf[0][pos + PART_LEN] += fft[1];
214      for (j = 0; j < PART_LEN; j += 4) {
215        __m128 wtBuf_re = _mm_loadu_ps(&h_fft_buf[0][pos + j]);
216        __m128 wtBuf_im = _mm_loadu_ps(&h_fft_buf[1][pos + j]);
217        const __m128 fft0 = _mm_loadu_ps(&fft[2 * j + 0]);
218        const __m128 fft4 = _mm_loadu_ps(&fft[2 * j + 4]);
219        const __m128 fft_re =
220            _mm_shuffle_ps(fft0, fft4, _MM_SHUFFLE(2, 0, 2, 0));
221        const __m128 fft_im =
222            _mm_shuffle_ps(fft0, fft4, _MM_SHUFFLE(3, 1, 3, 1));
223        wtBuf_re = _mm_add_ps(wtBuf_re, fft_re);
224        wtBuf_im = _mm_add_ps(wtBuf_im, fft_im);
225        _mm_storeu_ps(&h_fft_buf[0][pos + j], wtBuf_re);
226        _mm_storeu_ps(&h_fft_buf[1][pos + j], wtBuf_im);
227      }
228      h_fft_buf[1][pos] = wt1;
229    }
230  }
231}
232
233static __m128 mm_pow_ps(__m128 a, __m128 b) {
234  // a^b = exp2(b * log2(a))
235  //   exp2(x) and log2(x) are calculated using polynomial approximations.
236  __m128 log2_a, b_log2_a, a_exp_b;
237
238  // Calculate log2(x), x = a.
239  {
240    // To calculate log2(x), we decompose x like this:
241    //   x = y * 2^n
242    //     n is an integer
243    //     y is in the [1.0, 2.0) range
244    //
245    //   log2(x) = log2(y) + n
246    //     n       can be evaluated by playing with float representation.
247    //     log2(y) in a small range can be approximated, this code uses an order
248    //             five polynomial approximation. The coefficients have been
249    //             estimated with the Remez algorithm and the resulting
250    //             polynomial has a maximum relative error of 0.00086%.
251
252    // Compute n.
253    //    This is done by masking the exponent, shifting it into the top bit of
254    //    the mantissa, putting eight into the biased exponent (to shift/
255    //    compensate the fact that the exponent has been shifted in the top/
256    //    fractional part and finally getting rid of the implicit leading one
257    //    from the mantissa by substracting it out.
258    static const ALIGN16_BEG int float_exponent_mask[4] ALIGN16_END = {
259        0x7F800000, 0x7F800000, 0x7F800000, 0x7F800000};
260    static const ALIGN16_BEG int eight_biased_exponent[4] ALIGN16_END = {
261        0x43800000, 0x43800000, 0x43800000, 0x43800000};
262    static const ALIGN16_BEG int implicit_leading_one[4] ALIGN16_END = {
263        0x43BF8000, 0x43BF8000, 0x43BF8000, 0x43BF8000};
264    static const int shift_exponent_into_top_mantissa = 8;
265    const __m128 two_n = _mm_and_ps(a, *((__m128*)float_exponent_mask));
266    const __m128 n_1 = _mm_castsi128_ps(_mm_srli_epi32(
267        _mm_castps_si128(two_n), shift_exponent_into_top_mantissa));
268    const __m128 n_0 = _mm_or_ps(n_1, *((__m128*)eight_biased_exponent));
269    const __m128 n = _mm_sub_ps(n_0, *((__m128*)implicit_leading_one));
270
271    // Compute y.
272    static const ALIGN16_BEG int mantissa_mask[4] ALIGN16_END = {
273        0x007FFFFF, 0x007FFFFF, 0x007FFFFF, 0x007FFFFF};
274    static const ALIGN16_BEG int zero_biased_exponent_is_one[4] ALIGN16_END = {
275        0x3F800000, 0x3F800000, 0x3F800000, 0x3F800000};
276    const __m128 mantissa = _mm_and_ps(a, *((__m128*)mantissa_mask));
277    const __m128 y =
278        _mm_or_ps(mantissa, *((__m128*)zero_biased_exponent_is_one));
279
280    // Approximate log2(y) ~= (y - 1) * pol5(y).
