eap.c revision 4b06059785b935dd1f4f09314e4e12c417d2c6a4
1/*
2 * EAP peer state machines (RFC 4137)
3 * Copyright (c) 2004-2012, Jouni Malinen <j@w1.fi>
4 *
5 * This software may be distributed under the terms of the BSD license.
6 * See README for more details.
7 *
8 * This file implements the Peer State Machine as defined in RFC 4137. The used
9 * states and state transitions match mostly with the RFC. However, there are
10 * couple of additional transitions for working around small issues noticed
11 * during testing. These exceptions are explained in comments within the
12 * functions in this file. The method functions, m.func(), are similar to the
13 * ones used in RFC 4137, but some small changes have used here to optimize
14 * operations and to add functionality needed for fast re-authentication
15 * (session resumption).
16 */
17
18#include "includes.h"
19
20#include "common.h"
21#include "pcsc_funcs.h"
22#include "state_machine.h"
23#include "ext_password.h"
24#include "crypto/crypto.h"
25#include "crypto/tls.h"
26#include "common/wpa_ctrl.h"
27#include "eap_common/eap_wsc_common.h"
28#include "eap_i.h"
29#include "eap_config.h"
30
31#define STATE_MACHINE_DATA struct eap_sm
32#define STATE_MACHINE_DEBUG_PREFIX "EAP"
33
34#define EAP_MAX_AUTH_ROUNDS 50
35#define EAP_CLIENT_TIMEOUT_DEFAULT 60
36
37
38static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor,
39				  EapType method);
40static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id);
41static void eap_sm_processIdentity(struct eap_sm *sm,
42				   const struct wpabuf *req);
43static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req);
44static struct wpabuf * eap_sm_buildNotify(int id);
45static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req);
46#if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
47static const char * eap_sm_method_state_txt(EapMethodState state);
48static const char * eap_sm_decision_txt(EapDecision decision);
49#endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
50
51
52
53static Boolean eapol_get_bool(struct eap_sm *sm, enum eapol_bool_var var)
54{
55	return sm->eapol_cb->get_bool(sm->eapol_ctx, var);
56}
57
58
59static void eapol_set_bool(struct eap_sm *sm, enum eapol_bool_var var,
60			   Boolean value)
61{
62	sm->eapol_cb->set_bool(sm->eapol_ctx, var, value);
63}
64
65
66static unsigned int eapol_get_int(struct eap_sm *sm, enum eapol_int_var var)
67{
68	return sm->eapol_cb->get_int(sm->eapol_ctx, var);
69}
70
71
72static void eapol_set_int(struct eap_sm *sm, enum eapol_int_var var,
73			  unsigned int value)
74{
75	sm->eapol_cb->set_int(sm->eapol_ctx, var, value);
76}
77
78
79static struct wpabuf * eapol_get_eapReqData(struct eap_sm *sm)
80{
81	return sm->eapol_cb->get_eapReqData(sm->eapol_ctx);
82}
83
84
85static void eap_notify_status(struct eap_sm *sm, const char *status,
86				      const char *parameter)
87{
88	wpa_printf(MSG_DEBUG, "EAP: Status notification: %s (param=%s)",
89		   status, parameter);
90	if (sm->eapol_cb->notify_status)
91		sm->eapol_cb->notify_status(sm->eapol_ctx, status, parameter);
92}
93
94
95static void eap_deinit_prev_method(struct eap_sm *sm, const char *txt)
96{
97	ext_password_free(sm->ext_pw_buf);
98	sm->ext_pw_buf = NULL;
99
100	if (sm->m == NULL || sm->eap_method_priv == NULL)
101		return;
102
103	wpa_printf(MSG_DEBUG, "EAP: deinitialize previously used EAP method "
104		   "(%d, %s) at %s", sm->selectedMethod, sm->m->name, txt);
105	sm->m->deinit(sm, sm->eap_method_priv);
106	sm->eap_method_priv = NULL;
107	sm->m = NULL;
108}
109
110
111/**
112 * eap_allowed_method - Check whether EAP method is allowed
113 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
114 * @vendor: Vendor-Id for expanded types or 0 = IETF for legacy types
115 * @method: EAP type
116 * Returns: 1 = allowed EAP method, 0 = not allowed
117 */
118int eap_allowed_method(struct eap_sm *sm, int vendor, u32 method)
119{
120	struct eap_peer_config *config = eap_get_config(sm);
121	int i;
122	struct eap_method_type *m;
123
124	if (config == NULL || config->eap_methods == NULL)
125		return 1;
126
127	m = config->eap_methods;
128	for (i = 0; m[i].vendor != EAP_VENDOR_IETF ||
129		     m[i].method != EAP_TYPE_NONE; i++) {
130		if (m[i].vendor == vendor && m[i].method == method)
131			return 1;
132	}
133	return 0;
134}
135
136
137/*
138 * This state initializes state machine variables when the machine is
139 * activated (portEnabled = TRUE). This is also used when re-starting
140 * authentication (eapRestart == TRUE).
141 */
142SM_STATE(EAP, INITIALIZE)
143{
144	SM_ENTRY(EAP, INITIALIZE);
145	if (sm->fast_reauth && sm->m && sm->m->has_reauth_data &&
146	    sm->m->has_reauth_data(sm, sm->eap_method_priv) &&
147	    !sm->prev_failure) {
148		wpa_printf(MSG_DEBUG, "EAP: maintaining EAP method data for "
149			   "fast reauthentication");
150		sm->m->deinit_for_reauth(sm, sm->eap_method_priv);
151	} else {
152		eap_deinit_prev_method(sm, "INITIALIZE");
153	}
154	sm->selectedMethod = EAP_TYPE_NONE;
155	sm->methodState = METHOD_NONE;
156	sm->allowNotifications = TRUE;
157	sm->decision = DECISION_FAIL;
158	sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
159	eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout);
160	eapol_set_bool(sm, EAPOL_eapSuccess, FALSE);
161	eapol_set_bool(sm, EAPOL_eapFail, FALSE);
162	os_free(sm->eapKeyData);
163	sm->eapKeyData = NULL;
164	os_free(sm->eapSessionId);
165	sm->eapSessionId = NULL;
166	sm->eapKeyAvailable = FALSE;
167	eapol_set_bool(sm, EAPOL_eapRestart, FALSE);
168	sm->lastId = -1; /* new session - make sure this does not match with
169			  * the first EAP-Packet */
170	/*
171	 * RFC 4137 does not reset eapResp and eapNoResp here. However, this
172	 * seemed to be able to trigger cases where both were set and if EAPOL
173	 * state machine uses eapNoResp first, it may end up not sending a real
174	 * reply correctly. This occurred when the workaround in FAIL state set
175	 * eapNoResp = TRUE.. Maybe that workaround needs to be fixed to do
176	 * something else(?)
177	 */
178	eapol_set_bool(sm, EAPOL_eapResp, FALSE);
179	eapol_set_bool(sm, EAPOL_eapNoResp, FALSE);
180	sm->num_rounds = 0;
181	sm->prev_failure = 0;
182}
183
184
185/*
186 * This state is reached whenever service from the lower layer is interrupted
187 * or unavailable (portEnabled == FALSE). Immediate transition to INITIALIZE
188 * occurs when the port becomes enabled.
189 */
190SM_STATE(EAP, DISABLED)
191{
192	SM_ENTRY(EAP, DISABLED);
193	sm->num_rounds = 0;
194	/*
195	 * RFC 4137 does not describe clearing of idleWhile here, but doing so
196	 * allows the timer tick to be stopped more quickly when EAP is not in
197	 * use.
198	 */
199	eapol_set_int(sm, EAPOL_idleWhile, 0);
200}
201
202
203/*
204 * The state machine spends most of its time here, waiting for something to
205 * happen. This state is entered unconditionally from INITIALIZE, DISCARD, and
206 * SEND_RESPONSE states.
207 */
208SM_STATE(EAP, IDLE)
209{
210	SM_ENTRY(EAP, IDLE);
211}
212
213
214/*
215 * This state is entered when an EAP packet is received (eapReq == TRUE) to
216 * parse the packet header.
217 */
218SM_STATE(EAP, RECEIVED)
219{
220	const struct wpabuf *eapReqData;
221
222	SM_ENTRY(EAP, RECEIVED);
223	eapReqData = eapol_get_eapReqData(sm);
224	/* parse rxReq, rxSuccess, rxFailure, reqId, reqMethod */
225	eap_sm_parseEapReq(sm, eapReqData);
226	sm->num_rounds++;
227}
228
229
230/*
231 * This state is entered when a request for a new type comes in. Either the
232 * correct method is started, or a Nak response is built.
233 */
234SM_STATE(EAP, GET_METHOD)
235{
236	int reinit;
237	EapType method;
238	const struct eap_method *eap_method;
239
240	SM_ENTRY(EAP, GET_METHOD);
241
242	if (sm->reqMethod == EAP_TYPE_EXPANDED)
243		method = sm->reqVendorMethod;
244	else
245		method = sm->reqMethod;
246
247	eap_method = eap_peer_get_eap_method(sm->reqVendor, method);
248
249	if (!eap_sm_allowMethod(sm, sm->reqVendor, method)) {
250		wpa_printf(MSG_DEBUG, "EAP: vendor %u method %u not allowed",
251			   sm->reqVendor, method);
252		wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_PROPOSED_METHOD
253			"vendor=%u method=%u -> NAK",
254			sm->reqVendor, method);
255		eap_notify_status(sm, "refuse proposed method",
256				  eap_method ?  eap_method->name : "unknown");
257		goto nak;
258	}
259
260	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_PROPOSED_METHOD
261		"vendor=%u method=%u", sm->reqVendor, method);
262
263	eap_notify_status(sm, "accept proposed method",
264			  eap_method ?  eap_method->name : "unknown");
265	/*
266	 * RFC 4137 does not define specific operation for fast
267	 * re-authentication (session resumption). The design here is to allow
268	 * the previously used method data to be maintained for
269	 * re-authentication if the method support session resumption.
270	 * Otherwise, the previously used method data is freed and a new method
271	 * is allocated here.
