Parcel.java revision e86a29c6e60a58ad42aeaa990d8ba665964dbe31
1/*
2 * Copyright (C) 2006 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17package android.os;
18
19import android.annotation.Nullable;
20import android.text.TextUtils;
21import android.util.ArrayMap;
22import android.util.ArraySet;
23import android.util.Log;
24import android.util.Size;
25import android.util.SizeF;
26import android.util.SparseArray;
27import android.util.SparseBooleanArray;
28import android.util.SparseIntArray;
29
30import dalvik.annotation.optimization.CriticalNative;
31import dalvik.annotation.optimization.FastNative;
32import dalvik.system.VMRuntime;
33
34import libcore.util.SneakyThrow;
35
36import java.io.ByteArrayInputStream;
37import java.io.ByteArrayOutputStream;
38import java.io.FileDescriptor;
39import java.io.FileNotFoundException;
40import java.io.IOException;
41import java.io.ObjectInputStream;
42import java.io.ObjectOutputStream;
43import java.io.ObjectStreamClass;
44import java.io.Serializable;
45import java.lang.reflect.Array;
46import java.lang.reflect.Field;
47import java.lang.reflect.Modifier;
48import java.util.ArrayList;
49import java.util.Arrays;
50import java.util.HashMap;
51import java.util.List;
52import java.util.Map;
53import java.util.Set;
54
55/**
56 * Container for a message (data and object references) that can
57 * be sent through an IBinder.  A Parcel can contain both flattened data
58 * that will be unflattened on the other side of the IPC (using the various
59 * methods here for writing specific types, or the general
60 * {@link Parcelable} interface), and references to live {@link IBinder}
61 * objects that will result in the other side receiving a proxy IBinder
62 * connected with the original IBinder in the Parcel.
63 *
64 * <p class="note">Parcel is <strong>not</strong> a general-purpose
65 * serialization mechanism.  This class (and the corresponding
66 * {@link Parcelable} API for placing arbitrary objects into a Parcel) is
67 * designed as a high-performance IPC transport.  As such, it is not
68 * appropriate to place any Parcel data in to persistent storage: changes
69 * in the underlying implementation of any of the data in the Parcel can
70 * render older data unreadable.</p>
71 *
72 * <p>The bulk of the Parcel API revolves around reading and writing data
73 * of various types.  There are six major classes of such functions available.</p>
74 *
75 * <h3>Primitives</h3>
76 *
77 * <p>The most basic data functions are for writing and reading primitive
78 * data types: {@link #writeByte}, {@link #readByte}, {@link #writeDouble},
79 * {@link #readDouble}, {@link #writeFloat}, {@link #readFloat}, {@link #writeInt},
80 * {@link #readInt}, {@link #writeLong}, {@link #readLong},
81 * {@link #writeString}, {@link #readString}.  Most other
82 * data operations are built on top of these.  The given data is written and
83 * read using the endianess of the host CPU.</p>
84 *
85 * <h3>Primitive Arrays</h3>
86 *
87 * <p>There are a variety of methods for reading and writing raw arrays
88 * of primitive objects, which generally result in writing a 4-byte length
89 * followed by the primitive data items.  The methods for reading can either
90 * read the data into an existing array, or create and return a new array.
91 * These available types are:</p>
92 *
93 * <ul>
94 * <li> {@link #writeBooleanArray(boolean[])},
95 * {@link #readBooleanArray(boolean[])}, {@link #createBooleanArray()}
96 * <li> {@link #writeByteArray(byte[])},
97 * {@link #writeByteArray(byte[], int, int)}, {@link #readByteArray(byte[])},
98 * {@link #createByteArray()}
99 * <li> {@link #writeCharArray(char[])}, {@link #readCharArray(char[])},
100 * {@link #createCharArray()}
101 * <li> {@link #writeDoubleArray(double[])}, {@link #readDoubleArray(double[])},
102 * {@link #createDoubleArray()}
103 * <li> {@link #writeFloatArray(float[])}, {@link #readFloatArray(float[])},
104 * {@link #createFloatArray()}
105 * <li> {@link #writeIntArray(int[])}, {@link #readIntArray(int[])},
106 * {@link #createIntArray()}
107 * <li> {@link #writeLongArray(long[])}, {@link #readLongArray(long[])},
108 * {@link #createLongArray()}
109 * <li> {@link #writeStringArray(String[])}, {@link #readStringArray(String[])},
110 * {@link #createStringArray()}.
111 * <li> {@link #writeSparseBooleanArray(SparseBooleanArray)},
112 * {@link #readSparseBooleanArray()}.
113 * </ul>
114 *
115 * <h3>Parcelables</h3>
116 *
117 * <p>The {@link Parcelable} protocol provides an extremely efficient (but
118 * low-level) protocol for objects to write and read themselves from Parcels.
119 * You can use the direct methods {@link #writeParcelable(Parcelable, int)}
120 * and {@link #readParcelable(ClassLoader)} or
121 * {@link #writeParcelableArray} and
122 * {@link #readParcelableArray(ClassLoader)} to write or read.  These
123 * methods write both the class type and its data to the Parcel, allowing
124 * that class to be reconstructed from the appropriate class loader when
125 * later reading.</p>
126 *
127 * <p>There are also some methods that provide a more efficient way to work
128 * with Parcelables: {@link #writeTypedObject}, {@link #writeTypedArray},
129 * {@link #writeTypedList}, {@link #readTypedObject},
130 * {@link #createTypedArray} and {@link #createTypedArrayList}.  These methods
131 * do not write the class information of the original object: instead, the
132 * caller of the read function must know what type to expect and pass in the
133 * appropriate {@link Parcelable.Creator Parcelable.Creator} instead to
134 * properly construct the new object and read its data.  (To more efficient
135 * write and read a single Parcelable object that is not null, you can directly
136 * call {@link Parcelable#writeToParcel Parcelable.writeToParcel} and
137 * {@link Parcelable.Creator#createFromParcel Parcelable.Creator.createFromParcel}
138 * yourself.)</p>
139 *
140 * <h3>Bundles</h3>
141 *
142 * <p>A special type-safe container, called {@link Bundle}, is available
143 * for key/value maps of heterogeneous values.  This has many optimizations
144 * for improved performance when reading and writing data, and its type-safe
145 * API avoids difficult to debug type errors when finally marshalling the
146 * data contents into a Parcel.  The methods to use are
147 * {@link #writeBundle(Bundle)}, {@link #readBundle()}, and
148 * {@link #readBundle(ClassLoader)}.
149 *
150 * <h3>Active Objects</h3>
151 *
152 * <p>An unusual feature of Parcel is the ability to read and write active
153 * objects.  For these objects the actual contents of the object is not
154 * written, rather a special token referencing the object is written.  When
155 * reading the object back from the Parcel, you do not get a new instance of
156 * the object, but rather a handle that operates on the exact same object that
157 * was originally written.  There are two forms of active objects available.</p>
158 *
159 * <p>{@link Binder} objects are a core facility of Android's general cross-process
160 * communication system.  The {@link IBinder} interface describes an abstract
161 * protocol with a Binder object.  Any such interface can be written in to
162 * a Parcel, and upon reading you will receive either the original object
163 * implementing that interface or a special proxy implementation
164 * that communicates calls back to the original object.  The methods to use are
165 * {@link #writeStrongBinder(IBinder)},
166 * {@link #writeStrongInterface(IInterface)}, {@link #readStrongBinder()},
167 * {@link #writeBinderArray(IBinder[])}, {@link #readBinderArray(IBinder[])},
168 * {@link #createBinderArray()},
169 * {@link #writeBinderList(List)}, {@link #readBinderList(List)},
170 * {@link #createBinderArrayList()}.</p>
171 *
172 * <p>FileDescriptor objects, representing raw Linux file descriptor identifiers,
173 * can be written and {@link ParcelFileDescriptor} objects returned to operate
174 * on the original file descriptor.  The returned file descriptor is a dup
175 * of the original file descriptor: the object and fd is different, but
176 * operating on the same underlying file stream, with the same position, etc.
177 * The methods to use are {@link #writeFileDescriptor(FileDescriptor)},
178 * {@link #readFileDescriptor()}.
179 *
180 * <h3>Untyped Containers</h3>
181 *
182 * <p>A final class of methods are for writing and reading standard Java
183 * containers of arbitrary types.  These all revolve around the
184 * {@link #writeValue(Object)} and {@link #readValue(ClassLoader)} methods
185 * which define the types of objects allowed.  The container methods are
186 * {@link #writeArray(Object[])}, {@link #readArray(ClassLoader)},
187 * {@link #writeList(List)}, {@link #readList(List, ClassLoader)},
188 * {@link #readArrayList(ClassLoader)},
189 * {@link #writeMap(Map)}, {@link #readMap(Map, ClassLoader)},
190 * {@link #writeSparseArray(SparseArray)},
191 * {@link #readSparseArray(ClassLoader)}.