281    //    pol5(y) = C5 * y^5 + C4 * y^4 + C3 * y^3 + C2 * y^2 + C1 * y + C0
282    static const ALIGN16_BEG float ALIGN16_END C5[4] = {
283        -3.4436006e-2f, -3.4436006e-2f, -3.4436006e-2f, -3.4436006e-2f};
284    static const ALIGN16_BEG float ALIGN16_END
285        C4[4] = {3.1821337e-1f, 3.1821337e-1f, 3.1821337e-1f, 3.1821337e-1f};
286    static const ALIGN16_BEG float ALIGN16_END
287        C3[4] = {-1.2315303f, -1.2315303f, -1.2315303f, -1.2315303f};
288    static const ALIGN16_BEG float ALIGN16_END
289        C2[4] = {2.5988452f, 2.5988452f, 2.5988452f, 2.5988452f};
290    static const ALIGN16_BEG float ALIGN16_END
291        C1[4] = {-3.3241990f, -3.3241990f, -3.3241990f, -3.3241990f};
292    static const ALIGN16_BEG float ALIGN16_END
293        C0[4] = {3.1157899f, 3.1157899f, 3.1157899f, 3.1157899f};
294    const __m128 pol5_y_0 = _mm_mul_ps(y, *((__m128*)C5));
295    const __m128 pol5_y_1 = _mm_add_ps(pol5_y_0, *((__m128*)C4));
296    const __m128 pol5_y_2 = _mm_mul_ps(pol5_y_1, y);
297    const __m128 pol5_y_3 = _mm_add_ps(pol5_y_2, *((__m128*)C3));
298    const __m128 pol5_y_4 = _mm_mul_ps(pol5_y_3, y);
299    const __m128 pol5_y_5 = _mm_add_ps(pol5_y_4, *((__m128*)C2));
300    const __m128 pol5_y_6 = _mm_mul_ps(pol5_y_5, y);
301    const __m128 pol5_y_7 = _mm_add_ps(pol5_y_6, *((__m128*)C1));
302    const __m128 pol5_y_8 = _mm_mul_ps(pol5_y_7, y);
303    const __m128 pol5_y = _mm_add_ps(pol5_y_8, *((__m128*)C0));
304    const __m128 y_minus_one =
305        _mm_sub_ps(y, *((__m128*)zero_biased_exponent_is_one));
306    const __m128 log2_y = _mm_mul_ps(y_minus_one, pol5_y);
307
308    // Combine parts.
309    log2_a = _mm_add_ps(n, log2_y);
310  }
311
312  // b * log2(a)
313  b_log2_a = _mm_mul_ps(b, log2_a);
314
315  // Calculate exp2(x), x = b * log2(a).
316  {
317    // To calculate 2^x, we decompose x like this:
318    //   x = n + y
319    //     n is an integer, the value of x - 0.5 rounded down, therefore
320    //     y is in the [0.5, 1.5) range
321    //
322    //   2^x = 2^n * 2^y
323    //     2^n can be evaluated by playing with float representation.
324    //     2^y in a small range can be approximated, this code uses an order two
325    //         polynomial approximation. The coefficients have been estimated
326    //         with the Remez algorithm and the resulting polynomial has a
327    //         maximum relative error of 0.17%.
328
329    // To avoid over/underflow, we reduce the range of input to ]-127, 129].
330    static const ALIGN16_BEG float max_input[4] ALIGN16_END = {129.f, 129.f,
331                                                               129.f, 129.f};
332    static const ALIGN16_BEG float min_input[4] ALIGN16_END = {
333        -126.99999f, -126.99999f, -126.99999f, -126.99999f};
334    const __m128 x_min = _mm_min_ps(b_log2_a, *((__m128*)max_input));
335    const __m128 x_max = _mm_max_ps(x_min, *((__m128*)min_input));
336    // Compute n.
337    static const ALIGN16_BEG float half[4] ALIGN16_END = {0.5f, 0.5f,
338                                                          0.5f, 0.5f};
339    const __m128 x_minus_half = _mm_sub_ps(x_max, *((__m128*)half));
340    const __m128i x_minus_half_floor = _mm_cvtps_epi32(x_minus_half);
341    // Compute 2^n.