272	 */
273	if (sm->fast_reauth &&
274	    sm->m && sm->m->vendor == sm->reqVendor &&
275	    sm->m->method == method &&
276	    sm->m->has_reauth_data &&
277	    sm->m->has_reauth_data(sm, sm->eap_method_priv)) {
278		wpa_printf(MSG_DEBUG, "EAP: Using previous method data"
279			   " for fast re-authentication");
280		reinit = 1;
281	} else {
282		eap_deinit_prev_method(sm, "GET_METHOD");
283		reinit = 0;
284	}
285
286	sm->selectedMethod = sm->reqMethod;
287	if (sm->m == NULL)
288		sm->m = eap_method;
289	if (!sm->m) {
290		wpa_printf(MSG_DEBUG, "EAP: Could not find selected method: "
291			   "vendor %d method %d",
292			   sm->reqVendor, method);
293		goto nak;
294	}
295
296	sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
297
298	wpa_printf(MSG_DEBUG, "EAP: Initialize selected EAP method: "
299		   "vendor %u method %u (%s)",
300		   sm->reqVendor, method, sm->m->name);
301	if (reinit)
302		sm->eap_method_priv = sm->m->init_for_reauth(
303			sm, sm->eap_method_priv);
304	else
305		sm->eap_method_priv = sm->m->init(sm);
306
307	if (sm->eap_method_priv == NULL) {
308		struct eap_peer_config *config = eap_get_config(sm);
309		wpa_msg(sm->msg_ctx, MSG_INFO,
310			"EAP: Failed to initialize EAP method: vendor %u "
311			"method %u (%s)",
312			sm->reqVendor, method, sm->m->name);
313		sm->m = NULL;
314		sm->methodState = METHOD_NONE;
315		sm->selectedMethod = EAP_TYPE_NONE;
316		if (sm->reqMethod == EAP_TYPE_TLS && config &&
317		    (config->pending_req_pin ||
318		     config->pending_req_passphrase)) {
319			/*
320			 * Return without generating Nak in order to allow
321			 * entering of PIN code or passphrase to retry the
322			 * current EAP packet.
323			 */
324			wpa_printf(MSG_DEBUG, "EAP: Pending PIN/passphrase "
325				   "request - skip Nak");
326			return;
327		}
328
329		goto nak;
330	}
331
332	sm->methodState = METHOD_INIT;
333	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_METHOD
334		"EAP vendor %u method %u (%s) selected",
335		sm->reqVendor, method, sm->m->name);
336	return;
337
338nak:
339	wpabuf_free(sm->eapRespData);
340	sm->eapRespData = NULL;
341	sm->eapRespData = eap_sm_buildNak(sm, sm->reqId);
342}
343
344
345/*
346 * The method processing happens here. The request from the authenticator is
347 * processed, and an appropriate response packet is built.
348 */
349SM_STATE(EAP, METHOD)
350{
351	struct wpabuf *eapReqData;
352	struct eap_method_ret ret;
353	int min_len = 1;
354
355	SM_ENTRY(EAP, METHOD);
356	if (sm->m == NULL) {
357		wpa_printf(MSG_WARNING, "EAP::METHOD - method not selected");
358		return;
359	}
360
361	eapReqData = eapol_get_eapReqData(sm);
362	if (sm->m->vendor == EAP_VENDOR_IETF && sm->m->method == EAP_TYPE_LEAP)
363		min_len = 0; /* LEAP uses EAP-Success without payload */
364	if (!eap_hdr_len_valid(eapReqData, min_len))
365		return;
366
367	/*
368	 * Get ignore, methodState, decision, allowNotifications, and
369	 * eapRespData. RFC 4137 uses three separate method procedure (check,
370	 * process, and buildResp) in this state. These have been combined into
371	 * a single function call to m->process() in order to optimize EAP
372	 * method implementation interface a bit. These procedures are only
373	 * used from within this METHOD state, so there is no need to keep
374	 * these as separate C functions.
375	 *
376	 * The RFC 4137 procedures return values as follows:
377	 * ignore = m.check(eapReqData)
378	 * (methodState, decision, allowNotifications) = m.process(eapReqData)
379	 * eapRespData = m.buildResp(reqId)
380	 */
381	os_memset(&ret, 0, sizeof(ret));
382	ret.ignore = sm->ignore;
383	ret.methodState = sm->methodState;
384	ret.decision = sm->decision;
385	ret.allowNotifications = sm->allowNotifications;
386	wpabuf_free(sm->eapRespData);
387	sm->eapRespData = NULL;
388	sm->eapRespData = sm->m->process(sm, sm->eap_method_priv, &ret,
389					 eapReqData);
390	wpa_printf(MSG_DEBUG, "EAP: method process -> ignore=%s "
391		   "methodState=%s decision=%s",
392		   ret.ignore ? "TRUE" : "FALSE",
393		   eap_sm_method_state_txt(ret.methodState),
394		   eap_sm_decision_txt(ret.decision));
395
396	sm->ignore = ret.ignore;
397	if (sm->ignore)
398		return;
399	sm->methodState = ret.methodState;
400	sm->decision = ret.decision;
401	sm->allowNotifications = ret.allowNotifications;
402
403	if (sm->m->isKeyAvailable && sm->m->getKey &&
404	    sm->m->isKeyAvailable(sm, sm->eap_method_priv)) {
405		os_free(sm->eapKeyData);
406		sm->eapKeyData = sm->m->getKey(sm, sm->eap_method_priv,
407					       &sm->eapKeyDataLen);
408		os_free(sm->eapSessionId);
409		sm->eapSessionId = NULL;
410		if (sm->m->getSessionId) {
411			sm->eapSessionId = sm->m->getSessionId(
412				sm, sm->eap_method_priv,
413				&sm->eapSessionIdLen);
414			wpa_hexdump(MSG_DEBUG, "EAP: Session-Id",
415				    sm->eapSessionId, sm->eapSessionIdLen);
416		}
417	}
418}
419
420
421/*
422 * This state signals the lower layer that a response packet is ready to be
423 * sent.
424 */
425SM_STATE(EAP, SEND_RESPONSE)
426{
427	SM_ENTRY(EAP, SEND_RESPONSE);
428	wpabuf_free(sm->lastRespData);
429	if (sm->eapRespData) {
430		if (sm->workaround)
431			os_memcpy(sm->last_md5, sm->req_md5, 16);
432		sm->lastId = sm->reqId;
433		sm->lastRespData = wpabuf_dup(sm->eapRespData);
434		eapol_set_bool(sm, EAPOL_eapResp, TRUE);
435	} else
436		sm->lastRespData = NULL;
437	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
438	eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout);
439}
440
441
442/*
443 * This state signals the lower layer that the request was discarded, and no
444 * response packet will be sent at this time.
445 */
446SM_STATE(EAP, DISCARD)
447{
448	SM_ENTRY(EAP, DISCARD);
449	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
450	eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
451}
452
453
454/*
455 * Handles requests for Identity method and builds a response.
456 */
457SM_STATE(EAP, IDENTITY)
458{
459	const struct wpabuf *eapReqData;
460
461	SM_ENTRY(EAP, IDENTITY);
462	eapReqData = eapol_get_eapReqData(sm);
463	if (!eap_hdr_len_valid(eapReqData, 1))
464		return;
465	eap_sm_processIdentity(sm, eapReqData);
466	wpabuf_free(sm->eapRespData);
467	sm->eapRespData = NULL;
468	sm->eapRespData = eap_sm_buildIdentity(sm, sm->reqId, 0);
469}
470
471
472/*
473 * Handles requests for Notification method and builds a response.
474 */
475SM_STATE(EAP, NOTIFICATION)
476{
477	const struct wpabuf *eapReqData;
478
479	SM_ENTRY(EAP, NOTIFICATION);
480	eapReqData = eapol_get_eapReqData(sm);
481	if (!eap_hdr_len_valid(eapReqData, 1))
482		return;
483	eap_sm_processNotify(sm, eapReqData);
484	wpabuf_free(sm->eapRespData);
485	sm->eapRespData = NULL;
486	sm->eapRespData = eap_sm_buildNotify(sm->reqId);
487}
488
489
490/*
491 * This state retransmits the previous response packet.
492 */
493SM_STATE(EAP, RETRANSMIT)
494{
495	SM_ENTRY(EAP, RETRANSMIT);
496	wpabuf_free(sm->eapRespData);
497	if (sm->lastRespData)
498		sm->eapRespData = wpabuf_dup(sm->lastRespData);
499	else
500		sm->eapRespData = NULL;
501}
502
503
504/*
505 * This state is entered in case of a successful completion of authentication
506 * and state machine waits here until port is disabled or EAP authentication is
507 * restarted.
508 */
509SM_STATE(EAP, SUCCESS)
510{
511	SM_ENTRY(EAP, SUCCESS);
512	if (sm->eapKeyData != NULL)
513		sm->eapKeyAvailable = TRUE;
514	eapol_set_bool(sm, EAPOL_eapSuccess, TRUE);
515
516	/*
517	 * RFC 4137 does not clear eapReq here, but this seems to be required
518	 * to avoid processing the same request twice when state machine is
519	 * initialized.
520	 */
521	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
522
523	/*
524	 * RFC 4137 does not set eapNoResp here, but this seems to be required
525	 * to get EAPOL Supplicant backend state machine into SUCCESS state. In
526	 * addition, either eapResp or eapNoResp is required to be set after
527	 * processing the received EAP frame.
528	 */
529	eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
530
531	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
532		"EAP authentication completed successfully");
533}
534
535
536/*
537 * This state is entered in case of a failure and state machine waits here
538 * until port is disabled or EAP authentication is restarted.
539 */
540SM_STATE(EAP, FAILURE)
541{
542	SM_ENTRY(EAP, FAILURE);
543	eapol_set_bool(sm, EAPOL_eapFail, TRUE);
544
545	/*
546	 * RFC 4137 does not clear eapReq here, but this seems to be required
547	 * to avoid processing the same request twice when state machine is
548	 * initialized.
549	 */
550	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
551
552	/*
553	 * RFC 4137 does not set eapNoResp here. However, either eapResp or
554	 * eapNoResp is required to be set after processing the received EAP
555	 * frame.
556	 */
557	eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
558
559	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_FAILURE
560		"EAP authentication failed");
561
562	sm->prev_failure = 1;
563}
564
565
566static int eap_success_workaround(struct eap_sm *sm, int reqId, int lastId)
567{
568	/*
569	 * At least Microsoft IAS and Meetinghouse Aegis seem to be sending
570	 * EAP-Success/Failure with lastId + 1 even though RFC 3748 and
571	 * RFC 4137 require that reqId == lastId. In addition, it looks like
572	 * Ringmaster v2.1.2.0 would be using lastId + 2 in EAP-Success.
573	 *
574	 * Accept this kind of Id if EAP workarounds are enabled. These are
575	 * unauthenticated plaintext messages, so this should have minimal
576	 * security implications (bit easier to fake EAP-Success/Failure).
577	 */
578	if (sm->workaround && (reqId == ((lastId + 1) & 0xff) ||
579			       reqId == ((lastId + 2) & 0xff))) {
580		wpa_printf(MSG_DEBUG, "EAP: Workaround for unexpected "
581			   "identifier field in EAP Success: "
582			   "reqId=%d lastId=%d (these are supposed to be "
583			   "same)", reqId, lastId);
584		return 1;
585	}
586	wpa_printf(MSG_DEBUG, "EAP: EAP-Success Id mismatch - reqId=%d "
587		   "lastId=%d", reqId, lastId);
588	return 0;
589}
590
591
592/*
593 * RFC 4137 - Appendix A.1: EAP Peer State Machine - State transitions
594 */
595
596static void eap_peer_sm_step_idle(struct eap_sm *sm)
597{
598	/*
599	 * The first three transitions are from RFC 4137. The last two are
600	 * local additions to handle special cases with LEAP and PEAP server
601	 * not sending EAP-Success in some cases.