192 */
193public final class Parcel {
194    private static final boolean DEBUG_RECYCLE = false;
195    private static final boolean DEBUG_ARRAY_MAP = false;
196    private static final String TAG = "Parcel";
197
198    @SuppressWarnings({"UnusedDeclaration"})
199    private long mNativePtr; // used by native code
200
201    /**
202     * Flag indicating if {@link #mNativePtr} was allocated by this object,
203     * indicating that we're responsible for its lifecycle.
204     */
205    private boolean mOwnsNativeParcelObject;
206    private long mNativeSize;
207
208    private ArrayMap<Class, Object> mClassCookies;
209
210    private RuntimeException mStack;
211
212    private static final int POOL_SIZE = 6;
213    private static final Parcel[] sOwnedPool = new Parcel[POOL_SIZE];
214    private static final Parcel[] sHolderPool = new Parcel[POOL_SIZE];
215
216    // Keep in sync with frameworks/native/include/private/binder/ParcelValTypes.h.
217    private static final int VAL_NULL = -1;
218    private static final int VAL_STRING = 0;
219    private static final int VAL_INTEGER = 1;
220    private static final int VAL_MAP = 2;
221    private static final int VAL_BUNDLE = 3;
222    private static final int VAL_PARCELABLE = 4;
223    private static final int VAL_SHORT = 5;
224    private static final int VAL_LONG = 6;
225    private static final int VAL_FLOAT = 7;
226    private static final int VAL_DOUBLE = 8;
227    private static final int VAL_BOOLEAN = 9;
228    private static final int VAL_CHARSEQUENCE = 10;
229    private static final int VAL_LIST  = 11;
230    private static final int VAL_SPARSEARRAY = 12;
231    private static final int VAL_BYTEARRAY = 13;
232    private static final int VAL_STRINGARRAY = 14;
233    private static final int VAL_IBINDER = 15;
234    private static final int VAL_PARCELABLEARRAY = 16;
235    private static final int VAL_OBJECTARRAY = 17;
236    private static final int VAL_INTARRAY = 18;
237    private static final int VAL_LONGARRAY = 19;
238    private static final int VAL_BYTE = 20;
239    private static final int VAL_SERIALIZABLE = 21;
240    private static final int VAL_SPARSEBOOLEANARRAY = 22;
241    private static final int VAL_BOOLEANARRAY = 23;
242    private static final int VAL_CHARSEQUENCEARRAY = 24;
243    private static final int VAL_PERSISTABLEBUNDLE = 25;
244    private static final int VAL_SIZE = 26;
245    private static final int VAL_SIZEF = 27;
246    private static final int VAL_DOUBLEARRAY = 28;
247
248    // The initial int32 in a Binder call's reply Parcel header:
249    // Keep these in sync with libbinder's binder/Status.h.
250    private static final int EX_SECURITY = -1;
251    private static final int EX_BAD_PARCELABLE = -2;
252    private static final int EX_ILLEGAL_ARGUMENT = -3;
253    private static final int EX_NULL_POINTER = -4;
254    private static final int EX_ILLEGAL_STATE = -5;
255    private static final int EX_NETWORK_MAIN_THREAD = -6;
256    private static final int EX_UNSUPPORTED_OPERATION = -7;
257    private static final int EX_SERVICE_SPECIFIC = -8;
258    private static final int EX_PARCELABLE = -9;
259    private static final int EX_HAS_REPLY_HEADER = -128;  // special; see below
260    // EX_TRANSACTION_FAILED is used exclusively in native code.
261    // see libbinder's binder/Status.h
262    private static final int EX_TRANSACTION_FAILED = -129;
263
264    @CriticalNative
265    private static native int nativeDataSize(long nativePtr);
266    @CriticalNative
267    private static native int nativeDataAvail(long nativePtr);
268    @CriticalNative
269    private static native int nativeDataPosition(long nativePtr);
270    @CriticalNative
271    private static native int nativeDataCapacity(long nativePtr);
272    @FastNative
273    private static native long nativeSetDataSize(long nativePtr, int size);
274    @CriticalNative
275    private static native void nativeSetDataPosition(long nativePtr, int pos);
276    @FastNative
277    private static native void nativeSetDataCapacity(long nativePtr, int size);
278
279    @CriticalNative
280    private static native boolean nativePushAllowFds(long nativePtr, boolean allowFds);
281    @CriticalNative
282    private static native void nativeRestoreAllowFds(long nativePtr, boolean lastValue);
283
284    private static native void nativeWriteByteArray(long nativePtr, byte[] b, int offset, int len);
285    private static native void nativeWriteBlob(long nativePtr, byte[] b, int offset, int len);
286    @FastNative
287    private static native void nativeWriteInt(long nativePtr, int val);
288    @FastNative
289    private static native void nativeWriteLong(long nativePtr, long val);
290    @FastNative
291    private static native void nativeWriteFloat(long nativePtr, float val);
292    @FastNative
293    private static native void nativeWriteDouble(long nativePtr, double val);
294    static native void nativeWriteString(long nativePtr, String val);
295    private static native void nativeWriteStrongBinder(long nativePtr, IBinder val);
296    private static native long nativeWriteFileDescriptor(long nativePtr, FileDescriptor val);
297
298    private static native byte[] nativeCreateByteArray(long nativePtr);
299    private static native boolean nativeReadByteArray(long nativePtr, byte[] dest, int destLen);
300    private static native byte[] nativeReadBlob(long nativePtr);
301    @CriticalNative
302    private static native int nativeReadInt(long nativePtr);
303    @CriticalNative
304    private static native long nativeReadLong(long nativePtr);
305    @CriticalNative
306    private static native float nativeReadFloat(long nativePtr);
307    @CriticalNative
308    private static native double nativeReadDouble(long nativePtr);
309    static native String nativeReadString(long nativePtr);
310    private static native IBinder nativeReadStrongBinder(long nativePtr);
311    private static native FileDescriptor nativeReadFileDescriptor(long nativePtr);
312
313    private static native long nativeCreate();
314    private static native long nativeFreeBuffer(long nativePtr);
315    private static native void nativeDestroy(long nativePtr);
316
317    private static native byte[] nativeMarshall(long nativePtr);
318    private static native long nativeUnmarshall(
319            long nativePtr, byte[] data, int offset, int length);
320    private static native int nativeCompareData(long thisNativePtr, long otherNativePtr);
321    private static native long nativeAppendFrom(
322            long thisNativePtr, long otherNativePtr, int offset, int length);
323    @CriticalNative
324    private static native boolean nativeHasFileDescriptors(long nativePtr);
325    private static native void nativeWriteInterfaceToken(long nativePtr, String interfaceName);
326    private static native void nativeEnforceInterface(long nativePtr, String interfaceName);
327
328    @CriticalNative
329    private static native long nativeGetBlobAshmemSize(long nativePtr);
330
331    public final static Parcelable.Creator<String> STRING_CREATOR
332             = new Parcelable.Creator<String>() {
333        public String createFromParcel(Parcel source) {
334            return source.readString();
335        }
336        public String[] newArray(int size) {
337            return new String[size];
338        }
339    };
340
341    /**
342     * @hide
343     */
344    public static class ReadWriteHelper {
345        public static final ReadWriteHelper DEFAULT = new ReadWriteHelper();
346
347        /**
348         * Called when writing a string to a parcel. Subclasses wanting to write a string
349         * must use {@link #writeStringNoHelper(String)} to avoid
350         * infinity recursive calls.
351         */
352        public void writeString(Parcel p, String s) {
353            nativeWriteString(p.mNativePtr, s);
354        }
355
356        /**
357         * Called when reading a string to a parcel. Subclasses wanting to read a string
358         * must use {@link #readStringNoHelper()} to avoid
359         * infinity recursive calls.
360         */
361        public String readString(Parcel p) {
362            return nativeReadString(p.mNativePtr);
363        }
364    }
365
366    private ReadWriteHelper mReadWriteHelper = ReadWriteHelper.DEFAULT;
367
368    /**
369     * Retrieve a new Parcel object from the pool.
370     */
371    public static Parcel obtain() {
372        final Parcel[] pool = sOwnedPool;
373        synchronized (pool) {
374            Parcel p;
375            for (int i=0; i<POOL_SIZE; i++) {
376                p = pool[i];
377                if (p != null) {
378                    pool[i] = null;
379                    if (DEBUG_RECYCLE) {
380                        p.mStack = new RuntimeException();
381                    }
382                    p.mReadWriteHelper = ReadWriteHelper.DEFAULT;
383                    return p;
384                }
385            }
386        }
387        return new Parcel(0);
388    }
389
390    /**
391     * Put a Parcel object back into the pool.  You must not touch
392     * the object after this call.
393     */
394    public final void recycle() {
395        if (DEBUG_RECYCLE) mStack = null;
396        freeBuffer();
397
398        final Parcel[] pool;
399        if (mOwnsNativeParcelObject) {
400            pool = sOwnedPool;
401        } else {
402            mNativePtr = 0;
403            pool = sHolderPool;
404        }
405
406        synchronized (pool) {
407            for (int i=0; i<POOL_SIZE; i++) {
408                if (pool[i] == null) {
409                    pool[i] = this;
410                    return;
411                }
412            }
413        }
414    }
415
416    /**
417     * Set a {@link ReadWriteHelper}, which can be used to avoid having duplicate strings, for
418     * example.