342    static const ALIGN16_BEG int float_exponent_bias[4] ALIGN16_END = {
343        127, 127, 127, 127};
344    static const int float_exponent_shift = 23;
345    const __m128i two_n_exponent =
346        _mm_add_epi32(x_minus_half_floor, *((__m128i*)float_exponent_bias));
347    const __m128 two_n =
348        _mm_castsi128_ps(_mm_slli_epi32(two_n_exponent, float_exponent_shift));
349    // Compute y.
350    const __m128 y = _mm_sub_ps(x_max, _mm_cvtepi32_ps(x_minus_half_floor));
351    // Approximate 2^y ~= C2 * y^2 + C1 * y + C0.
352    static const ALIGN16_BEG float C2[4] ALIGN16_END = {
353        3.3718944e-1f, 3.3718944e-1f, 3.3718944e-1f, 3.3718944e-1f};
354    static const ALIGN16_BEG float C1[4] ALIGN16_END = {
355        6.5763628e-1f, 6.5763628e-1f, 6.5763628e-1f, 6.5763628e-1f};
356    static const ALIGN16_BEG float C0[4] ALIGN16_END = {1.0017247f, 1.0017247f,
357                                                        1.0017247f, 1.0017247f};
358    const __m128 exp2_y_0 = _mm_mul_ps(y, *((__m128*)C2));
359    const __m128 exp2_y_1 = _mm_add_ps(exp2_y_0, *((__m128*)C1));
360    const __m128 exp2_y_2 = _mm_mul_ps(exp2_y_1, y);
361    const __m128 exp2_y = _mm_add_ps(exp2_y_2, *((__m128*)C0));
362
363    // Combine parts.
364    a_exp_b = _mm_mul_ps(exp2_y, two_n);
365  }
366  return a_exp_b;
367}
368
369static void OverdriveAndSuppressSSE2(AecCore* aec,
370                                     float hNl[PART_LEN1],
371                                     const float hNlFb,
372                                     float efw[2][PART_LEN1]) {
373  int i;
374  const __m128 vec_hNlFb = _mm_set1_ps(hNlFb);
375  const __m128 vec_one = _mm_set1_ps(1.0f);
376  const __m128 vec_minus_one = _mm_set1_ps(-1.0f);
377  const __m128 vec_overDriveSm = _mm_set1_ps(aec->overDriveSm);
378  // vectorized code (four at once)
379  for (i = 0; i + 3 < PART_LEN1; i += 4) {
380    // Weight subbands
381    __m128 vec_hNl = _mm_loadu_ps(&hNl[i]);
382    const __m128 vec_weightCurve = _mm_loadu_ps(&WebRtcAec_weightCurve[i]);
383    const __m128 bigger = _mm_cmpgt_ps(vec_hNl, vec_hNlFb);
384    const __m128 vec_weightCurve_hNlFb = _mm_mul_ps(vec_weightCurve, vec_hNlFb);
385    const __m128 vec_one_weightCurve = _mm_sub_ps(vec_one, vec_weightCurve);
386    const __m128 vec_one_weightCurve_hNl =
387        _mm_mul_ps(vec_one_weightCurve, vec_hNl);
388    const __m128 vec_if0 = _mm_andnot_ps(bigger, vec_hNl);
389    const __m128 vec_if1 = _mm_and_ps(
390        bigger, _mm_add_ps(vec_weightCurve_hNlFb, vec_one_weightCurve_hNl));
391    vec_hNl = _mm_or_ps(vec_if0, vec_if1);
392
393    {
394      const __m128 vec_overDriveCurve =
395          _mm_loadu_ps(&WebRtcAec_overDriveCurve[i]);
396      const __m128 vec_overDriveSm_overDriveCurve =
397          _mm_mul_ps(vec_overDriveSm, vec_overDriveCurve);
398      vec_hNl = mm_pow_ps(vec_hNl, vec_overDriveSm_overDriveCurve);
399      _mm_storeu_ps(&hNl[i], vec_hNl);
400    }
401
402    // Suppress error signal
403    {
404      __m128 vec_efw_re = _mm_loadu_ps(&efw[0][i]);
405      __m128 vec_efw_im = _mm_loadu_ps(&efw[1][i]);
406      vec_efw_re = _mm_mul_ps(vec_efw_re, vec_hNl);
407      vec_efw_im = _mm_mul_ps(vec_efw_im, vec_hNl);
408
409      // Ooura fft returns incorrect sign on imaginary component. It matters
410      // here because we are making an additive change with comfort noise.