602	 */
603	if (eapol_get_bool(sm, EAPOL_eapReq))
604		SM_ENTER(EAP, RECEIVED);
605	else if ((eapol_get_bool(sm, EAPOL_altAccept) &&
606		  sm->decision != DECISION_FAIL) ||
607		 (eapol_get_int(sm, EAPOL_idleWhile) == 0 &&
608		  sm->decision == DECISION_UNCOND_SUCC))
609		SM_ENTER(EAP, SUCCESS);
610	else if (eapol_get_bool(sm, EAPOL_altReject) ||
611		 (eapol_get_int(sm, EAPOL_idleWhile) == 0 &&
612		  sm->decision != DECISION_UNCOND_SUCC) ||
613		 (eapol_get_bool(sm, EAPOL_altAccept) &&
614		  sm->methodState != METHOD_CONT &&
615		  sm->decision == DECISION_FAIL))
616		SM_ENTER(EAP, FAILURE);
617	else if (sm->selectedMethod == EAP_TYPE_LEAP &&
618		 sm->leap_done && sm->decision != DECISION_FAIL &&
619		 sm->methodState == METHOD_DONE)
620		SM_ENTER(EAP, SUCCESS);
621	else if (sm->selectedMethod == EAP_TYPE_PEAP &&
622		 sm->peap_done && sm->decision != DECISION_FAIL &&
623		 sm->methodState == METHOD_DONE)
624		SM_ENTER(EAP, SUCCESS);
625}
626
627
628static int eap_peer_req_is_duplicate(struct eap_sm *sm)
629{
630	int duplicate;
631
632	duplicate = (sm->reqId == sm->lastId) && sm->rxReq;
633	if (sm->workaround && duplicate &&
634	    os_memcmp(sm->req_md5, sm->last_md5, 16) != 0) {
635		/*
636		 * RFC 4137 uses (reqId == lastId) as the only verification for
637		 * duplicate EAP requests. However, this misses cases where the
638		 * AS is incorrectly using the same id again; and
639		 * unfortunately, such implementations exist. Use MD5 hash as
640		 * an extra verification for the packets being duplicate to
641		 * workaround these issues.
642		 */
643		wpa_printf(MSG_DEBUG, "EAP: AS used the same Id again, but "
644			   "EAP packets were not identical");
645		wpa_printf(MSG_DEBUG, "EAP: workaround - assume this is not a "
646			   "duplicate packet");
647		duplicate = 0;
648	}
649
650	return duplicate;
651}
652
653
654static void eap_peer_sm_step_received(struct eap_sm *sm)
655{
656	int duplicate = eap_peer_req_is_duplicate(sm);
657
658	/*
659	 * Two special cases below for LEAP are local additions to work around
660	 * odd LEAP behavior (EAP-Success in the middle of authentication and
661	 * then swapped roles). Other transitions are based on RFC 4137.
662	 */
663	if (sm->rxSuccess && sm->decision != DECISION_FAIL &&
664	    (sm->reqId == sm->lastId ||
665	     eap_success_workaround(sm, sm->reqId, sm->lastId)))
666		SM_ENTER(EAP, SUCCESS);
667	else if (sm->methodState != METHOD_CONT &&
668		 ((sm->rxFailure &&
669		   sm->decision != DECISION_UNCOND_SUCC) ||
670		  (sm->rxSuccess && sm->decision == DECISION_FAIL &&
671		   (sm->selectedMethod != EAP_TYPE_LEAP ||
672		    sm->methodState != METHOD_MAY_CONT))) &&
673		 (sm->reqId == sm->lastId ||
674		  eap_success_workaround(sm, sm->reqId, sm->lastId)))
675		SM_ENTER(EAP, FAILURE);
676	else if (sm->rxReq && duplicate)
677		SM_ENTER(EAP, RETRANSMIT);
678	else if (sm->rxReq && !duplicate &&
679		 sm->reqMethod == EAP_TYPE_NOTIFICATION &&
680		 sm->allowNotifications)
681		SM_ENTER(EAP, NOTIFICATION);
682	else if (sm->rxReq && !duplicate &&
683		 sm->selectedMethod == EAP_TYPE_NONE &&
684		 sm->reqMethod == EAP_TYPE_IDENTITY)
685		SM_ENTER(EAP, IDENTITY);
686	else if (sm->rxReq && !duplicate &&
687		 sm->selectedMethod == EAP_TYPE_NONE &&
688		 sm->reqMethod != EAP_TYPE_IDENTITY &&
689		 sm->reqMethod != EAP_TYPE_NOTIFICATION)
690		SM_ENTER(EAP, GET_METHOD);
691	else if (sm->rxReq && !duplicate &&
692		 sm->reqMethod == sm->selectedMethod &&
693		 sm->methodState != METHOD_DONE)
694		SM_ENTER(EAP, METHOD);
695	else if (sm->selectedMethod == EAP_TYPE_LEAP &&
696		 (sm->rxSuccess || sm->rxResp))
697		SM_ENTER(EAP, METHOD);
698	else
699		SM_ENTER(EAP, DISCARD);
700}
701
702
703static void eap_peer_sm_step_local(struct eap_sm *sm)
704{
705	switch (sm->EAP_state) {
706	case EAP_INITIALIZE:
707		SM_ENTER(EAP, IDLE);
708		break;
709	case EAP_DISABLED:
710		if (eapol_get_bool(sm, EAPOL_portEnabled) &&
711		    !sm->force_disabled)
712			SM_ENTER(EAP, INITIALIZE);
713		break;
714	case EAP_IDLE:
715		eap_peer_sm_step_idle(sm);
716		break;
717	case EAP_RECEIVED:
718		eap_peer_sm_step_received(sm);
719		break;
720	case EAP_GET_METHOD:
721		if (sm->selectedMethod == sm->reqMethod)
722			SM_ENTER(EAP, METHOD);
723		else
724			SM_ENTER(EAP, SEND_RESPONSE);
725		break;
726	case EAP_METHOD:
727		if (sm->ignore)
728			SM_ENTER(EAP, DISCARD);
729		else
730			SM_ENTER(EAP, SEND_RESPONSE);
731		break;
732	case EAP_SEND_RESPONSE:
733		SM_ENTER(EAP, IDLE);
734		break;
735	case EAP_DISCARD:
736		SM_ENTER(EAP, IDLE);
737		break;
738	case EAP_IDENTITY:
739		SM_ENTER(EAP, SEND_RESPONSE);
740		break;
741	case EAP_NOTIFICATION:
742		SM_ENTER(EAP, SEND_RESPONSE);
743		break;
744	case EAP_RETRANSMIT:
745		SM_ENTER(EAP, SEND_RESPONSE);
746		break;
747	case EAP_SUCCESS:
748		break;
749	case EAP_FAILURE:
750		break;
751	}
752}
753
754
755SM_STEP(EAP)
756{
757	/* Global transitions */
758	if (eapol_get_bool(sm, EAPOL_eapRestart) &&
759	    eapol_get_bool(sm, EAPOL_portEnabled))
760		SM_ENTER_GLOBAL(EAP, INITIALIZE);
761	else if (!eapol_get_bool(sm, EAPOL_portEnabled) || sm->force_disabled)
762		SM_ENTER_GLOBAL(EAP, DISABLED);
763	else if (sm->num_rounds > EAP_MAX_AUTH_ROUNDS) {
764		/* RFC 4137 does not place any limit on number of EAP messages
765		 * in an authentication session. However, some error cases have
766		 * ended up in a state were EAP messages were sent between the
767		 * peer and server in a loop (e.g., TLS ACK frame in both
768		 * direction). Since this is quite undesired outcome, limit the
769		 * total number of EAP round-trips and abort authentication if
770		 * this limit is exceeded.
771		 */
772		if (sm->num_rounds == EAP_MAX_AUTH_ROUNDS + 1) {
773			wpa_msg(sm->msg_ctx, MSG_INFO, "EAP: more than %d "
774				"authentication rounds - abort",
775				EAP_MAX_AUTH_ROUNDS);
776			sm->num_rounds++;
777			SM_ENTER_GLOBAL(EAP, FAILURE);
778		}
779	} else {
780		/* Local transitions */
781		eap_peer_sm_step_local(sm);
782	}
783}
784
785
786static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor,
787				  EapType method)
788{
789	if (!eap_allowed_method(sm, vendor, method)) {
790		wpa_printf(MSG_DEBUG, "EAP: configuration does not allow: "
791			   "vendor %u method %u", vendor, method);
792		return FALSE;
793	}
794	if (eap_peer_get_eap_method(vendor, method))
795		return TRUE;
796	wpa_printf(MSG_DEBUG, "EAP: not included in build: "
797		   "vendor %u method %u", vendor, method);
798	return FALSE;
799}
800
801
802static struct wpabuf * eap_sm_build_expanded_nak(
803	struct eap_sm *sm, int id, const struct eap_method *methods,
804	size_t count)
805{
806	struct wpabuf *resp;
807	int found = 0;
808	const struct eap_method *m;
809
810	wpa_printf(MSG_DEBUG, "EAP: Building expanded EAP-Nak");
811
812	/* RFC 3748 - 5.3.2: Expanded Nak */
813	resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_EXPANDED,
814			     8 + 8 * (count + 1), EAP_CODE_RESPONSE, id);
815	if (resp == NULL)
816		return NULL;
817
818	wpabuf_put_be24(resp, EAP_VENDOR_IETF);
819	wpabuf_put_be32(resp, EAP_TYPE_NAK);
820
821	for (m = methods; m; m = m->next) {
822		if (sm->reqVendor == m->vendor &&
823		    sm->reqVendorMethod == m->method)
824			continue; /* do not allow the current method again */
825		if (eap_allowed_method(sm, m->vendor, m->method)) {
826			wpa_printf(MSG_DEBUG, "EAP: allowed type: "
827				   "vendor=%u method=%u",
828				   m->vendor, m->method);
829			wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
830			wpabuf_put_be24(resp, m->vendor);
831			wpabuf_put_be32(resp, m->method);
832
833			found++;
834		}
835	}
836	if (!found) {
837		wpa_printf(MSG_DEBUG, "EAP: no more allowed methods");
838		wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
839		wpabuf_put_be24(resp, EAP_VENDOR_IETF);
840		wpabuf_put_be32(resp, EAP_TYPE_NONE);
841	}
842
843	eap_update_len(resp);
844
845	return resp;
846}
847
848
849static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id)
850{
851	struct wpabuf *resp;
852	u8 *start;
853	int found = 0, expanded_found = 0;
854	size_t count;
855	const struct eap_method *methods, *m;
856
857	wpa_printf(MSG_DEBUG, "EAP: Building EAP-Nak (requested type %u "
858		   "vendor=%u method=%u not allowed)", sm->reqMethod,
859		   sm->reqVendor, sm->reqVendorMethod);
860	methods = eap_peer_get_methods(&count);
861	if (methods == NULL)
862		return NULL;
863	if (sm->reqMethod == EAP_TYPE_EXPANDED)
864		return eap_sm_build_expanded_nak(sm, id, methods, count);
865
866	/* RFC 3748 - 5.3.1: Legacy Nak */
867	resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NAK,
868			     sizeof(struct eap_hdr) + 1 + count + 1,
869			     EAP_CODE_RESPONSE, id);
870	if (resp == NULL)
871		return NULL;
872
873	start = wpabuf_put(resp, 0);
874	for (m = methods; m; m = m->next) {
875		if (m->vendor == EAP_VENDOR_IETF && m->method == sm->reqMethod)
876			continue; /* do not allow the current method again */
877		if (eap_allowed_method(sm, m->vendor, m->method)) {
878			if (m->vendor != EAP_VENDOR_IETF) {
879				if (expanded_found)
880					continue;
881				expanded_found = 1;
882				wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
883			} else
884				wpabuf_put_u8(resp, m->method);
885			found++;
886		}
887	}
888	if (!found)
889		wpabuf_put_u8(resp, EAP_TYPE_NONE);
890	wpa_hexdump(MSG_DEBUG, "EAP: allowed methods", start, found);
891
892	eap_update_len(resp);
893
894	return resp;
895}
896
897
898static void eap_sm_processIdentity(struct eap_sm *sm, const struct wpabuf *req)
899{
900	const u8 *pos;
901	size_t msg_len;
902
903	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_STARTED
904		"EAP authentication started");
905	eap_notify_status(sm, "started", "");
906
907	pos = eap_hdr_validate(EAP_VENDOR_IETF, EAP_TYPE_IDENTITY, req,
908			       &msg_len);
909	if (pos == NULL)
910		return;
911
912	/*
913	 * RFC 3748 - 5.1: Identity
914	 * Data field may contain a displayable message in UTF-8. If this
915	 * includes NUL-character, only the data before that should be
916	 * displayed. Some EAP implementasitons may piggy-back additional
917	 * options after the NUL.