419     *
420     * @hide
421     */
422    public void setReadWriteHelper(ReadWriteHelper helper) {
423        mReadWriteHelper = helper != null ? helper : ReadWriteHelper.DEFAULT;
424    }
425
426    /** @hide */
427    public static native long getGlobalAllocSize();
428
429    /** @hide */
430    public static native long getGlobalAllocCount();
431
432    /**
433     * Returns the total amount of data contained in the parcel.
434     */
435    public final int dataSize() {
436        return nativeDataSize(mNativePtr);
437    }
438
439    /**
440     * Returns the amount of data remaining to be read from the
441     * parcel.  That is, {@link #dataSize}-{@link #dataPosition}.
442     */
443    public final int dataAvail() {
444        return nativeDataAvail(mNativePtr);
445    }
446
447    /**
448     * Returns the current position in the parcel data.  Never
449     * more than {@link #dataSize}.
450     */
451    public final int dataPosition() {
452        return nativeDataPosition(mNativePtr);
453    }
454
455    /**
456     * Returns the total amount of space in the parcel.  This is always
457     * >= {@link #dataSize}.  The difference between it and dataSize() is the
458     * amount of room left until the parcel needs to re-allocate its
459     * data buffer.
460     */
461    public final int dataCapacity() {
462        return nativeDataCapacity(mNativePtr);
463    }
464
465    /**
466     * Change the amount of data in the parcel.  Can be either smaller or
467     * larger than the current size.  If larger than the current capacity,
468     * more memory will be allocated.
469     *
470     * @param size The new number of bytes in the Parcel.
471     */
472    public final void setDataSize(int size) {
473        updateNativeSize(nativeSetDataSize(mNativePtr, size));
474    }
475
476    /**
477     * Move the current read/write position in the parcel.
478     * @param pos New offset in the parcel; must be between 0 and
479     * {@link #dataSize}.
480     */
481    public final void setDataPosition(int pos) {
482        nativeSetDataPosition(mNativePtr, pos);
483    }
484
485    /**
486     * Change the capacity (current available space) of the parcel.
487     *
488     * @param size The new capacity of the parcel, in bytes.  Can not be
489     * less than {@link #dataSize} -- that is, you can not drop existing data
490     * with this method.
491     */
492    public final void setDataCapacity(int size) {
493        nativeSetDataCapacity(mNativePtr, size);
494    }
495
496    /** @hide */
497    public final boolean pushAllowFds(boolean allowFds) {
498        return nativePushAllowFds(mNativePtr, allowFds);
499    }
500
501    /** @hide */
502    public final void restoreAllowFds(boolean lastValue) {
503        nativeRestoreAllowFds(mNativePtr, lastValue);
504    }
505
506    /**
507     * Returns the raw bytes of the parcel.
508     *
509     * <p class="note">The data you retrieve here <strong>must not</strong>
510     * be placed in any kind of persistent storage (on local disk, across
511     * a network, etc).  For that, you should use standard serialization
512     * or another kind of general serialization mechanism.  The Parcel
513     * marshalled representation is highly optimized for local IPC, and as
514     * such does not attempt to maintain compatibility with data created
515     * in different versions of the platform.
516     */
517    public final byte[] marshall() {
518        return nativeMarshall(mNativePtr);
519    }
520
521    /**
522     * Set the bytes in data to be the raw bytes of this Parcel.
523     */
524    public final void unmarshall(byte[] data, int offset, int length) {
525        updateNativeSize(nativeUnmarshall(mNativePtr, data, offset, length));
526    }
527
528    public final void appendFrom(Parcel parcel, int offset, int length) {
529        updateNativeSize(nativeAppendFrom(mNativePtr, parcel.mNativePtr, offset, length));
530    }
531
532    /** @hide */
533    public final int compareData(Parcel other) {
534        return nativeCompareData(mNativePtr, other.mNativePtr);
535    }
536
537    /** @hide */
538    public final void setClassCookie(Class clz, Object cookie) {
539        if (mClassCookies == null) {
540            mClassCookies = new ArrayMap<>();
541        }
542        mClassCookies.put(clz, cookie);
543    }
544
545    /** @hide */
546    public final Object getClassCookie(Class clz) {
547        return mClassCookies != null ? mClassCookies.get(clz) : null;
548    }
549
550    /** @hide */
551    public final void adoptClassCookies(Parcel from) {
552        mClassCookies = from.mClassCookies;
553    }
554
555    /**
556     * Report whether the parcel contains any marshalled file descriptors.
557     */
558    public final boolean hasFileDescriptors() {
559        return nativeHasFileDescriptors(mNativePtr);
560    }
561
562    /**
563     * Store or read an IBinder interface token in the parcel at the current
564     * {@link #dataPosition}.  This is used to validate that the marshalled
565     * transaction is intended for the target interface.
566     */
567    public final void writeInterfaceToken(String interfaceName) {
568        nativeWriteInterfaceToken(mNativePtr, interfaceName);
569    }
570
571    public final void enforceInterface(String interfaceName) {
572        nativeEnforceInterface(mNativePtr, interfaceName);
573    }
574
575    /**
576     * Write a byte array into the parcel at the current {@link #dataPosition},
577     * growing {@link #dataCapacity} if needed.
578     * @param b Bytes to place into the parcel.
579     */
580    public final void writeByteArray(byte[] b) {
581        writeByteArray(b, 0, (b != null) ? b.length : 0);
582    }
583
584    /**
585     * Write a byte array into the parcel at the current {@link #dataPosition},
586     * growing {@link #dataCapacity} if needed.
587     * @param b Bytes to place into the parcel.
588     * @param offset Index of first byte to be written.
589     * @param len Number of bytes to write.
590     */
591    public final void writeByteArray(byte[] b, int offset, int len) {
592        if (b == null) {
593            writeInt(-1);
594            return;
595        }
596        Arrays.checkOffsetAndCount(b.length, offset, len);
597        nativeWriteByteArray(mNativePtr, b, offset, len);
598    }
599
600    /**
601     * Write a blob of data into the parcel at the current {@link #dataPosition},
602     * growing {@link #dataCapacity} if needed.
603     * @param b Bytes to place into the parcel.
604     * {@hide}
605     * {@SystemApi}
606     */
607    public final void writeBlob(byte[] b) {
608        writeBlob(b, 0, (b != null) ? b.length : 0);
609    }
610
611    /**
612     * Write a blob of data into the parcel at the current {@link #dataPosition},
613     * growing {@link #dataCapacity} if needed.
614     * @param b Bytes to place into the parcel.
615     * @param offset Index of first byte to be written.
616     * @param len Number of bytes to write.
617     * {@hide}
618     * {@SystemApi}
619     */
620    public final void writeBlob(byte[] b, int offset, int len) {
621        if (b == null) {
622            writeInt(-1);
623            return;
624        }
625        Arrays.checkOffsetAndCount(b.length, offset, len);
626        nativeWriteBlob(mNativePtr, b, offset, len);
627    }
628
629    /**
630     * Write an integer value into the parcel at the current dataPosition(),
631     * growing dataCapacity() if needed.
632     */
633    public final void writeInt(int val) {
634        nativeWriteInt(mNativePtr, val);
635    }
636
637    /**
638     * Write a long integer value into the parcel at the current dataPosition(),
639     * growing dataCapacity() if needed.
640     */
641    public final void writeLong(long val) {
642        nativeWriteLong(mNativePtr, val);
643    }
644
645    /**
646     * Write a floating point value into the parcel at the current
647     * dataPosition(), growing dataCapacity() if needed.
648     */
649    public final void writeFloat(float val) {
650        nativeWriteFloat(mNativePtr, val);
651    }
652
653    /**
654     * Write a double precision floating point value into the parcel at the
655     * current dataPosition(), growing dataCapacity() if needed.
656     */
657    public final void writeDouble(double val) {
658        nativeWriteDouble(mNativePtr, val);
659    }
660
661    /**
662     * Write a string value into the parcel at the current dataPosition(),
663     * growing dataCapacity() if needed.
664     */
665    public final void writeString(String val) {
666        mReadWriteHelper.writeString(this, val);
667    }
668
669    /**
670     * Write a string without going though a {@link ReadWriteHelper}.  Subclasses of
671     * {@link ReadWriteHelper} must use this method instead of {@link #writeString} to avoid
672     * infinity recursive calls.
673     *
674     * @hide
675     */
676    public void writeStringNoHelper(String val) {
677        nativeWriteString(mNativePtr, val);
678    }
679
680    /** @hide */
681    public final void writeBoolean(boolean val) {
682        writeInt(val ? 1 : 0);
683    }
684
685    /**
686     * Write a CharSequence value into the parcel at the current dataPosition(),
687     * growing dataCapacity() if needed.