411      vec_efw_im = _mm_mul_ps(vec_efw_im, vec_minus_one);
412      _mm_storeu_ps(&efw[0][i], vec_efw_re);
413      _mm_storeu_ps(&efw[1][i], vec_efw_im);
414    }
415  }
416  // scalar code for the remaining items.
417  for (; i < PART_LEN1; i++) {
418    // Weight subbands
419    if (hNl[i] > hNlFb) {
420      hNl[i] = WebRtcAec_weightCurve[i] * hNlFb +
421               (1 - WebRtcAec_weightCurve[i]) * hNl[i];
422    }
423    hNl[i] = powf(hNl[i], aec->overDriveSm * WebRtcAec_overDriveCurve[i]);
424
425    // Suppress error signal
426    efw[0][i] *= hNl[i];
427    efw[1][i] *= hNl[i];
428
429    // Ooura fft returns incorrect sign on imaginary component. It matters
430    // here because we are making an additive change with comfort noise.
431    efw[1][i] *= -1;
432  }
433}
434
435__inline static void _mm_add_ps_4x1(__m128 sum, float *dst) {
436  // A+B C+D
437  sum = _mm_add_ps(sum, _mm_shuffle_ps(sum, sum, _MM_SHUFFLE(0, 0, 3, 2)));
438  // A+B+C+D A+B+C+D
439  sum = _mm_add_ps(sum, _mm_shuffle_ps(sum, sum, _MM_SHUFFLE(1, 1, 1, 1)));
440  _mm_store_ss(dst, sum);
441}
442
443static int PartitionDelaySSE2(const AecCore* aec) {
444  // Measures the energy in each filter partition and returns the partition with
445  // highest energy.
446  // TODO(bjornv): Spread computational cost by computing one partition per
447  // block?
448  float wfEnMax = 0;
449  int i;
450  int delay = 0;
451
452  for (i = 0; i < aec->num_partitions; i++) {
453    int j;
454    int pos = i * PART_LEN1;
455    float wfEn = 0;
456    __m128 vec_wfEn = _mm_set1_ps(0.0f);
457    // vectorized code (four at once)
458    for (j = 0; j + 3 < PART_LEN1; j += 4) {
459      const __m128 vec_wfBuf0 = _mm_loadu_ps(&aec->wfBuf[0][pos + j]);
460      const __m128 vec_wfBuf1 = _mm_loadu_ps(&aec->wfBuf[1][pos + j]);
461      vec_wfEn = _mm_add_ps(vec_wfEn, _mm_mul_ps(vec_wfBuf0, vec_wfBuf0));
462      vec_wfEn = _mm_add_ps(vec_wfEn, _mm_mul_ps(vec_wfBuf1, vec_wfBuf1));
463    }
464    _mm_add_ps_4x1(vec_wfEn, &wfEn);
465
466    // scalar code for the remaining items.
467    for (; j < PART_LEN1; j++) {
468      wfEn += aec->wfBuf[0][pos + j] * aec->wfBuf[0][pos + j] +
469              aec->wfBuf[1][pos + j] * aec->wfBuf[1][pos + j];
470    }
471
472    if (wfEn > wfEnMax) {
473      wfEnMax = wfEn;
474      delay = i;
475    }
476  }
477  return delay;
478}
479
480// Updates the following smoothed  Power Spectral Densities (PSD):
481//  - sd  : near-end
482//  - se  : residual echo
483//  - sx  : far-end
484//  - sde : cross-PSD of near-end and residual echo
485//  - sxd : cross-PSD of near-end and far-end
486//
487// In addition to updating the PSDs, also the filter diverge state is determined
488// upon actions are taken.