918	 */
919	/* TODO: could save displayable message so that it can be shown to the
920	 * user in case of interaction is required */
921	wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Identity data",
922			  pos, msg_len);
923}
924
925
926#ifdef PCSC_FUNCS
927
928/*
929 * Rules for figuring out MNC length based on IMSI for SIM cards that do not
930 * include MNC length field.
931 */
932static int mnc_len_from_imsi(const char *imsi)
933{
934	char mcc_str[4];
935	unsigned int mcc;
936
937	os_memcpy(mcc_str, imsi, 3);
938	mcc_str[3] = '\0';
939	mcc = atoi(mcc_str);
940
941	if (mcc == 244)
942		return 2; /* Networks in Finland use 2-digit MNC */
943
944	return -1;
945}
946
947
948static int eap_sm_append_3gpp_realm(struct eap_sm *sm, char *imsi,
949				    size_t max_len, size_t *imsi_len)
950{
951	int mnc_len;
952	char *pos, mnc[4];
953
954	if (*imsi_len + 36 > max_len) {
955		wpa_printf(MSG_WARNING, "No room for realm in IMSI buffer");
956		return -1;
957	}
958
959	/* MNC (2 or 3 digits) */
960	mnc_len = scard_get_mnc_len(sm->scard_ctx);
961	if (mnc_len < 0)
962		mnc_len = mnc_len_from_imsi(imsi);
963	if (mnc_len < 0) {
964		wpa_printf(MSG_INFO, "Failed to get MNC length from (U)SIM "
965			   "assuming 3");
966		mnc_len = 3;
967	}
968
969	if (mnc_len == 2) {
970		mnc[0] = '0';
971		mnc[1] = imsi[3];
972		mnc[2] = imsi[4];
973	} else if (mnc_len == 3) {
974		mnc[0] = imsi[3];
975		mnc[1] = imsi[4];
976		mnc[2] = imsi[5];
977	}
978	mnc[3] = '\0';
979
980	pos = imsi + *imsi_len;
981	pos += os_snprintf(pos, imsi + max_len - pos,
982			   "@wlan.mnc%s.mcc%c%c%c.3gppnetwork.org",
983			   mnc, imsi[0], imsi[1], imsi[2]);
984	*imsi_len = pos - imsi;
985
986	return 0;
987}
988
989
990static int eap_sm_imsi_identity(struct eap_sm *sm,
991				struct eap_peer_config *conf)
992{
993	enum { EAP_SM_SIM, EAP_SM_AKA, EAP_SM_AKA_PRIME } method = EAP_SM_SIM;
994	char imsi[100];
995	size_t imsi_len;
996	struct eap_method_type *m = conf->eap_methods;
997	int i;
998
999	imsi_len = sizeof(imsi);
1000	if (scard_get_imsi(sm->scard_ctx, imsi, &imsi_len)) {
1001		wpa_printf(MSG_WARNING, "Failed to get IMSI from SIM");
1002		return -1;
1003	}
1004
1005	wpa_hexdump_ascii(MSG_DEBUG, "IMSI", (u8 *) imsi, imsi_len);
1006
1007	if (imsi_len < 7) {
1008		wpa_printf(MSG_WARNING, "Too short IMSI for SIM identity");
1009		return -1;
1010	}
1011
1012	if (eap_sm_append_3gpp_realm(sm, imsi, sizeof(imsi), &imsi_len) < 0) {
1013		wpa_printf(MSG_WARNING, "Could not add realm to SIM identity");
1014		return -1;
1015	}
1016	wpa_hexdump_ascii(MSG_DEBUG, "IMSI + realm", (u8 *) imsi, imsi_len);
1017
1018	for (i = 0; m && (m[i].vendor != EAP_VENDOR_IETF ||
1019			  m[i].method != EAP_TYPE_NONE); i++) {
1020		if (m[i].vendor == EAP_VENDOR_IETF &&
1021		    m[i].method == EAP_TYPE_AKA_PRIME) {
1022			method = EAP_SM_AKA_PRIME;
1023			break;
1024		}
1025
1026		if (m[i].vendor == EAP_VENDOR_IETF &&
1027		    m[i].method == EAP_TYPE_AKA) {
1028			method = EAP_SM_AKA;
1029			break;
1030		}
1031	}
1032
1033	os_free(conf->identity);
1034	conf->identity = os_malloc(1 + imsi_len);
1035	if (conf->identity == NULL) {
1036		wpa_printf(MSG_WARNING, "Failed to allocate buffer for "
1037			   "IMSI-based identity");
1038		return -1;
1039	}
1040
1041	switch (method) {
1042	case EAP_SM_SIM:
1043		conf->identity[0] = '1';
1044		break;
1045	case EAP_SM_AKA:
1046		conf->identity[0] = '0';
1047		break;
1048	case EAP_SM_AKA_PRIME:
1049		conf->identity[0] = '6';
1050		break;
1051	}
1052	os_memcpy(conf->identity + 1, imsi, imsi_len);
1053	conf->identity_len = 1 + imsi_len;
1054
1055	return 0;
1056}
1057
1058#endif /* PCSC_FUNCS */
1059
1060
1061static int eap_sm_set_scard_pin(struct eap_sm *sm,
1062				struct eap_peer_config *conf)
1063{
1064#ifdef PCSC_FUNCS
1065	if (scard_set_pin(sm->scard_ctx, conf->pin)) {
1066		/*
1067		 * Make sure the same PIN is not tried again in order to avoid
1068		 * blocking SIM.
1069		 */
1070		os_free(conf->pin);
1071		conf->pin = NULL;
1072
1073		wpa_printf(MSG_WARNING, "PIN validation failed");
1074		eap_sm_request_pin(sm);
1075		return -1;
1076	}
1077	return 0;
1078#else /* PCSC_FUNCS */
1079	return -1;
1080#endif /* PCSC_FUNCS */
1081}
1082
1083static int eap_sm_get_scard_identity(struct eap_sm *sm,
1084				     struct eap_peer_config *conf)
1085{
1086#ifdef PCSC_FUNCS
1087	if (eap_sm_set_scard_pin(sm, conf))
1088		return -1;
1089
1090	return eap_sm_imsi_identity(sm, conf);
1091#else /* PCSC_FUNCS */
1092	return -1;
1093#endif /* PCSC_FUNCS */
1094}
1095
1096
1097/**
1098 * eap_sm_buildIdentity - Build EAP-Identity/Response for the current network
1099 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1100 * @id: EAP identifier for the packet
1101 * @encrypted: Whether the packet is for encrypted tunnel (EAP phase 2)
1102 * Returns: Pointer to the allocated EAP-Identity/Response packet or %NULL on
1103 * failure
1104 *
1105 * This function allocates and builds an EAP-Identity/Response packet for the
1106 * current network. The caller is responsible for freeing the returned data.
