AudioTrack.cpp revision ad2e7b902c0432a0db40906a4b1f5b693ce439dd
1/*
2**
3** Copyright 2007, The Android Open Source Project
4**
5** Licensed under the Apache License, Version 2.0 (the "License");
6** you may not use this file except in compliance with the License.
7** You may obtain a copy of the License at
8**
9**     http://www.apache.org/licenses/LICENSE-2.0
10**
11** Unless required by applicable law or agreed to in writing, software
12** distributed under the License is distributed on an "AS IS" BASIS,
13** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14** See the License for the specific language governing permissions and
15** limitations under the License.
16*/
17
18//#define LOG_NDEBUG 0
19#define LOG_TAG "AudioTrack"
20
21#include <inttypes.h>
22#include <math.h>
23#include <sys/resource.h>
24
25#include <audio_utils/clock.h>
26#include <audio_utils/primitives.h>
27#include <binder/IPCThreadState.h>
28#include <media/AudioTrack.h>
29#include <utils/Log.h>
30#include <private/media/AudioTrackShared.h>
31#include <media/IAudioFlinger.h>
32#include <media/AudioPolicyHelper.h>
33#include <media/AudioResamplerPublic.h>
34
35#define WAIT_PERIOD_MS                  10
36#define WAIT_STREAM_END_TIMEOUT_SEC     120
37static const int kMaxLoopCountNotifications = 32;
38
39namespace android {
40// ---------------------------------------------------------------------------
41
42// TODO: Move to a separate .h
43
44template <typename T>
45static inline const T &min(const T &x, const T &y) {
46    return x < y ? x : y;
47}
48
49template <typename T>
50static inline const T &max(const T &x, const T &y) {
51    return x > y ? x : y;
52}
53
54static const int32_t NANOS_PER_SECOND = 1000000000;
55
56static inline nsecs_t framesToNanoseconds(ssize_t frames, uint32_t sampleRate, float speed)
57{
58    return ((double)frames * 1000000000) / ((double)sampleRate * speed);
59}
60
61static int64_t convertTimespecToUs(const struct timespec &tv)
62{
63    return tv.tv_sec * 1000000ll + tv.tv_nsec / 1000;
64}
65
66// TODO move to audio_utils.
67static inline struct timespec convertNsToTimespec(int64_t ns) {
68    struct timespec tv;
69    tv.tv_sec = static_cast<time_t>(ns / NANOS_PER_SECOND);
70    tv.tv_nsec = static_cast<long>(ns % NANOS_PER_SECOND);
71    return tv;
72}
73
74// current monotonic time in microseconds.
75static int64_t getNowUs()
76{
77    struct timespec tv;
78    (void) clock_gettime(CLOCK_MONOTONIC, &tv);
79    return convertTimespecToUs(tv);
80}
81
82// FIXME: we don't use the pitch setting in the time stretcher (not working);
83// instead we emulate it using our sample rate converter.
84static const bool kFixPitch = true; // enable pitch fix
85static inline uint32_t adjustSampleRate(uint32_t sampleRate, float pitch)
86{
87    return kFixPitch ? (sampleRate * pitch + 0.5) : sampleRate;
88}
89
90static inline float adjustSpeed(float speed, float pitch)
91{
92    return kFixPitch ? speed / max(pitch, AUDIO_TIMESTRETCH_PITCH_MIN_DELTA) : speed;
93}
94
95static inline float adjustPitch(float pitch)
96{
97    return kFixPitch ? AUDIO_TIMESTRETCH_PITCH_NORMAL : pitch;
98}
99
100// Must match similar computation in createTrack_l in Threads.cpp.
101// TODO: Move to a common library
102static size_t calculateMinFrameCount(
103        uint32_t afLatencyMs, uint32_t afFrameCount, uint32_t afSampleRate,
104        uint32_t sampleRate, float speed /*, uint32_t notificationsPerBufferReq*/)
105{
106    // Ensure that buffer depth covers at least audio hardware latency
107    uint32_t minBufCount = afLatencyMs / ((1000 * afFrameCount) / afSampleRate);
108    if (minBufCount < 2) {
109        minBufCount = 2;
110    }
111#if 0
112    // The notificationsPerBufferReq parameter is not yet used for non-fast tracks,
113    // but keeping the code here to make it easier to add later.
114    if (minBufCount < notificationsPerBufferReq) {
115        minBufCount = notificationsPerBufferReq;
116    }
117#endif
118    ALOGV("calculateMinFrameCount afLatency %u  afFrameCount %u  afSampleRate %u  "
119            "sampleRate %u  speed %f  minBufCount: %u" /*"  notificationsPerBufferReq %u"*/,
120            afLatencyMs, afFrameCount, afSampleRate, sampleRate, speed, minBufCount
121            /*, notificationsPerBufferReq*/);
122    return minBufCount * sourceFramesNeededWithTimestretch(
123            sampleRate, afFrameCount, afSampleRate, speed);
124}
125
126// static
127status_t AudioTrack::getMinFrameCount(
128        size_t* frameCount,
129        audio_stream_type_t streamType,
130        uint32_t sampleRate)
131{
132    if (frameCount == NULL) {
133        return BAD_VALUE;
134    }
135
136    // FIXME handle in server, like createTrack_l(), possible missing info:
137    //          audio_io_handle_t output
138    //          audio_format_t format
139    //          audio_channel_mask_t channelMask
140    //          audio_output_flags_t flags (FAST)
141    uint32_t afSampleRate;
142    status_t status;
143    status = AudioSystem::getOutputSamplingRate(&afSampleRate, streamType);
144    if (status != NO_ERROR) {
145        ALOGE("Unable to query output sample rate for stream type %d; status %d",
146                streamType, status);
147        return status;
148    }
149    size_t afFrameCount;
150    status = AudioSystem::getOutputFrameCount(&afFrameCount, streamType);
151    if (status != NO_ERROR) {
152        ALOGE("Unable to query output frame count for stream type %d; status %d",
153                streamType, status);
154        return status;
155    }
156    uint32_t afLatency;
157    status = AudioSystem::getOutputLatency(&afLatency, streamType);
158    if (status != NO_ERROR) {
159        ALOGE("Unable to query output latency for stream type %d; status %d",
160                streamType, status);
161        return status;
162    }
163
164    // When called from createTrack, speed is 1.0f (normal speed).
165    // This is rechecked again on setting playback rate (TODO: on setting sample rate, too).
166    *frameCount = calculateMinFrameCount(afLatency, afFrameCount, afSampleRate, sampleRate, 1.0f
167            /*, 0 notificationsPerBufferReq*/);
168
169    // The formula above should always produce a non-zero value under normal circumstances:
170    // AudioTrack.SAMPLE_RATE_HZ_MIN <= sampleRate <= AudioTrack.SAMPLE_RATE_HZ_MAX.
171    // Return error in the unlikely event that it does not, as that's part of the API contract.
172    if (*frameCount == 0) {
173        ALOGE("AudioTrack::getMinFrameCount failed for streamType %d, sampleRate %u",
174                streamType, sampleRate);
175        return BAD_VALUE;
176    }
177    ALOGV("getMinFrameCount=%zu: afFrameCount=%zu, afSampleRate=%u, afLatency=%u",
178            *frameCount, afFrameCount, afSampleRate, afLatency);
179    return NO_ERROR;
180}
181
182// ---------------------------------------------------------------------------
183
184AudioTrack::AudioTrack()
185    : mStatus(NO_INIT),
186      mState(STATE_STOPPED),
187      mPreviousPriority(ANDROID_PRIORITY_NORMAL),
188      mPreviousSchedulingGroup(SP_DEFAULT),
189      mPausedPosition(0),
190      mSelectedDeviceId(AUDIO_PORT_HANDLE_NONE),
191      mRoutedDeviceId(AUDIO_PORT_HANDLE_NONE),
192      mPortId(AUDIO_PORT_HANDLE_NONE)
193{
194    mAttributes.content_type = AUDIO_CONTENT_TYPE_UNKNOWN;
195    mAttributes.usage = AUDIO_USAGE_UNKNOWN;
196    mAttributes.flags = 0x0;
197    strcpy(mAttributes.tags, "");
198}
199
200AudioTrack::AudioTrack(
201        audio_stream_type_t streamType,
202        uint32_t sampleRate,
203        audio_format_t format,
204        audio_channel_mask_t channelMask,
205        size_t frameCount,
206        audio_output_flags_t flags,
207        callback_t cbf,
208        void* user,
209        int32_t notificationFrames,
210        audio_session_t sessionId,
211        transfer_type transferType,
212        const audio_offload_info_t *offloadInfo,
213        uid_t uid,
214        pid_t pid,
215        const audio_attributes_t* pAttributes,
216        bool doNotReconnect,
217        float maxRequiredSpeed)
218    : mStatus(NO_INIT),
219      mState(STATE_STOPPED),
220      mPreviousPriority(ANDROID_PRIORITY_NORMAL),
221      mPreviousSchedulingGroup(SP_DEFAULT),
222      mPausedPosition(0),
223      mSelectedDeviceId(AUDIO_PORT_HANDLE_NONE),
224      mPortId(AUDIO_PORT_HANDLE_NONE)
225{
226    mStatus = set(streamType, sampleRate, format, channelMask,
227            frameCount, flags, cbf, user, notificationFrames,
228            0 /*sharedBuffer*/, false /*threadCanCallJava*/, sessionId, transferType,
229            offloadInfo, uid, pid, pAttributes, doNotReconnect, maxRequiredSpeed);
230}
231
232AudioTrack::AudioTrack(
233        audio_stream_type_t streamType,
234        uint32_t sampleRate,
235        audio_format_t format,
236        audio_channel_mask_t channelMask,
237        const sp<IMemory>& sharedBuffer,
238        audio_output_flags_t flags,
239        callback_t cbf,
240        void* user,
241        int32_t notificationFrames,
242        audio_session_t sessionId,
243        transfer_type transferType,
244        const audio_offload_info_t *offloadInfo,
245        uid_t uid,
246        pid_t pid,
247        const audio_attributes_t* pAttributes,
248        bool doNotReconnect,
249        float maxRequiredSpeed)
250    : mStatus(NO_INIT),
251      mState(STATE_STOPPED),
252      mPreviousPriority(ANDROID_PRIORITY_NORMAL),
253      mPreviousSchedulingGroup(SP_DEFAULT),
254      mPausedPosition(0),
255      mSelectedDeviceId(AUDIO_PORT_HANDLE_NONE),
256      mPortId(AUDIO_PORT_HANDLE_NONE)
257{
258    mStatus = set(streamType, sampleRate, format, channelMask,
259            0 /*frameCount*/, flags, cbf, user, notificationFrames,
260            sharedBuffer, false /*threadCanCallJava*/, sessionId, transferType, offloadInfo,
261            uid, pid, pAttributes, doNotReconnect, maxRequiredSpeed);
262}
263
264AudioTrack::~AudioTrack()
265{
266    if (mStatus == NO_ERROR) {
267        // Make sure that callback function exits in the case where
268        // it is looping on buffer full condition in obtainBuffer().
269        // Otherwise the callback thread will never exit.
270        stop();
271        if (mAudioTrackThread != 0) {
272            mProxy->interrupt();
273            mAudioTrackThread->requestExit();   // see comment in AudioTrack.h
274            mAudioTrackThread->requestExitAndWait();
275            mAudioTrackThread.clear();
276        }
277        // No lock here: worst case we remove a NULL callback which will be a nop
278        if (mDeviceCallback != 0 && mOutput != AUDIO_IO_HANDLE_NONE) {
279            AudioSystem::removeAudioDeviceCallback(this, mOutput);
280        }
281        IInterface::asBinder(mAudioTrack)->unlinkToDeath(mDeathNotifier, this);
282        mAudioTrack.clear();
283        mCblkMemory.clear();
284        mSharedBuffer.clear();
285        IPCThreadState::self()->flushCommands();
286        ALOGV("~AudioTrack, releasing session id %d from %d on behalf of %d",
287                mSessionId, IPCThreadState::self()->getCallingPid(), mClientPid);
288        AudioSystem::releaseAudioSessionId(mSessionId, mClientPid);
289    }
290}
291
292status_t AudioTrack::set(
293        audio_stream_type_t streamType,
294        uint32_t sampleRate,
295        audio_format_t format,
296        audio_channel_mask_t channelMask,
297        size_t frameCount,
298        audio_output_flags_t flags,
299        callback_t cbf,
300        void* user,
301        int32_t notificationFrames,
302        const sp<IMemory>& sharedBuffer,
303        bool threadCanCallJava,
304        audio_session_t sessionId,
305        transfer_type transferType,
306        const audio_offload_info_t *offloadInfo,
307        uid_t uid,
308        pid_t pid,
309        const audio_attributes_t* pAttributes,
310        bool doNotReconnect,
311        float maxRequiredSpeed)
312{
313    ALOGV("set(): streamType %d, sampleRate %u, format %#x, channelMask %#x, frameCount %zu, "
314          "flags #%x, notificationFrames %d, sessionId %d, transferType %d, uid %d, pid %d",
315          streamType, sampleRate, format, channelMask, frameCount, flags, notificationFrames,
316          sessionId, transferType, uid, pid);
317
318    mThreadCanCallJava = threadCanCallJava;
319
320    switch (transferType) {
321    case TRANSFER_DEFAULT:
322        if (sharedBuffer != 0) {
323            transferType = TRANSFER_SHARED;
324        } else if (cbf == NULL || threadCanCallJava) {
325            transferType = TRANSFER_SYNC;
326        } else {
327            transferType = TRANSFER_CALLBACK;
328        }
329        break;
330    case TRANSFER_CALLBACK:
331        if (cbf == NULL || sharedBuffer != 0) {
332            ALOGE("Transfer type TRANSFER_CALLBACK but cbf == NULL || sharedBuffer != 0");
333            return BAD_VALUE;
334        }
335        break;
336    case TRANSFER_OBTAIN:
337    case TRANSFER_SYNC:
338        if (sharedBuffer != 0) {
339            ALOGE("Transfer type TRANSFER_OBTAIN but sharedBuffer != 0");
340            return BAD_VALUE;
341        }
342        break;
343    case TRANSFER_SHARED:
344        if (sharedBuffer == 0) {
345            ALOGE("Transfer type TRANSFER_SHARED but sharedBuffer == 0");
346            return BAD_VALUE;
347        }
348        break;
349    default:
350        ALOGE("Invalid transfer type %d", transferType);
351        return BAD_VALUE;
352    }
353    mSharedBuffer = sharedBuffer;
354    mTransfer = transferType;
355    mDoNotReconnect = doNotReconnect;
356
357    ALOGV_IF(sharedBuffer != 0, "sharedBuffer: %p, size: %zu", sharedBuffer->pointer(),
358            sharedBuffer->size());
359
360    ALOGV("set() streamType %d frameCount %zu flags %04x", streamType, frameCount, flags);
361
362    // invariant that mAudioTrack != 0 is true only after set() returns successfully
363    if (mAudioTrack != 0) {
364        ALOGE("Track already in use");
365        return INVALID_OPERATION;
366    }
367
368    // handle default values first.
369    if (streamType == AUDIO_STREAM_DEFAULT) {
370        streamType = AUDIO_STREAM_MUSIC;
371    }
372    if (pAttributes == NULL) {
373        if (uint32_t(streamType) >= AUDIO_STREAM_PUBLIC_CNT) {
374            ALOGE("Invalid stream type %d", streamType);
375            return BAD_VALUE;
376        }
377        mStreamType = streamType;
378
379    } else {
380        // stream type shouldn't be looked at, this track has audio attributes
381        memcpy(&mAttributes, pAttributes, sizeof(audio_attributes_t));
382        ALOGV("Building AudioTrack with attributes: usage=%d content=%d flags=0x%x tags=[%s]",
383                mAttributes.usage, mAttributes.content_type, mAttributes.flags, mAttributes.tags);
384        mStreamType = AUDIO_STREAM_DEFAULT;
385        if ((mAttributes.flags & AUDIO_FLAG_HW_AV_SYNC) != 0) {
386            flags = (audio_output_flags_t)(flags | AUDIO_OUTPUT_FLAG_HW_AV_SYNC);
387        }
388        if ((mAttributes.flags & AUDIO_FLAG_LOW_LATENCY) != 0) {
389            flags = (audio_output_flags_t) (flags | AUDIO_OUTPUT_FLAG_FAST);
390        }
391        // check deep buffer after flags have been modified above
392        if (flags == AUDIO_OUTPUT_FLAG_NONE && (mAttributes.flags & AUDIO_FLAG_DEEP_BUFFER) != 0) {
393            flags = AUDIO_OUTPUT_FLAG_DEEP_BUFFER;
394        }
395    }
396
397    // these below should probably come from the audioFlinger too...