489static void SmoothedPSD(AecCore* aec,
490                        float efw[2][PART_LEN1],
491                        float dfw[2][PART_LEN1],
492                        float xfw[2][PART_LEN1],
493                        int* extreme_filter_divergence) {
494  // Power estimate smoothing coefficients.
495  const float* ptrGCoh = aec->extended_filter_enabled
496      ? WebRtcAec_kExtendedSmoothingCoefficients[aec->mult - 1]
497      : WebRtcAec_kNormalSmoothingCoefficients[aec->mult - 1];
498  int i;
499  float sdSum = 0, seSum = 0;
500  const __m128 vec_15 =  _mm_set1_ps(WebRtcAec_kMinFarendPSD);
501  const __m128 vec_GCoh0 = _mm_set1_ps(ptrGCoh[0]);
502  const __m128 vec_GCoh1 = _mm_set1_ps(ptrGCoh[1]);
503  __m128 vec_sdSum = _mm_set1_ps(0.0f);
504  __m128 vec_seSum = _mm_set1_ps(0.0f);
505
506  for (i = 0; i + 3 < PART_LEN1; i += 4) {
507    const __m128 vec_dfw0 = _mm_loadu_ps(&dfw[0][i]);
508    const __m128 vec_dfw1 = _mm_loadu_ps(&dfw[1][i]);
509    const __m128 vec_efw0 = _mm_loadu_ps(&efw[0][i]);
510    const __m128 vec_efw1 = _mm_loadu_ps(&efw[1][i]);
511    const __m128 vec_xfw0 = _mm_loadu_ps(&xfw[0][i]);
512    const __m128 vec_xfw1 = _mm_loadu_ps(&xfw[1][i]);
513    __m128 vec_sd = _mm_mul_ps(_mm_loadu_ps(&aec->sd[i]), vec_GCoh0);
514    __m128 vec_se = _mm_mul_ps(_mm_loadu_ps(&aec->se[i]), vec_GCoh0);
515    __m128 vec_sx = _mm_mul_ps(_mm_loadu_ps(&aec->sx[i]), vec_GCoh0);
516    __m128 vec_dfw_sumsq = _mm_mul_ps(vec_dfw0, vec_dfw0);
517    __m128 vec_efw_sumsq = _mm_mul_ps(vec_efw0, vec_efw0);
518    __m128 vec_xfw_sumsq = _mm_mul_ps(vec_xfw0, vec_xfw0);
519    vec_dfw_sumsq = _mm_add_ps(vec_dfw_sumsq, _mm_mul_ps(vec_dfw1, vec_dfw1));
520    vec_efw_sumsq = _mm_add_ps(vec_efw_sumsq, _mm_mul_ps(vec_efw1, vec_efw1));
521    vec_xfw_sumsq = _mm_add_ps(vec_xfw_sumsq, _mm_mul_ps(vec_xfw1, vec_xfw1));
522    vec_xfw_sumsq = _mm_max_ps(vec_xfw_sumsq, vec_15);
523    vec_sd = _mm_add_ps(vec_sd, _mm_mul_ps(vec_dfw_sumsq, vec_GCoh1));
524    vec_se = _mm_add_ps(vec_se, _mm_mul_ps(vec_efw_sumsq, vec_GCoh1));
525    vec_sx = _mm_add_ps(vec_sx, _mm_mul_ps(vec_xfw_sumsq, vec_GCoh1));
526    _mm_storeu_ps(&aec->sd[i], vec_sd);
527    _mm_storeu_ps(&aec->se[i], vec_se);
528    _mm_storeu_ps(&aec->sx[i], vec_sx);
529
530    {
531      const __m128 vec_3210 = _mm_loadu_ps(&aec->sde[i][0]);
532      const __m128 vec_7654 = _mm_loadu_ps(&aec->sde[i + 2][0]);
533      __m128 vec_a = _mm_shuffle_ps(vec_3210, vec_7654,
534                                    _MM_SHUFFLE(2, 0, 2, 0));
535      __m128 vec_b = _mm_shuffle_ps(vec_3210, vec_7654,
536                                    _MM_SHUFFLE(3, 1, 3, 1));
537      __m128 vec_dfwefw0011 = _mm_mul_ps(vec_dfw0, vec_efw0);