1107 */
1108struct wpabuf * eap_sm_buildIdentity(struct eap_sm *sm, int id, int encrypted)
1109{
1110	struct eap_peer_config *config = eap_get_config(sm);
1111	struct wpabuf *resp;
1112	const u8 *identity;
1113	size_t identity_len;
1114
1115	if (config == NULL) {
1116		wpa_printf(MSG_WARNING, "EAP: buildIdentity: configuration "
1117			   "was not available");
1118		return NULL;
1119	}
1120
1121	if (sm->m && sm->m->get_identity &&
1122	    (identity = sm->m->get_identity(sm, sm->eap_method_priv,
1123					    &identity_len)) != NULL) {
1124		wpa_hexdump_ascii(MSG_DEBUG, "EAP: using method re-auth "
1125				  "identity", identity, identity_len);
1126	} else if (!encrypted && config->anonymous_identity) {
1127		identity = config->anonymous_identity;
1128		identity_len = config->anonymous_identity_len;
1129		wpa_hexdump_ascii(MSG_DEBUG, "EAP: using anonymous identity",
1130				  identity, identity_len);
1131	} else {
1132		identity = config->identity;
1133		identity_len = config->identity_len;
1134		wpa_hexdump_ascii(MSG_DEBUG, "EAP: using real identity",
1135				  identity, identity_len);
1136	}
1137
1138	if (identity == NULL) {
1139		wpa_printf(MSG_WARNING, "EAP: buildIdentity: identity "
1140			   "configuration was not available");
1141		if (config->pcsc) {
1142			if (eap_sm_get_scard_identity(sm, config) < 0)
1143				return NULL;
1144			identity = config->identity;
1145			identity_len = config->identity_len;
1146			wpa_hexdump_ascii(MSG_DEBUG, "permanent identity from "
1147					  "IMSI", identity, identity_len);
1148		} else {
1149			eap_sm_request_identity(sm);
1150			return NULL;
1151		}
1152	} else if (config->pcsc) {
1153		if (eap_sm_set_scard_pin(sm, config) < 0)
1154			return NULL;
1155	}
1156
1157	resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_IDENTITY, identity_len,
1158			     EAP_CODE_RESPONSE, id);
1159	if (resp == NULL)
1160		return NULL;
1161
1162	wpabuf_put_data(resp, identity, identity_len);
1163
1164	return resp;
1165}
1166
1167
1168static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req)
1169{
1170	const u8 *pos;
1171	char *msg;
1172	size_t i, msg_len;
1173
1174	pos = eap_hdr_validate(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, req,
1175			       &msg_len);
1176	if (pos == NULL)
1177		return;
1178	wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Notification data",
1179			  pos, msg_len);
1180
1181	msg = os_malloc(msg_len + 1);
1182	if (msg == NULL)
1183		return;
1184	for (i = 0; i < msg_len; i++)
1185		msg[i] = isprint(pos[i]) ? (char) pos[i] : '_';
1186	msg[msg_len] = '\0';
1187	wpa_msg(sm->msg_ctx, MSG_INFO, "%s%s",
1188		WPA_EVENT_EAP_NOTIFICATION, msg);
1189	os_free(msg);
1190}
1191
1192
1193static struct wpabuf * eap_sm_buildNotify(int id)
1194{
1195	struct wpabuf *resp;
1196
1197	wpa_printf(MSG_DEBUG, "EAP: Generating EAP-Response Notification");
1198	resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, 0,
1199			     EAP_CODE_RESPONSE, id);
1200	if (resp == NULL)
1201		return NULL;
1202
1203	return resp;
1204}
1205
1206
1207static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req)
1208{
1209	const struct eap_hdr *hdr;
1210	size_t plen;
1211	const u8 *pos;
1212
1213	sm->rxReq = sm->rxResp = sm->rxSuccess = sm->rxFailure = FALSE;
1214	sm->reqId = 0;
1215	sm->reqMethod = EAP_TYPE_NONE;
1216	sm->reqVendor = EAP_VENDOR_IETF;
1217	sm->reqVendorMethod = EAP_TYPE_NONE;
1218
1219	if (req == NULL || wpabuf_len(req) < sizeof(*hdr))
1220		return;
1221
1222	hdr = wpabuf_head(req);
1223	plen = be_to_host16(hdr->length);
1224	if (plen > wpabuf_len(req)) {
1225		wpa_printf(MSG_DEBUG, "EAP: Ignored truncated EAP-Packet "
1226			   "(len=%lu plen=%lu)",
1227			   (unsigned long) wpabuf_len(req),
1228			   (unsigned long) plen);
1229		return;
1230	}
1231
1232	sm->reqId = hdr->identifier;
1233
1234	if (sm->workaround) {
1235		const u8 *addr[1];
1236		addr[0] = wpabuf_head(req);
1237		md5_vector(1, addr, &plen, sm->req_md5);
1238	}
1239
1240	switch (hdr->code) {
1241	case EAP_CODE_REQUEST:
1242		if (plen < sizeof(*hdr) + 1) {
1243			wpa_printf(MSG_DEBUG, "EAP: Too short EAP-Request - "
1244				   "no Type field");
1245			return;
1246		}
1247		sm->rxReq = TRUE;
1248		pos = (const u8 *) (hdr + 1);
1249		sm->reqMethod = *pos++;
1250		if (sm->reqMethod == EAP_TYPE_EXPANDED) {
1251			if (plen < sizeof(*hdr) + 8) {
1252				wpa_printf(MSG_DEBUG, "EAP: Ignored truncated "
1253					   "expanded EAP-Packet (plen=%lu)",
1254					   (unsigned long) plen);
1255				return;
1256			}
1257			sm->reqVendor = WPA_GET_BE24(pos);
1258			pos += 3;
1259			sm->reqVendorMethod = WPA_GET_BE32(pos);
1260		}
1261		wpa_printf(MSG_DEBUG, "EAP: Received EAP-Request id=%d "
1262			   "method=%u vendor=%u vendorMethod=%u",
1263			   sm->reqId, sm->reqMethod, sm->reqVendor,
1264			   sm->reqVendorMethod);
1265		break;
1266	case EAP_CODE_RESPONSE:
1267		if (sm->selectedMethod == EAP_TYPE_LEAP) {
1268			/*
1269			 * LEAP differs from RFC 4137 by using reversed roles
1270			 * for mutual authentication and because of this, we
1271			 * need to accept EAP-Response frames if LEAP is used.
1272			 */
1273			if (plen < sizeof(*hdr) + 1) {
1274				wpa_printf(MSG_DEBUG, "EAP: Too short "
1275					   "EAP-Response - no Type field");
1276				return;
1277			}
1278			sm->rxResp = TRUE;
1279			pos = (const u8 *) (hdr + 1);
1280			sm->reqMethod = *pos;
1281			wpa_printf(MSG_DEBUG, "EAP: Received EAP-Response for "
1282				   "LEAP method=%d id=%d",
1283				   sm->reqMethod, sm->reqId);
1284			break;
1285		}
1286		wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Response");
1287		break;
1288	case EAP_CODE_SUCCESS:
1289		wpa_printf(MSG_DEBUG, "EAP: Received EAP-Success");
1290		eap_notify_status(sm, "completion", "success");
1291		sm->rxSuccess = TRUE;
1292		break;
1293	case EAP_CODE_FAILURE:
1294		wpa_printf(MSG_DEBUG, "EAP: Received EAP-Failure");
1295		eap_notify_status(sm, "completion", "failure");
1296		sm->rxFailure = TRUE;
1297		break;
1298	default:
1299		wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Packet with unknown "
1300			   "code %d", hdr->code);
1301		break;
1302	}
1303}
1304
1305
1306static void eap_peer_sm_tls_event(void *ctx, enum tls_event ev,
1307				  union tls_event_data *data)
1308{
1309	struct eap_sm *sm = ctx;
1310	char *hash_hex = NULL;
1311
1312	switch (ev) {
1313	case TLS_CERT_CHAIN_SUCCESS:
1314		eap_notify_status(sm, "remote certificate verification",
1315				  "success");
1316		break;
1317	case TLS_CERT_CHAIN_FAILURE:
1318		wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_TLS_CERT_ERROR
1319			"reason=%d depth=%d subject='%s' err='%s'",
1320			data->cert_fail.reason,
1321			data->cert_fail.depth,
1322			data->cert_fail.subject,
1323			data->cert_fail.reason_txt);
1324		eap_notify_status(sm, "remote certificate verification",
1325				  data->cert_fail.reason_txt);
1326		break;
1327	case TLS_PEER_CERTIFICATE:
1328		if (!sm->eapol_cb->notify_cert)
1329			break;
1330
1331		if (data->peer_cert.hash) {
1332			size_t len = data->peer_cert.hash_len * 2 + 1;
1333			hash_hex = os_malloc(len);
1334			if (hash_hex) {
1335				wpa_snprintf_hex(hash_hex, len,
1336						 data->peer_cert.hash,
1337						 data->peer_cert.hash_len);
1338			}
1339		}
1340
1341		sm->eapol_cb->notify_cert(sm->eapol_ctx,
1342					  data->peer_cert.depth,
1343					  data->peer_cert.subject,
1344					  hash_hex, data->peer_cert.cert);
1345		break;
1346	case TLS_ALERT:
1347		if (data->alert.is_local)
1348			eap_notify_status(sm, "local TLS alert",
1349					  data->alert.description);
1350		else
1351			eap_notify_status(sm, "remote TLS alert",
1352					  data->alert.description);
1353		break;
1354	}
1355
1356	os_free(hash_hex);
1357}
1358
1359
1360/**
1361 * eap_peer_sm_init - Allocate and initialize EAP peer state machine
1362 * @eapol_ctx: Context data to be used with eapol_cb calls
1363 * @eapol_cb: Pointer to EAPOL callback functions
1364 * @msg_ctx: Context data for wpa_msg() calls
1365 * @conf: EAP configuration
1366 * Returns: Pointer to the allocated EAP state machine or %NULL on failure
1367 *
1368 * This function allocates and initializes an EAP state machine. In addition,
1369 * this initializes TLS library for the new EAP state machine. eapol_cb pointer
1370 * will be in use until eap_peer_sm_deinit() is used to deinitialize this EAP
1371 * state machine. Consequently, the caller must make sure that this data
1372 * structure remains alive while the EAP state machine is active.
1373 */
1374struct eap_sm * eap_peer_sm_init(void *eapol_ctx,
1375				 struct eapol_callbacks *eapol_cb,
1376				 void *msg_ctx, struct eap_config *conf)
1377{
1378	struct eap_sm *sm;
1379	struct tls_config tlsconf;
1380
1381	sm = os_zalloc(sizeof(*sm));
1382	if (sm == NULL)
1383		return NULL;
1384	sm->eapol_ctx = eapol_ctx;
1385	sm->eapol_cb = eapol_cb;
1386	sm->msg_ctx = msg_ctx;
1387	sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
1388	sm->wps = conf->wps;
1389
1390	os_memset(&tlsconf, 0, sizeof(tlsconf));
1391	tlsconf.opensc_engine_path = conf->opensc_engine_path;
1392	tlsconf.pkcs11_engine_path = conf->pkcs11_engine_path;
1393	tlsconf.pkcs11_module_path = conf->pkcs11_module_path;
1394#ifdef CONFIG_FIPS
1395	tlsconf.fips_mode = 1;
1396#endif /* CONFIG_FIPS */
1397	tlsconf.event_cb = eap_peer_sm_tls_event;
1398	tlsconf.cb_ctx = sm;
1399	tlsconf.cert_in_cb = conf->cert_in_cb;
1400	sm->ssl_ctx = tls_init(&tlsconf);
1401	if (sm->ssl_ctx == NULL) {
1402		wpa_printf(MSG_WARNING, "SSL: Failed to initialize TLS "
1403			   "context.");
1404		os_free(sm);
1405		return NULL;
1406	}
1407
1408	sm->ssl_ctx2 = tls_init(&tlsconf);
1409	if (sm->ssl_ctx2 == NULL) {
1410		wpa_printf(MSG_INFO, "SSL: Failed to initialize TLS "
1411			   "context (2).");
1412		/* Run without separate TLS context within TLS tunnel */
1413	}
1414
1415	return sm;
1416}
1417
1418
1419/**
1420 * eap_peer_sm_deinit - Deinitialize and free an EAP peer state machine
1421 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1422 *
1423 * This function deinitializes EAP state machine and frees all allocated
1424 * resources.
