SensorEvent.java revision bc03a348d78326dee779a8ecc325799c9fceac98
1/*
2 * Copyright (C) 2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17package android.hardware;
18
19/**
20 * This class represents a {@link android.hardware.Sensor Sensor} event and
21 * holds informations such as the sensor's type, the time-stamp, accuracy and of
22 * course the sensor's {@link SensorEvent#values data}.
23 *
24 * <p>
25 * <u>Definition of the coordinate system used by the SensorEvent API.</u>
26 * </p>
27 *
28 * <p>
29 * The coordinate-system is defined relative to the screen of the phone in its
30 * default orientation. The axes are not swapped when the device's screen
31 * orientation changes.
32 * </p>
33 *
34 * <p>
35 * The X axis is horizontal and points to the right, the Y axis is vertical and
36 * points up and the Z axis points towards the outside of the front face of the
37 * screen. In this system, coordinates behind the screen have negative Z values.
38 * </p>
39 *
40 * <p>
41 * <center><img src="../../../images/axis_device.png"
42 * alt="Sensors coordinate-system diagram." border="0" /></center>
43 * </p>
44 *
45 * <p>
46 * <b>Note:</b> This coordinate system is different from the one used in the
47 * Android 2D APIs where the origin is in the top-left corner.
48 * </p>
49 *
50 * @see SensorManager
51 * @see SensorEvent
52 * @see Sensor
53 *
54 */
55
56public class SensorEvent {
57    /**
58     * <p>
59     * The length and contents of the {@link #values values} array depends on
60     * which {@link android.hardware.Sensor sensor} type is being monitored (see
61     * also {@link SensorEvent} for a definition of the coordinate system used).
62     * </p>
63     *
64     * <h4>{@link android.hardware.Sensor#TYPE_ACCELEROMETER
65     * Sensor.TYPE_ACCELEROMETER}:</h4> All values are in SI units (m/s^2)
66     *
67     * <ul>
68     * <li> values[0]: Acceleration minus Gx on the x-axis </li>
69     * <li> values[1]: Acceleration minus Gy on the y-axis </li>
70     * <li> values[2]: Acceleration minus Gz on the z-axis </li>
71     * </ul>
72     *
73     * <p>
74     * A sensor of this type measures the acceleration applied to the device
75     * (<b>Ad</b>). Conceptually, it does so by measuring forces applied to the
76     * sensor itself (<b>Fs</b>) using the relation:
77     * </p>
78     *
79     * <b><center>Ad = - &#8721;Fs / mass</center></b>
80     *
81     * <p>
82     * In particular, the force of gravity is always influencing the measured
83     * acceleration:
84     * </p>
85     *
86     * <b><center>Ad = -g - &#8721;F / mass</center></b>
87     *
88     * <p>
89     * For this reason, when the device is sitting on a table (and obviously not
90     * accelerating), the accelerometer reads a magnitude of <b>g</b> = 9.81
91     * m/s^2
92     * </p>
93     *
94     * <p>
95     * Similarly, when the device is in free-fall and therefore dangerously
96     * accelerating towards to ground at 9.81 m/s^2, its accelerometer reads a
97     * magnitude of 0 m/s^2.
98     * </p>
99     *
100     * <p>
101     * It should be apparent that in order to measure the real acceleration of
102     * the device, the contribution of the force of gravity must be eliminated.
103     * This can be achieved by applying a <i>high-pass</i> filter. Conversely, a
104     * <i>low-pass</i> filter can be used to isolate the force of gravity.