538      __m128 vec_dfwefw0110 = _mm_mul_ps(vec_dfw0, vec_efw1);
539      vec_a = _mm_mul_ps(vec_a, vec_GCoh0);
540      vec_b = _mm_mul_ps(vec_b, vec_GCoh0);
541      vec_dfwefw0011 = _mm_add_ps(vec_dfwefw0011,
542                                  _mm_mul_ps(vec_dfw1, vec_efw1));
543      vec_dfwefw0110 = _mm_sub_ps(vec_dfwefw0110,
544                                  _mm_mul_ps(vec_dfw1, vec_efw0));
545      vec_a = _mm_add_ps(vec_a, _mm_mul_ps(vec_dfwefw0011, vec_GCoh1));
546      vec_b = _mm_add_ps(vec_b, _mm_mul_ps(vec_dfwefw0110, vec_GCoh1));
547      _mm_storeu_ps(&aec->sde[i][0], _mm_unpacklo_ps(vec_a, vec_b));
548      _mm_storeu_ps(&aec->sde[i + 2][0], _mm_unpackhi_ps(vec_a, vec_b));
549    }
550
551    {
552      const __m128 vec_3210 = _mm_loadu_ps(&aec->sxd[i][0]);
553      const __m128 vec_7654 = _mm_loadu_ps(&aec->sxd[i + 2][0]);
554      __m128 vec_a = _mm_shuffle_ps(vec_3210, vec_7654,
555                                    _MM_SHUFFLE(2, 0, 2, 0));
556      __m128 vec_b = _mm_shuffle_ps(vec_3210, vec_7654,
557                                    _MM_SHUFFLE(3, 1, 3, 1));
558      __m128 vec_dfwxfw0011 = _mm_mul_ps(vec_dfw0, vec_xfw0);
559      __m128 vec_dfwxfw0110 = _mm_mul_ps(vec_dfw0, vec_xfw1);
560      vec_a = _mm_mul_ps(vec_a, vec_GCoh0);
561      vec_b = _mm_mul_ps(vec_b, vec_GCoh0);
562      vec_dfwxfw0011 = _mm_add_ps(vec_dfwxfw0011,
563                                  _mm_mul_ps(vec_dfw1, vec_xfw1));
564      vec_dfwxfw0110 = _mm_sub_ps(vec_dfwxfw0110,
565                                  _mm_mul_ps(vec_dfw1, vec_xfw0));
566      vec_a = _mm_add_ps(vec_a, _mm_mul_ps(vec_dfwxfw0011, vec_GCoh1));
567      vec_b = _mm_add_ps(vec_b, _mm_mul_ps(vec_dfwxfw0110, vec_GCoh1));
568      _mm_storeu_ps(&aec->sxd[i][0], _mm_unpacklo_ps(vec_a, vec_b));
569      _mm_storeu_ps(&aec->sxd[i + 2][0], _mm_unpackhi_ps(vec_a, vec_b));
570    }
571
572    vec_sdSum = _mm_add_ps(vec_sdSum, vec_sd);
573    vec_seSum = _mm_add_ps(vec_seSum, vec_se);
574  }
575
576  _mm_add_ps_4x1(vec_sdSum, &sdSum);
577  _mm_add_ps_4x1(vec_seSum, &seSum);
578
579  for (; i < PART_LEN1; i++) {
580    aec->sd[i] = ptrGCoh[0] * aec->sd[i] +
581                 ptrGCoh[1] * (dfw[0][i] * dfw[0][i] + dfw[1][i] * dfw[1][i]);
582    aec->se[i] = ptrGCoh[0] * aec->se[i] +
583                 ptrGCoh[1] * (efw[0][i] * efw[0][i] + efw[1][i] * efw[1][i]);
584    // We threshold here to protect against the ill-effects of a zero farend.
585    // The threshold is not arbitrarily chosen, but balances protection and
586    // adverse interaction with the algorithm's tuning.
587    // TODO(bjornv): investigate further why this is so sensitive.