688     * @hide
689     */
690    public final void writeCharSequence(CharSequence val) {
691        TextUtils.writeToParcel(val, this, 0);
692    }
693
694    /**
695     * Write an object into the parcel at the current dataPosition(),
696     * growing dataCapacity() if needed.
697     */
698    public final void writeStrongBinder(IBinder val) {
699        nativeWriteStrongBinder(mNativePtr, val);
700    }
701
702    /**
703     * Write an object into the parcel at the current dataPosition(),
704     * growing dataCapacity() if needed.
705     */
706    public final void writeStrongInterface(IInterface val) {
707        writeStrongBinder(val == null ? null : val.asBinder());
708    }
709
710    /**
711     * Write a FileDescriptor into the parcel at the current dataPosition(),
712     * growing dataCapacity() if needed.
713     *
714     * <p class="caution">The file descriptor will not be closed, which may
715     * result in file descriptor leaks when objects are returned from Binder
716     * calls.  Use {@link ParcelFileDescriptor#writeToParcel} instead, which
717     * accepts contextual flags and will close the original file descriptor
718     * if {@link Parcelable#PARCELABLE_WRITE_RETURN_VALUE} is set.</p>
719     */
720    public final void writeFileDescriptor(FileDescriptor val) {
721        updateNativeSize(nativeWriteFileDescriptor(mNativePtr, val));
722    }
723
724    private void updateNativeSize(long newNativeSize) {
725        if (mOwnsNativeParcelObject) {
726            if (newNativeSize > Integer.MAX_VALUE) {
727                newNativeSize = Integer.MAX_VALUE;
728            }
729            if (newNativeSize != mNativeSize) {
730                int delta = (int) (newNativeSize - mNativeSize);
731                if (delta > 0) {
732                    VMRuntime.getRuntime().registerNativeAllocation(delta);
733                } else {
734                    VMRuntime.getRuntime().registerNativeFree(-delta);
735                }
736                mNativeSize = newNativeSize;
737            }
738        }
739    }
740
741    /**
742     * {@hide}
743     * This will be the new name for writeFileDescriptor, for consistency.
744     **/
745    public final void writeRawFileDescriptor(FileDescriptor val) {
746        nativeWriteFileDescriptor(mNativePtr, val);
747    }
748
749    /**
750     * {@hide}
751     * Write an array of FileDescriptor objects into the Parcel.
752     *
753     * @param value The array of objects to be written.
754     */
755    public final void writeRawFileDescriptorArray(FileDescriptor[] value) {
756        if (value != null) {
757            int N = value.length;
758            writeInt(N);
759            for (int i=0; i<N; i++) {
760                writeRawFileDescriptor(value[i]);
761            }
762        } else {
763            writeInt(-1);
764        }
765    }
766
767    /**
768     * Write a byte value into the parcel at the current dataPosition(),
769     * growing dataCapacity() if needed.
770     */
771    public final void writeByte(byte val) {
772        writeInt(val);
773    }
774
775    /**
776     * Please use {@link #writeBundle} instead.  Flattens a Map into the parcel
777     * at the current dataPosition(),
778     * growing dataCapacity() if needed.  The Map keys must be String objects.
779     * The Map values are written using {@link #writeValue} and must follow
780     * the specification there.
781     *
782     * <p>It is strongly recommended to use {@link #writeBundle} instead of
783     * this method, since the Bundle class provides a type-safe API that
784     * allows you to avoid mysterious type errors at the point of marshalling.
785     */
786    public final void writeMap(Map val) {
787        writeMapInternal((Map<String, Object>) val);
788    }
789
790    /**
791     * Flatten a Map into the parcel at the current dataPosition(),
792     * growing dataCapacity() if needed.  The Map keys must be String objects.
793     */
794    /* package */ void writeMapInternal(Map<String,Object> val) {
795        if (val == null) {
796            writeInt(-1);
797            return;
798        }
799        Set<Map.Entry<String,Object>> entries = val.entrySet();
800        writeInt(entries.size());
801        for (Map.Entry<String,Object> e : entries) {
802            writeValue(e.getKey());
803            writeValue(e.getValue());
804        }
805    }
806
807    /**
808     * Flatten an ArrayMap into the parcel at the current dataPosition(),
809     * growing dataCapacity() if needed.  The Map keys must be String objects.
810     */
811    /* package */ void writeArrayMapInternal(ArrayMap<String, Object> val) {
812        if (val == null) {
813            writeInt(-1);
814            return;
815        }
816        // Keep the format of this Parcel in sync with writeToParcelInner() in
817        // frameworks/native/libs/binder/PersistableBundle.cpp.
818        final int N = val.size();
819        writeInt(N);
820        if (DEBUG_ARRAY_MAP) {
821            RuntimeException here =  new RuntimeException("here");
822            here.fillInStackTrace();
823            Log.d(TAG, "Writing " + N + " ArrayMap entries", here);
824        }
825        int startPos;
826        for (int i=0; i<N; i++) {
827            if (DEBUG_ARRAY_MAP) startPos = dataPosition();
828            writeString(val.keyAt(i));
829            writeValue(val.valueAt(i));
830            if (DEBUG_ARRAY_MAP) Log.d(TAG, "  Write #" + i + " "
831                    + (dataPosition()-startPos) + " bytes: key=0x"
832                    + Integer.toHexString(val.keyAt(i) != null ? val.keyAt(i).hashCode() : 0)
833                    + " " + val.keyAt(i));
834        }
835    }
836
837    /**
838     * @hide For testing only.
839     */
840    public void writeArrayMap(ArrayMap<String, Object> val) {
841        writeArrayMapInternal(val);
842    }
843
844    /**
845     * Write an array set to the parcel.
846     *
847     * @param val The array set to write.
848     *
849     * @hide
850     */
851    public void writeArraySet(@Nullable ArraySet<? extends Object> val) {
852        final int size = (val != null) ? val.size() : -1;
853        writeInt(size);
854        for (int i = 0; i < size; i++) {
855            writeValue(val.valueAt(i));
856        }
857    }
858
859    /**
860     * Flatten a Bundle into the parcel at the current dataPosition(),
861     * growing dataCapacity() if needed.
862     */
863    public final void writeBundle(Bundle val) {
864        if (val == null) {
865            writeInt(-1);
866            return;
867        }
868
869        val.writeToParcel(this, 0);
870    }
871
872    /**
873     * Flatten a PersistableBundle into the parcel at the current dataPosition(),
874     * growing dataCapacity() if needed.
875     */
876    public final void writePersistableBundle(PersistableBundle val) {
877        if (val == null) {
878            writeInt(-1);
879            return;
880        }
881
882        val.writeToParcel(this, 0);
883    }
884
885    /**
886     * Flatten a Size into the parcel at the current dataPosition(),
887     * growing dataCapacity() if needed.
888     */
889    public final void writeSize(Size val) {
890        writeInt(val.getWidth());
891        writeInt(val.getHeight());
892    }
893
894    /**
895     * Flatten a SizeF into the parcel at the current dataPosition(),
896     * growing dataCapacity() if needed.
897     */
898    public final void writeSizeF(SizeF val) {
899        writeFloat(val.getWidth());
900        writeFloat(val.getHeight());
901    }
902
903    /**
904     * Flatten a List into the parcel at the current dataPosition(), growing
905     * dataCapacity() if needed.  The List values are written using
906     * {@link #writeValue} and must follow the specification there.
907     */
908    public final void writeList(List val) {
909        if (val == null) {
910            writeInt(-1);
911            return;
912        }
913        int N = val.size();
914        int i=0;
915        writeInt(N);
916        while (i < N) {
917            writeValue(val.get(i));
918            i++;
919        }
920    }
921
922    /**
923     * Flatten an Object array into the parcel at the current dataPosition(),
924     * growing dataCapacity() if needed.  The array values are written using
925     * {@link #writeValue} and must follow the specification there.
926     */
927    public final void writeArray(Object[] val) {
928        if (val == null) {
929            writeInt(-1);
930            return;
931        }
932        int N = val.length;
933        int i=0;
934        writeInt(N);
935        while (i < N) {
936            writeValue(val[i]);
937            i++;
938        }
939    }
940
941    /**
942     * Flatten a generic SparseArray into the parcel at the current
943     * dataPosition(), growing dataCapacity() if needed.  The SparseArray
944     * values are written using {@link #writeValue} and must follow the
945     * specification there.