105     * </p>
106     *
107     * <pre class="prettyprint">
108     *
109     *     public void onSensorChanged(SensorEvent event)
110     *     {
111     *          // alpha is calculated as t / (t + dT)
112     *          // with t, the low-pass filter's time-constant
113     *          // and dT, the event delivery rate
114     *
115     *          final float alpha = 0.8;
116     *
117     *          gravity[0] = alpha * gravity[0] + (1 - alpha) * event.values[0];
118     *          gravity[1] = alpha * gravity[1] + (1 - alpha) * event.values[1];
119     *          gravity[2] = alpha * gravity[2] + (1 - alpha) * event.values[2];
120     *
121     *          linear_acceleration[0] = event.values[0] - gravity[0];
122     *          linear_acceleration[1] = event.values[1] - gravity[1];
123     *          linear_acceleration[2] = event.values[2] - gravity[2];
124     *     }
125     * </pre>
126     *
127     * <p>
128     * <u>Examples</u>:
129     * <ul>
130     * <li>When the device lies flat on a table and is pushed on its left side
131     * toward the right, the x acceleration value is positive.</li>
132     *
133     * <li>When the device lies flat on a table, the acceleration value is
134     * +9.81, which correspond to the acceleration of the device (0 m/s^2) minus
135     * the force of gravity (-9.81 m/s^2).</li>
136     *
137     * <li>When the device lies flat on a table and is pushed toward the sky
138     * with an acceleration of A m/s^2, the acceleration value is equal to
139     * A+9.81 which correspond to the acceleration of the device (+A m/s^2)
140     * minus the force of gravity (-9.81 m/s^2).</li>
141     * </ul>
142     *
143     *
144     * <h4>{@link android.hardware.Sensor#TYPE_MAGNETIC_FIELD
145     * Sensor.TYPE_MAGNETIC_FIELD}:</h4>
146     * All values are in micro-Tesla (uT) and measure the ambient magnetic field
147     * in the X, Y and Z axis.
148     *
149     * <h4>{@link android.hardware.Sensor#TYPE_GYROSCOPE Sensor.TYPE_GYROSCOPE}:
150     * </h4> All values are in radians/second and measure the rate of rotation
151     * around the device's local X, Y and Z axis. The coordinate system is the
152     * same as is used for the acceleration sensor. Rotation is positive in the
153     * counter-clockwise direction. That is, an observer looking from some
154     * positive location on the x, y or z axis at a device positioned on the
155     * origin would report positive rotation if the device appeared to be
156     * rotating counter clockwise. Note that this is the standard mathematical
157     * definition of positive rotation and does not agree with the definition of
158     * roll given earlier.
159     * <ul>
160     * <li> values[0]: Angular speed around the x-axis </li>
161     * <li> values[1]: Angular speed around the y-axis </li>
162     * <li> values[2]: Angular speed around the z-axis </li>
163     * </ul>
164     * <p>
165     * Typically the output of the gyroscope is integrated over time to
166     * calculate a rotation describing the change of angles over the timestep,
167     * for example:
168     * </p>
169     *
170     * <pre class="prettyprint">
171     *     private static final float NS2S = 1.0f / 1000000000.0f;
172     *     private final float[] deltaRotationVector = new float[4]();
173     *     private float timestamp;
174     *
175     *     public void onSensorChanged(SensorEvent event) {
176     *          // This timestep's delta rotation to be multiplied by the current rotation
177     *          // after computing it from the gyro sample data.
178     *          if (timestamp != 0) {
179     *              final float dT = (event.timestamp - timestamp) * NS2S;
180     *              // Axis of the rotation sample, not normalized yet.
181     *              float axisX = event.values[0];
182     *              float axisY = event.values[1];
183     *              float axisZ = event.values[2];
184     *
185     *              // Calculate the angular speed of the sample
186     *              float omegaMagnitude = sqrt(axisX*axisX + axisY*axisY + axisZ*axisZ);
187     *
188     *              // Normalize the rotation vector if it's big enough to get the axis
189     *              if (omegaMagnitude > EPSILON) {
190     *                  axisX /= omegaMagnitude;
191     *                  axisY /= omegaMagnitude;
192     *                  axisZ /= omegaMagnitude;
193     *              }
194     *
195     *              // Integrate around this axis with the angular speed by the timestep
196     *              // in order to get a delta rotation from this sample over the timestep
197     *              // We will convert this axis-angle representation of the delta rotation
198     *              // into a quaternion before turning it into the rotation matrix.
199     *              float thetaOverTwo = omegaMagnitude * dT / 2.0f;
200     *              float sinThetaOverTwo = sin(thetaOverTwo);
201     *              float cosThetaOverTwo = cos(thetaOverTwo);
202     *              deltaRotationVector[0] = sinThetaOverTwo * axisX;
203     *              deltaRotationVector[1] = sinThetaOverTwo * axisY;
204     *              deltaRotationVector[2] = sinThetaOverTwo * axisZ;
205     *              deltaRotationVector[3] = cosThetaOverTwo;
206     *          }
207     *          timestamp = event.timestamp;
208     *          float[] deltaRotationMatrix = new float[9];
209     *          SensorManager.getRotationMatrixFromVector(deltaRotationMatrix, deltaRotationVector);
210     *          // User code should concatenate the delta rotation we computed with the current rotation
211     *          // in order to get the updated rotation.