398    if (format == AUDIO_FORMAT_DEFAULT) {
399        format = AUDIO_FORMAT_PCM_16_BIT;
400    } else if (format == AUDIO_FORMAT_IEC61937) { // HDMI pass-through?
401        mAttributes.flags |= AUDIO_OUTPUT_FLAG_IEC958_NONAUDIO;
402    }
403
404    // validate parameters
405    if (!audio_is_valid_format(format)) {
406        ALOGE("Invalid format %#x", format);
407        return BAD_VALUE;
408    }
409    mFormat = format;
410
411    if (!audio_is_output_channel(channelMask)) {
412        ALOGE("Invalid channel mask %#x", channelMask);
413        return BAD_VALUE;
414    }
415    mChannelMask = channelMask;
416    uint32_t channelCount = audio_channel_count_from_out_mask(channelMask);
417    mChannelCount = channelCount;
418
419    // force direct flag if format is not linear PCM
420    // or offload was requested
421    if ((flags & AUDIO_OUTPUT_FLAG_COMPRESS_OFFLOAD)
422            || !audio_is_linear_pcm(format)) {
423        ALOGV( (flags & AUDIO_OUTPUT_FLAG_COMPRESS_OFFLOAD)
424                    ? "Offload request, forcing to Direct Output"
425                    : "Not linear PCM, forcing to Direct Output");
426        flags = (audio_output_flags_t)
427                // FIXME why can't we allow direct AND fast?
428                ((flags | AUDIO_OUTPUT_FLAG_DIRECT) & ~AUDIO_OUTPUT_FLAG_FAST);
429    }
430
431    // force direct flag if HW A/V sync requested
432    if ((flags & AUDIO_OUTPUT_FLAG_HW_AV_SYNC) != 0) {
433        flags = (audio_output_flags_t)(flags | AUDIO_OUTPUT_FLAG_DIRECT);
434    }
435
436    if (flags & AUDIO_OUTPUT_FLAG_DIRECT) {
437        if (audio_has_proportional_frames(format)) {
438            mFrameSize = channelCount * audio_bytes_per_sample(format);
439        } else {
440            mFrameSize = sizeof(uint8_t);
441        }
442    } else {
443        ALOG_ASSERT(audio_has_proportional_frames(format));
444        mFrameSize = channelCount * audio_bytes_per_sample(format);
445        // createTrack will return an error if PCM format is not supported by server,
446        // so no need to check for specific PCM formats here
447    }
448
449    // sampling rate must be specified for direct outputs
450    if (sampleRate == 0 && (flags & AUDIO_OUTPUT_FLAG_DIRECT) != 0) {
451        return BAD_VALUE;
452    }
453    mSampleRate = sampleRate;
454    mOriginalSampleRate = sampleRate;
455    mPlaybackRate = AUDIO_PLAYBACK_RATE_DEFAULT;
456    // 1.0 <= mMaxRequiredSpeed <= AUDIO_TIMESTRETCH_SPEED_MAX
457    mMaxRequiredSpeed = min(max(maxRequiredSpeed, 1.0f), AUDIO_TIMESTRETCH_SPEED_MAX);
458
459    // Make copy of input parameter offloadInfo so that in the future:
460    //  (a) createTrack_l doesn't need it as an input parameter
461    //  (b) we can support re-creation of offloaded tracks
462    if (offloadInfo != NULL) {
463        mOffloadInfoCopy = *offloadInfo;
464        mOffloadInfo = &mOffloadInfoCopy;
465    } else {
466        mOffloadInfo = NULL;
467        memset(&mOffloadInfoCopy, 0, sizeof(audio_offload_info_t));
468    }
469
470    mVolume[AUDIO_INTERLEAVE_LEFT] = 1.0f;
471    mVolume[AUDIO_INTERLEAVE_RIGHT] = 1.0f;
472    mSendLevel = 0.0f;
473    // mFrameCount is initialized in createTrack_l
474    mReqFrameCount = frameCount;
475    if (notificationFrames >= 0) {
476        mNotificationFramesReq = notificationFrames;
477        mNotificationsPerBufferReq = 0;
478    } else {
479        if (!(flags & AUDIO_OUTPUT_FLAG_FAST)) {
480            ALOGE("notificationFrames=%d not permitted for non-fast track",
481                    notificationFrames);
482            return BAD_VALUE;
483        }
484        if (frameCount > 0) {
485            ALOGE("notificationFrames=%d not permitted with non-zero frameCount=%zu",
486                    notificationFrames, frameCount);
487            return BAD_VALUE;
488        }
489        mNotificationFramesReq = 0;
490        const uint32_t minNotificationsPerBuffer = 1;
491        const uint32_t maxNotificationsPerBuffer = 8;
492        mNotificationsPerBufferReq = min(maxNotificationsPerBuffer,
493                max((uint32_t) -notificationFrames, minNotificationsPerBuffer));
494        ALOGW_IF(mNotificationsPerBufferReq != (uint32_t) -notificationFrames,
495                "notificationFrames=%d clamped to the range -%u to -%u",
496                notificationFrames, minNotificationsPerBuffer, maxNotificationsPerBuffer);
497    }
498    mNotificationFramesAct = 0;
499    if (sessionId == AUDIO_SESSION_ALLOCATE) {
500        mSessionId = (audio_session_t) AudioSystem::newAudioUniqueId(AUDIO_UNIQUE_ID_USE_SESSION);
501    } else {
502        mSessionId = sessionId;
503    }
504    int callingpid = IPCThreadState::self()->getCallingPid();
505    int mypid = getpid();
506    if (uid == AUDIO_UID_INVALID || (callingpid != mypid)) {
507        mClientUid = IPCThreadState::self()->getCallingUid();
508    } else {
509        mClientUid = uid;
510    }
511    if (pid == -1 || (callingpid != mypid)) {
512        mClientPid = callingpid;
513    } else {
514        mClientPid = pid;
515    }
516    mAuxEffectId = 0;
517    mOrigFlags = mFlags = flags;
518    mCbf = cbf;
519
520    if (cbf != NULL) {
521        mAudioTrackThread = new AudioTrackThread(*this, threadCanCallJava);
522        mAudioTrackThread->run("AudioTrack", ANDROID_PRIORITY_AUDIO, 0 /*stack*/);
523        // thread begins in paused state, and will not reference us until start()
524    }
525
526    // create the IAudioTrack
527    status_t status = createTrack_l();
528
529    if (status != NO_ERROR) {
530        if (mAudioTrackThread != 0) {
531            mAudioTrackThread->requestExit();   // see comment in AudioTrack.h
532            mAudioTrackThread->requestExitAndWait();
533            mAudioTrackThread.clear();
534        }
535        return status;
536    }
537
538    mStatus = NO_ERROR;
539    mUserData = user;
540    mLoopCount = 0;
541    mLoopStart = 0;
542    mLoopEnd = 0;
543    mLoopCountNotified = 0;
544    mMarkerPosition = 0;
545    mMarkerReached = false;
546    mNewPosition = 0;
547    mUpdatePeriod = 0;
548    mPosition = 0;
549    mReleased = 0;
550    mStartNs = 0;
551    mStartFromZeroUs = 0;
552    AudioSystem::acquireAudioSessionId(mSessionId, mClientPid);
553    mSequence = 1;
554    mObservedSequence = mSequence;
555    mInUnderrun = false;
556    mPreviousTimestampValid = false;
557    mTimestampStartupGlitchReported = false;
558    mRetrogradeMotionReported = false;
559    mPreviousLocation = ExtendedTimestamp::LOCATION_INVALID;
560    mStartTs.mPosition = 0;
561    mUnderrunCountOffset = 0;
562    mFramesWritten = 0;
563    mFramesWrittenServerOffset = 0;
564    mFramesWrittenAtRestore = -1; // -1 is a unique initializer.
565    mVolumeHandler = new VolumeHandler();
566    return NO_ERROR;
567}
568
569// -------------------------------------------------------------------------
570
571status_t AudioTrack::start()
572{
573    AutoMutex lock(mLock);
574
575    if (mState == STATE_ACTIVE) {
576        return INVALID_OPERATION;
577    }
578
579    mInUnderrun = true;
580
581    State previousState = mState;
582    if (previousState == STATE_PAUSED_STOPPING) {
583        mState = STATE_STOPPING;
584    } else {
585        mState = STATE_ACTIVE;
586    }
587    (void) updateAndGetPosition_l();
588
589    // save start timestamp
590    if (isOffloadedOrDirect_l()) {
591        if (getTimestamp_l(mStartTs) != OK) {
592            mStartTs.mPosition = 0;
593        }
594    } else {
595        if (getTimestamp_l(&mStartEts) != OK) {
596            mStartEts.clear();
597        }
598    }
599    mStartNs = systemTime(); // save this for timestamp adjustment after starting.
600    if (previousState == STATE_STOPPED || previousState == STATE_FLUSHED) {
601        // reset current position as seen by client to 0
602        mPosition = 0;
603        mPreviousTimestampValid = false;
604        mTimestampStartupGlitchReported = false;
605        mRetrogradeMotionReported = false;
606        mPreviousLocation = ExtendedTimestamp::LOCATION_INVALID;
607
608        if (!isOffloadedOrDirect_l()
609                && mStartEts.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] > 0) {
610            // Server side has consumed something, but is it finished consuming?
611            // It is possible since flush and stop are asynchronous that the server
612            // is still active at this point.
613            ALOGV("start: server read:%lld  cumulative flushed:%lld  client written:%lld",
614                    (long long)(mFramesWrittenServerOffset
615                            + mStartEts.mPosition[ExtendedTimestamp::LOCATION_SERVER]),
616                    (long long)mStartEts.mFlushed,
617                    (long long)mFramesWritten);
618            // mStartEts is already adjusted by mFramesWrittenServerOffset, so we delta adjust.
619            mFramesWrittenServerOffset -= mStartEts.mPosition[ExtendedTimestamp::LOCATION_SERVER];
620        }
621        mFramesWritten = 0;
622        mProxy->clearTimestamp(); // need new server push for valid timestamp
623        mMarkerReached = false;
624
625        // For offloaded tracks, we don't know if the hardware counters are really zero here,
626        // since the flush is asynchronous and stop may not fully drain.
627        // We save the time when the track is started to later verify whether
628        // the counters are realistic (i.e. start from zero after this time).
629        mStartFromZeroUs = mStartNs / 1000;
630
631        // force refresh of remaining frames by processAudioBuffer() as last
632        // write before stop could be partial.
633        mRefreshRemaining = true;
634    }
635    mNewPosition = mPosition + mUpdatePeriod;
636    int32_t flags = android_atomic_and(~(CBLK_STREAM_END_DONE | CBLK_DISABLED), &mCblk->mFlags);
637
638    status_t status = NO_ERROR;
639    if (!(flags & CBLK_INVALID)) {
640        status = mAudioTrack->start();
641        if (status == DEAD_OBJECT) {
642            flags |= CBLK_INVALID;
643        }
644    }
645    if (flags & CBLK_INVALID) {
646        status = restoreTrack_l("start");
647    }
648
649    // resume or pause the callback thread as needed.
650    sp<AudioTrackThread> t = mAudioTrackThread;
651    if (status == NO_ERROR) {
652        if (t != 0) {
653            if (previousState == STATE_STOPPING) {
654                mProxy->interrupt();
655            } else {
656                t->resume();
657            }
658        } else {
659            mPreviousPriority = getpriority(PRIO_PROCESS, 0);
660            get_sched_policy(0, &mPreviousSchedulingGroup);
661            androidSetThreadPriority(0, ANDROID_PRIORITY_AUDIO);
662        }
663
664        // Start our local VolumeHandler for restoration purposes.
665        mVolumeHandler->setStarted();
666    } else {
667        ALOGE("start() status %d", status);
668        mState = previousState;
669        if (t != 0) {
670            if (previousState != STATE_STOPPING) {
671                t->pause();
672            }
673        } else {
674            setpriority(PRIO_PROCESS, 0, mPreviousPriority);
675            set_sched_policy(0, mPreviousSchedulingGroup);
676        }
677    }
678
679    return status;
680}
681
682void AudioTrack::stop()
683{
684    AutoMutex lock(mLock);
685    if (mState != STATE_ACTIVE && mState != STATE_PAUSED) {
686        return;
687    }
688
689    if (isOffloaded_l()) {
690        mState = STATE_STOPPING;
691    } else {
692        mState = STATE_STOPPED;
693        ALOGD_IF(mSharedBuffer == nullptr,
694                "stop() called with %u frames delivered", mReleased.value());
695        mReleased = 0;
696    }
697
698    mProxy->interrupt();
699    mAudioTrack->stop();
700
701    // Note: legacy handling - stop does not clear playback marker
702    // and periodic update counter, but flush does for streaming tracks.
703
704    if (mSharedBuffer != 0) {
705        // clear buffer position and loop count.
706        mStaticProxy->setBufferPositionAndLoop(0 /* position */,
707                0 /* loopStart */, 0 /* loopEnd */, 0 /* loopCount */);
708    }
709
710    sp<AudioTrackThread> t = mAudioTrackThread;
711    if (t != 0) {
712        if (!isOffloaded_l()) {
713            t->pause();
714        }
715    } else {
716        setpriority(PRIO_PROCESS, 0, mPreviousPriority);
717        set_sched_policy(0, mPreviousSchedulingGroup);
718    }
719}
720
721bool AudioTrack::stopped() const
722{
723    AutoMutex lock(mLock);
724    return mState != STATE_ACTIVE;
725}
726
727void AudioTrack::flush()
728{
729    if (mSharedBuffer != 0) {
730        return;
731    }
732    AutoMutex lock(mLock);
733    if (mState == STATE_ACTIVE || mState == STATE_FLUSHED) {
734        return;
735    }
736    flush_l();
737}
738
739void AudioTrack::flush_l()
740{
741    ALOG_ASSERT(mState != STATE_ACTIVE);
742
743    // clear playback marker and periodic update counter
744    mMarkerPosition = 0;
745    mMarkerReached = false;
746    mUpdatePeriod = 0;
747    mRefreshRemaining = true;
748
749    mState = STATE_FLUSHED;
750    mReleased = 0;
751    if (isOffloaded_l()) {
752        mProxy->interrupt();
753    }
754    mProxy->flush();
755    mAudioTrack->flush();
756}
757
758void AudioTrack::pause()
759{
760    AutoMutex lock(mLock);
761    if (mState == STATE_ACTIVE) {
762        mState = STATE_PAUSED;
763    } else if (mState == STATE_STOPPING) {
764        mState = STATE_PAUSED_STOPPING;
765    } else {
766        return;
767    }
768    mProxy->interrupt();
769    mAudioTrack->pause();
770
771    if (isOffloaded_l()) {
772        if (mOutput != AUDIO_IO_HANDLE_NONE) {
773            // An offload output can be re-used between two audio tracks having
774            // the same configuration. A timestamp query for a paused track
775            // while the other is running would return an incorrect time.
776            // To fix this, cache the playback position on a pause() and return
777            // this time when requested until the track is resumed.
778
779            // OffloadThread sends HAL pause in its threadLoop. Time saved
780            // here can be slightly off.
781
782            // TODO: check return code for getRenderPosition.
783
784            uint32_t halFrames;
785            AudioSystem::getRenderPosition(mOutput, &halFrames, &mPausedPosition);
786            ALOGV("AudioTrack::pause for offload, cache current position %u", mPausedPosition);
787        }
788    }
789}
790
791status_t AudioTrack::setVolume(float left, float right)
792{
793    // This duplicates a test by AudioTrack JNI, but that is not the only caller
794    if (isnanf(left) || left < GAIN_FLOAT_ZERO || left > GAIN_FLOAT_UNITY ||
795            isnanf(right) || right < GAIN_FLOAT_ZERO || right > GAIN_FLOAT_UNITY) {
796        return BAD_VALUE;
797    }
798
799    AutoMutex lock(mLock);
800    mVolume[AUDIO_INTERLEAVE_LEFT] = left;
801    mVolume[AUDIO_INTERLEAVE_RIGHT] = right;
802
803    mProxy->setVolumeLR(gain_minifloat_pack(gain_from_float(left), gain_from_float(right)));
804
805    if (isOffloaded_l()) {
806        mAudioTrack->signal();
807    }
808    return NO_ERROR;
809}
810
811status_t AudioTrack::setVolume(float volume)
812{
813    return setVolume(volume, volume);
814}
815
816status_t AudioTrack::setAuxEffectSendLevel(float level)
817{
818    // This duplicates a test by AudioTrack JNI, but that is not the only caller
819    if (isnanf(level) || level < GAIN_FLOAT_ZERO || level > GAIN_FLOAT_UNITY) {
820        return BAD_VALUE;
821    }
822
823    AutoMutex lock(mLock);
824    mSendLevel = level;
825    mProxy->setSendLevel(level);
826
827    return NO_ERROR;
828}
829
830void AudioTrack::getAuxEffectSendLevel(float* level) const
831{
832    if (level != NULL) {
833        *level = mSendLevel;
834    }
835}
836
837status_t AudioTrack::setSampleRate(uint32_t rate)
838{
839    AutoMutex lock(mLock);
840    if (rate == mSampleRate) {
841        return NO_ERROR;
842    }
843    if (isOffloadedOrDirect_l() || (mFlags & AUDIO_OUTPUT_FLAG_FAST)) {
844        return INVALID_OPERATION;
845    }
846    if (mOutput == AUDIO_IO_HANDLE_NONE) {
847        return NO_INIT;
848    }
849    // NOTE: it is theoretically possible, but highly unlikely, that a device change
850    // could mean a previously allowed sampling rate is no longer allowed.