946     */
947    public final void writeSparseArray(SparseArray<Object> val) {
948        if (val == null) {
949            writeInt(-1);
950            return;
951        }
952        int N = val.size();
953        writeInt(N);
954        int i=0;
955        while (i < N) {
956            writeInt(val.keyAt(i));
957            writeValue(val.valueAt(i));
958            i++;
959        }
960    }
961
962    public final void writeSparseBooleanArray(SparseBooleanArray val) {
963        if (val == null) {
964            writeInt(-1);
965            return;
966        }
967        int N = val.size();
968        writeInt(N);
969        int i=0;
970        while (i < N) {
971            writeInt(val.keyAt(i));
972            writeByte((byte)(val.valueAt(i) ? 1 : 0));
973            i++;
974        }
975    }
976
977    /**
978     * @hide
979     */
980    public final void writeSparseIntArray(SparseIntArray val) {
981        if (val == null) {
982            writeInt(-1);
983            return;
984        }
985        int N = val.size();
986        writeInt(N);
987        int i=0;
988        while (i < N) {
989            writeInt(val.keyAt(i));
990            writeInt(val.valueAt(i));
991            i++;
992        }
993    }
994
995    public final void writeBooleanArray(boolean[] val) {
996        if (val != null) {
997            int N = val.length;
998            writeInt(N);
999            for (int i=0; i<N; i++) {
1000                writeInt(val[i] ? 1 : 0);
1001            }
1002        } else {
1003            writeInt(-1);
1004        }
1005    }
1006
1007    public final boolean[] createBooleanArray() {
1008        int N = readInt();
1009        // >>2 as a fast divide-by-4 works in the create*Array() functions
1010        // because dataAvail() will never return a negative number.  4 is
1011        // the size of a stored boolean in the stream.
1012        if (N >= 0 && N <= (dataAvail() >> 2)) {
1013            boolean[] val = new boolean[N];
1014            for (int i=0; i<N; i++) {
1015                val[i] = readInt() != 0;
1016            }
1017            return val;
1018        } else {
1019            return null;
1020        }
1021    }
1022
1023    public final void readBooleanArray(boolean[] val) {
1024        int N = readInt();
1025        if (N == val.length) {
1026            for (int i=0; i<N; i++) {
1027                val[i] = readInt() != 0;
1028            }
1029        } else {
1030            throw new RuntimeException("bad array lengths");
1031        }
1032    }
1033
1034    public final void writeCharArray(char[] val) {
1035        if (val != null) {
1036            int N = val.length;
1037            writeInt(N);
1038            for (int i=0; i<N; i++) {
1039                writeInt((int)val[i]);
1040            }
1041        } else {
1042            writeInt(-1);
1043        }
1044    }
1045
1046    public final char[] createCharArray() {
1047        int N = readInt();
1048        if (N >= 0 && N <= (dataAvail() >> 2)) {
1049            char[] val = new char[N];
1050            for (int i=0; i<N; i++) {
1051                val[i] = (char)readInt();
1052            }
1053            return val;
1054        } else {
1055            return null;
1056        }
1057    }
1058
1059    public final void readCharArray(char[] val) {
1060        int N = readInt();
1061        if (N == val.length) {
1062            for (int i=0; i<N; i++) {
1063                val[i] = (char)readInt();
1064            }
1065        } else {
1066            throw new RuntimeException("bad array lengths");
1067        }
1068    }
1069
1070    public final void writeIntArray(int[] val) {
1071        if (val != null) {
1072            int N = val.length;
1073            writeInt(N);
1074            for (int i=0; i<N; i++) {
1075                writeInt(val[i]);
1076            }
1077        } else {
1078            writeInt(-1);
1079        }
1080    }
1081
1082    public final int[] createIntArray() {
1083        int N = readInt();
1084        if (N >= 0 && N <= (dataAvail() >> 2)) {
1085            int[] val = new int[N];
1086            for (int i=0; i<N; i++) {
1087                val[i] = readInt();
1088            }
1089            return val;
1090        } else {
1091            return null;
1092        }
1093    }
1094
1095    public final void readIntArray(int[] val) {
1096        int N = readInt();
1097        if (N == val.length) {
1098            for (int i=0; i<N; i++) {
1099                val[i] = readInt();
1100            }
1101        } else {
1102            throw new RuntimeException("bad array lengths");
1103        }
1104    }
1105
1106    public final void writeLongArray(long[] val) {
1107        if (val != null) {
1108            int N = val.length;
1109            writeInt(N);
1110            for (int i=0; i<N; i++) {
1111                writeLong(val[i]);
1112            }
1113        } else {
1114            writeInt(-1);
1115        }
1116    }
1117
1118    public final long[] createLongArray() {
1119        int N = readInt();
1120        // >>3 because stored longs are 64 bits
1121        if (N >= 0 && N <= (dataAvail() >> 3)) {
1122            long[] val = new long[N];
1123            for (int i=0; i<N; i++) {
1124                val[i] = readLong();
1125            }
1126            return val;
1127        } else {
1128            return null;
1129        }
1130    }
1131
1132    public final void readLongArray(long[] val) {
1133        int N = readInt();
1134        if (N == val.length) {
1135            for (int i=0; i<N; i++) {
1136                val[i] = readLong();
1137            }
1138        } else {
1139            throw new RuntimeException("bad array lengths");
1140        }
1141    }
1142
1143    public final void writeFloatArray(float[] val) {
1144        if (val != null) {
1145            int N = val.length;
1146            writeInt(N);
1147            for (int i=0; i<N; i++) {
1148                writeFloat(val[i]);
1149            }
1150        } else {
1151            writeInt(-1);
1152        }
1153    }
1154
1155    public final float[] createFloatArray() {
1156        int N = readInt();
1157        // >>2 because stored floats are 4 bytes
1158        if (N >= 0 && N <= (dataAvail() >> 2)) {
1159            float[] val = new float[N];
1160            for (int i=0; i<N; i++) {
1161                val[i] = readFloat();
1162            }
1163            return val;
1164        } else {
1165            return null;
1166        }
1167    }
1168
1169    public final void readFloatArray(float[] val) {
1170        int N = readInt();
1171        if (N == val.length) {
1172            for (int i=0; i<N; i++) {
1173                val[i] = readFloat();
1174            }
1175        } else {
1176            throw new RuntimeException("bad array lengths");
1177        }
1178    }
1179
1180    public final void writeDoubleArray(double[] val) {
1181        if (val != null) {
1182            int N = val.length;
1183            writeInt(N);
1184            for (int i=0; i<N; i++) {
1185                writeDouble(val[i]);
1186            }
1187        } else {
1188            writeInt(-1);
1189        }
1190    }
1191
1192    public final double[] createDoubleArray() {
1193        int N = readInt();
1194        // >>3 because stored doubles are 8 bytes
1195        if (N >= 0 && N <= (dataAvail() >> 3)) {
1196            double[] val = new double[N];
1197            for (int i=0; i<N; i++) {
1198                val[i] = readDouble();
1199            }
1200            return val;
1201        } else {
1202            return null;
1203        }
1204    }
1205
1206    public final void readDoubleArray(double[] val) {
1207        int N = readInt();
1208        if (N == val.length) {
1209            for (int i=0; i<N; i++) {
1210                val[i] = readDouble();
1211            }
1212        } else {
1213            throw new RuntimeException("bad array lengths");
1214        }
1215    }
1216
1217    public final void writeStringArray(String[] val) {
1218        if (val != null) {
1219            int N = val.length;
1220            writeInt(N);
1221            for (int i=0; i<N; i++) {
1222                writeString(val[i]);
1223            }
1224        } else {
1225            writeInt(-1);
1226        }
1227    }
1228
1229    public final String[] createStringArray() {
1230        int N = readInt();
1231        if (N >= 0) {
1232            String[] val = new String[N];
1233            for (int i=0; i<N; i++) {
1234                val[i] = readString();
1235            }
1236            return val;
1237        } else {
1238            return null;
1239        }
1240    }
1241
1242    public final void readStringArray(String[] val) {
1243        int N = readInt();
1244        if (N == val.length) {
1245            for (int i=0; i<N; i++) {
1246                val[i] = readString();
1247            }
1248        } else {
1249            throw new RuntimeException("bad array lengths");
1250        }
1251    }
1252
1253    public final void writeBinderArray(IBinder[] val) {
1254        if (val != null) {
1255            int N = val.length;
1256            writeInt(N);
1257            for (int i=0; i<N; i++) {
1258                writeStrongBinder(val[i]);
1259            }
1260        } else {
1261            writeInt(-1);
1262        }
1263    }
1264
1265    /**
1266     * @hide
1267     */
1268    public final void writeCharSequenceArray(CharSequence[] val) {
1269        if (val != null) {
1270            int N = val.length;
1271            writeInt(N);
1272            for (int i=0; i<N; i++) {
1273                writeCharSequence(val[i]);
1274            }
1275        } else {
1276            writeInt(-1);
1277        }
1278    }
1279
1280    /**
1281     * @hide
1282     */
1283    public final void writeCharSequenceList(ArrayList<CharSequence> val) {
1284        if (val != null) {
1285            int N = val.size();
1286            writeInt(N);
1287            for (int i=0; i<N; i++) {
1288                writeCharSequence(val.get(i));
1289            }
1290        } else {
1291            writeInt(-1);
1292        }
1293    }
1294
1295    public final IBinder[] createBinderArray() {
1296        int N = readInt();
1297        if (N >= 0) {
1298            IBinder[] val = new IBinder[N];
1299            for (int i=0; i<N; i++) {
1300                val[i] = readStrongBinder();
1301            }
1302            return val;
1303        } else {
1304            return null;
1305        }
1306    }
1307
1308    public final void readBinderArray(IBinder[] val) {
1309        int N = readInt();
1310        if (N == val.length) {
1311            for (int i=0; i<N; i++) {
1312                val[i] = readStrongBinder();
1313            }
1314        } else {
1315            throw new RuntimeException("bad array lengths");
1316        }
1317    }
1318
1319    /**
1320     * Flatten a List containing a particular object type into the parcel, at
1321     * the current dataPosition() and growing dataCapacity() if needed.  The
1322     * type of the objects in the list must be one that implements Parcelable.