212     *          // rotationCurrent = rotationCurrent * deltaRotationMatrix;
213     *     }
214     * </pre>
215     * <p>
216     * In practice, the gyroscope noise and offset will introduce some errors
217     * which need to be compensated for. This is usually done using the
218     * information from other sensors, but is beyond the scope of this document.
219     * </p>
220     * <h4>{@link android.hardware.Sensor#TYPE_LIGHT Sensor.TYPE_LIGHT}:</h4>
221     * <ul>
222     * <li>values[0]: Ambient light level in SI lux units </li>
223     * </ul>
224     *
225     * <h4>{@link android.hardware.Sensor#TYPE_PRESSURE Sensor.TYPE_PRESSURE}:</h4>
226     * <ul>
227     * <li>values[0]: Atmospheric pressure in hPa (millibar) </li>
228     * </ul>
229     *
230     * <h4>{@link android.hardware.Sensor#TYPE_PROXIMITY Sensor.TYPE_PROXIMITY}:
231     * </h4>
232     *
233     * <ul>
234     * <li>values[0]: Proximity sensor distance measured in centimeters </li>
235     * </ul>
236     *
237     * <p>
238     * <b>Note:</b> Some proximity sensors only support a binary <i>near</i> or
239     * <i>far</i> measurement. In this case, the sensor should report its
240     * {@link android.hardware.Sensor#getMaximumRange() maximum range} value in
241     * the <i>far</i> state and a lesser value in the <i>near</i> state.
242     * </p>
243     *
244     *  <h4>{@link android.hardware.Sensor#TYPE_GRAVITY Sensor.TYPE_GRAVITY}:</h4>
245     *  <p>A three dimensional vector indicating the direction and magnitude of gravity.  Units
246     *  are m/s^2. The coordinate system is the same as is used by the acceleration sensor.</p>
247     *  <p><b>Note:</b> When the device is at rest, the output of the gravity sensor should be identical
248     *  to that of the accelerometer.</p>
249     *
250     *  <h4>{@link android.hardware.Sensor#TYPE_LINEAR_ACCELERATION Sensor.TYPE_LINEAR_ACCELERATION}:</h4>
251     *  A three dimensional vector indicating acceleration along each device axis, not including
252     *  gravity.  All values have units of m/s^2.  The coordinate system is the same as is used by the
253     *  acceleration sensor.
254     *  <p>The output of the accelerometer, gravity and  linear-acceleration sensors must obey the
255     *  following relation:</p>
256     *   <p><ul>acceleration = gravity + linear-acceleration</ul></p>
257     *
258     *  <h4>{@link android.hardware.Sensor#TYPE_ROTATION_VECTOR Sensor.TYPE_ROTATION_VECTOR}:</h4>
259     *  <p>The rotation vector represents the orientation of the device as a combination of an <i>angle</i>
260     *  and an <i>axis</i>, in which the device has rotated through an angle &#952 around an axis
261     *  &lt;x, y, z>.</p>
262     *  <p>The three elements of the rotation vector are
263     *  &lt;x*sin(&#952/2), y*sin(&#952/2), z*sin(&#952/2)>, such that the magnitude of the rotation
264     *  vector is equal to sin(&#952/2), and the direction of the rotation vector is equal to the
265     *  direction of the axis of rotation.</p>
266     *  </p>The three elements of the rotation vector are equal to
267     *  the last three components of a <b>unit</b> quaternion
268     *  &lt;cos(&#952/2), x*sin(&#952/2), y*sin(&#952/2), z*sin(&#952/2)>.</p>
269     *  <p>Elements of the rotation vector are unitless.