588    aec->sx[i] =
589        ptrGCoh[0] * aec->sx[i] +
590        ptrGCoh[1] * WEBRTC_SPL_MAX(
591            xfw[0][i] * xfw[0][i] + xfw[1][i] * xfw[1][i],
592            WebRtcAec_kMinFarendPSD);
593
594    aec->sde[i][0] =
595        ptrGCoh[0] * aec->sde[i][0] +
596        ptrGCoh[1] * (dfw[0][i] * efw[0][i] + dfw[1][i] * efw[1][i]);
597    aec->sde[i][1] =
598        ptrGCoh[0] * aec->sde[i][1] +
599        ptrGCoh[1] * (dfw[0][i] * efw[1][i] - dfw[1][i] * efw[0][i]);
600
601    aec->sxd[i][0] =
602        ptrGCoh[0] * aec->sxd[i][0] +
603        ptrGCoh[1] * (dfw[0][i] * xfw[0][i] + dfw[1][i] * xfw[1][i]);
604    aec->sxd[i][1] =
605        ptrGCoh[0] * aec->sxd[i][1] +
606        ptrGCoh[1] * (dfw[0][i] * xfw[1][i] - dfw[1][i] * xfw[0][i]);
607
608    sdSum += aec->sd[i];
609    seSum += aec->se[i];
610  }
611
612  // Divergent filter safeguard update.
613  aec->divergeState = (aec->divergeState ? 1.05f : 1.0f) * seSum > sdSum;
614
615  // Signal extreme filter divergence if the error is significantly larger
616  // than the nearend (13 dB).
617  *extreme_filter_divergence = (seSum > (19.95f * sdSum));
618}
619
620// Window time domain data to be used by the fft.
621static void WindowDataSSE2(float* x_windowed, const float* x) {
622  int i;
623  for (i = 0; i < PART_LEN; i += 4) {
624    const __m128 vec_Buf1 = _mm_loadu_ps(&x[i]);
625    const __m128 vec_Buf2 = _mm_loadu_ps(&x[PART_LEN + i]);
626    const __m128 vec_sqrtHanning = _mm_load_ps(&WebRtcAec_sqrtHanning[i]);
627    // A B C D
628    __m128 vec_sqrtHanning_rev =
629        _mm_loadu_ps(&WebRtcAec_sqrtHanning[PART_LEN - i - 3]);
630    // D C B A
631    vec_sqrtHanning_rev =
632        _mm_shuffle_ps(vec_sqrtHanning_rev, vec_sqrtHanning_rev,
633                       _MM_SHUFFLE(0, 1, 2, 3));
634    _mm_storeu_ps(&x_windowed[i], _mm_mul_ps(vec_Buf1, vec_sqrtHanning));
635    _mm_storeu_ps(&x_windowed[PART_LEN + i],
636                  _mm_mul_ps(vec_Buf2, vec_sqrtHanning_rev));
637  }
638}
639
640// Puts fft output data into a complex valued array.
641static void StoreAsComplexSSE2(const float* data,
642                               float data_complex[2][PART_LEN1]) {
643  int i;
644  for (i = 0; i < PART_LEN; i += 4) {
645    const __m128 vec_fft0 = _mm_loadu_ps(&data[2 * i]);
646    const __m128 vec_fft4 = _mm_loadu_ps(&data[2 * i + 4]);
647    const __m128 vec_a = _mm_shuffle_ps(vec_fft0, vec_fft4,
648                                        _MM_SHUFFLE(2, 0, 2, 0));
649    const __m128 vec_b = _mm_shuffle_ps(vec_fft0, vec_fft4,
650                                        _MM_SHUFFLE(3, 1, 3, 1));
651    _mm_storeu_ps(&data_complex[0][i], vec_a);
652    _mm_storeu_ps(&data_complex[1][i], vec_b);
653  }
654  // fix beginning/end values
655  data_complex[1][0] = 0;
656  data_complex[1][PART_LEN] = 0;
657  data_complex[0][0] = data[0];
658  data_complex[0][PART_LEN] = data[1];
659}
660
661static void SubbandCoherenceSSE2(AecCore* aec,
662                                 float efw[2][PART_LEN1],
663                                 float dfw[2][PART_LEN1],
664                                 float xfw[2][PART_LEN1],