1323     * Unlike the generic writeList() method, however, only the raw data of the
1324     * objects is written and not their type, so you must use the corresponding
1325     * readTypedList() to unmarshall them.
1326     *
1327     * @param val The list of objects to be written.
1328     *
1329     * @see #createTypedArrayList
1330     * @see #readTypedList
1331     * @see Parcelable
1332     */
1333    public final <T extends Parcelable> void writeTypedList(List<T> val) {
1334        if (val == null) {
1335            writeInt(-1);
1336            return;
1337        }
1338        int N = val.size();
1339        int i=0;
1340        writeInt(N);
1341        while (i < N) {
1342            T item = val.get(i);
1343            if (item != null) {
1344                writeInt(1);
1345                item.writeToParcel(this, 0);
1346            } else {
1347                writeInt(0);
1348            }
1349            i++;
1350        }
1351    }
1352
1353    /**
1354     * Flatten a List containing String objects into the parcel, at
1355     * the current dataPosition() and growing dataCapacity() if needed.  They
1356     * can later be retrieved with {@link #createStringArrayList} or
1357     * {@link #readStringList}.
1358     *
1359     * @param val The list of strings to be written.
1360     *
1361     * @see #createStringArrayList
1362     * @see #readStringList
1363     */
1364    public final void writeStringList(List<String> val) {
1365        if (val == null) {
1366            writeInt(-1);
1367            return;
1368        }
1369        int N = val.size();
1370        int i=0;
1371        writeInt(N);
1372        while (i < N) {
1373            writeString(val.get(i));
1374            i++;
1375        }
1376    }
1377
1378    /**
1379     * Flatten a List containing IBinder objects into the parcel, at
1380     * the current dataPosition() and growing dataCapacity() if needed.  They
1381     * can later be retrieved with {@link #createBinderArrayList} or
1382     * {@link #readBinderList}.
1383     *
1384     * @param val The list of strings to be written.
1385     *
1386     * @see #createBinderArrayList
1387     * @see #readBinderList
1388     */
1389    public final void writeBinderList(List<IBinder> val) {
1390        if (val == null) {
1391            writeInt(-1);
1392            return;
1393        }
1394        int N = val.size();
1395        int i=0;
1396        writeInt(N);
1397        while (i < N) {
1398            writeStrongBinder(val.get(i));
1399            i++;
1400        }
1401    }
1402
1403    /**
1404     * Flatten a {@code List} containing arbitrary {@code Parcelable} objects into this parcel
1405     * at the current position. They can later be retrieved using
1406     * {@link #readParcelableList(List, ClassLoader)} if required.
1407     *
1408     * @see #readParcelableList(List, ClassLoader)
1409     * @hide
1410     */
1411    public final <T extends Parcelable> void writeParcelableList(List<T> val, int flags) {
1412        if (val == null) {
1413            writeInt(-1);
1414            return;
1415        }
1416
1417        int N = val.size();
1418        int i=0;
1419        writeInt(N);
1420        while (i < N) {
1421            writeParcelable(val.get(i), flags);
1422            i++;
1423        }
1424    }
1425
1426    /**
1427     * Flatten a homogeneous array containing a particular object type into
1428     * the parcel, at
1429     * the current dataPosition() and growing dataCapacity() if needed.  The
1430     * type of the objects in the array must be one that implements Parcelable.
1431     * Unlike the {@link #writeParcelableArray} method, however, only the
1432     * raw data of the objects is written and not their type, so you must use
1433     * {@link #readTypedArray} with the correct corresponding
1434     * {@link Parcelable.Creator} implementation to unmarshall them.
1435     *
1436     * @param val The array of objects to be written.
1437     * @param parcelableFlags Contextual flags as per
1438     * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
1439     *
1440     * @see #readTypedArray
1441     * @see #writeParcelableArray
1442     * @see Parcelable.Creator
1443     */
1444    public final <T extends Parcelable> void writeTypedArray(T[] val,
1445            int parcelableFlags) {
1446        if (val != null) {
1447            int N = val.length;
1448            writeInt(N);
1449            for (int i = 0; i < N; i++) {
1450                T item = val[i];
1451                if (item != null) {
1452                    writeInt(1);
1453                    item.writeToParcel(this, parcelableFlags);
1454                } else {
1455                    writeInt(0);
1456                }
1457            }
1458        } else {
1459            writeInt(-1);
1460        }
1461    }
1462
1463    /**
1464     * Write a uniform (all items are null or the same class) array list of
1465     * parcelables.
1466     *
1467     * @param list The list to write.
1468     *
1469     * @hide
1470     */
1471    public final <T extends Parcelable> void writeTypedArrayList(@Nullable ArrayList<T> list,
1472            int parcelableFlags) {
1473        if (list != null) {
1474            int N = list.size();
1475            writeInt(N);
1476            boolean wroteCreator = false;
1477            for (int i = 0; i < N; i++) {
1478                T item = list.get(i);
1479                if (item != null) {
1480                    writeInt(1);
1481                    if (!wroteCreator) {
1482                        writeParcelableCreator(item);
1483                        wroteCreator = true;
1484                    }
1485                    item.writeToParcel(this, parcelableFlags);
1486                } else {
1487                    writeInt(0);
1488                }
1489            }
1490        } else {
1491            writeInt(-1);
1492        }
1493    }
1494
1495    /**
1496     * Reads a uniform (all items are null or the same class) array list of
1497     * parcelables.
1498     *
1499     * @return The list or null.
1500     *
1501     * @hide
1502     */
1503    public final @Nullable <T> ArrayList<T> readTypedArrayList(@Nullable ClassLoader loader) {
1504        int N = readInt();
1505        if (N <= 0) {
1506            return null;
1507        }
1508        Parcelable.Creator<?> creator = null;
1509        ArrayList<T> result = new ArrayList<T>(N);
1510        for (int i = 0; i < N; i++) {
1511            if (readInt() != 0) {
1512                if (creator == null) {
1513                    creator = readParcelableCreator(loader);
1514                    if (creator == null) {
1515                        return null;
1516                    }
1517                }
1518                final T parcelable;
1519                if (creator instanceof Parcelable.ClassLoaderCreator<?>) {
1520                    Parcelable.ClassLoaderCreator<?> classLoaderCreator =
1521                            (Parcelable.ClassLoaderCreator<?>) creator;
1522                    parcelable = (T) classLoaderCreator.createFromParcel(this, loader);
1523                } else {
1524                    parcelable = (T) creator.createFromParcel(this);
1525                }
1526                result.add(parcelable);
1527            } else {
1528                result.add(null);
1529            }
1530        }
1531        return result;
1532    }
1533
1534    /**
1535     * Write a uniform (all items are null or the same class) array set of
1536     * parcelables.
1537     *
1538     * @param set The set to write.
1539     *
1540     * @hide
1541     */
1542    public final <T extends Parcelable> void writeTypedArraySet(@Nullable ArraySet<T> set,
1543            int parcelableFlags) {
1544        if (set != null) {
1545            int N = set.size();
1546            writeInt(N);
1547            boolean wroteCreator = false;
1548            for (int i = 0; i < N; i++) {
1549                T item = set.valueAt(i);
1550                if (item != null) {
1551                    writeInt(1);
1552                    if (!wroteCreator) {
1553                        writeParcelableCreator(item);
1554                        wroteCreator = true;
1555                    }
1556                    item.writeToParcel(this, parcelableFlags);
1557                } else {
1558                    writeInt(0);
1559                }
1560            }
1561        } else {
1562            writeInt(-1);
1563        }
1564    }
1565
1566    /**
1567     * Reads a uniform (all items are null or the same class) array set of
1568     * parcelables.
1569     *
1570     * @return The set or null.
1571     *
1572     * @hide
1573     */
1574    public final @Nullable <T> ArraySet<T> readTypedArraySet(@Nullable ClassLoader loader) {
1575        int N = readInt();
1576        if (N <= 0) {
1577            return null;
1578        }
1579        Parcelable.Creator<?> creator = null;
1580        ArraySet<T> result = new ArraySet<T>(N);
1581        for (int i = 0; i < N; i++) {
1582            T parcelable = null;
1583            if (readInt() != 0) {
1584                if (creator == null) {
1585                    creator = readParcelableCreator(loader);
1586                    if (creator == null) {
1587                        return null;
1588                    }
1589                }
1590                if (creator instanceof Parcelable.ClassLoaderCreator<?>) {
1591                    Parcelable.ClassLoaderCreator<?> classLoaderCreator =
1592                            (Parcelable.ClassLoaderCreator<?>) creator;
1593                    parcelable = (T) classLoaderCreator.createFromParcel(this, loader);
1594                } else {
1595                    parcelable = (T) creator.createFromParcel(this);
1596                }
1597            }
1598            result.append(parcelable);
1599        }
1600        return result;
1601    }
1602
1603    /**
1604     * Flatten the Parcelable object into the parcel.