1425 */
1426void eap_peer_sm_deinit(struct eap_sm *sm)
1427{
1428	if (sm == NULL)
1429		return;
1430	eap_deinit_prev_method(sm, "EAP deinit");
1431	eap_sm_abort(sm);
1432	if (sm->ssl_ctx2)
1433		tls_deinit(sm->ssl_ctx2);
1434	tls_deinit(sm->ssl_ctx);
1435	os_free(sm);
1436}
1437
1438
1439/**
1440 * eap_peer_sm_step - Step EAP peer state machine
1441 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1442 * Returns: 1 if EAP state was changed or 0 if not
1443 *
1444 * This function advances EAP state machine to a new state to match with the
1445 * current variables. This should be called whenever variables used by the EAP
1446 * state machine have changed.
1447 */
1448int eap_peer_sm_step(struct eap_sm *sm)
1449{
1450	int res = 0;
1451	do {
1452		sm->changed = FALSE;
1453		SM_STEP_RUN(EAP);
1454		if (sm->changed)
1455			res = 1;
1456	} while (sm->changed);
1457	return res;
1458}
1459
1460
1461/**
1462 * eap_sm_abort - Abort EAP authentication
1463 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1464 *
1465 * Release system resources that have been allocated for the authentication
1466 * session without fully deinitializing the EAP state machine.
1467 */
1468void eap_sm_abort(struct eap_sm *sm)
1469{
1470	wpabuf_free(sm->lastRespData);
1471	sm->lastRespData = NULL;
1472	wpabuf_free(sm->eapRespData);
1473	sm->eapRespData = NULL;
1474	os_free(sm->eapKeyData);
1475	sm->eapKeyData = NULL;
1476	os_free(sm->eapSessionId);
1477	sm->eapSessionId = NULL;
1478
1479	/* This is not clearly specified in the EAP statemachines draft, but
1480	 * it seems necessary to make sure that some of the EAPOL variables get
1481	 * cleared for the next authentication. */
1482	eapol_set_bool(sm, EAPOL_eapSuccess, FALSE);
1483}
1484
1485
1486#ifdef CONFIG_CTRL_IFACE
1487static const char * eap_sm_state_txt(int state)
1488{
1489	switch (state) {
1490	case EAP_INITIALIZE:
1491		return "INITIALIZE";
1492	case EAP_DISABLED:
1493		return "DISABLED";
1494	case EAP_IDLE:
1495		return "IDLE";
1496	case EAP_RECEIVED:
1497		return "RECEIVED";
1498	case EAP_GET_METHOD:
1499		return "GET_METHOD";
1500	case EAP_METHOD:
1501		return "METHOD";
1502	case EAP_SEND_RESPONSE:
1503		return "SEND_RESPONSE";
1504	case EAP_DISCARD:
1505		return "DISCARD";
1506	case EAP_IDENTITY:
1507		return "IDENTITY";
1508	case EAP_NOTIFICATION:
1509		return "NOTIFICATION";
1510	case EAP_RETRANSMIT:
1511		return "RETRANSMIT";
1512	case EAP_SUCCESS:
1513		return "SUCCESS";
1514	case EAP_FAILURE:
1515		return "FAILURE";
1516	default:
1517		return "UNKNOWN";
1518	}
1519}
1520#endif /* CONFIG_CTRL_IFACE */
1521
1522
1523#if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
1524static const char * eap_sm_method_state_txt(EapMethodState state)
1525{
1526	switch (state) {
1527	case METHOD_NONE:
1528		return "NONE";
1529	case METHOD_INIT:
1530		return "INIT";
1531	case METHOD_CONT:
1532		return "CONT";
1533	case METHOD_MAY_CONT:
1534		return "MAY_CONT";
1535	case METHOD_DONE:
1536		return "DONE";
1537	default:
1538		return "UNKNOWN";
1539	}
1540}
1541
1542
1543static const char * eap_sm_decision_txt(EapDecision decision)
1544{
1545	switch (decision) {
1546	case DECISION_FAIL:
1547		return "FAIL";
1548	case DECISION_COND_SUCC:
1549		return "COND_SUCC";
1550	case DECISION_UNCOND_SUCC:
1551		return "UNCOND_SUCC";
1552	default:
1553		return "UNKNOWN";
1554	}
1555}
1556#endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
1557
1558
1559#ifdef CONFIG_CTRL_IFACE
1560
1561/**
1562 * eap_sm_get_status - Get EAP state machine status
1563 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1564 * @buf: Buffer for status information
1565 * @buflen: Maximum buffer length
1566 * @verbose: Whether to include verbose status information
1567 * Returns: Number of bytes written to buf.
1568 *
1569 * Query EAP state machine for status information. This function fills in a
1570 * text area with current status information from the EAPOL state machine. If
1571 * the buffer (buf) is not large enough, status information will be truncated
1572 * to fit the buffer.
1573 */
1574int eap_sm_get_status(struct eap_sm *sm, char *buf, size_t buflen, int verbose)
1575{
1576	int len, ret;
1577
1578	if (sm == NULL)
1579		return 0;
1580
1581	len = os_snprintf(buf, buflen,
1582			  "EAP state=%s\n",
1583			  eap_sm_state_txt(sm->EAP_state));
1584	if (len < 0 || (size_t) len >= buflen)
1585		return 0;
1586
1587	if (sm->selectedMethod != EAP_TYPE_NONE) {
1588		const char *name;
1589		if (sm->m) {
1590			name = sm->m->name;
1591		} else {
1592			const struct eap_method *m =
1593				eap_peer_get_eap_method(EAP_VENDOR_IETF,
1594							sm->selectedMethod);
1595			if (m)
1596				name = m->name;
1597			else
1598				name = "?";
1599		}
1600		ret = os_snprintf(buf + len, buflen - len,
1601				  "selectedMethod=%d (EAP-%s)\n",
1602				  sm->selectedMethod, name);
1603		if (ret < 0 || (size_t) ret >= buflen - len)
1604			return len;
1605		len += ret;
1606
1607		if (sm->m && sm->m->get_status) {
1608			len += sm->m->get_status(sm, sm->eap_method_priv,
1609						 buf + len, buflen - len,
1610						 verbose);
1611		}
1612	}
1613
1614	if (verbose) {
1615		ret = os_snprintf(buf + len, buflen - len,
1616				  "reqMethod=%d\n"
1617				  "methodState=%s\n"
1618				  "decision=%s\n"
1619				  "ClientTimeout=%d\n",
1620				  sm->reqMethod,
1621				  eap_sm_method_state_txt(sm->methodState),
1622				  eap_sm_decision_txt(sm->decision),
1623				  sm->ClientTimeout);
1624		if (ret < 0 || (size_t) ret >= buflen - len)
1625			return len;
1626		len += ret;
1627	}
1628
1629	return len;
1630}
1631#endif /* CONFIG_CTRL_IFACE */
1632
1633
1634#if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
1635static void eap_sm_request(struct eap_sm *sm, enum wpa_ctrl_req_type field,
1636			   const char *msg, size_t msglen)
1637{
1638	struct eap_peer_config *config;
1639	char *txt = NULL, *tmp;
1640
1641	if (sm == NULL)
1642		return;
1643	config = eap_get_config(sm);
1644	if (config == NULL)
1645		return;
1646
1647	switch (field) {
1648	case WPA_CTRL_REQ_EAP_IDENTITY:
1649		config->pending_req_identity++;
1650		break;
1651	case WPA_CTRL_REQ_EAP_PASSWORD:
1652		config->pending_req_password++;
1653		break;
1654	case WPA_CTRL_REQ_EAP_NEW_PASSWORD:
1655		config->pending_req_new_password++;
1656		break;
1657	case WPA_CTRL_REQ_EAP_PIN:
1658		config->pending_req_pin++;
1659		break;
1660	case WPA_CTRL_REQ_EAP_OTP:
1661		if (msg) {
1662			tmp = os_malloc(msglen + 3);
1663			if (tmp == NULL)
1664				return;
1665			tmp[0] = '[';
1666			os_memcpy(tmp + 1, msg, msglen);
1667			tmp[msglen + 1] = ']';
1668			tmp[msglen + 2] = '\0';
1669			txt = tmp;
1670			os_free(config->pending_req_otp);
1671			config->pending_req_otp = tmp;
1672			config->pending_req_otp_len = msglen + 3;
1673		} else {
1674			if (config->pending_req_otp == NULL)
1675				return;
1676			txt = config->pending_req_otp;
1677		}
1678		break;
1679	case WPA_CTRL_REQ_EAP_PASSPHRASE:
1680		config->pending_req_passphrase++;
1681		break;
1682	default:
1683		return;
1684	}
1685
1686	if (sm->eapol_cb->eap_param_needed)
1687		sm->eapol_cb->eap_param_needed(sm->eapol_ctx, field, txt);
1688}
1689#else /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
1690#define eap_sm_request(sm, type, msg, msglen) do { } while (0)
1691#endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
1692
1693const char * eap_sm_get_method_name(struct eap_sm *sm)
1694{
1695	if (sm->m == NULL)
1696		return "UNKNOWN";
1697	return sm->m->name;
1698}
1699
1700
1701/**
1702 * eap_sm_request_identity - Request identity from user (ctrl_iface)
1703 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1704 *
1705 * EAP methods can call this function to request identity information for the
1706 * current network. This is normally called when the identity is not included
1707 * in the network configuration. The request will be sent to monitor programs
1708 * through the control interface.
1709 */
1710void eap_sm_request_identity(struct eap_sm *sm)
1711{
1712	eap_sm_request(sm, WPA_CTRL_REQ_EAP_IDENTITY, NULL, 0);
1713}
1714
1715
1716/**
1717 * eap_sm_request_password - Request password from user (ctrl_iface)
1718 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1719 *
1720 * EAP methods can call this function to request password information for the
1721 * current network. This is normally called when the password is not included
1722 * in the network configuration. The request will be sent to monitor programs
1723 * through the control interface.
1724 */
1725void eap_sm_request_password(struct eap_sm *sm)
1726{
1727	eap_sm_request(sm, WPA_CTRL_REQ_EAP_PASSWORD, NULL, 0);
1728}
1729
1730
1731/**
1732 * eap_sm_request_new_password - Request new password from user (ctrl_iface)
1733 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1734 *
1735 * EAP methods can call this function to request new password information for
1736 * the current network. This is normally called when the EAP method indicates
1737 * that the current password has expired and password change is required. The
1738 * request will be sent to monitor programs through the control interface.
1739 */
1740void eap_sm_request_new_password(struct eap_sm *sm)
1741{
1742	eap_sm_request(sm, WPA_CTRL_REQ_EAP_NEW_PASSWORD, NULL, 0);
1743}
1744
1745
1746/**
1747 * eap_sm_request_pin - Request SIM or smart card PIN from user (ctrl_iface)
1748 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1749 *
1750 * EAP methods can call this function to request SIM or smart card PIN
1751 * information for the current network. This is normally called when the PIN is
1752 * not included in the network configuration. The request will be sent to
1753 * monitor programs through the control interface.