851    uint32_t afSamplingRate;
852    if (AudioSystem::getSamplingRate(mOutput, &afSamplingRate) != NO_ERROR) {
853        return NO_INIT;
854    }
855    // pitch is emulated by adjusting speed and sampleRate
856    const uint32_t effectiveSampleRate = adjustSampleRate(rate, mPlaybackRate.mPitch);
857    if (rate == 0 || effectiveSampleRate > afSamplingRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX) {
858        return BAD_VALUE;
859    }
860    // TODO: Should we also check if the buffer size is compatible?
861
862    mSampleRate = rate;
863    mProxy->setSampleRate(effectiveSampleRate);
864
865    return NO_ERROR;
866}
867
868uint32_t AudioTrack::getSampleRate() const
869{
870    AutoMutex lock(mLock);
871
872    // sample rate can be updated during playback by the offloaded decoder so we need to
873    // query the HAL and update if needed.
874// FIXME use Proxy return channel to update the rate from server and avoid polling here
875    if (isOffloadedOrDirect_l()) {
876        if (mOutput != AUDIO_IO_HANDLE_NONE) {
877            uint32_t sampleRate = 0;
878            status_t status = AudioSystem::getSamplingRate(mOutput, &sampleRate);
879            if (status == NO_ERROR) {
880                mSampleRate = sampleRate;
881            }
882        }
883    }
884    return mSampleRate;
885}
886
887uint32_t AudioTrack::getOriginalSampleRate() const
888{
889    return mOriginalSampleRate;
890}
891
892status_t AudioTrack::setPlaybackRate(const AudioPlaybackRate &playbackRate)
893{
894    AutoMutex lock(mLock);
895    if (isAudioPlaybackRateEqual(playbackRate, mPlaybackRate)) {
896        return NO_ERROR;
897    }
898    if (isOffloadedOrDirect_l()) {
899        return INVALID_OPERATION;
900    }
901    if (mFlags & AUDIO_OUTPUT_FLAG_FAST) {
902        return INVALID_OPERATION;
903    }
904
905    ALOGV("setPlaybackRate (input): mSampleRate:%u  mSpeed:%f  mPitch:%f",
906            mSampleRate, playbackRate.mSpeed, playbackRate.mPitch);
907    // pitch is emulated by adjusting speed and sampleRate
908    const uint32_t effectiveRate = adjustSampleRate(mSampleRate, playbackRate.mPitch);
909    const float effectiveSpeed = adjustSpeed(playbackRate.mSpeed, playbackRate.mPitch);
910    const float effectivePitch = adjustPitch(playbackRate.mPitch);
911    AudioPlaybackRate playbackRateTemp = playbackRate;
912    playbackRateTemp.mSpeed = effectiveSpeed;
913    playbackRateTemp.mPitch = effectivePitch;
914
915    ALOGV("setPlaybackRate (effective): mSampleRate:%u  mSpeed:%f  mPitch:%f",
916            effectiveRate, effectiveSpeed, effectivePitch);
917
918    if (!isAudioPlaybackRateValid(playbackRateTemp)) {
919        ALOGW("setPlaybackRate(%f, %f) failed (effective rate out of bounds)",
920                playbackRate.mSpeed, playbackRate.mPitch);
921        return BAD_VALUE;
922    }
923    // Check if the buffer size is compatible.
924    if (!isSampleRateSpeedAllowed_l(effectiveRate, effectiveSpeed)) {
925        ALOGW("setPlaybackRate(%f, %f) failed (buffer size)",
926                playbackRate.mSpeed, playbackRate.mPitch);
927        return BAD_VALUE;
928    }
929
930    // Check resampler ratios are within bounds
931    if ((uint64_t)effectiveRate > (uint64_t)mSampleRate *
932            (uint64_t)AUDIO_RESAMPLER_DOWN_RATIO_MAX) {
933        ALOGW("setPlaybackRate(%f, %f) failed. Resample rate exceeds max accepted value",
934                playbackRate.mSpeed, playbackRate.mPitch);
935        return BAD_VALUE;
936    }
937
938    if ((uint64_t)effectiveRate * (uint64_t)AUDIO_RESAMPLER_UP_RATIO_MAX < (uint64_t)mSampleRate) {
939        ALOGW("setPlaybackRate(%f, %f) failed. Resample rate below min accepted value",
940                        playbackRate.mSpeed, playbackRate.mPitch);
941        return BAD_VALUE;
942    }
943    mPlaybackRate = playbackRate;
944    //set effective rates
945    mProxy->setPlaybackRate(playbackRateTemp);
946    mProxy->setSampleRate(effectiveRate); // FIXME: not quite "atomic" with setPlaybackRate
947    return NO_ERROR;
948}
949
950const AudioPlaybackRate& AudioTrack::getPlaybackRate() const
951{
952    AutoMutex lock(mLock);
953    return mPlaybackRate;
954}
955
956ssize_t AudioTrack::getBufferSizeInFrames()
957{
958    AutoMutex lock(mLock);
959    if (mOutput == AUDIO_IO_HANDLE_NONE || mProxy.get() == 0) {
960        return NO_INIT;
961    }
962    return (ssize_t) mProxy->getBufferSizeInFrames();
963}
964
965status_t AudioTrack::getBufferDurationInUs(int64_t *duration)
966{
967    if (duration == nullptr) {
968        return BAD_VALUE;
969    }
970    AutoMutex lock(mLock);
971    if (mOutput == AUDIO_IO_HANDLE_NONE || mProxy.get() == 0) {
972        return NO_INIT;
973    }
974    ssize_t bufferSizeInFrames = (ssize_t) mProxy->getBufferSizeInFrames();
975    if (bufferSizeInFrames < 0) {
976        return (status_t)bufferSizeInFrames;
977    }
978    *duration = (int64_t)((double)bufferSizeInFrames * 1000000
979            / ((double)mSampleRate * mPlaybackRate.mSpeed));
980    return NO_ERROR;
981}
982
983ssize_t AudioTrack::setBufferSizeInFrames(size_t bufferSizeInFrames)
984{
985    AutoMutex lock(mLock);
986    if (mOutput == AUDIO_IO_HANDLE_NONE || mProxy.get() == 0) {
987        return NO_INIT;
988    }
989    // Reject if timed track or compressed audio.
990    if (!audio_is_linear_pcm(mFormat)) {
991        return INVALID_OPERATION;
992    }
993    return (ssize_t) mProxy->setBufferSizeInFrames((uint32_t) bufferSizeInFrames);
994}
995
996status_t AudioTrack::setLoop(uint32_t loopStart, uint32_t loopEnd, int loopCount)
997{
998    if (mSharedBuffer == 0 || isOffloadedOrDirect()) {
999        return INVALID_OPERATION;
1000    }
1001
1002    if (loopCount == 0) {
1003        ;
1004    } else if (loopCount >= -1 && loopStart < loopEnd && loopEnd <= mFrameCount &&
1005            loopEnd - loopStart >= MIN_LOOP) {
1006        ;
1007    } else {
1008        return BAD_VALUE;
1009    }
1010
1011    AutoMutex lock(mLock);
1012    // See setPosition() regarding setting parameters such as loop points or position while active
1013    if (mState == STATE_ACTIVE) {
1014        return INVALID_OPERATION;
1015    }
1016    setLoop_l(loopStart, loopEnd, loopCount);
1017    return NO_ERROR;
1018}
1019
1020void AudioTrack::setLoop_l(uint32_t loopStart, uint32_t loopEnd, int loopCount)
1021{
1022    // We do not update the periodic notification point.
1023    // mNewPosition = updateAndGetPosition_l() + mUpdatePeriod;
1024    mLoopCount = loopCount;
1025    mLoopEnd = loopEnd;
1026    mLoopStart = loopStart;
1027    mLoopCountNotified = loopCount;
1028    mStaticProxy->setLoop(loopStart, loopEnd, loopCount);
1029
1030    // Waking the AudioTrackThread is not needed as this cannot be called when active.
1031}
1032
1033status_t AudioTrack::setMarkerPosition(uint32_t marker)
1034{
1035    // The only purpose of setting marker position is to get a callback
1036    if (mCbf == NULL || isOffloadedOrDirect()) {
1037        return INVALID_OPERATION;
1038    }
1039
1040    AutoMutex lock(mLock);
1041    mMarkerPosition = marker;
1042    mMarkerReached = false;
1043
1044    sp<AudioTrackThread> t = mAudioTrackThread;
1045    if (t != 0) {
1046        t->wake();
1047    }
1048    return NO_ERROR;
1049}
1050
1051status_t AudioTrack::getMarkerPosition(uint32_t *marker) const
1052{
1053    if (isOffloadedOrDirect()) {
1054        return INVALID_OPERATION;
1055    }
1056    if (marker == NULL) {
1057        return BAD_VALUE;
1058    }
1059
1060    AutoMutex lock(mLock);
1061    mMarkerPosition.getValue(marker);
1062
1063    return NO_ERROR;
1064}
1065
1066status_t AudioTrack::setPositionUpdatePeriod(uint32_t updatePeriod)
1067{
1068    // The only purpose of setting position update period is to get a callback
1069    if (mCbf == NULL || isOffloadedOrDirect()) {
1070        return INVALID_OPERATION;
1071    }
1072
1073    AutoMutex lock(mLock);
1074    mNewPosition = updateAndGetPosition_l() + updatePeriod;
1075    mUpdatePeriod = updatePeriod;
1076
1077    sp<AudioTrackThread> t = mAudioTrackThread;
1078    if (t != 0) {
1079        t->wake();
1080    }
1081    return NO_ERROR;
1082}
1083
1084status_t AudioTrack::getPositionUpdatePeriod(uint32_t *updatePeriod) const
1085{
1086    if (isOffloadedOrDirect()) {
1087        return INVALID_OPERATION;
1088    }
1089    if (updatePeriod == NULL) {
1090        return BAD_VALUE;
1091    }
1092
1093    AutoMutex lock(mLock);
1094    *updatePeriod = mUpdatePeriod;
1095
1096    return NO_ERROR;
1097}
1098
1099status_t AudioTrack::setPosition(uint32_t position)
1100{
1101    if (mSharedBuffer == 0 || isOffloadedOrDirect()) {
1102        return INVALID_OPERATION;
1103    }
1104    if (position > mFrameCount) {
1105        return BAD_VALUE;
1106    }
1107
1108    AutoMutex lock(mLock);
1109    // Currently we require that the player is inactive before setting parameters such as position
1110    // or loop points.  Otherwise, there could be a race condition: the application could read the
1111    // current position, compute a new position or loop parameters, and then set that position or
1112    // loop parameters but it would do the "wrong" thing since the position has continued to advance
1113    // in the mean time.  If we ever provide a sequencer in server, we could allow a way for the app
1114    // to specify how it wants to handle such scenarios.
1115    if (mState == STATE_ACTIVE) {
1116        return INVALID_OPERATION;
1117    }
1118    // After setting the position, use full update period before notification.
1119    mNewPosition = updateAndGetPosition_l() + mUpdatePeriod;
1120    mStaticProxy->setBufferPosition(position);
1121
1122    // Waking the AudioTrackThread is not needed as this cannot be called when active.
1123    return NO_ERROR;
1124}
1125
1126status_t AudioTrack::getPosition(uint32_t *position)
1127{
1128    if (position == NULL) {
1129        return BAD_VALUE;
1130    }
1131
1132    AutoMutex lock(mLock);
1133    // FIXME: offloaded and direct tracks call into the HAL for render positions
1134    // for compressed/synced data; however, we use proxy position for pure linear pcm data
1135    // as we do not know the capability of the HAL for pcm position support and standby.
1136    // There may be some latency differences between the HAL position and the proxy position.
1137    if (isOffloadedOrDirect_l() && !isPurePcmData_l()) {
1138        uint32_t dspFrames = 0;
1139
1140        if (isOffloaded_l() && ((mState == STATE_PAUSED) || (mState == STATE_PAUSED_STOPPING))) {
1141            ALOGV("getPosition called in paused state, return cached position %u", mPausedPosition);
1142            *position = mPausedPosition;
1143            return NO_ERROR;
1144        }
1145
1146        if (mOutput != AUDIO_IO_HANDLE_NONE) {
1147            uint32_t halFrames; // actually unused
1148            (void) AudioSystem::getRenderPosition(mOutput, &halFrames, &dspFrames);
1149            // FIXME: on getRenderPosition() error, we return OK with frame position 0.
1150        }
1151        // FIXME: dspFrames may not be zero in (mState == STATE_STOPPED || mState == STATE_FLUSHED)
1152        // due to hardware latency. We leave this behavior for now.
1153        *position = dspFrames;
1154    } else {
1155        if (mCblk->mFlags & CBLK_INVALID) {
1156            (void) restoreTrack_l("getPosition");
1157            // FIXME: for compatibility with the Java API we ignore the restoreTrack_l()
1158            // error here (e.g. DEAD_OBJECT) and return OK with the last recorded server position.
1159        }
1160
1161        // IAudioTrack::stop() isn't synchronous; we don't know when presentation completes
1162        *position = (mState == STATE_STOPPED || mState == STATE_FLUSHED) ?
1163                0 : updateAndGetPosition_l().value();
1164    }
1165    return NO_ERROR;
1166}
1167
1168status_t AudioTrack::getBufferPosition(uint32_t *position)
1169{
1170    if (mSharedBuffer == 0) {
1171        return INVALID_OPERATION;
1172    }
1173    if (position == NULL) {
1174        return BAD_VALUE;
1175    }
1176
1177    AutoMutex lock(mLock);
1178    *position = mStaticProxy->getBufferPosition();
1179    return NO_ERROR;
1180}
1181
1182status_t AudioTrack::reload()
1183{
1184    if (mSharedBuffer == 0 || isOffloadedOrDirect()) {
1185        return INVALID_OPERATION;
1186    }
1187
1188    AutoMutex lock(mLock);
1189    // See setPosition() regarding setting parameters such as loop points or position while active
1190    if (mState == STATE_ACTIVE) {
1191        return INVALID_OPERATION;
1192    }
1193    mNewPosition = mUpdatePeriod;
1194    (void) updateAndGetPosition_l();
1195    mPosition = 0;
1196    mPreviousTimestampValid = false;
1197#if 0
1198    // The documentation is not clear on the behavior of reload() and the restoration
1199    // of loop count. Historically we have not restored loop count, start, end,
1200    // but it makes sense if one desires to repeat playing a particular sound.
1201    if (mLoopCount != 0) {
1202        mLoopCountNotified = mLoopCount;
1203        mStaticProxy->setLoop(mLoopStart, mLoopEnd, mLoopCount);
1204    }
1205#endif
1206    mStaticProxy->setBufferPosition(0);
1207    return NO_ERROR;
1208}
1209
1210audio_io_handle_t AudioTrack::getOutput() const
1211{
1212    AutoMutex lock(mLock);
1213    return mOutput;
1214}
1215
1216status_t AudioTrack::setOutputDevice(audio_port_handle_t deviceId) {
1217    AutoMutex lock(mLock);
1218    if (mSelectedDeviceId != deviceId) {
1219        mSelectedDeviceId = deviceId;
1220        if (mStatus == NO_ERROR) {
1221            android_atomic_or(CBLK_INVALID, &mCblk->mFlags);
1222        }
1223    }
1224    return NO_ERROR;
1225}
1226
1227audio_port_handle_t AudioTrack::getOutputDevice() {
1228    AutoMutex lock(mLock);
1229    return mSelectedDeviceId;
1230}
1231
1232// must be called with mLock held
1233void AudioTrack::updateRoutedDeviceId_l()
1234{
1235    // if the track is inactive, do not update actual device as the output stream maybe routed
1236    // to a device not relevant to this client because of other active use cases.