665                                 float* fft,
666                                 float* cohde,
667                                 float* cohxd,
668                                 int* extreme_filter_divergence) {
669  int i;
670
671  SmoothedPSD(aec, efw, dfw, xfw, extreme_filter_divergence);
672
673  {
674    const __m128 vec_1eminus10 =  _mm_set1_ps(1e-10f);
675
676    // Subband coherence
677    for (i = 0; i + 3 < PART_LEN1; i += 4) {
678      const __m128 vec_sd = _mm_loadu_ps(&aec->sd[i]);
679      const __m128 vec_se = _mm_loadu_ps(&aec->se[i]);
680      const __m128 vec_sx = _mm_loadu_ps(&aec->sx[i]);
681      const __m128 vec_sdse = _mm_add_ps(vec_1eminus10,
682                                         _mm_mul_ps(vec_sd, vec_se));
683      const __m128 vec_sdsx = _mm_add_ps(vec_1eminus10,
684                                         _mm_mul_ps(vec_sd, vec_sx));
685      const __m128 vec_sde_3210 = _mm_loadu_ps(&aec->sde[i][0]);
686      const __m128 vec_sde_7654 = _mm_loadu_ps(&aec->sde[i + 2][0]);
687      const __m128 vec_sxd_3210 = _mm_loadu_ps(&aec->sxd[i][0]);
688      const __m128 vec_sxd_7654 = _mm_loadu_ps(&aec->sxd[i + 2][0]);
689      const __m128 vec_sde_0 = _mm_shuffle_ps(vec_sde_3210, vec_sde_7654,
690                                              _MM_SHUFFLE(2, 0, 2, 0));
691      const __m128 vec_sde_1 = _mm_shuffle_ps(vec_sde_3210, vec_sde_7654,
692                                              _MM_SHUFFLE(3, 1, 3, 1));
693      const __m128 vec_sxd_0 = _mm_shuffle_ps(vec_sxd_3210, vec_sxd_7654,
694                                              _MM_SHUFFLE(2, 0, 2, 0));
695      const __m128 vec_sxd_1 = _mm_shuffle_ps(vec_sxd_3210, vec_sxd_7654,
696                                              _MM_SHUFFLE(3, 1, 3, 1));
697      __m128 vec_cohde = _mm_mul_ps(vec_sde_0, vec_sde_0);
698      __m128 vec_cohxd = _mm_mul_ps(vec_sxd_0, vec_sxd_0);
699      vec_cohde = _mm_add_ps(vec_cohde, _mm_mul_ps(vec_sde_1, vec_sde_1));
700      vec_cohde = _mm_div_ps(vec_cohde, vec_sdse);
701      vec_cohxd = _mm_add_ps(vec_cohxd, _mm_mul_ps(vec_sxd_1, vec_sxd_1));
702      vec_cohxd = _mm_div_ps(vec_cohxd, vec_sdsx);
703      _mm_storeu_ps(&cohde[i], vec_cohde);
704      _mm_storeu_ps(&cohxd[i], vec_cohxd);
705    }
706
707    // scalar code for the remaining items.
708    for (; i < PART_LEN1; i++) {
709      cohde[i] =
710          (aec->sde[i][0] * aec->sde[i][0] + aec->sde[i][1] * aec->sde[i][1]) /
711          (aec->sd[i] * aec->se[i] + 1e-10f);
712      cohxd[i] =
713          (aec->sxd[i][0] * aec->sxd[i][0] + aec->sxd[i][1] * aec->sxd[i][1]) /
714          (aec->sx[i] * aec->sd[i] + 1e-10f);
715    }
716  }
717}
718
719void WebRtcAec_InitAec_SSE2(void) {
720  WebRtcAec_FilterFar = FilterFarSSE2;
721  WebRtcAec_ScaleErrorSignal = ScaleErrorSignalSSE2;
722  WebRtcAec_FilterAdaptation = FilterAdaptationSSE2;
723  WebRtcAec_OverdriveAndSuppress = OverdriveAndSuppressSSE2;
724  WebRtcAec_SubbandCoherence = SubbandCoherenceSSE2;
725  WebRtcAec_StoreAsComplex = StoreAsComplexSSE2;
726  WebRtcAec_PartitionDelay = PartitionDelaySSE2;
727  WebRtcAec_WindowData = WindowDataSSE2;
728}
729