1605     *
1606     * @param val The Parcelable object to be written.
1607     * @param parcelableFlags Contextual flags as per
1608     * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
1609     *
1610     * @see #readTypedObject
1611     */
1612    public final <T extends Parcelable> void writeTypedObject(T val, int parcelableFlags) {
1613        if (val != null) {
1614            writeInt(1);
1615            val.writeToParcel(this, parcelableFlags);
1616        } else {
1617            writeInt(0);
1618        }
1619    }
1620
1621    /**
1622     * Flatten a generic object in to a parcel.  The given Object value may
1623     * currently be one of the following types:
1624     *
1625     * <ul>
1626     * <li> null
1627     * <li> String
1628     * <li> Byte
1629     * <li> Short
1630     * <li> Integer
1631     * <li> Long
1632     * <li> Float
1633     * <li> Double
1634     * <li> Boolean
1635     * <li> String[]
1636     * <li> boolean[]
1637     * <li> byte[]
1638     * <li> int[]
1639     * <li> long[]
1640     * <li> Object[] (supporting objects of the same type defined here).
1641     * <li> {@link Bundle}
1642     * <li> Map (as supported by {@link #writeMap}).
1643     * <li> Any object that implements the {@link Parcelable} protocol.
1644     * <li> Parcelable[]
1645     * <li> CharSequence (as supported by {@link TextUtils#writeToParcel}).
1646     * <li> List (as supported by {@link #writeList}).
1647     * <li> {@link SparseArray} (as supported by {@link #writeSparseArray(SparseArray)}).
1648     * <li> {@link IBinder}
1649     * <li> Any object that implements Serializable (but see
1650     *      {@link #writeSerializable} for caveats).  Note that all of the
1651     *      previous types have relatively efficient implementations for
1652     *      writing to a Parcel; having to rely on the generic serialization
1653     *      approach is much less efficient and should be avoided whenever
1654     *      possible.
1655     * </ul>
1656     *
1657     * <p class="caution">{@link Parcelable} objects are written with
1658     * {@link Parcelable#writeToParcel} using contextual flags of 0.  When
1659     * serializing objects containing {@link ParcelFileDescriptor}s,
1660     * this may result in file descriptor leaks when they are returned from
1661     * Binder calls (where {@link Parcelable#PARCELABLE_WRITE_RETURN_VALUE}
1662     * should be used).</p>
1663     */
1664    public final void writeValue(Object v) {
1665        if (v == null) {
1666            writeInt(VAL_NULL);
1667        } else if (v instanceof String) {
1668            writeInt(VAL_STRING);
1669            writeString((String) v);
1670        } else if (v instanceof Integer) {
1671            writeInt(VAL_INTEGER);
1672            writeInt((Integer) v);
1673        } else if (v instanceof Map) {
1674            writeInt(VAL_MAP);
1675            writeMap((Map) v);
1676        } else if (v instanceof Bundle) {
1677            // Must be before Parcelable
1678            writeInt(VAL_BUNDLE);
1679            writeBundle((Bundle) v);
1680        } else if (v instanceof PersistableBundle) {
1681            writeInt(VAL_PERSISTABLEBUNDLE);
1682            writePersistableBundle((PersistableBundle) v);
1683        } else if (v instanceof Parcelable) {
1684            // IMPOTANT: cases for classes that implement Parcelable must
1685            // come before the Parcelable case, so that their specific VAL_*
1686            // types will be written.
1687            writeInt(VAL_PARCELABLE);
1688            writeParcelable((Parcelable) v, 0);
1689        } else if (v instanceof Short) {
1690            writeInt(VAL_SHORT);
1691            writeInt(((Short) v).intValue());
1692        } else if (v instanceof Long) {
1693            writeInt(VAL_LONG);
1694            writeLong((Long) v);
1695        } else if (v instanceof Float) {
1696            writeInt(VAL_FLOAT);
1697            writeFloat((Float) v);
1698        } else if (v instanceof Double) {
1699            writeInt(VAL_DOUBLE);
1700            writeDouble((Double) v);
1701        } else if (v instanceof Boolean) {
1702            writeInt(VAL_BOOLEAN);
1703            writeInt((Boolean) v ? 1 : 0);
1704        } else if (v instanceof CharSequence) {
1705            // Must be after String
1706            writeInt(VAL_CHARSEQUENCE);
1707            writeCharSequence((CharSequence) v);
1708        } else if (v instanceof List) {
1709            writeInt(VAL_LIST);
1710            writeList((List) v);
1711        } else if (v instanceof SparseArray) {
1712            writeInt(VAL_SPARSEARRAY);
1713            writeSparseArray((SparseArray) v);
1714        } else if (v instanceof boolean[]) {
1715            writeInt(VAL_BOOLEANARRAY);
1716            writeBooleanArray((boolean[]) v);
1717        } else if (v instanceof byte[]) {
1718            writeInt(VAL_BYTEARRAY);
1719            writeByteArray((byte[]) v);
1720        } else if (v instanceof String[]) {
1721            writeInt(VAL_STRINGARRAY);
1722            writeStringArray((String[]) v);
1723        } else if (v instanceof CharSequence[]) {
1724            // Must be after String[] and before Object[]
1725            writeInt(VAL_CHARSEQUENCEARRAY);
1726            writeCharSequenceArray((CharSequence[]) v);
1727        } else if (v instanceof IBinder) {
1728            writeInt(VAL_IBINDER);
1729            writeStrongBinder((IBinder) v);
1730        } else if (v instanceof Parcelable[]) {
1731            writeInt(VAL_PARCELABLEARRAY);
1732            writeParcelableArray((Parcelable[]) v, 0);
1733        } else if (v instanceof int[]) {
1734            writeInt(VAL_INTARRAY);
1735            writeIntArray((int[]) v);
1736        } else if (v instanceof long[]) {
1737            writeInt(VAL_LONGARRAY);
1738            writeLongArray((long[]) v);
1739        } else if (v instanceof Byte) {
1740            writeInt(VAL_BYTE);
1741            writeInt((Byte) v);
1742        } else if (v instanceof Size) {
1743            writeInt(VAL_SIZE);
1744            writeSize((Size) v);
1745        } else if (v instanceof SizeF) {
1746            writeInt(VAL_SIZEF);
1747            writeSizeF((SizeF) v);
1748        } else if (v instanceof double[]) {
1749            writeInt(VAL_DOUBLEARRAY);
1750            writeDoubleArray((double[]) v);
1751        } else {
1752            Class<?> clazz = v.getClass();
1753            if (clazz.isArray() && clazz.getComponentType() == Object.class) {
1754                // Only pure Object[] are written here, Other arrays of non-primitive types are
1755                // handled by serialization as this does not record the component type.
1756                writeInt(VAL_OBJECTARRAY);
1757                writeArray((Object[]) v);
1758            } else if (v instanceof Serializable) {
1759                // Must be last
1760                writeInt(VAL_SERIALIZABLE);
1761                writeSerializable((Serializable) v);
1762            } else {
1763                throw new RuntimeException("Parcel: unable to marshal value " + v);
1764            }
1765        }
1766    }
1767
1768    /**
1769     * Flatten the name of the class of the Parcelable and its contents
1770     * into the parcel.
1771     *
1772     * @param p The Parcelable object to be written.
1773     * @param parcelableFlags Contextual flags as per
1774     * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
1775     */
1776    public final void writeParcelable(Parcelable p, int parcelableFlags) {
1777        if (p == null) {
1778            writeString(null);
1779            return;
1780        }
1781        writeParcelableCreator(p);
1782        p.writeToParcel(this, parcelableFlags);
1783    }
1784
1785    /** @hide */
1786    public final void writeParcelableCreator(Parcelable p) {
1787        String name = p.getClass().getName();
1788        writeString(name);
1789    }
1790
1791    /**
1792     * Write a generic serializable object in to a Parcel.  It is strongly
1793     * recommended that this method be avoided, since the serialization
1794     * overhead is extremely large, and this approach will be much slower than
1795     * using the other approaches to writing data in to a Parcel.