1237    if (mState != STATE_ACTIVE) {
1238        return;
1239    }
1240    if (mOutput != AUDIO_IO_HANDLE_NONE) {
1241        audio_port_handle_t deviceId = AudioSystem::getDeviceIdForIo(mOutput);
1242        if (deviceId != AUDIO_PORT_HANDLE_NONE) {
1243            mRoutedDeviceId = deviceId;
1244        }
1245    }
1246}
1247
1248audio_port_handle_t AudioTrack::getRoutedDeviceId() {
1249    AutoMutex lock(mLock);
1250    updateRoutedDeviceId_l();
1251    return mRoutedDeviceId;
1252}
1253
1254status_t AudioTrack::attachAuxEffect(int effectId)
1255{
1256    AutoMutex lock(mLock);
1257    status_t status = mAudioTrack->attachAuxEffect(effectId);
1258    if (status == NO_ERROR) {
1259        mAuxEffectId = effectId;
1260    }
1261    return status;
1262}
1263
1264audio_stream_type_t AudioTrack::streamType() const
1265{
1266    if (mStreamType == AUDIO_STREAM_DEFAULT) {
1267        return audio_attributes_to_stream_type(&mAttributes);
1268    }
1269    return mStreamType;
1270}
1271
1272uint32_t AudioTrack::latency()
1273{
1274    AutoMutex lock(mLock);
1275    updateLatency_l();
1276    return mLatency;
1277}
1278
1279// -------------------------------------------------------------------------
1280
1281// must be called with mLock held
1282void AudioTrack::updateLatency_l()
1283{
1284    status_t status = AudioSystem::getLatency(mOutput, &mAfLatency);
1285    if (status != NO_ERROR) {
1286        ALOGW("getLatency(%d) failed status %d", mOutput, status);
1287    } else {
1288        // FIXME don't believe this lie
1289        mLatency = mAfLatency + (1000LL * mFrameCount) / mSampleRate;
1290    }
1291}
1292
1293// TODO Move this macro to a common header file for enum to string conversion in audio framework.
1294#define MEDIA_CASE_ENUM(name) case name: return #name
1295const char * AudioTrack::convertTransferToText(transfer_type transferType) {
1296    switch (transferType) {
1297        MEDIA_CASE_ENUM(TRANSFER_DEFAULT);
1298        MEDIA_CASE_ENUM(TRANSFER_CALLBACK);
1299        MEDIA_CASE_ENUM(TRANSFER_OBTAIN);
1300        MEDIA_CASE_ENUM(TRANSFER_SYNC);
1301        MEDIA_CASE_ENUM(TRANSFER_SHARED);
1302        default:
1303            return "UNRECOGNIZED";
1304    }
1305}
1306
1307status_t AudioTrack::createTrack_l()
1308{
1309    const sp<IAudioFlinger>& audioFlinger = AudioSystem::get_audio_flinger();
1310    if (audioFlinger == 0) {
1311        ALOGE("Could not get audioflinger");
1312        return NO_INIT;
1313    }
1314
1315    audio_io_handle_t output;
1316    audio_stream_type_t streamType = mStreamType;
1317    audio_attributes_t *attr = (mStreamType == AUDIO_STREAM_DEFAULT) ? &mAttributes : NULL;
1318    bool callbackAdded = false;
1319
1320    // mFlags (not mOrigFlags) is modified depending on whether fast request is accepted.
1321    // After fast request is denied, we will request again if IAudioTrack is re-created.
1322
1323    status_t status;
1324    audio_config_t config = AUDIO_CONFIG_INITIALIZER;
1325    config.sample_rate = mSampleRate;
1326    config.channel_mask = mChannelMask;
1327    config.format = mFormat;
1328    config.offload_info = mOffloadInfoCopy;
1329    mRoutedDeviceId = mSelectedDeviceId;
1330    status = AudioSystem::getOutputForAttr(attr, &output,
1331                                           mSessionId, &streamType, mClientUid,
1332                                           &config,
1333                                           mFlags, &mRoutedDeviceId, &mPortId);
1334
1335    if (status != NO_ERROR || output == AUDIO_IO_HANDLE_NONE) {
1336        ALOGE("Could not get audio output for session %d, stream type %d, usage %d, sample rate %u,"
1337              " format %#x, channel mask %#x, flags %#x",
1338              mSessionId, streamType, mAttributes.usage, mSampleRate, mFormat, mChannelMask,
1339              mFlags);
1340        return BAD_VALUE;
1341    }
1342    {
1343    // Now that we have a reference to an I/O handle and have not yet handed it off to AudioFlinger,
1344    // we must release it ourselves if anything goes wrong.
1345
1346    // Not all of these values are needed under all conditions, but it is easier to get them all
1347    status = AudioSystem::getLatency(output, &mAfLatency);
1348    if (status != NO_ERROR) {
1349        ALOGE("getLatency(%d) failed status %d", output, status);
1350        goto release;
1351    }
1352    ALOGV("createTrack_l() output %d afLatency %u", output, mAfLatency);
1353
1354    status = AudioSystem::getFrameCount(output, &mAfFrameCount);
1355    if (status != NO_ERROR) {
1356        ALOGE("getFrameCount(output=%d) status %d", output, status);
1357        goto release;
1358    }
1359
1360    // TODO consider making this a member variable if there are other uses for it later
1361    size_t afFrameCountHAL;
1362    status = AudioSystem::getFrameCountHAL(output, &afFrameCountHAL);
1363    if (status != NO_ERROR) {
1364        ALOGE("getFrameCountHAL(output=%d) status %d", output, status);
1365        goto release;
1366    }
1367    ALOG_ASSERT(afFrameCountHAL > 0);
1368
1369    status = AudioSystem::getSamplingRate(output, &mAfSampleRate);
1370    if (status != NO_ERROR) {
1371        ALOGE("getSamplingRate(output=%d) status %d", output, status);
1372        goto release;
1373    }
1374    if (mSampleRate == 0) {
1375        mSampleRate = mAfSampleRate;
1376        mOriginalSampleRate = mAfSampleRate;
1377    }
1378
1379    // Client can only express a preference for FAST.  Server will perform additional tests.
1380    if (mFlags & AUDIO_OUTPUT_FLAG_FAST) {
1381        // either of these use cases:
1382        // use case 1: shared buffer
1383        bool sharedBuffer = mSharedBuffer != 0;
1384        bool transferAllowed =
1385            // use case 2: callback transfer mode
1386            (mTransfer == TRANSFER_CALLBACK) ||
1387            // use case 3: obtain/release mode
1388            (mTransfer == TRANSFER_OBTAIN) ||
1389            // use case 4: synchronous write
1390            ((mTransfer == TRANSFER_SYNC) && mThreadCanCallJava);
1391
1392        bool useCaseAllowed = sharedBuffer || transferAllowed;
1393        if (!useCaseAllowed) {
1394            ALOGW("AUDIO_OUTPUT_FLAG_FAST denied, not shared buffer and transfer = %s",
1395                  convertTransferToText(mTransfer));
1396        }
1397
1398        // sample rates must also match
1399        bool sampleRateAllowed = mSampleRate == mAfSampleRate;
1400        if (!sampleRateAllowed) {
1401            ALOGW("AUDIO_OUTPUT_FLAG_FAST denied, rates do not match %u Hz, require %u Hz",
1402                  mSampleRate, mAfSampleRate);
1403        }
1404
1405        bool fastAllowed = useCaseAllowed && sampleRateAllowed;
1406        if (!fastAllowed) {
1407            mFlags = (audio_output_flags_t) (mFlags & ~AUDIO_OUTPUT_FLAG_FAST);
1408        }
1409    }
1410
1411    mNotificationFramesAct = mNotificationFramesReq;
1412
1413    size_t frameCount = mReqFrameCount;
1414    if (!audio_has_proportional_frames(mFormat)) {
1415
1416        if (mSharedBuffer != 0) {
1417            // Same comment as below about ignoring frameCount parameter for set()
1418            frameCount = mSharedBuffer->size();
1419        } else if (frameCount == 0) {
1420            frameCount = mAfFrameCount;
1421        }
1422        if (mNotificationFramesAct != frameCount) {
1423            mNotificationFramesAct = frameCount;
1424        }
1425    } else if (mSharedBuffer != 0) {
1426        // FIXME: Ensure client side memory buffers need
1427        // not have additional alignment beyond sample
1428        // (e.g. 16 bit stereo accessed as 32 bit frame).
1429        size_t alignment = audio_bytes_per_sample(mFormat);
1430        if (alignment & 1) {
1431            // for AUDIO_FORMAT_PCM_24_BIT_PACKED (not exposed through Java).
1432            alignment = 1;
1433        }
1434        if (mChannelCount > 1) {
1435            // More than 2 channels does not require stronger alignment than stereo
1436            alignment <<= 1;
1437        }
1438        if (((uintptr_t)mSharedBuffer->pointer() & (alignment - 1)) != 0) {
1439            ALOGE("Invalid buffer alignment: address %p, channel count %u",
1440                    mSharedBuffer->pointer(), mChannelCount);
1441            status = BAD_VALUE;
1442            goto release;
1443        }
1444
1445        // When initializing a shared buffer AudioTrack via constructors,
1446        // there's no frameCount parameter.
1447        // But when initializing a shared buffer AudioTrack via set(),
1448        // there _is_ a frameCount parameter.  We silently ignore it.
1449        frameCount = mSharedBuffer->size() / mFrameSize;
1450    } else {
1451        size_t minFrameCount = 0;
1452        // For fast tracks the frame count calculations and checks are mostly done by server,
1453        // but we try to respect the application's request for notifications per buffer.
1454        if (mFlags & AUDIO_OUTPUT_FLAG_FAST) {
1455            if (mNotificationsPerBufferReq > 0) {
1456                // Avoid possible arithmetic overflow during multiplication.
1457                // mNotificationsPerBuffer is clamped to a small integer earlier, so it is unlikely.
1458                if (mNotificationsPerBufferReq > SIZE_MAX / afFrameCountHAL) {
1459                    ALOGE("Requested notificationPerBuffer=%u ignored for HAL frameCount=%zu",
1460                            mNotificationsPerBufferReq, afFrameCountHAL);
1461                } else {
1462                    minFrameCount = afFrameCountHAL * mNotificationsPerBufferReq;
1463                }
1464            }
1465        } else {
1466            // for normal tracks precompute the frame count based on speed.
1467            const float speed = !isPurePcmData_l() || isOffloadedOrDirect_l() ? 1.0f :
1468                            max(mMaxRequiredSpeed, mPlaybackRate.mSpeed);
1469            minFrameCount = calculateMinFrameCount(
1470                    mAfLatency, mAfFrameCount, mAfSampleRate, mSampleRate,
1471                    speed /*, 0 mNotificationsPerBufferReq*/);
1472        }
1473        if (frameCount < minFrameCount) {
1474            frameCount = minFrameCount;
1475        }
1476    }
1477
1478    audio_output_flags_t flags = mFlags;
1479
1480    pid_t tid = -1;
1481    if (mFlags & AUDIO_OUTPUT_FLAG_FAST) {
1482        // It is currently meaningless to request SCHED_FIFO for a Java thread.  Even if the
1483        // application-level code follows all non-blocking design rules, the language runtime
1484        // doesn't also follow those rules, so the thread will not benefit overall.
1485        if (mAudioTrackThread != 0 && !mThreadCanCallJava) {
1486            tid = mAudioTrackThread->getTid();
1487        }
1488    }
1489
1490    size_t temp = frameCount;   // temp may be replaced by a revised value of frameCount,
1491                                // but we will still need the original value also
1492    audio_session_t originalSessionId = mSessionId;
1493    sp<IAudioTrack> track = audioFlinger->createTrack(streamType,
1494                                                      mSampleRate,
1495                                                      mFormat,
1496                                                      mChannelMask,
1497                                                      &temp,
1498                                                      &flags,
1499                                                      mSharedBuffer,
1500                                                      output,
1501                                                      mClientPid,
1502                                                      tid,
1503                                                      &mSessionId,
1504                                                      mClientUid,
1505                                                      &status,
1506                                                      mPortId);
1507    ALOGE_IF(originalSessionId != AUDIO_SESSION_ALLOCATE && mSessionId != originalSessionId,
1508            "session ID changed from %d to %d", originalSessionId, mSessionId);
1509
1510    if (status != NO_ERROR) {
1511        ALOGE("AudioFlinger could not create track, status: %d", status);
1512        goto release;
1513    }
1514    ALOG_ASSERT(track != 0);
1515
1516    // AudioFlinger now owns the reference to the I/O handle,
1517    // so we are no longer responsible for releasing it.
1518
1519    // FIXME compare to AudioRecord
1520    sp<IMemory> iMem = track->getCblk();
1521    if (iMem == 0) {
1522        ALOGE("Could not get control block");
1523        status = NO_INIT;
1524        goto release;
1525    }
1526    void *iMemPointer = iMem->pointer();
1527    if (iMemPointer == NULL) {
1528        ALOGE("Could not get control block pointer");
1529        status = NO_INIT;
1530        goto release;
1531    }
1532    // invariant that mAudioTrack != 0 is true only after set() returns successfully
1533    if (mAudioTrack != 0) {
1534        IInterface::asBinder(mAudioTrack)->unlinkToDeath(mDeathNotifier, this);
1535        mDeathNotifier.clear();
1536    }
1537    mAudioTrack = track;
1538    mCblkMemory = iMem;
1539    IPCThreadState::self()->flushCommands();
1540
1541    audio_track_cblk_t* cblk = static_cast<audio_track_cblk_t*>(iMemPointer);
1542    mCblk = cblk;
1543    // note that temp is the (possibly revised) value of frameCount
1544    if (temp < frameCount || (frameCount == 0 && temp == 0)) {
1545        // In current design, AudioTrack client checks and ensures frame count validity before
1546        // passing it to AudioFlinger so AudioFlinger should not return a different value except
1547        // for fast track as it uses a special method of assigning frame count.
1548        ALOGW("Requested frameCount %zu but received frameCount %zu", frameCount, temp);
1549    }
1550    frameCount = temp;
1551
1552    mAwaitBoost = false;
1553    if (mFlags & AUDIO_OUTPUT_FLAG_FAST) {
1554        if (flags & AUDIO_OUTPUT_FLAG_FAST) {
1555            ALOGI("AUDIO_OUTPUT_FLAG_FAST successful; frameCount %zu -> %zu", frameCount, temp);
1556            if (!mThreadCanCallJava) {
1557                mAwaitBoost = true;
1558            }
1559        } else {
1560            ALOGW("AUDIO_OUTPUT_FLAG_FAST denied by server; frameCount %zu -> %zu", frameCount,
1561                    temp);
1562        }
1563    }
1564    mFlags = flags;
1565
1566    // Make sure that application is notified with sufficient margin before underrun.
1567    // The client can divide the AudioTrack buffer into sub-buffers,
1568    // and expresses its desire to server as the notification frame count.
1569    if (mSharedBuffer == 0 && audio_is_linear_pcm(mFormat)) {
1570        size_t maxNotificationFrames;
1571        if (mFlags & AUDIO_OUTPUT_FLAG_FAST) {
1572            // notify every HAL buffer, regardless of the size of the track buffer
1573            maxNotificationFrames = afFrameCountHAL;
1574        } else {
1575            // For normal tracks, use at least double-buffering if no sample rate conversion,
1576            // or at least triple-buffering if there is sample rate conversion
1577            const int nBuffering = mOriginalSampleRate == mAfSampleRate ? 2 : 3;
1578            maxNotificationFrames = frameCount / nBuffering;
1579        }
1580        if (mNotificationFramesAct == 0 || mNotificationFramesAct > maxNotificationFrames) {
1581            if (mNotificationFramesAct == 0) {
1582                ALOGD("Client defaulted notificationFrames to %zu for frameCount %zu",
1583                    maxNotificationFrames, frameCount);
1584            } else {
1585                ALOGW("Client adjusted notificationFrames from %u to %zu for frameCount %zu",
1586                    mNotificationFramesAct, maxNotificationFrames, frameCount);
1587            }
1588            mNotificationFramesAct = (uint32_t) maxNotificationFrames;
1589        }
1590    }
1591
1592    //mOutput != output includes the case where mOutput == AUDIO_IO_HANDLE_NONE for first creation
1593    if (mDeviceCallback != 0 && mOutput != output) {
1594        if (mOutput != AUDIO_IO_HANDLE_NONE) {
1595            AudioSystem::removeAudioDeviceCallback(this, mOutput);
1596        }
1597        AudioSystem::addAudioDeviceCallback(this, output);
1598        callbackAdded = true;
1599    }
1600
1601    // We retain a copy of the I/O handle, but don't own the reference
1602    mOutput = output;
1603    mRefreshRemaining = true;
1604
1605    // Starting address of buffers in shared memory.  If there is a shared buffer, buffers
1606    // is the value of pointer() for the shared buffer, otherwise buffers points
1607    // immediately after the control block.  This address is for the mapping within client
1608    // address space.  AudioFlinger::TrackBase::mBuffer is for the server address space.