270     *  The x,y, and z axis are defined in the same way as the acceleration
271     *  sensor.</p>
272     *  The reference coordinate system is defined as a direct orthonormal basis,
273     *  where:
274     * </p>
275     *
276     * <ul>
277     * <li>X is defined as the vector product <b>Y.Z</b> (It is tangential to
278     * the ground at the device's current location and roughly points East).</li>
279     * <li>Y is tangential to the ground at the device's current location and
280     * points towards magnetic north.</li>
281     * <li>Z points towards the sky and is perpendicular to the ground.</li>
282     * </ul>
283     *
284     * <p>
285     * <center><img src="../../../images/axis_globe.png"
286     * alt="World coordinate-system diagram." border="0" /></center>
287     * </p>
288     *
289     * <ul>
290     * <li> values[0]: x*sin(&#952/2) </li>
291     * <li> values[1]: y*sin(&#952/2) </li>
292     * <li> values[2]: z*sin(&#952/2) </li>
293     * <li> values[3]: cos(&#952/2) <i>(optional: only if value.length = 4)</i> </li>
294     * </ul>
295     *
296     * <h4>{@link android.hardware.Sensor#TYPE_ORIENTATION
297     * Sensor.TYPE_ORIENTATION}:</h4> All values are angles in degrees.
298     *
299     * <ul>
300     * <li> values[0]: Azimuth, angle between the magnetic north direction and the
301     * y-axis, around the z-axis (0 to 359). 0=North, 90=East, 180=South,
302     * 270=West </li>
303     * <li> values[1]: Pitch, rotation around x-axis (-180 to 180), with positive
304     * values when the z-axis moves <b>toward</b> the y-axis. </li>
305     * <li> values[2]: Roll, rotation around y-axis (-90 to 90), with positive values
306     * when the x-axis moves <b>toward</b> the z-axis. </li>
307     * </ul>
308     *
309     * <p>
310     * <b>Note:</b> This definition is different from <b>yaw, pitch and roll</b>
311     * used in aviation where the X axis is along the long side of the plane
312     * (tail to nose).
313     * </p>
314     *
315     * <p>
316     * <b>Note:</b> This sensor type exists for legacy reasons, please use
317     * {@link android.hardware.SensorManager#getRotationMatrix
318     * getRotationMatrix()} in conjunction with
319     * {@link android.hardware.SensorManager#remapCoordinateSystem
320     * remapCoordinateSystem()} and
321     * {@link android.hardware.SensorManager#getOrientation getOrientation()} to
322     * compute these values instead.
323     * </p>
324     *
325     * <p>
326     * <b>Important note:</b> For historical reasons the roll angle is positive
327     * in the clockwise direction (mathematically speaking, it should be
328     * positive in the counter-clockwise direction).
329     * </p>
330     *
331     * <h4>{@link android.hardware.Sensor#TYPE_RELATIVE_HUMIDITY
332     * Sensor.TYPE_RELATIVE_HUMIDITY}:</h4>
333     * <ul>
334     * <li> values[0]: Relative ambient air humidity in percent </li>
335     * </ul>
336     * <p>
337     * When relative ambient air humidity and ambient temperature are
338     * measured, the dew point and absolute humidity can be calculated.
339     * </p>
340     * <u>Dew Point</u>
341     * <p>
342     * The dew point is the temperature to which a given parcel of air must be
343     * cooled, at constant barometric pressure, for water vapor to condense
344     * into water.
345     * </p>
346     * <center><pre>
347     *                    ln(RH/100%) + m&#183;t/(T<sub>n</sub>+t)
348     * t<sub>d</sub>(t,RH) = T<sub>n</sub> &#183; ------------------------------
349     *                 m - [ln(RH/100%) + m&#183;t/(T<sub>n</sub>+t)]
350     * </pre></center>
351     * <dl>
352     * <dt>t<sub>d</sub></dt> <dd>dew point temperature in &deg;C</dd>
353     * <dt>t</dt>             <dd>actual temperature in &deg;C</dd>
354     * <dt>RH</dt>            <dd>actual relative humidity in %</dd>
355     * <dt>m</dt>             <dd>17.62</dd>
356     * <dt>T<sub>n</sub></dt> <dd>243.12 &deg;C</dd>
357     * </dl>
358     * <p>for example:</p>
359     * <pre class="prettyprint">
360     * h = Math.log(rh / 100.0) + (17.62 * t) / (243.12 + t);
361     * td = 243.12 * h / (17.62 - h);
362     * </pre>
363     * <u>Absolute Humidity</u>
364     * <p>
365     * The absolute humidity is the mass of water vapor in a particular volume
366     * of dry air. The unit is g/m<sup>3</sup>.