1754 */
1755void eap_sm_request_pin(struct eap_sm *sm)
1756{
1757	eap_sm_request(sm, WPA_CTRL_REQ_EAP_PIN, NULL, 0);
1758}
1759
1760
1761/**
1762 * eap_sm_request_otp - Request one time password from user (ctrl_iface)
1763 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1764 * @msg: Message to be displayed to the user when asking for OTP
1765 * @msg_len: Length of the user displayable message
1766 *
1767 * EAP methods can call this function to request open time password (OTP) for
1768 * the current network. The request will be sent to monitor programs through
1769 * the control interface.
1770 */
1771void eap_sm_request_otp(struct eap_sm *sm, const char *msg, size_t msg_len)
1772{
1773	eap_sm_request(sm, WPA_CTRL_REQ_EAP_OTP, msg, msg_len);
1774}
1775
1776
1777/**
1778 * eap_sm_request_passphrase - Request passphrase from user (ctrl_iface)
1779 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1780 *
1781 * EAP methods can call this function to request passphrase for a private key
1782 * for the current network. This is normally called when the passphrase is not
1783 * included in the network configuration. The request will be sent to monitor
1784 * programs through the control interface.
1785 */
1786void eap_sm_request_passphrase(struct eap_sm *sm)
1787{
1788	eap_sm_request(sm, WPA_CTRL_REQ_EAP_PASSPHRASE, NULL, 0);
1789}
1790
1791
1792/**
1793 * eap_sm_notify_ctrl_attached - Notification of attached monitor
1794 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1795 *
1796 * Notify EAP state machines that a monitor was attached to the control
1797 * interface to trigger re-sending of pending requests for user input.
1798 */
1799void eap_sm_notify_ctrl_attached(struct eap_sm *sm)
1800{
1801	struct eap_peer_config *config = eap_get_config(sm);
1802
1803	if (config == NULL)
1804		return;
1805
1806	/* Re-send any pending requests for user data since a new control
1807	 * interface was added. This handles cases where the EAP authentication
1808	 * starts immediately after system startup when the user interface is
1809	 * not yet running. */
1810	if (config->pending_req_identity)
1811		eap_sm_request_identity(sm);
1812	if (config->pending_req_password)
1813		eap_sm_request_password(sm);
1814	if (config->pending_req_new_password)
1815		eap_sm_request_new_password(sm);
1816	if (config->pending_req_otp)
1817		eap_sm_request_otp(sm, NULL, 0);
1818	if (config->pending_req_pin)
1819		eap_sm_request_pin(sm);
1820	if (config->pending_req_passphrase)
1821		eap_sm_request_passphrase(sm);
1822}
1823
1824
1825static int eap_allowed_phase2_type(int vendor, int type)
1826{
1827	if (vendor != EAP_VENDOR_IETF)
1828		return 0;
1829	return type != EAP_TYPE_PEAP && type != EAP_TYPE_TTLS &&
1830		type != EAP_TYPE_FAST;
1831}
1832
1833
1834/**
1835 * eap_get_phase2_type - Get EAP type for the given EAP phase 2 method name
1836 * @name: EAP method name, e.g., MD5
1837 * @vendor: Buffer for returning EAP Vendor-Id
1838 * Returns: EAP method type or %EAP_TYPE_NONE if not found
1839 *
1840 * This function maps EAP type names into EAP type numbers that are allowed for
1841 * Phase 2, i.e., for tunneled authentication. Phase 2 is used, e.g., with
1842 * EAP-PEAP, EAP-TTLS, and EAP-FAST.
1843 */
1844u32 eap_get_phase2_type(const char *name, int *vendor)
1845{
1846	int v;
1847	u8 type = eap_peer_get_type(name, &v);
1848	if (eap_allowed_phase2_type(v, type)) {
1849		*vendor = v;
1850		return type;
1851	}
1852	*vendor = EAP_VENDOR_IETF;
1853	return EAP_TYPE_NONE;
1854}
1855
1856
1857/**
1858 * eap_get_phase2_types - Get list of allowed EAP phase 2 types
1859 * @config: Pointer to a network configuration
1860 * @count: Pointer to a variable to be filled with number of returned EAP types
1861 * Returns: Pointer to allocated type list or %NULL on failure
1862 *
1863 * This function generates an array of allowed EAP phase 2 (tunneled) types for
1864 * the given network configuration.
1865 */
1866struct eap_method_type * eap_get_phase2_types(struct eap_peer_config *config,
1867					      size_t *count)
1868{
1869	struct eap_method_type *buf;
1870	u32 method;
1871	int vendor;
1872	size_t mcount;
1873	const struct eap_method *methods, *m;
1874
1875	methods = eap_peer_get_methods(&mcount);
1876	if (methods == NULL)
1877		return NULL;
1878	*count = 0;
1879	buf = os_malloc(mcount * sizeof(struct eap_method_type));
1880	if (buf == NULL)
1881		return NULL;
1882
1883	for (m = methods; m; m = m->next) {
1884		vendor = m->vendor;
1885		method = m->method;
1886		if (eap_allowed_phase2_type(vendor, method)) {
1887			if (vendor == EAP_VENDOR_IETF &&
1888			    method == EAP_TYPE_TLS && config &&
1889			    config->private_key2 == NULL)
1890				continue;
1891			buf[*count].vendor = vendor;
1892			buf[*count].method = method;
1893			(*count)++;
1894		}
1895	}
1896
1897	return buf;
1898}
1899
1900
1901/**
1902 * eap_set_fast_reauth - Update fast_reauth setting
1903 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1904 * @enabled: 1 = Fast reauthentication is enabled, 0 = Disabled
1905 */
1906void eap_set_fast_reauth(struct eap_sm *sm, int enabled)
1907{
1908	sm->fast_reauth = enabled;
1909}
1910
1911
1912/**
1913 * eap_set_workaround - Update EAP workarounds setting
1914 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1915 * @workaround: 1 = Enable EAP workarounds, 0 = Disable EAP workarounds
1916 */
1917void eap_set_workaround(struct eap_sm *sm, unsigned int workaround)
1918{
1919	sm->workaround = workaround;
1920}
1921
1922
1923/**
1924 * eap_get_config - Get current network configuration
1925 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1926 * Returns: Pointer to the current network configuration or %NULL if not found
1927 *
1928 * EAP peer methods should avoid using this function if they can use other
1929 * access functions, like eap_get_config_identity() and
1930 * eap_get_config_password(), that do not require direct access to
1931 * struct eap_peer_config.
1932 */
1933struct eap_peer_config * eap_get_config(struct eap_sm *sm)
1934{
1935	return sm->eapol_cb->get_config(sm->eapol_ctx);
1936}
1937
1938
1939/**
1940 * eap_get_config_identity - Get identity from the network configuration
1941 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1942 * @len: Buffer for the length of the identity
1943 * Returns: Pointer to the identity or %NULL if not found
1944 */
1945const u8 * eap_get_config_identity(struct eap_sm *sm, size_t *len)
1946{
1947	struct eap_peer_config *config = eap_get_config(sm);
1948	if (config == NULL)
1949		return NULL;
1950	*len = config->identity_len;
1951	return config->identity;
1952}
1953
1954
1955static int eap_get_ext_password(struct eap_sm *sm,
1956				struct eap_peer_config *config)
1957{
1958	char *name;
1959
1960	if (config->password == NULL)
1961		return -1;
1962
1963	name = os_zalloc(config->password_len + 1);
1964	if (name == NULL)
1965		return -1;
1966	os_memcpy(name, config->password, config->password_len);
1967
1968	ext_password_free(sm->ext_pw_buf);
1969	sm->ext_pw_buf = ext_password_get(sm->ext_pw, name);
1970	os_free(name);
1971
1972	return sm->ext_pw_buf == NULL ? -1 : 0;
1973}
1974
1975
1976/**
1977 * eap_get_config_password - Get password from the network configuration
1978 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1979 * @len: Buffer for the length of the password
1980 * Returns: Pointer to the password or %NULL if not found
1981 */
1982const u8 * eap_get_config_password(struct eap_sm *sm, size_t *len)
1983{
1984	struct eap_peer_config *config = eap_get_config(sm);
1985	if (config == NULL)
1986		return NULL;
1987
1988	if (config->flags & EAP_CONFIG_FLAGS_EXT_PASSWORD) {
1989		if (eap_get_ext_password(sm, config) < 0)
1990			return NULL;
1991		*len = wpabuf_len(sm->ext_pw_buf);
1992		return wpabuf_head(sm->ext_pw_buf);
1993	}
1994
1995	*len = config->password_len;
1996	return config->password;
1997}
1998
1999
2000/**
2001 * eap_get_config_password2 - Get password from the network configuration
2002 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2003 * @len: Buffer for the length of the password
2004 * @hash: Buffer for returning whether the password is stored as a
2005 * NtPasswordHash instead of plaintext password; can be %NULL if this
2006 * information is not needed
2007 * Returns: Pointer to the password or %NULL if not found
2008 */
2009const u8 * eap_get_config_password2(struct eap_sm *sm, size_t *len, int *hash)
2010{
2011	struct eap_peer_config *config = eap_get_config(sm);
2012	if (config == NULL)
2013		return NULL;
2014
2015	if (config->flags & EAP_CONFIG_FLAGS_EXT_PASSWORD) {
2016		if (eap_get_ext_password(sm, config) < 0)
2017			return NULL;
2018		*len = wpabuf_len(sm->ext_pw_buf);
2019		return wpabuf_head(sm->ext_pw_buf);
2020	}
2021
2022	*len = config->password_len;
2023	if (hash)
2024		*hash = !!(config->flags & EAP_CONFIG_FLAGS_PASSWORD_NTHASH);
2025	return config->password;
2026}
2027
2028
2029/**
2030 * eap_get_config_new_password - Get new password from network configuration
2031 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2032 * @len: Buffer for the length of the new password
2033 * Returns: Pointer to the new password or %NULL if not found
2034 */
2035const u8 * eap_get_config_new_password(struct eap_sm *sm, size_t *len)
2036{
2037	struct eap_peer_config *config = eap_get_config(sm);
2038	if (config == NULL)
2039		return NULL;
2040	*len = config->new_password_len;
2041	return config->new_password;
2042}
2043
2044
2045/**
2046 * eap_get_config_otp - Get one-time password from the network configuration
2047 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2048 * @len: Buffer for the length of the one-time password
2049 * Returns: Pointer to the one-time password or %NULL if not found
2050 */
2051const u8 * eap_get_config_otp(struct eap_sm *sm, size_t *len)
2052{
2053	struct eap_peer_config *config = eap_get_config(sm);
2054	if (config == NULL)
2055		return NULL;
2056	*len = config->otp_len;
2057	return config->otp;
2058}
2059
2060
2061/**
2062 * eap_clear_config_otp - Clear used one-time password
2063 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2064 *
2065 * This function clears a used one-time password (OTP) from the current network
2066 * configuration. This should be called when the OTP has been used and is not
2067 * needed anymore.