1609    void* buffers;
1610    if (mSharedBuffer == 0) {
1611        buffers = cblk + 1;
1612    } else {
1613        buffers = mSharedBuffer->pointer();
1614        if (buffers == NULL) {
1615            ALOGE("Could not get buffer pointer");
1616            status = NO_INIT;
1617            goto release;
1618        }
1619    }
1620
1621    mAudioTrack->attachAuxEffect(mAuxEffectId);
1622    mFrameCount = frameCount;
1623    updateLatency_l();  // this refetches mAfLatency and sets mLatency
1624
1625    // If IAudioTrack is re-created, don't let the requested frameCount
1626    // decrease.  This can confuse clients that cache frameCount().
1627    if (frameCount > mReqFrameCount) {
1628        mReqFrameCount = frameCount;
1629    }
1630
1631    // reset server position to 0 as we have new cblk.
1632    mServer = 0;
1633
1634    // update proxy
1635    if (mSharedBuffer == 0) {
1636        mStaticProxy.clear();
1637        mProxy = new AudioTrackClientProxy(cblk, buffers, frameCount, mFrameSize);
1638    } else {
1639        mStaticProxy = new StaticAudioTrackClientProxy(cblk, buffers, frameCount, mFrameSize);
1640        mProxy = mStaticProxy;
1641    }
1642
1643    mProxy->setVolumeLR(gain_minifloat_pack(
1644            gain_from_float(mVolume[AUDIO_INTERLEAVE_LEFT]),
1645            gain_from_float(mVolume[AUDIO_INTERLEAVE_RIGHT])));
1646
1647    mProxy->setSendLevel(mSendLevel);
1648    const uint32_t effectiveSampleRate = adjustSampleRate(mSampleRate, mPlaybackRate.mPitch);
1649    const float effectiveSpeed = adjustSpeed(mPlaybackRate.mSpeed, mPlaybackRate.mPitch);
1650    const float effectivePitch = adjustPitch(mPlaybackRate.mPitch);
1651    mProxy->setSampleRate(effectiveSampleRate);
1652
1653    AudioPlaybackRate playbackRateTemp = mPlaybackRate;
1654    playbackRateTemp.mSpeed = effectiveSpeed;
1655    playbackRateTemp.mPitch = effectivePitch;
1656    mProxy->setPlaybackRate(playbackRateTemp);
1657    mProxy->setMinimum(mNotificationFramesAct);
1658
1659    mDeathNotifier = new DeathNotifier(this);
1660    IInterface::asBinder(mAudioTrack)->linkToDeath(mDeathNotifier, this);
1661
1662    return NO_ERROR;
1663    }
1664
1665release:
1666    AudioSystem::releaseOutput(output, streamType, mSessionId);
1667    if (callbackAdded) {
1668        // note: mOutput is always valid is callbackAdded is true
1669        AudioSystem::removeAudioDeviceCallback(this, mOutput);
1670    }
1671    if (status == NO_ERROR) {
1672        status = NO_INIT;
1673    }
1674    return status;
1675}
1676
1677status_t AudioTrack::obtainBuffer(Buffer* audioBuffer, int32_t waitCount, size_t *nonContig)
1678{
1679    if (audioBuffer == NULL) {
1680        if (nonContig != NULL) {
1681            *nonContig = 0;
1682        }
1683        return BAD_VALUE;
1684    }
1685    if (mTransfer != TRANSFER_OBTAIN) {
1686        audioBuffer->frameCount = 0;
1687        audioBuffer->size = 0;
1688        audioBuffer->raw = NULL;
1689        if (nonContig != NULL) {
1690            *nonContig = 0;
1691        }
1692        return INVALID_OPERATION;
1693    }
1694
1695    const struct timespec *requested;
1696    struct timespec timeout;
1697    if (waitCount == -1) {
1698        requested = &ClientProxy::kForever;
1699    } else if (waitCount == 0) {
1700        requested = &ClientProxy::kNonBlocking;
1701    } else if (waitCount > 0) {
1702        long long ms = WAIT_PERIOD_MS * (long long) waitCount;
1703        timeout.tv_sec = ms / 1000;
1704        timeout.tv_nsec = (int) (ms % 1000) * 1000000;
1705        requested = &timeout;
1706    } else {
1707        ALOGE("%s invalid waitCount %d", __func__, waitCount);
1708        requested = NULL;
1709    }
1710    return obtainBuffer(audioBuffer, requested, NULL /*elapsed*/, nonContig);
1711}
1712
1713status_t AudioTrack::obtainBuffer(Buffer* audioBuffer, const struct timespec *requested,
1714        struct timespec *elapsed, size_t *nonContig)
1715{
1716    // previous and new IAudioTrack sequence numbers are used to detect track re-creation
1717    uint32_t oldSequence = 0;
1718    uint32_t newSequence;
1719
1720    Proxy::Buffer buffer;
1721    status_t status = NO_ERROR;
1722
1723    static const int32_t kMaxTries = 5;
1724    int32_t tryCounter = kMaxTries;
1725
1726    do {
1727        // obtainBuffer() is called with mutex unlocked, so keep extra references to these fields to
1728        // keep them from going away if another thread re-creates the track during obtainBuffer()
1729        sp<AudioTrackClientProxy> proxy;
1730        sp<IMemory> iMem;
1731
1732        {   // start of lock scope
1733            AutoMutex lock(mLock);
1734
1735            newSequence = mSequence;
1736            // did previous obtainBuffer() fail due to media server death or voluntary invalidation?
1737            if (status == DEAD_OBJECT) {
1738                // re-create track, unless someone else has already done so
1739                if (newSequence == oldSequence) {
1740                    status = restoreTrack_l("obtainBuffer");
1741                    if (status != NO_ERROR) {
1742                        buffer.mFrameCount = 0;
1743                        buffer.mRaw = NULL;
1744                        buffer.mNonContig = 0;
1745                        break;
1746                    }
1747                }
1748            }
1749            oldSequence = newSequence;
1750
1751            if (status == NOT_ENOUGH_DATA) {
1752                restartIfDisabled();
1753            }
1754
1755            // Keep the extra references
1756            proxy = mProxy;
1757            iMem = mCblkMemory;
1758
1759            if (mState == STATE_STOPPING) {
1760                status = -EINTR;
1761                buffer.mFrameCount = 0;
1762                buffer.mRaw = NULL;
1763                buffer.mNonContig = 0;
1764                break;
1765            }
1766
1767            // Non-blocking if track is stopped or paused
1768            if (mState != STATE_ACTIVE) {
1769                requested = &ClientProxy::kNonBlocking;
1770            }
1771
1772        }   // end of lock scope
1773
1774        buffer.mFrameCount = audioBuffer->frameCount;
1775        // FIXME starts the requested timeout and elapsed over from scratch
1776        status = proxy->obtainBuffer(&buffer, requested, elapsed);
1777    } while (((status == DEAD_OBJECT) || (status == NOT_ENOUGH_DATA)) && (tryCounter-- > 0));
1778
1779    audioBuffer->frameCount = buffer.mFrameCount;
1780    audioBuffer->size = buffer.mFrameCount * mFrameSize;
1781    audioBuffer->raw = buffer.mRaw;
1782    if (nonContig != NULL) {
1783        *nonContig = buffer.mNonContig;
1784    }
1785    return status;
1786}
1787
1788void AudioTrack::releaseBuffer(const Buffer* audioBuffer)
1789{
1790    // FIXME add error checking on mode, by adding an internal version
1791    if (mTransfer == TRANSFER_SHARED) {
1792        return;
1793    }
1794
1795    size_t stepCount = audioBuffer->size / mFrameSize;
1796    if (stepCount == 0) {
1797        return;
1798    }
1799
1800    Proxy::Buffer buffer;
1801    buffer.mFrameCount = stepCount;
1802    buffer.mRaw = audioBuffer->raw;
1803
1804    AutoMutex lock(mLock);
1805    mReleased += stepCount;
1806    mInUnderrun = false;
1807    mProxy->releaseBuffer(&buffer);
1808
1809    // restart track if it was disabled by audioflinger due to previous underrun
1810    restartIfDisabled();
1811}
1812
1813void AudioTrack::restartIfDisabled()
1814{
1815    int32_t flags = android_atomic_and(~CBLK_DISABLED, &mCblk->mFlags);
1816    if ((mState == STATE_ACTIVE) && (flags & CBLK_DISABLED)) {
1817        ALOGW("releaseBuffer() track %p disabled due to previous underrun, restarting", this);
1818        // FIXME ignoring status
1819        mAudioTrack->start();
1820    }
1821}
1822
1823// -------------------------------------------------------------------------
1824
1825ssize_t AudioTrack::write(const void* buffer, size_t userSize, bool blocking)
1826{
1827    if (mTransfer != TRANSFER_SYNC) {
1828        return INVALID_OPERATION;
1829    }
1830
1831    if (isDirect()) {
1832        AutoMutex lock(mLock);
1833        int32_t flags = android_atomic_and(
1834                            ~(CBLK_UNDERRUN | CBLK_LOOP_CYCLE | CBLK_LOOP_FINAL | CBLK_BUFFER_END),
1835                            &mCblk->mFlags);
1836        if (flags & CBLK_INVALID) {
1837            return DEAD_OBJECT;
1838        }
1839    }
1840
1841    if (ssize_t(userSize) < 0 || (buffer == NULL && userSize != 0)) {
1842        // Sanity-check: user is most-likely passing an error code, and it would
1843        // make the return value ambiguous (actualSize vs error).
1844        ALOGE("AudioTrack::write(buffer=%p, size=%zu (%zd)", buffer, userSize, userSize);
1845        return BAD_VALUE;
1846    }
1847
1848    size_t written = 0;
1849    Buffer audioBuffer;
1850
1851    while (userSize >= mFrameSize) {
1852        audioBuffer.frameCount = userSize / mFrameSize;
1853
1854        status_t err = obtainBuffer(&audioBuffer,
1855                blocking ? &ClientProxy::kForever : &ClientProxy::kNonBlocking);
1856        if (err < 0) {
1857            if (written > 0) {
1858                break;
1859            }
1860            if (err == TIMED_OUT || err == -EINTR) {
1861                err = WOULD_BLOCK;
1862            }
1863            return ssize_t(err);
1864        }
1865
1866        size_t toWrite = audioBuffer.size;
1867        memcpy(audioBuffer.i8, buffer, toWrite);
1868        buffer = ((const char *) buffer) + toWrite;
1869        userSize -= toWrite;
1870        written += toWrite;
1871
1872        releaseBuffer(&audioBuffer);
1873    }
1874
1875    if (written > 0) {
1876        mFramesWritten += written / mFrameSize;
1877    }
1878    return written;
1879}
1880
1881// -------------------------------------------------------------------------
1882
1883nsecs_t AudioTrack::processAudioBuffer()
1884{
1885    // Currently the AudioTrack thread is not created if there are no callbacks.
1886    // Would it ever make sense to run the thread, even without callbacks?
1887    // If so, then replace this by checks at each use for mCbf != NULL.
1888    LOG_ALWAYS_FATAL_IF(mCblk == NULL);
1889
1890    mLock.lock();
1891    if (mAwaitBoost) {
1892        mAwaitBoost = false;
1893        mLock.unlock();
1894        static const int32_t kMaxTries = 5;
1895        int32_t tryCounter = kMaxTries;
1896        uint32_t pollUs = 10000;
1897        do {
1898            int policy = sched_getscheduler(0) & ~SCHED_RESET_ON_FORK;
1899            if (policy == SCHED_FIFO || policy == SCHED_RR) {
1900                break;
1901            }
1902            usleep(pollUs);
1903            pollUs <<= 1;
1904        } while (tryCounter-- > 0);
1905        if (tryCounter < 0) {
1906            ALOGE("did not receive expected priority boost on time");
1907        }
1908        // Run again immediately
1909        return 0;
1910    }
1911
1912    // Can only reference mCblk while locked
1913    int32_t flags = android_atomic_and(
1914        ~(CBLK_UNDERRUN | CBLK_LOOP_CYCLE | CBLK_LOOP_FINAL | CBLK_BUFFER_END), &mCblk->mFlags);
1915
1916    // Check for track invalidation
1917    if (flags & CBLK_INVALID) {
1918        // for offloaded tracks restoreTrack_l() will just update the sequence and clear
1919        // AudioSystem cache. We should not exit here but after calling the callback so
1920        // that the upper layers can recreate the track
1921        if (!isOffloadedOrDirect_l() || (mSequence == mObservedSequence)) {
1922            status_t status __unused = restoreTrack_l("processAudioBuffer");
1923            // FIXME unused status
1924            // after restoration, continue below to make sure that the loop and buffer events
1925            // are notified because they have been cleared from mCblk->mFlags above.
1926        }
1927    }
1928
1929    bool waitStreamEnd = mState == STATE_STOPPING;
1930    bool active = mState == STATE_ACTIVE;
1931
1932    // Manage underrun callback, must be done under lock to avoid race with releaseBuffer()
1933    bool newUnderrun = false;
1934    if (flags & CBLK_UNDERRUN) {
1935#if 0
1936        // Currently in shared buffer mode, when the server reaches the end of buffer,
1937        // the track stays active in continuous underrun state.  It's up to the application
1938        // to pause or stop the track, or set the position to a new offset within buffer.
1939        // This was some experimental code to auto-pause on underrun.   Keeping it here
1940        // in "if 0" so we can re-visit this if we add a real sequencer for shared memory content.
1941        if (mTransfer == TRANSFER_SHARED) {
1942            mState = STATE_PAUSED;
1943            active = false;
1944        }
1945#endif
1946        if (!mInUnderrun) {
1947            mInUnderrun = true;
1948            newUnderrun = true;
1949        }
1950    }
1951
1952    // Get current position of server
1953    Modulo<uint32_t> position(updateAndGetPosition_l());
1954
1955    // Manage marker callback
1956    bool markerReached = false;
1957    Modulo<uint32_t> markerPosition(mMarkerPosition);
1958    // uses 32 bit wraparound for comparison with position.
1959    if (!mMarkerReached && markerPosition.value() > 0 && position >= markerPosition) {
1960        mMarkerReached = markerReached = true;
1961    }
1962
1963    // Determine number of new position callback(s) that will be needed, while locked
1964    size_t newPosCount = 0;
1965    Modulo<uint32_t> newPosition(mNewPosition);
1966    uint32_t updatePeriod = mUpdatePeriod;
1967    // FIXME fails for wraparound, need 64 bits
1968    if (updatePeriod > 0 && position >= newPosition) {
1969        newPosCount = ((position - newPosition).value() / updatePeriod) + 1;
1970        mNewPosition += updatePeriod * newPosCount;
1971    }
1972
1973    // Cache other fields that will be needed soon
1974    uint32_t sampleRate = mSampleRate;
1975    float speed = mPlaybackRate.mSpeed;
1976    const uint32_t notificationFrames = mNotificationFramesAct;
1977    if (mRefreshRemaining) {
1978        mRefreshRemaining = false;
1979        mRemainingFrames = notificationFrames;
1980        mRetryOnPartialBuffer = false;
1981    }
1982    size_t misalignment = mProxy->getMisalignment();
1983    uint32_t sequence = mSequence;
1984    sp<AudioTrackClientProxy> proxy = mProxy;
1985
1986    // Determine the number of new loop callback(s) that will be needed, while locked.
1987    int loopCountNotifications = 0;
1988    uint32_t loopPeriod = 0; // time in frames for next EVENT_LOOP_END or EVENT_BUFFER_END
1989
1990    if (mLoopCount > 0) {
1991        int loopCount;
1992        size_t bufferPosition;
1993        mStaticProxy->getBufferPositionAndLoopCount(&bufferPosition, &loopCount);
1994        loopPeriod = ((loopCount > 0) ? mLoopEnd : mFrameCount) - bufferPosition;
1995        loopCountNotifications = min(mLoopCountNotified - loopCount, kMaxLoopCountNotifications);
1996        mLoopCountNotified = loopCount; // discard any excess notifications
1997    } else if (mLoopCount < 0) {
1998        // FIXME: We're not accurate with notification count and position with infinite looping
1999        // since loopCount from server side will always return -1 (we could decrement it).
2000        size_t bufferPosition = mStaticProxy->getBufferPosition();
2001        loopCountNotifications = int((flags & (CBLK_LOOP_CYCLE | CBLK_LOOP_FINAL)) != 0);
2002        loopPeriod = mLoopEnd - bufferPosition;
2003    } else if (/* mLoopCount == 0 && */ mSharedBuffer != 0) {
2004        size_t bufferPosition = mStaticProxy->getBufferPosition();
2005        loopPeriod = mFrameCount - bufferPosition;
2006    }
2007
2008    // These fields don't need to be cached, because they are assigned only by set():
2009    //     mTransfer, mCbf, mUserData, mFormat, mFrameSize, mFlags
2010    // mFlags is also assigned by createTrack_l(), but not the bit we care about.
2011
2012    mLock.unlock();
2013
2014    // get anchor time to account for callbacks.