367     * </p>
368     * <center><pre>
369     *                    RH/100%&#183;A&#183;exp(m&#183;t/(T<sub>n</sub>+t))
370     * d<sub>v</sub>(t,RH) = 216.7 &#183; -------------------------
371     *                           273.15 + t
372     * </pre></center>
373     * <dl>
374     * <dt>d<sub>v</sub></dt> <dd>absolute humidity in g/m<sup>3</sup></dd>
375     * <dt>t</dt>             <dd>actual temperature in &deg;C</dd>
376     * <dt>RH</dt>            <dd>actual relative humidity in %</dd>
377     * <dt>m</dt>             <dd>17.62</dd>
378     * <dt>T<sub>n</sub></dt> <dd>243.12 &deg;C</dd>
379     * <dt>A</dt>             <dd>6.112 hPa</dd>
380     * </dl>
381     * <p>for example:</p>
382     * <pre class="prettyprint">
383     * dv = 216.7 *
384     * (rh / 100.0 * 6.112 * Math.exp(17.62 * t / (243.12 + t)) / (273.15 + t));
385     * </pre>
386     *
387     * <h4>{@link android.hardware.Sensor#TYPE_AMBIENT_TEMPERATURE Sensor.TYPE_AMBIENT_TEMPERATURE}:
388     * </h4>
389     *
390     * <ul>
391     * <li> values[0]: ambient (room) temperature in degree Celsius.</li>
392     * </ul>
393     *
394     * @see SensorEvent
395     * @see GeomagneticField
396     *
397     * <h4>{@link android.hardware.Sensor#TYPE_MAGNETIC_FIELD_UNCALIBRATED} </h4>
398     * All values are in micro-Tesla (uT) and measure the ambient magnetic field
399     * in the X, Y and Z axis.
400     * <p>
401     * No periodic calibration is performed (ie: there are no discontinuities
402     * in the data stream while using this sensor). Assumptions that the the
403     * magnetic field is due to the Earth's poles is avoided. Factory calibration
404     * and temperature compensation is still performed.
405     * </p>
406     *
407     * <h4> {@link android.hardware.Sensor#TYPE_GYROSCOPE_UNCALIBRATED} </h4>
408     * All values are in radians/second and measure the rate of rotation
409     * around the X, Y and Z axis. An estimation of the drift on each axis is
410     * reported as well.
411     * <p>
412     * No gyro-drift compensation is performed. Factory calibration and temperature
413     * compensation is still applied to the rate of rotation (angular speeds).
414     * </p>
415     * <p>
416     * The coordinate system is the same as is used for the
417     * {@link android.hardware.Sensor#TYPE_ACCELEROMETER}
418     * Rotation is positive in the counter-clockwise direction (right-hand rule).
419     * That is, an observer looking from some positive location on the x, y or z axis
420     * at a device positioned on the origin would report positive rotation if the device
421     * appeared to be rotating counter clockwise.
422     * The range would at least be 17.45 rad/s (ie: ~1000 deg/s).
423     * <ul>
424     * <li> values[0] : angular speed (w/o drift compensation) around the X axis in rad/s </li>
425     * <li> values[1] : angular speed (w/o drift compensation) around the Y axis in rad/s </li>
426     * <li> values[2] : angular speed (w/o drift compensation) around the Z axis in rad/s </li>
427     * <li> values[3] : estimated drift around X axis in rad/s </li>
428     * <li> values[4] : estimated drift around Y axis in rad/s </li>
429     * <li> values[5] : estimated drift around Z axis in rad/s </li>
430     * </ul>
431     * </p>
432     * <h4></h4>
433     * <h4> Pro Tip: Always use the length of the values array while performing operations
434     * on it. In earlier versions, this used to be always 3 which has changed now. </h4>
435     */
436    public final float[] values;
437
438    /**
439     * The sensor that generated this event. See
440     * {@link android.hardware.SensorManager SensorManager} for details.
441     */
442    public Sensor sensor;
443
444    /**
445     * The accuracy of this event. See {@link android.hardware.SensorManager
446     * SensorManager} for details.
447     */
448    public int accuracy;
449
450    /**
451     * The time in nanosecond at which the event happened
452     */
453    public long timestamp;
454
455    SensorEvent(int size) {
456        values = new float[size];
457    }
458}
459