2068 */
2069void eap_clear_config_otp(struct eap_sm *sm)
2070{
2071	struct eap_peer_config *config = eap_get_config(sm);
2072	if (config == NULL)
2073		return;
2074	os_memset(config->otp, 0, config->otp_len);
2075	os_free(config->otp);
2076	config->otp = NULL;
2077	config->otp_len = 0;
2078}
2079
2080
2081/**
2082 * eap_get_config_phase1 - Get phase1 data from the network configuration
2083 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2084 * Returns: Pointer to the phase1 data or %NULL if not found
2085 */
2086const char * eap_get_config_phase1(struct eap_sm *sm)
2087{
2088	struct eap_peer_config *config = eap_get_config(sm);
2089	if (config == NULL)
2090		return NULL;
2091	return config->phase1;
2092}
2093
2094
2095/**
2096 * eap_get_config_phase2 - Get phase2 data from the network configuration
2097 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2098 * Returns: Pointer to the phase1 data or %NULL if not found
2099 */
2100const char * eap_get_config_phase2(struct eap_sm *sm)
2101{
2102	struct eap_peer_config *config = eap_get_config(sm);
2103	if (config == NULL)
2104		return NULL;
2105	return config->phase2;
2106}
2107
2108
2109int eap_get_config_fragment_size(struct eap_sm *sm)
2110{
2111	struct eap_peer_config *config = eap_get_config(sm);
2112	if (config == NULL)
2113		return -1;
2114	return config->fragment_size;
2115}
2116
2117
2118/**
2119 * eap_key_available - Get key availability (eapKeyAvailable variable)
2120 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2121 * Returns: 1 if EAP keying material is available, 0 if not
2122 */
2123int eap_key_available(struct eap_sm *sm)
2124{
2125	return sm ? sm->eapKeyAvailable : 0;
2126}
2127
2128
2129/**
2130 * eap_notify_success - Notify EAP state machine about external success trigger
2131 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2132 *
2133 * This function is called when external event, e.g., successful completion of
2134 * WPA-PSK key handshake, is indicating that EAP state machine should move to
2135 * success state. This is mainly used with security modes that do not use EAP
2136 * state machine (e.g., WPA-PSK).
2137 */
2138void eap_notify_success(struct eap_sm *sm)
2139{
2140	if (sm) {
2141		sm->decision = DECISION_COND_SUCC;
2142		sm->EAP_state = EAP_SUCCESS;
2143	}
2144}
2145
2146
2147/**
2148 * eap_notify_lower_layer_success - Notification of lower layer success
2149 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2150 *
2151 * Notify EAP state machines that a lower layer has detected a successful
2152 * authentication. This is used to recover from dropped EAP-Success messages.
2153 */
2154void eap_notify_lower_layer_success(struct eap_sm *sm)
2155{
2156	if (sm == NULL)
2157		return;
2158
2159	if (eapol_get_bool(sm, EAPOL_eapSuccess) ||
2160	    sm->decision == DECISION_FAIL ||
2161	    (sm->methodState != METHOD_MAY_CONT &&
2162	     sm->methodState != METHOD_DONE))
2163		return;
2164
2165	if (sm->eapKeyData != NULL)
2166		sm->eapKeyAvailable = TRUE;
2167	eapol_set_bool(sm, EAPOL_eapSuccess, TRUE);
2168	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
2169		"EAP authentication completed successfully (based on lower "
2170		"layer success)");
2171}
2172
2173
2174/**
2175 * eap_get_eapSessionId - Get Session-Id from EAP state machine
2176 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2177 * @len: Pointer to variable that will be set to number of bytes in the session
2178 * Returns: Pointer to the EAP Session-Id or %NULL on failure
2179 *
2180 * Fetch EAP Session-Id from the EAP state machine. The Session-Id is available
2181 * only after a successful authentication. EAP state machine continues to manage
2182 * the Session-Id and the caller must not change or free the returned data.
2183 */
2184const u8 * eap_get_eapSessionId(struct eap_sm *sm, size_t *len)
2185{
2186	if (sm == NULL || sm->eapSessionId == NULL) {
2187		*len = 0;
2188		return NULL;
2189	}
2190
2191	*len = sm->eapSessionIdLen;
2192	return sm->eapSessionId;
2193}
2194
2195
2196/**
2197 * eap_get_eapKeyData - Get master session key (MSK) from EAP state machine
2198 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2199 * @len: Pointer to variable that will be set to number of bytes in the key
2200 * Returns: Pointer to the EAP keying data or %NULL on failure
2201 *
2202 * Fetch EAP keying material (MSK, eapKeyData) from the EAP state machine. The
2203 * key is available only after a successful authentication. EAP state machine
2204 * continues to manage the key data and the caller must not change or free the
2205 * returned data.
2206 */
2207const u8 * eap_get_eapKeyData(struct eap_sm *sm, size_t *len)
2208{
2209	if (sm == NULL || sm->eapKeyData == NULL) {
2210		*len = 0;
2211		return NULL;
2212	}
2213
2214	*len = sm->eapKeyDataLen;
2215	return sm->eapKeyData;
2216}
2217
2218
2219/**
2220 * eap_get_eapKeyData - Get EAP response data
2221 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2222 * Returns: Pointer to the EAP response (eapRespData) or %NULL on failure
2223 *
2224 * Fetch EAP response (eapRespData) from the EAP state machine. This data is
2225 * available when EAP state machine has processed an incoming EAP request. The
2226 * EAP state machine does not maintain a reference to the response after this
2227 * function is called and the caller is responsible for freeing the data.
2228 */
2229struct wpabuf * eap_get_eapRespData(struct eap_sm *sm)
2230{
2231	struct wpabuf *resp;
2232
2233	if (sm == NULL || sm->eapRespData == NULL)
2234		return NULL;
2235
2236	resp = sm->eapRespData;
2237	sm->eapRespData = NULL;
2238
2239	return resp;
2240}
2241
2242
2243/**
2244 * eap_sm_register_scard_ctx - Notification of smart card context
2245 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2246 * @ctx: Context data for smart card operations
2247 *
2248 * Notify EAP state machines of context data for smart card operations. This
2249 * context data will be used as a parameter for scard_*() functions.
2250 */
2251void eap_register_scard_ctx(struct eap_sm *sm, void *ctx)
2252{
2253	if (sm)
2254		sm->scard_ctx = ctx;
2255}
2256
2257
2258/**
2259 * eap_set_config_blob - Set or add a named configuration blob
2260 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2261 * @blob: New value for the blob
2262 *
2263 * Adds a new configuration blob or replaces the current value of an existing
2264 * blob.
2265 */
2266void eap_set_config_blob(struct eap_sm *sm, struct wpa_config_blob *blob)
2267{
2268#ifndef CONFIG_NO_CONFIG_BLOBS
2269	sm->eapol_cb->set_config_blob(sm->eapol_ctx, blob);
2270#endif /* CONFIG_NO_CONFIG_BLOBS */
2271}
2272
2273
2274/**
2275 * eap_get_config_blob - Get a named configuration blob
2276 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2277 * @name: Name of the blob
2278 * Returns: Pointer to blob data or %NULL if not found
2279 */
2280const struct wpa_config_blob * eap_get_config_blob(struct eap_sm *sm,
2281						   const char *name)
2282{
2283#ifndef CONFIG_NO_CONFIG_BLOBS
2284	return sm->eapol_cb->get_config_blob(sm->eapol_ctx, name);
2285#else /* CONFIG_NO_CONFIG_BLOBS */
2286	return NULL;
2287#endif /* CONFIG_NO_CONFIG_BLOBS */
2288}
2289
2290
2291/**
2292 * eap_set_force_disabled - Set force_disabled flag
2293 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2294 * @disabled: 1 = EAP disabled, 0 = EAP enabled
2295 *
2296 * This function is used to force EAP state machine to be disabled when it is
2297 * not in use (e.g., with WPA-PSK or plaintext connections).
2298 */
2299void eap_set_force_disabled(struct eap_sm *sm, int disabled)
2300{
2301	sm->force_disabled = disabled;
2302}
2303
2304
2305 /**
2306 * eap_notify_pending - Notify that EAP method is ready to re-process a request
2307 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2308 *
2309 * An EAP method can perform a pending operation (e.g., to get a response from
2310 * an external process). Once the response is available, this function can be
2311 * used to request EAPOL state machine to retry delivering the previously
2312 * received (and still unanswered) EAP request to EAP state machine.
2313 */
2314void eap_notify_pending(struct eap_sm *sm)
2315{
2316	sm->eapol_cb->notify_pending(sm->eapol_ctx);
2317}
2318
2319
2320/**
2321 * eap_invalidate_cached_session - Mark cached session data invalid
2322 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2323 */
2324void eap_invalidate_cached_session(struct eap_sm *sm)
2325{
2326	if (sm)
2327		eap_deinit_prev_method(sm, "invalidate");
2328}
2329
2330
2331int eap_is_wps_pbc_enrollee(struct eap_peer_config *conf)
2332{
2333	if (conf->identity_len != WSC_ID_ENROLLEE_LEN ||
2334	    os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN))
2335		return 0; /* Not a WPS Enrollee */
2336
2337	if (conf->phase1 == NULL || os_strstr(conf->phase1, "pbc=1") == NULL)
2338		return 0; /* Not using PBC */
2339
2340	return 1;
2341}
2342
2343
2344int eap_is_wps_pin_enrollee(struct eap_peer_config *conf)
2345{
2346	if (conf->identity_len != WSC_ID_ENROLLEE_LEN ||
2347	    os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN))
2348		return 0; /* Not a WPS Enrollee */
2349
2350	if (conf->phase1 == NULL || os_strstr(conf->phase1, "pin=") == NULL)
2351		return 0; /* Not using PIN */
2352
2353	return 1;
2354}
2355
2356
2357void eap_sm_set_ext_pw_ctx(struct eap_sm *sm, struct ext_password_data *ext)
2358{
2359	ext_password_free(sm->ext_pw_buf);
2360	sm->ext_pw_buf = NULL;
2361	sm->ext_pw = ext;
2362}
2363
2364
2365/**
2366 * eap_set_anon_id - Set or add anonymous identity
2367 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2368 * @id: Anonymous identity (e.g., EAP-SIM pseudonym) or %NULL to clear
2369 * @len: Length of anonymous identity in octets
2370 */
2371void eap_set_anon_id(struct eap_sm *sm, const u8 *id, size_t len)
2372{
2373	if (sm->eapol_cb->set_anon_id)
2374		sm->eapol_cb->set_anon_id(sm->eapol_ctx, id, len);
2375}
2376