2015    const nsecs_t timeBeforeCallbacks = systemTime();
2016
2017    if (waitStreamEnd) {
2018        // FIXME:  Instead of blocking in proxy->waitStreamEndDone(), Callback thread
2019        // should wait on proxy futex and handle CBLK_STREAM_END_DONE within this function
2020        // (and make sure we don't callback for more data while we're stopping).
2021        // This helps with position, marker notifications, and track invalidation.
2022        struct timespec timeout;
2023        timeout.tv_sec = WAIT_STREAM_END_TIMEOUT_SEC;
2024        timeout.tv_nsec = 0;
2025
2026        status_t status = proxy->waitStreamEndDone(&timeout);
2027        switch (status) {
2028        case NO_ERROR:
2029        case DEAD_OBJECT:
2030        case TIMED_OUT:
2031            if (status != DEAD_OBJECT) {
2032                // for DEAD_OBJECT, we do not send a EVENT_STREAM_END after stop();
2033                // instead, the application should handle the EVENT_NEW_IAUDIOTRACK.
2034                mCbf(EVENT_STREAM_END, mUserData, NULL);
2035            }
2036            {
2037                AutoMutex lock(mLock);
2038                // The previously assigned value of waitStreamEnd is no longer valid,
2039                // since the mutex has been unlocked and either the callback handler
2040                // or another thread could have re-started the AudioTrack during that time.
2041                waitStreamEnd = mState == STATE_STOPPING;
2042                if (waitStreamEnd) {
2043                    mState = STATE_STOPPED;
2044                    mReleased = 0;
2045                }
2046            }
2047            if (waitStreamEnd && status != DEAD_OBJECT) {
2048               return NS_INACTIVE;
2049            }
2050            break;
2051        }
2052        return 0;
2053    }
2054
2055    // perform callbacks while unlocked
2056    if (newUnderrun) {
2057        mCbf(EVENT_UNDERRUN, mUserData, NULL);
2058    }
2059    while (loopCountNotifications > 0) {
2060        mCbf(EVENT_LOOP_END, mUserData, NULL);
2061        --loopCountNotifications;
2062    }
2063    if (flags & CBLK_BUFFER_END) {
2064        mCbf(EVENT_BUFFER_END, mUserData, NULL);
2065    }
2066    if (markerReached) {
2067        mCbf(EVENT_MARKER, mUserData, &markerPosition);
2068    }
2069    while (newPosCount > 0) {
2070        size_t temp = newPosition.value(); // FIXME size_t != uint32_t
2071        mCbf(EVENT_NEW_POS, mUserData, &temp);
2072        newPosition += updatePeriod;
2073        newPosCount--;
2074    }
2075
2076    if (mObservedSequence != sequence) {
2077        mObservedSequence = sequence;
2078        mCbf(EVENT_NEW_IAUDIOTRACK, mUserData, NULL);
2079        // for offloaded tracks, just wait for the upper layers to recreate the track
2080        if (isOffloadedOrDirect()) {
2081            return NS_INACTIVE;
2082        }
2083    }
2084
2085    // if inactive, then don't run me again until re-started
2086    if (!active) {
2087        return NS_INACTIVE;
2088    }
2089
2090    // Compute the estimated time until the next timed event (position, markers, loops)
2091    // FIXME only for non-compressed audio
2092    uint32_t minFrames = ~0;
2093    if (!markerReached && position < markerPosition) {
2094        minFrames = (markerPosition - position).value();
2095    }
2096    if (loopPeriod > 0 && loopPeriod < minFrames) {
2097        // loopPeriod is already adjusted for actual position.
2098        minFrames = loopPeriod;
2099    }
2100    if (updatePeriod > 0) {
2101        minFrames = min(minFrames, (newPosition - position).value());
2102    }
2103
2104    // If > 0, poll periodically to recover from a stuck server.  A good value is 2.
2105    static const uint32_t kPoll = 0;
2106    if (kPoll > 0 && mTransfer == TRANSFER_CALLBACK && kPoll * notificationFrames < minFrames) {
2107        minFrames = kPoll * notificationFrames;
2108    }
2109
2110    // This "fudge factor" avoids soaking CPU, and compensates for late progress by server
2111    static const nsecs_t kWaitPeriodNs = WAIT_PERIOD_MS * 1000000LL;
2112    const nsecs_t timeAfterCallbacks = systemTime();
2113
2114    // Convert frame units to time units
2115    nsecs_t ns = NS_WHENEVER;
2116    if (minFrames != (uint32_t) ~0) {
2117        // AudioFlinger consumption of client data may be irregular when coming out of device
2118        // standby since the kernel buffers require filling. This is throttled to no more than 2x
2119        // the expected rate in the MixerThread. Hence, we reduce the estimated time to wait by one
2120        // half (but no more than half a second) to improve callback accuracy during these temporary
2121        // data surges.
2122        const nsecs_t estimatedNs = framesToNanoseconds(minFrames, sampleRate, speed);
2123        constexpr nsecs_t maxThrottleCompensationNs = 500000000LL;
2124        ns = estimatedNs - min(estimatedNs / 2, maxThrottleCompensationNs) + kWaitPeriodNs;
2125        ns -= (timeAfterCallbacks - timeBeforeCallbacks);  // account for callback time
2126        // TODO: Should we warn if the callback time is too long?
2127        if (ns < 0) ns = 0;
2128    }
2129
2130    // If not supplying data by EVENT_MORE_DATA, then we're done
2131    if (mTransfer != TRANSFER_CALLBACK) {
2132        return ns;
2133    }
2134
2135    // EVENT_MORE_DATA callback handling.
2136    // Timing for linear pcm audio data formats can be derived directly from the
2137    // buffer fill level.
2138    // Timing for compressed data is not directly available from the buffer fill level,
2139    // rather indirectly from waiting for blocking mode callbacks or waiting for obtain()
2140    // to return a certain fill level.
2141
2142    struct timespec timeout;
2143    const struct timespec *requested = &ClientProxy::kForever;
2144    if (ns != NS_WHENEVER) {
2145        timeout.tv_sec = ns / 1000000000LL;
2146        timeout.tv_nsec = ns % 1000000000LL;
2147        ALOGV("timeout %ld.%03d", timeout.tv_sec, (int) timeout.tv_nsec / 1000000);
2148        requested = &timeout;
2149    }
2150
2151    size_t writtenFrames = 0;
2152    while (mRemainingFrames > 0) {
2153
2154        Buffer audioBuffer;
2155        audioBuffer.frameCount = mRemainingFrames;
2156        size_t nonContig;
2157        status_t err = obtainBuffer(&audioBuffer, requested, NULL, &nonContig);
2158        LOG_ALWAYS_FATAL_IF((err != NO_ERROR) != (audioBuffer.frameCount == 0),
2159                "obtainBuffer() err=%d frameCount=%zu", err, audioBuffer.frameCount);
2160        requested = &ClientProxy::kNonBlocking;
2161        size_t avail = audioBuffer.frameCount + nonContig;
2162        ALOGV("obtainBuffer(%u) returned %zu = %zu + %zu err %d",
2163                mRemainingFrames, avail, audioBuffer.frameCount, nonContig, err);
2164        if (err != NO_ERROR) {
2165            if (err == TIMED_OUT || err == WOULD_BLOCK || err == -EINTR ||
2166                    (isOffloaded() && (err == DEAD_OBJECT))) {
2167                // FIXME bug 25195759
2168                return 1000000;
2169            }
2170            ALOGE("Error %d obtaining an audio buffer, giving up.", err);
2171            return NS_NEVER;
2172        }
2173
2174        if (mRetryOnPartialBuffer && audio_has_proportional_frames(mFormat)) {
2175            mRetryOnPartialBuffer = false;
2176            if (avail < mRemainingFrames) {
2177                if (ns > 0) { // account for obtain time
2178                    const nsecs_t timeNow = systemTime();
2179                    ns = max((nsecs_t)0, ns - (timeNow - timeAfterCallbacks));
2180                }
2181                nsecs_t myns = framesToNanoseconds(mRemainingFrames - avail, sampleRate, speed);
2182                if (ns < 0 /* NS_WHENEVER */ || myns < ns) {
2183                    ns = myns;
2184                }
2185                return ns;
2186            }
2187        }
2188
2189        size_t reqSize = audioBuffer.size;
2190        mCbf(EVENT_MORE_DATA, mUserData, &audioBuffer);
2191        size_t writtenSize = audioBuffer.size;
2192
2193        // Sanity check on returned size
2194        if (ssize_t(writtenSize) < 0 || writtenSize > reqSize) {
2195            ALOGE("EVENT_MORE_DATA requested %zu bytes but callback returned %zd bytes",
2196                    reqSize, ssize_t(writtenSize));
2197            return NS_NEVER;
2198        }
2199
2200        if (writtenSize == 0) {
2201            // The callback is done filling buffers
2202            // Keep this thread going to handle timed events and
2203            // still try to get more data in intervals of WAIT_PERIOD_MS
2204            // but don't just loop and block the CPU, so wait
2205
2206            // mCbf(EVENT_MORE_DATA, ...) might either
2207            // (1) Block until it can fill the buffer, returning 0 size on EOS.
2208            // (2) Block until it can fill the buffer, returning 0 data (silence) on EOS.
2209            // (3) Return 0 size when no data is available, does not wait for more data.
2210            //
2211            // (1) and (2) occurs with AudioPlayer/AwesomePlayer; (3) occurs with NuPlayer.
2212            // We try to compute the wait time to avoid a tight sleep-wait cycle,
2213            // especially for case (3).
2214            //
2215            // The decision to support (1) and (2) affect the sizing of mRemainingFrames
2216            // and this loop; whereas for case (3) we could simply check once with the full
2217            // buffer size and skip the loop entirely.
2218
2219            nsecs_t myns;
2220            if (audio_has_proportional_frames(mFormat)) {
2221                // time to wait based on buffer occupancy
2222                const nsecs_t datans = mRemainingFrames <= avail ? 0 :
2223                        framesToNanoseconds(mRemainingFrames - avail, sampleRate, speed);
2224                // audio flinger thread buffer size (TODO: adjust for fast tracks)
2225                // FIXME: use mAfFrameCountHAL instead of mAfFrameCount below for fast tracks.
2226                const nsecs_t afns = framesToNanoseconds(mAfFrameCount, mAfSampleRate, speed);
2227                // add a half the AudioFlinger buffer time to avoid soaking CPU if datans is 0.
2228                myns = datans + (afns / 2);
2229            } else {
2230                // FIXME: This could ping quite a bit if the buffer isn't full.
2231                // Note that when mState is stopping we waitStreamEnd, so it never gets here.
2232                myns = kWaitPeriodNs;
2233            }
2234            if (ns > 0) { // account for obtain and callback time
2235                const nsecs_t timeNow = systemTime();
2236                ns = max((nsecs_t)0, ns - (timeNow - timeAfterCallbacks));
2237            }
2238            if (ns < 0 /* NS_WHENEVER */ || myns < ns) {
2239                ns = myns;
2240            }
2241            return ns;
2242        }
2243
2244        size_t releasedFrames = writtenSize / mFrameSize;
2245        audioBuffer.frameCount = releasedFrames;
2246        mRemainingFrames -= releasedFrames;
2247        if (misalignment >= releasedFrames) {
2248            misalignment -= releasedFrames;
2249        } else {
2250            misalignment = 0;
2251        }
2252
2253        releaseBuffer(&audioBuffer);
2254        writtenFrames += releasedFrames;
2255
2256        // FIXME here is where we would repeat EVENT_MORE_DATA again on same advanced buffer
2257        // if callback doesn't like to accept the full chunk
2258        if (writtenSize < reqSize) {
2259            continue;
2260        }
2261
2262        // There could be enough non-contiguous frames available to satisfy the remaining request
2263        if (mRemainingFrames <= nonContig) {
2264            continue;
2265        }
2266
2267#if 0
2268        // This heuristic tries to collapse a series of EVENT_MORE_DATA that would total to a
2269        // sum <= notificationFrames.  It replaces that series by at most two EVENT_MORE_DATA
2270        // that total to a sum == notificationFrames.
2271        if (0 < misalignment && misalignment <= mRemainingFrames) {
2272            mRemainingFrames = misalignment;
2273            return ((double)mRemainingFrames * 1100000000) / ((double)sampleRate * speed);
2274        }
2275#endif
2276
2277    }
2278    if (writtenFrames > 0) {
2279        AutoMutex lock(mLock);
2280        mFramesWritten += writtenFrames;
2281    }
2282    mRemainingFrames = notificationFrames;
2283    mRetryOnPartialBuffer = true;
2284
2285    // A lot has transpired since ns was calculated, so run again immediately and re-calculate
2286    return 0;
2287}
2288
2289status_t AudioTrack::restoreTrack_l(const char *from)
2290{
2291    ALOGW("dead IAudioTrack, %s, creating a new one from %s()",
2292          isOffloadedOrDirect_l() ? "Offloaded or Direct" : "PCM", from);
2293    ++mSequence;
2294
2295    // refresh the audio configuration cache in this process to make sure we get new
2296    // output parameters and new IAudioFlinger in createTrack_l()
2297    AudioSystem::clearAudioConfigCache();
2298
2299    if (isOffloadedOrDirect_l() || mDoNotReconnect) {
2300        // FIXME re-creation of offloaded and direct tracks is not yet implemented;
2301        // reconsider enabling for linear PCM encodings when position can be preserved.
2302        return DEAD_OBJECT;
2303    }
2304
2305    // Save so we can return count since creation.
2306    mUnderrunCountOffset = getUnderrunCount_l();
2307
2308    // save the old static buffer position
2309    uint32_t staticPosition = 0;
2310    size_t bufferPosition = 0;
2311    int loopCount = 0;
2312    if (mStaticProxy != 0) {
2313        mStaticProxy->getBufferPositionAndLoopCount(&bufferPosition, &loopCount);
2314        staticPosition = mStaticProxy->getPosition().unsignedValue();
2315    }
2316
2317    mFlags = mOrigFlags;
2318
2319    // If a new IAudioTrack is successfully created, createTrack_l() will modify the
2320    // following member variables: mAudioTrack, mCblkMemory and mCblk.
2321    // It will also delete the strong references on previous IAudioTrack and IMemory.
2322    // If a new IAudioTrack cannot be created, the previous (dead) instance will be left intact.
2323    status_t result = createTrack_l();
2324
2325    if (result == NO_ERROR) {
2326        // take the frames that will be lost by track recreation into account in saved position
2327        // For streaming tracks, this is the amount we obtained from the user/client
2328        // (not the number actually consumed at the server - those are already lost).
2329        if (mStaticProxy == 0) {
2330            mPosition = mReleased;
2331        }
2332        // Continue playback from last known position and restore loop.
2333        if (mStaticProxy != 0) {
2334            if (loopCount != 0) {
2335                mStaticProxy->setBufferPositionAndLoop(bufferPosition,
2336                        mLoopStart, mLoopEnd, loopCount);
2337            } else {
2338                mStaticProxy->setBufferPosition(bufferPosition);
2339                if (bufferPosition == mFrameCount) {
2340                    ALOGD("restoring track at end of static buffer");
2341                }
2342            }
2343        }
2344        // restore volume handler
2345        mVolumeHandler->forall([this](const VolumeShaper &shaper) -> VolumeShaper::Status {
2346            sp<VolumeShaper::Operation> operationToEnd =
2347                    new VolumeShaper::Operation(shaper.mOperation);
2348            // TODO: Ideally we would restore to the exact xOffset position
2349            // as returned by getVolumeShaperState(), but we don't have that
2350            // information when restoring at the client unless we periodically poll
2351            // the server or create shared memory state.
2352            //
2353            // For now, we simply advance to the end of the VolumeShaper effect
2354            // if it has been started.
2355            if (shaper.isStarted()) {
2356                operationToEnd->setNormalizedTime(1.f);
2357            }
2358            return mAudioTrack->applyVolumeShaper(shaper.mConfiguration, operationToEnd);
2359        });
2360
2361        if (mState == STATE_ACTIVE) {
2362            result = mAudioTrack->start();
2363        }
2364        // server resets to zero so we offset
2365        mFramesWrittenServerOffset =
2366                mStaticProxy.get() != nullptr ? staticPosition : mFramesWritten;
2367        mFramesWrittenAtRestore = mFramesWrittenServerOffset;
2368    }
2369    if (result != NO_ERROR) {
2370        ALOGW("restoreTrack_l() failed status %d", result);
2371        mState = STATE_STOPPED;
2372        mReleased = 0;
2373    }
2374
2375    return result;
2376}
2377
2378Modulo<uint32_t> AudioTrack::updateAndGetPosition_l()
2379{
2380    // This is the sole place to read server consumed frames
2381    Modulo<uint32_t> newServer(mProxy->getPosition());
2382    const int32_t delta = (newServer - mServer).signedValue();
2383    // TODO There is controversy about whether there can be "negative jitter" in server position.
2384    //      This should be investigated further, and if possible, it should be addressed.
2385    //      A more definite failure mode is infrequent polling by client.
2386    //      One could call (void)getPosition_l() in releaseBuffer(),
2387    //      so mReleased and mPosition are always lock-step as best possible.
2388    //      That should ensure delta never goes negative for infrequent polling
2389    //      unless the server has more than 2^31 frames in its buffer,
2390    //      in which case the use of uint32_t for these counters has bigger issues.
2391    ALOGE_IF(delta < 0,
2392            "detected illegal retrograde motion by the server: mServer advanced by %d",
2393            delta);
2394    mServer = newServer;
2395    if (delta > 0) { // avoid retrograde
2396        mPosition += delta;
2397    }
2398    return mPosition;
2399}
2400
2401bool AudioTrack::isSampleRateSpeedAllowed_l(uint32_t sampleRate, float speed)
2402{
2403    updateLatency_l();
2404    // applicable for mixing tracks only (not offloaded or direct)
2405    if (mStaticProxy != 0) {
2406        return true; // static tracks do not have issues with buffer sizing.
2407    }
2408    const size_t minFrameCount =
2409            calculateMinFrameCount(mAfLatency, mAfFrameCount, mAfSampleRate, sampleRate, speed
2410                /*, 0 mNotificationsPerBufferReq*/);
2411    const bool allowed = mFrameCount >= minFrameCount;
2412    ALOGD_IF(!allowed,
2413            "isSampleRateSpeedAllowed_l denied "
2414            "mAfLatency:%u  mAfFrameCount:%zu  mAfSampleRate:%u  sampleRate:%u  speed:%f "
2415            "mFrameCount:%zu < minFrameCount:%zu",
2416            mAfLatency, mAfFrameCount, mAfSampleRate, sampleRate, speed,
2417            mFrameCount, minFrameCount);
2418    return allowed;
2419}
2420
2421status_t AudioTrack::setParameters(const String8& keyValuePairs)
2422{
2423    AutoMutex lock(mLock);
2424    return mAudioTrack->setParameters(keyValuePairs);
2425}
2426
2427VolumeShaper::Status AudioTrack::applyVolumeShaper(
2428        const sp<VolumeShaper::Configuration>& configuration,
2429        const sp<VolumeShaper::Operation>& operation)
2430{
2431    AutoMutex lock(mLock);
2432    mVolumeHandler->setIdIfNecessary(configuration);
2433    VolumeShaper::Status status = mAudioTrack->applyVolumeShaper(configuration, operation);
2434
2435    if (status == DEAD_OBJECT) {
2436        if (restoreTrack_l("applyVolumeShaper") == OK) {
2437            status = mAudioTrack->applyVolumeShaper(configuration, operation);
2438        }
2439    }
2440    if (status >= 0) {
2441        // save VolumeShaper for restore
2442        mVolumeHandler->applyVolumeShaper(configuration, operation);
2443        if (mState == STATE_ACTIVE || mState == STATE_STOPPING) {
2444            mVolumeHandler->setStarted();
2445        }
2446    } else {
2447        // warn only if not an expected restore failure.
2448        ALOGW_IF(!((isOffloadedOrDirect_l() || mDoNotReconnect) && status == DEAD_OBJECT),
2449                "applyVolumeShaper failed: %d", status);
2450    }
2451    return status;
2452}
2453
2454sp<VolumeShaper::State> AudioTrack::getVolumeShaperState(int id)
2455{
2456    AutoMutex lock(mLock);
2457    sp<VolumeShaper::State> state = mAudioTrack->getVolumeShaperState(id);
2458    if (state.get() == nullptr && (mCblk->mFlags & CBLK_INVALID) != 0) {
2459        if (restoreTrack_l("getVolumeShaperState") == OK) {
2460            state = mAudioTrack->getVolumeShaperState(id);
2461        }
2462    }
2463    return state;
2464}
2465
2466status_t AudioTrack::getTimestamp(ExtendedTimestamp *timestamp)
2467{
2468    if (timestamp == nullptr) {
2469        return BAD_VALUE;
2470    }
2471    AutoMutex lock(mLock);
2472    return getTimestamp_l(timestamp);
2473}
2474
2475status_t AudioTrack::getTimestamp_l(ExtendedTimestamp *timestamp)
2476{
2477    if (mCblk->mFlags & CBLK_INVALID) {
2478        const status_t status = restoreTrack_l("getTimestampExtended");
2479        if (status != OK) {
2480            // per getTimestamp() API doc in header, we return DEAD_OBJECT here,
2481            // recommending that the track be recreated.
2482            return DEAD_OBJECT;
2483        }
2484    }
2485    // check for offloaded/direct here in case restoring somehow changed those flags.
2486    if (isOffloadedOrDirect_l()) {
2487        return INVALID_OPERATION; // not supported
2488    }
2489    status_t status = mProxy->getTimestamp(timestamp);
2490    LOG_ALWAYS_FATAL_IF(status != OK, "status %d not allowed from proxy getTimestamp", status);
2491    bool found = false;
2492    timestamp->mPosition[ExtendedTimestamp::LOCATION_CLIENT] = mFramesWritten;
2493    timestamp->mTimeNs[ExtendedTimestamp::LOCATION_CLIENT] = 0;
2494    // server side frame offset in case AudioTrack has been restored.
2495    for (int i = ExtendedTimestamp::LOCATION_SERVER;
2496            i < ExtendedTimestamp::LOCATION_MAX; ++i) {
2497        if (timestamp->mTimeNs[i] >= 0) {
2498            // apply server offset (frames flushed is ignored
2499            // so we don't report the jump when the flush occurs).
2500            timestamp->mPosition[i] += mFramesWrittenServerOffset;
2501            found = true;
2502        }
2503    }
2504    return found ? OK : WOULD_BLOCK;
2505}
2506
2507status_t AudioTrack::getTimestamp(AudioTimestamp& timestamp)
2508{
2509    AutoMutex lock(mLock);
2510    return getTimestamp_l(timestamp);
2511}
2512
2513status_t AudioTrack::getTimestamp_l(AudioTimestamp& timestamp)
2514{
2515    bool previousTimestampValid = mPreviousTimestampValid;
2516    // Set false here to cover all the error return cases.
2517    mPreviousTimestampValid = false;
2518
2519    switch (mState) {
2520    case STATE_ACTIVE:
2521    case STATE_PAUSED:
2522        break; // handle below
2523    case STATE_FLUSHED:
2524    case STATE_STOPPED:
2525        return WOULD_BLOCK;
2526    case STATE_STOPPING:
2527    case STATE_PAUSED_STOPPING:
2528        if (!isOffloaded_l()) {
2529            return INVALID_OPERATION;
2530        }
2531        break; // offloaded tracks handled below
2532    default:
2533        LOG_ALWAYS_FATAL("Invalid mState in getTimestamp(): %d", mState);
2534        break;
2535    }
2536
2537    if (mCblk->mFlags & CBLK_INVALID) {
2538        const status_t status = restoreTrack_l("getTimestamp");
2539        if (status != OK) {
2540            // per getTimestamp() API doc in header, we return DEAD_OBJECT here,
2541            // recommending that the track be recreated.
2542            return DEAD_OBJECT;
2543        }
2544    }
2545
2546    // The presented frame count must always lag behind the consumed frame count.
2547    // To avoid a race, read the presented frames first.  This ensures that presented <= consumed.
2548
2549    status_t status;
2550    if (isOffloadedOrDirect_l()) {
2551        // use Binder to get timestamp
2552        status = mAudioTrack->getTimestamp(timestamp);
2553    } else {
2554        // read timestamp from shared memory
2555        ExtendedTimestamp ets;
2556        status = mProxy->getTimestamp(&ets);
2557        if (status == OK) {
2558            ExtendedTimestamp::Location location;
2559            status = ets.getBestTimestamp(&timestamp, &location);
2560
2561            if (status == OK) {
2562                updateLatency_l();
2563                // It is possible that the best location has moved from the kernel to the server.
2564                // In this case we adjust the position from the previous computed latency.
2565                if (location == ExtendedTimestamp::LOCATION_SERVER) {
2566                    ALOGW_IF(mPreviousLocation == ExtendedTimestamp::LOCATION_KERNEL,
2567                            "getTimestamp() location moved from kernel to server");
2568                    // check that the last kernel OK time info exists and the positions
2569                    // are valid (if they predate the current track, the positions may
2570                    // be zero or negative).
2571                    const int64_t frames =
2572                            (ets.mTimeNs[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] < 0 ||
2573                            ets.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK] < 0 ||
2574                            ets.mPosition[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] <= 0 ||
2575                            ets.mPosition[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK] <= 0)
2576                            ?
2577                            int64_t((double)mAfLatency * mSampleRate * mPlaybackRate.mSpeed
2578                                    / 1000)
2579                            :
2580                            (ets.mPosition[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK]
2581                            - ets.mPosition[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK]);
2582                    ALOGV("frame adjustment:%lld  timestamp:%s",
2583                            (long long)frames, ets.toString().c_str());
2584                    if (frames >= ets.mPosition[location]) {
2585                        timestamp.mPosition = 0;
2586                    } else {
2587                        timestamp.mPosition = (uint32_t)(ets.mPosition[location] - frames);
2588                    }
2589                } else if (location == ExtendedTimestamp::LOCATION_KERNEL) {
2590                    ALOGV_IF(mPreviousLocation == ExtendedTimestamp::LOCATION_SERVER,
2591                            "getTimestamp() location moved from server to kernel");
2592                }
2593
2594                // We update the timestamp time even when paused.
2595                if (mState == STATE_PAUSED /* not needed: STATE_PAUSED_STOPPING */) {
2596                    const int64_t now = systemTime();
2597                    const int64_t at = audio_utils_ns_from_timespec(&timestamp.mTime);
2598                    const int64_t lag =
2599                            (ets.mTimeNs[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] < 0 ||
2600                                ets.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK] < 0)
2601                            ? int64_t(mAfLatency * 1000000LL)
2602                            : (ets.mPosition[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK]
2603                             - ets.mPosition[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK])
2604                             * NANOS_PER_SECOND / mSampleRate;
2605                    const int64_t limit = now - lag; // no earlier than this limit
2606                    if (at < limit) {
2607                        ALOGV("timestamp pause lag:%lld adjusting from %lld to %lld",
2608                                (long long)lag, (long long)at, (long long)limit);
2609                        timestamp.mTime = convertNsToTimespec(limit);
2610                    }
2611                }
2612                mPreviousLocation = location;
2613            } else {
2614                // right after AudioTrack is started, one may not find a timestamp
2615                ALOGV("getBestTimestamp did not find timestamp");
2616            }
2617        }
2618        if (status == INVALID_OPERATION) {
2619            // INVALID_OPERATION occurs when no timestamp has been issued by the server;
2620            // other failures are signaled by a negative time.
2621            // If we come out of FLUSHED or STOPPED where the position is known
2622            // to be zero we convert this to WOULD_BLOCK (with the implicit meaning of
2623            // "zero" for NuPlayer).  We don't convert for track restoration as position
2624            // does not reset.
2625            ALOGV("timestamp server offset:%lld restore frames:%lld",
2626                    (long long)mFramesWrittenServerOffset, (long long)mFramesWrittenAtRestore);
2627            if (mFramesWrittenServerOffset != mFramesWrittenAtRestore) {
2628                status = WOULD_BLOCK;
2629            }
2630        }
2631    }
2632    if (status != NO_ERROR) {
2633        ALOGV_IF(status != WOULD_BLOCK, "getTimestamp error:%#x", status);
2634        return status;
2635    }
2636    if (isOffloadedOrDirect_l()) {
2637        if (isOffloaded_l() && (mState == STATE_PAUSED || mState == STATE_PAUSED_STOPPING)) {
2638            // use cached paused position in case another offloaded track is running.
2639            timestamp.mPosition = mPausedPosition;
2640            clock_gettime(CLOCK_MONOTONIC, &timestamp.mTime);
2641            // TODO: adjust for delay
2642            return NO_ERROR;
2643        }
2644
2645        // Check whether a pending flush or stop has completed, as those commands may
2646        // be asynchronous or return near finish or exhibit glitchy behavior.
2647        //
2648        // Originally this showed up as the first timestamp being a continuation of
2649        // the previous song under gapless playback.
2650        // However, we sometimes see zero timestamps, then a glitch of
2651        // the previous song's position, and then correct timestamps afterwards.
2652        if (mStartFromZeroUs != 0 && mSampleRate != 0) {
2653            static const int kTimeJitterUs = 100000; // 100 ms
2654            static const int k1SecUs = 1000000;
2655
2656            const int64_t timeNow = getNowUs();
2657
2658            if (timeNow < mStartFromZeroUs + k1SecUs) { // within first second of starting
2659                const int64_t timestampTimeUs = convertTimespecToUs(timestamp.mTime);
2660                if (timestampTimeUs < mStartFromZeroUs) {
2661                    return WOULD_BLOCK;  // stale timestamp time, occurs before start.
2662                }
2663                const int64_t deltaTimeUs = timestampTimeUs - mStartFromZeroUs;
2664                const int64_t deltaPositionByUs = (double)timestamp.mPosition * 1000000
2665                        / ((double)mSampleRate * mPlaybackRate.mSpeed);
2666
2667                if (deltaPositionByUs > deltaTimeUs + kTimeJitterUs) {
2668                    // Verify that the counter can't count faster than the sample rate
2669                    // since the start time.  If greater, then that means we may have failed
2670                    // to completely flush or stop the previous playing track.
2671                    ALOGW_IF(!mTimestampStartupGlitchReported,
2672                            "getTimestamp startup glitch detected"
2673                            " deltaTimeUs(%lld) deltaPositionUs(%lld) tsmPosition(%u)",
2674                            (long long)deltaTimeUs, (long long)deltaPositionByUs,
2675                            timestamp.mPosition);
2676                    mTimestampStartupGlitchReported = true;
2677                    if (previousTimestampValid
2678                            && mPreviousTimestamp.mPosition == 0 /* should be true if valid */) {
2679                        timestamp = mPreviousTimestamp;
2680                        mPreviousTimestampValid = true;
2681                        return NO_ERROR;
2682                    }
2683                    return WOULD_BLOCK;
2684                }
2685                if (deltaPositionByUs != 0) {
2686                    mStartFromZeroUs = 0; // don't check again, we got valid nonzero position.
2687                }
2688            } else {
2689                mStartFromZeroUs = 0; // don't check again, start time expired.
2690            }
2691            mTimestampStartupGlitchReported = false;
2692        }
2693    } else {
2694        // Update the mapping between local consumed (mPosition) and server consumed (mServer)
2695        (void) updateAndGetPosition_l();
2696        // Server consumed (mServer) and presented both use the same server time base,
2697        // and server consumed is always >= presented.
2698        // The delta between these represents the number of frames in the buffer pipeline.
2699        // If this delta between these is greater than the client position, it means that
2700        // actually presented is still stuck at the starting line (figuratively speaking),
2701        // waiting for the first frame to go by.  So we can't report a valid timestamp yet.
2702        // Note: We explicitly use non-Modulo comparison here - potential wrap issue when
2703        // mPosition exceeds 32 bits.
2704        // TODO Remove when timestamp is updated to contain pipeline status info.
2705        const int32_t pipelineDepthInFrames = (mServer - timestamp.mPosition).signedValue();
2706        if (pipelineDepthInFrames > 0 /* should be true, but we check anyways */
2707                && (uint32_t)pipelineDepthInFrames > mPosition.value()) {
2708            return INVALID_OPERATION;
2709        }
2710        // Convert timestamp position from server time base to client time base.
2711        // TODO The following code should work OK now because timestamp.mPosition is 32-bit.
2712        // But if we change it to 64-bit then this could fail.
2713        // Use Modulo computation here.
2714        timestamp.mPosition = (mPosition - mServer + timestamp.mPosition).value();
2715        // Immediately after a call to getPosition_l(), mPosition and
2716        // mServer both represent the same frame position.  mPosition is
2717        // in client's point of view, and mServer is in server's point of
2718        // view.  So the difference between them is the "fudge factor"
2719        // between client and server views due to stop() and/or new
2720        // IAudioTrack.  And timestamp.mPosition is initially in server's
2721        // point of view, so we need to apply the same fudge factor to it.
2722    }
2723
2724    // Prevent retrograde motion in timestamp.
2725    // This is sometimes caused by erratic reports of the available space in the ALSA drivers.
2726    if (status == NO_ERROR) {
2727        // previousTimestampValid is set to false when starting after a stop or flush.
2728        if (previousTimestampValid) {
2729            const int64_t previousTimeNanos =
2730                    audio_utils_ns_from_timespec(&mPreviousTimestamp.mTime);
2731            int64_t currentTimeNanos = audio_utils_ns_from_timespec(&timestamp.mTime);
2732
2733            // Fix stale time when checking timestamp right after start().
2734            //
2735            // For offload compatibility, use a default lag value here.
2736            // Any time discrepancy between this update and the pause timestamp is handled
2737            // by the retrograde check afterwards.
2738            const int64_t lagNs = int64_t(mAfLatency * 1000000LL);
2739            const int64_t limitNs = mStartNs - lagNs;
2740            if (currentTimeNanos < limitNs) {
2741                ALOGD("correcting timestamp time for pause, "
2742                        "currentTimeNanos: %lld < limitNs: %lld < mStartNs: %lld",
2743                        (long long)currentTimeNanos, (long long)limitNs, (long long)mStartNs);
2744                timestamp.mTime = convertNsToTimespec(limitNs);
2745                currentTimeNanos = limitNs;
2746            }
2747
2748            // retrograde check
2749            if (currentTimeNanos < previousTimeNanos) {
2750                ALOGW("retrograde timestamp time corrected, %lld < %lld",
2751                        (long long)currentTimeNanos, (long long)previousTimeNanos);
2752                timestamp.mTime = mPreviousTimestamp.mTime;
2753                // currentTimeNanos not used below.
2754            }
2755
2756            // Looking at signed delta will work even when the timestamps
2757            // are wrapping around.
2758            int32_t deltaPosition = (Modulo<uint32_t>(timestamp.mPosition)
2759                    - mPreviousTimestamp.mPosition).signedValue();
2760            if (deltaPosition < 0) {
2761                // Only report once per position instead of spamming the log.
2762                if (!mRetrogradeMotionReported) {
2763                    ALOGW("retrograde timestamp position corrected, %d = %u - %u",
2764                            deltaPosition,
2765                            timestamp.mPosition,
2766                            mPreviousTimestamp.mPosition);
2767                    mRetrogradeMotionReported = true;
2768                }
2769            } else {
2770                mRetrogradeMotionReported = false;
2771            }
2772            if (deltaPosition < 0) {
2773                timestamp.mPosition = mPreviousTimestamp.mPosition;
2774                deltaPosition = 0;
2775            }
2776#if 0
2777            // Uncomment this to verify audio timestamp rate.
2778            const int64_t deltaTime =
2779                    audio_utils_ns_from_timespec(&timestamp.mTime) - previousTimeNanos;
2780            if (deltaTime != 0) {
2781                const int64_t computedSampleRate =
2782                        deltaPosition * (long long)NANOS_PER_SECOND / deltaTime;
2783                ALOGD("computedSampleRate:%u  sampleRate:%u",
2784                        (unsigned)computedSampleRate, mSampleRate);
2785            }
2786#endif
2787        }
2788        mPreviousTimestamp = timestamp;
2789        mPreviousTimestampValid = true;
2790    }
2791
2792    return status;
2793}
2794
2795String8 AudioTrack::getParameters(const String8& keys)
2796{
2797    audio_io_handle_t output = getOutput();
2798    if (output != AUDIO_IO_HANDLE_NONE) {
2799        return AudioSystem::getParameters(output, keys);
2800    } else {
2801        return String8::empty();
2802    }
2803}
2804
2805bool AudioTrack::isOffloaded() const
2806{
2807    AutoMutex lock(mLock);
2808    return isOffloaded_l();
2809}
2810
2811bool AudioTrack::isDirect() const
2812{
2813    AutoMutex lock(mLock);
2814    return isDirect_l();
2815}
2816
2817bool AudioTrack::isOffloadedOrDirect() const
2818{
2819    AutoMutex lock(mLock);
2820    return isOffloadedOrDirect_l();
2821}
2822
2823
2824status_t AudioTrack::dump(int fd, const Vector<String16>& args __unused) const
2825{
2826
2827    const size_t SIZE = 256;
2828    char buffer[SIZE];
2829    String8 result;
2830
2831    result.append(" AudioTrack::dump\n");
2832    snprintf(buffer, 255, "  stream type(%d), left - right volume(%f, %f)\n", mStreamType,
2833            mVolume[AUDIO_INTERLEAVE_LEFT], mVolume[AUDIO_INTERLEAVE_RIGHT]);
2834    result.append(buffer);
2835    snprintf(buffer, 255, "  format(%d), channel count(%d), frame count(%zu)\n", mFormat,
2836            mChannelCount, mFrameCount);
2837    result.append(buffer);
2838    snprintf(buffer, 255, "  sample rate(%u), speed(%f), status(%d)\n",
2839            mSampleRate, mPlaybackRate.mSpeed, mStatus);
2840    result.append(buffer);
2841    snprintf(buffer, 255, "  state(%d), latency (%d)\n", mState, mLatency);
2842    result.append(buffer);
2843    ::write(fd, result.string(), result.size());
2844    return NO_ERROR;
2845}
2846
2847uint32_t AudioTrack::getUnderrunCount() const
2848{
2849    AutoMutex lock(mLock);
2850    return getUnderrunCount_l();
2851}
2852
2853uint32_t AudioTrack::getUnderrunCount_l() const
2854{
2855    return mProxy->getUnderrunCount() + mUnderrunCountOffset;
2856}
2857
2858uint32_t AudioTrack::getUnderrunFrames() const
2859{
2860    AutoMutex lock(mLock);
2861    return mProxy->getUnderrunFrames();
2862}
2863
2864status_t AudioTrack::addAudioDeviceCallback(const sp<AudioSystem::AudioDeviceCallback>& callback)
2865{
2866    if (callback == 0) {
2867        ALOGW("%s adding NULL callback!", __FUNCTION__);
2868        return BAD_VALUE;
2869    }
2870    AutoMutex lock(mLock);
2871    if (mDeviceCallback.unsafe_get() == callback.get()) {
2872        ALOGW("%s adding same callback!", __FUNCTION__);
2873        return INVALID_OPERATION;
2874    }
2875    status_t status = NO_ERROR;
2876    if (mOutput != AUDIO_IO_HANDLE_NONE) {
2877        if (mDeviceCallback != 0) {
2878            ALOGW("%s callback already present!", __FUNCTION__);
2879            AudioSystem::removeAudioDeviceCallback(this, mOutput);
2880        }
2881        status = AudioSystem::addAudioDeviceCallback(this, mOutput);
2882    }
2883    mDeviceCallback = callback;
2884    return status;
2885}
2886
2887status_t AudioTrack::removeAudioDeviceCallback(
2888        const sp<AudioSystem::AudioDeviceCallback>& callback)
2889{
2890    if (callback == 0) {
2891        ALOGW("%s removing NULL callback!", __FUNCTION__);
2892        return BAD_VALUE;
2893    }
2894    AutoMutex lock(mLock);
2895    if (mDeviceCallback.unsafe_get() != callback.get()) {
2896        ALOGW("%s removing different callback!", __FUNCTION__);
2897        return INVALID_OPERATION;
2898    }
2899    mDeviceCallback.clear();
2900    if (mOutput != AUDIO_IO_HANDLE_NONE) {
2901        AudioSystem::removeAudioDeviceCallback(this, mOutput);
2902    }
2903    return NO_ERROR;
2904}
2905
2906
2907void AudioTrack::onAudioDeviceUpdate(audio_io_handle_t audioIo,
2908                                 audio_port_handle_t deviceId)
2909{
2910    sp<AudioSystem::AudioDeviceCallback> callback;
2911    {
2912        AutoMutex lock(mLock);
2913        if (audioIo != mOutput) {
2914            return;
2915        }
2916        callback = mDeviceCallback.promote();
2917        // only update device if the track is active as route changes due to other use cases are
2918        // irrelevant for this client
2919        if (mState == STATE_ACTIVE) {
2920            mRoutedDeviceId = deviceId;
2921        }
2922    }
2923    if (callback.get() != nullptr) {
2924        callback->onAudioDeviceUpdate(mOutput, mRoutedDeviceId);
2925    }
2926}
2927
2928status_t AudioTrack::pendingDuration(int32_t *msec, ExtendedTimestamp::Location location)
2929{
2930    if (msec == nullptr ||
2931            (location != ExtendedTimestamp::LOCATION_SERVER
2932                    && location != ExtendedTimestamp::LOCATION_KERNEL)) {
2933        return BAD_VALUE;
2934    }
2935    AutoMutex lock(mLock);
2936    // inclusive of offloaded and direct tracks.
2937    //
2938    // It is possible, but not enabled, to allow duration computation for non-pcm
2939    // audio_has_proportional_frames() formats because currently they have
2940    // the drain rate equivalent to the pcm sample rate * framesize.
2941    if (!isPurePcmData_l()) {
2942        return INVALID_OPERATION;
2943    }
2944    ExtendedTimestamp ets;
2945    if (getTimestamp_l(&ets) == OK
2946            && ets.mTimeNs[location] > 0) {
2947        int64_t diff = ets.mPosition[ExtendedTimestamp::LOCATION_CLIENT]
2948                - ets.mPosition[location];
2949        if (diff < 0) {
2950            *msec = 0;
2951        } else {
2952            // ms is the playback time by frames
2953            int64_t ms = (int64_t)((double)diff * 1000 /
2954                    ((double)mSampleRate * mPlaybackRate.mSpeed));
2955            // clockdiff is the timestamp age (negative)
2956            int64_t clockdiff = (mState != STATE_ACTIVE) ? 0 :
2957                    ets.mTimeNs[location]
2958                    + ets.mTimebaseOffset[ExtendedTimestamp::TIMEBASE_MONOTONIC]
2959                    - systemTime(SYSTEM_TIME_MONOTONIC);
2960
2961            //ALOGV("ms: %lld  clockdiff: %lld", (long long)ms, (long long)clockdiff);
2962            static const int NANOS_PER_MILLIS = 1000000;
2963            *msec = (int32_t)(ms + clockdiff / NANOS_PER_MILLIS);
2964        }
2965        return NO_ERROR;
2966    }
2967    if (location != ExtendedTimestamp::LOCATION_SERVER) {
2968        return INVALID_OPERATION; // LOCATION_KERNEL is not available
2969    }
2970    // use server position directly (offloaded and direct arrive here)
2971    updateAndGetPosition_l();
2972    int32_t diff = (Modulo<uint32_t>(mFramesWritten) - mPosition).signedValue();
2973    *msec = (diff <= 0) ? 0
2974            : (int32_t)((double)diff * 1000 / ((double)mSampleRate * mPlaybackRate.mSpeed));
2975    return NO_ERROR;
2976}
2977
2978bool AudioTrack::hasStarted()
2979{
2980    AutoMutex lock(mLock);
2981    switch (mState) {
2982    case STATE_STOPPED:
2983        if (isOffloadedOrDirect_l()) {
2984            // check if we have started in the past to return true.
2985            return mStartFromZeroUs > 0;
2986        }
2987        // A normal audio track may still be draining, so
2988        // check if stream has ended.  This covers fasttrack position
2989        // instability and start/stop without any data written.
2990        if (mProxy->getStreamEndDone()) {
2991            return true;
2992        }
2993        // fall through
2994    case STATE_ACTIVE:
2995    case STATE_STOPPING:
2996        break;
2997    case STATE_PAUSED:
2998    case STATE_PAUSED_STOPPING:
2999    case STATE_FLUSHED:
3000        return false;  // we're not active
3001    default:
3002        LOG_ALWAYS_FATAL("Invalid mState in hasStarted(): %d", mState);
3003        break;
3004    }
3005
3006    // wait indicates whether we need to wait for a timestamp.
3007    // This is conservatively figured - if we encounter an unexpected error
3008    // then we will not wait.
3009    bool wait = false;
3010    if (isOffloadedOrDirect_l()) {
3011        AudioTimestamp ts;
3012        status_t status = getTimestamp_l(ts);
3013        if (status == WOULD_BLOCK) {
3014            wait = true;
3015        } else if (status == OK) {
3016            wait = (ts.mPosition == 0 || ts.mPosition == mStartTs.mPosition);
3017        }
3018        ALOGV("hasStarted wait:%d  ts:%u  start position:%lld",
3019                (int)wait,
3020                ts.mPosition,
3021                (long long)mStartTs.mPosition);
3022    } else {
3023        int location = ExtendedTimestamp::LOCATION_SERVER; // for ALOG
3024        ExtendedTimestamp ets;
3025        status_t status = getTimestamp_l(&ets);
3026        if (status == WOULD_BLOCK) {  // no SERVER or KERNEL frame info in ets
3027            wait = true;
3028        } else if (status == OK) {
3029            for (location = ExtendedTimestamp::LOCATION_KERNEL;
3030                    location >= ExtendedTimestamp::LOCATION_SERVER; --location) {
3031                if (ets.mTimeNs[location] < 0 || mStartEts.mTimeNs[location] < 0) {
3032                    continue;
3033                }
3034                wait = ets.mPosition[location] == 0
3035                        || ets.mPosition[location] == mStartEts.mPosition[location];
3036                break;
3037            }
3038        }
3039        ALOGV("hasStarted wait:%d  ets:%lld  start position:%lld",
3040                (int)wait,
3041                (long long)ets.mPosition[location],
3042                (long long)mStartEts.mPosition[location]);
3043    }
3044    return !wait;
3045}
3046
3047// =========================================================================
3048
3049void AudioTrack::DeathNotifier::binderDied(const wp<IBinder>& who __unused)
3050{
3051    sp<AudioTrack> audioTrack = mAudioTrack.promote();
3052    if (audioTrack != 0) {
3053        AutoMutex lock(audioTrack->mLock);
3054        audioTrack->mProxy->binderDied();
3055    }
3056}
3057
3058// =========================================================================
3059
3060AudioTrack::AudioTrackThread::AudioTrackThread(AudioTrack& receiver, bool bCanCallJava)
3061    : Thread(bCanCallJava), mReceiver(receiver), mPaused(true), mPausedInt(false), mPausedNs(0LL),
3062      mIgnoreNextPausedInt(false)
3063{
3064}
3065
3066AudioTrack::AudioTrackThread::~AudioTrackThread()
3067{
3068}
3069
3070bool AudioTrack::AudioTrackThread::threadLoop()
3071{
3072    {
3073        AutoMutex _l(mMyLock);
3074        if (mPaused) {
3075            // TODO check return value and handle or log
3076            mMyCond.wait(mMyLock);
3077            // caller will check for exitPending()
3078            return true;
3079        }
3080        if (mIgnoreNextPausedInt) {
3081            mIgnoreNextPausedInt = false;
3082            mPausedInt = false;
3083        }
3084        if (mPausedInt) {
3085            // TODO use futex instead of condition, for event flag "or"
3086            if (mPausedNs > 0) {
3087                // TODO check return value and handle or log
3088                (void) mMyCond.waitRelative(mMyLock, mPausedNs);
3089            } else {
3090                // TODO check return value and handle or log
3091                mMyCond.wait(mMyLock);
3092            }
3093            mPausedInt = false;
3094            return true;
3095        }
3096    }
3097    if (exitPending()) {
3098        return false;
3099    }
3100    nsecs_t ns = mReceiver.processAudioBuffer();
3101    switch (ns) {
3102    case 0:
3103        return true;
3104    case NS_INACTIVE:
3105        pauseInternal();
3106        return true;
3107    case NS_NEVER:
3108        return false;
3109    case NS_WHENEVER:
3110        // Event driven: call wake() when callback notifications conditions change.
3111        ns = INT64_MAX;
3112        // fall through
3113    default:
3114        LOG_ALWAYS_FATAL_IF(ns < 0, "processAudioBuffer() returned %" PRId64, ns);
3115        pauseInternal(ns);
3116        return true;
3117    }
3118}
3119
3120void AudioTrack::AudioTrackThread::requestExit()
3121{
3122    // must be in this order to avoid a race condition
3123    Thread::requestExit();
3124    resume();
3125}
3126
3127void AudioTrack::AudioTrackThread::pause()
3128{
3129    AutoMutex _l(mMyLock);
3130    mPaused = true;
3131}
3132
3133void AudioTrack::AudioTrackThread::resume()
3134{
3135    AutoMutex _l(mMyLock);
3136    mIgnoreNextPausedInt = true;
3137    if (mPaused || mPausedInt) {
3138        mPaused = false;
3139        mPausedInt = false;
3140        mMyCond.signal();
3141    }
3142}
3143
3144void AudioTrack::AudioTrackThread::wake()
3145{
3146    AutoMutex _l(mMyLock);
3147    if (!mPaused) {
3148        // wake() might be called while servicing a callback - ignore the next
3149        // pause time and call processAudioBuffer.
3150        mIgnoreNextPausedInt = true;
3151        if (mPausedInt && mPausedNs > 0) {
3152            // audio track is active and internally paused with timeout.
3153            mPausedInt = false;
3154            mMyCond.signal();
3155        }
3156    }
3157}
3158
3159void AudioTrack::AudioTrackThread::pauseInternal(nsecs_t ns)
3160{
3161    AutoMutex _l(mMyLock);
3162    mPausedInt = true;
3163    mPausedNs = ns;
3164}
3165
3166} // namespace android
3167