1796     */
1797    public final void writeSerializable(Serializable s) {
1798        if (s == null) {
1799            writeString(null);
1800            return;
1801        }
1802        String name = s.getClass().getName();
1803        writeString(name);
1804
1805        ByteArrayOutputStream baos = new ByteArrayOutputStream();
1806        try {
1807            ObjectOutputStream oos = new ObjectOutputStream(baos);
1808            oos.writeObject(s);
1809            oos.close();
1810
1811            writeByteArray(baos.toByteArray());
1812        } catch (IOException ioe) {
1813            throw new RuntimeException("Parcelable encountered " +
1814                "IOException writing serializable object (name = " + name +
1815                ")", ioe);
1816        }
1817    }
1818
1819    /**
1820     * Special function for writing an exception result at the header of
1821     * a parcel, to be used when returning an exception from a transaction.
1822     * Note that this currently only supports a few exception types; any other
1823     * exception will be re-thrown by this function as a RuntimeException
1824     * (to be caught by the system's last-resort exception handling when
1825     * dispatching a transaction).
1826     *
1827     * <p>The supported exception types are:
1828     * <ul>
1829     * <li>{@link BadParcelableException}
1830     * <li>{@link IllegalArgumentException}
1831     * <li>{@link IllegalStateException}
1832     * <li>{@link NullPointerException}
1833     * <li>{@link SecurityException}
1834     * <li>{@link NetworkOnMainThreadException}
1835     * </ul>
1836     *
1837     * @param e The Exception to be written.
1838     *
1839     * @see #writeNoException
1840     * @see #readException
1841     */
1842    public final void writeException(Exception e) {
1843        int code = 0;
1844        if (e instanceof Parcelable
1845                && (e.getClass().getClassLoader() == Parcelable.class.getClassLoader())) {
1846            // We only send Parcelable exceptions that are in the
1847            // BootClassLoader to ensure that the receiver can unpack them
1848            code = EX_PARCELABLE;
1849        } else if (e instanceof SecurityException) {
1850            code = EX_SECURITY;
1851        } else if (e instanceof BadParcelableException) {
1852            code = EX_BAD_PARCELABLE;
1853        } else if (e instanceof IllegalArgumentException) {
1854            code = EX_ILLEGAL_ARGUMENT;
1855        } else if (e instanceof NullPointerException) {
1856            code = EX_NULL_POINTER;
1857        } else if (e instanceof IllegalStateException) {
1858            code = EX_ILLEGAL_STATE;
1859        } else if (e instanceof NetworkOnMainThreadException) {
1860            code = EX_NETWORK_MAIN_THREAD;
1861        } else if (e instanceof UnsupportedOperationException) {
1862            code = EX_UNSUPPORTED_OPERATION;
1863        } else if (e instanceof ServiceSpecificException) {
1864            code = EX_SERVICE_SPECIFIC;
1865        }
1866        writeInt(code);
1867        StrictMode.clearGatheredViolations();
1868        if (code == 0) {
1869            if (e instanceof RuntimeException) {
1870                throw (RuntimeException) e;
1871            }
1872            throw new RuntimeException(e);
1873        }
1874        writeString(e.getMessage());
1875        switch (code) {
1876            case EX_SERVICE_SPECIFIC:
1877                writeInt(((ServiceSpecificException) e).errorCode);
1878                break;
1879            case EX_PARCELABLE:
1880                // Write parceled exception prefixed by length
1881                final int sizePosition = dataPosition();
1882                writeInt(0);
1883                writeParcelable((Parcelable) e, Parcelable.PARCELABLE_WRITE_RETURN_VALUE);
1884                final int payloadPosition = dataPosition();
1885                setDataPosition(sizePosition);
1886                writeInt(payloadPosition - sizePosition);
1887                setDataPosition(payloadPosition);
1888                break;
1889        }
1890    }
1891
1892    /**
1893     * Special function for writing information at the front of the Parcel
1894     * indicating that no exception occurred.
1895     *
1896     * @see #writeException
1897     * @see #readException
1898     */
1899    public final void writeNoException() {
1900        // Despite the name of this function ("write no exception"),
1901        // it should instead be thought of as "write the RPC response
1902        // header", but because this function name is written out by
1903        // the AIDL compiler, we're not going to rename it.
1904        //
1905        // The response header, in the non-exception case (see also
1906        // writeException above, also called by the AIDL compiler), is
1907        // either a 0 (the default case), or EX_HAS_REPLY_HEADER if
1908        // StrictMode has gathered up violations that have occurred
1909        // during a Binder call, in which case we write out the number
1910        // of violations and their details, serialized, before the
1911        // actual RPC respons data.  The receiving end of this is
1912        // readException(), below.
1913        if (StrictMode.hasGatheredViolations()) {
1914            writeInt(EX_HAS_REPLY_HEADER);
1915            final int sizePosition = dataPosition();
1916            writeInt(0);  // total size of fat header, to be filled in later
1917            StrictMode.writeGatheredViolationsToParcel(this);
1918            final int payloadPosition = dataPosition();
1919            setDataPosition(sizePosition);
1920            writeInt(payloadPosition - sizePosition);  // header size
1921            setDataPosition(payloadPosition);
1922        } else {
1923            writeInt(0);
1924        }
1925    }
1926
1927    /**
1928     * Special function for reading an exception result from the header of
1929     * a parcel, to be used after receiving the result of a transaction.  This
1930     * will throw the exception for you if it had been written to the Parcel,
1931     * otherwise return and let you read the normal result data from the Parcel.
1932     *
1933     * @see #writeException
1934     * @see #writeNoException
1935     */
1936    public final void readException() {
1937        int code = readExceptionCode();
1938        if (code != 0) {
1939            String msg = readString();
1940            readException(code, msg);
1941        }
1942    }
1943
1944    /**
1945     * Parses the header of a Binder call's response Parcel and
1946     * returns the exception code.  Deals with lite or fat headers.
1947     * In the common successful case, this header is generally zero.
1948     * In less common cases, it's a small negative number and will be
1949     * followed by an error string.
1950     *
1951     * This exists purely for android.database.DatabaseUtils and
1952     * insulating it from having to handle fat headers as returned by
1953     * e.g. StrictMode-induced RPC responses.
1954     *
1955     * @hide
1956     */
1957    public final int readExceptionCode() {
1958        int code = readInt();
1959        if (code == EX_HAS_REPLY_HEADER) {
1960            int headerSize = readInt();
1961            if (headerSize == 0) {
1962                Log.e(TAG, "Unexpected zero-sized Parcel reply header.");
1963            } else {
1964                // Currently the only thing in the header is StrictMode stacks,
1965                // but discussions around event/RPC tracing suggest we might
1966                // put that here too.  If so, switch on sub-header tags here.
1967                // But for now, just parse out the StrictMode stuff.
1968                StrictMode.readAndHandleBinderCallViolations(this);
1969            }
1970            // And fat response headers are currently only used when
1971            // there are no exceptions, so return no error:
1972            return 0;
1973        }
1974        return code;
1975    }
1976
1977    /**
1978     * Throw an exception with the given message. Not intended for use
1979     * outside the Parcel class.
1980     *
1981     * @param code Used to determine which exception class to throw.
1982     * @param msg The exception message.
1983     */
1984    public final void readException(int code, String msg) {
1985        switch (code) {
1986            case EX_PARCELABLE:
1987                if (readInt() > 0) {
1988                    SneakyThrow.sneakyThrow(
1989                            (Exception) readParcelable(Parcelable.class.getClassLoader()));
1990                } else {
1991                    throw new RuntimeException(msg + " [missing Parcelable]");
1992                }
1993            case EX_SECURITY:
1994                throw new SecurityException(msg);
1995            case EX_BAD_PARCELABLE:
1996                throw new BadParcelableException(msg);
1997            case EX_ILLEGAL_ARGUMENT:
1998                throw new IllegalArgumentException(msg);
1999            case EX_NULL_POINTER:
2000                throw new NullPointerException(msg);
2001            case EX_ILLEGAL_STATE:
2002                throw new IllegalStateException(msg);
2003            case EX_NETWORK_MAIN_THREAD:
2004                throw new NetworkOnMainThreadException();
2005            case EX_UNSUPPORTED_OPERATION:
2006                throw new UnsupportedOperationException(msg);
2007            case EX_SERVICE_SPECIFIC:
2008                throw new ServiceSpecificException(readInt(), msg);
2009        }
2010        throw new RuntimeException("Unknown exception code: " + code
2011                + " msg " + msg);
2012    }
2013
2014    /**
2015     * Read an integer value from the parcel at the current dataPosition().
2016     */
2017    public final int readInt() {
2018        return nativeReadInt(mNativePtr);
2019    }
2020
2021    /**
2022     * Read a long integer value from the parcel at the current dataPosition().
2023     */
2024    public final long readLong() {
2025        return nativeReadLong(mNativePtr);
2026    }
2027
2028    /**
2029     * Read a floating point value from the parcel at the current
2030     * dataPosition().
2031     */
2032    public final float readFloat() {
2033        return nativeReadFloat(mNativePtr);
2034    }
2035
2036    /**
2037     * Read a double precision floating point value from the parcel at the
2038     * current dataPosition().
2039     */
2040    public final double readDouble() {
2041        return nativeReadDouble(mNativePtr);
2042    }
2043
2044    /**
2045     * Read a string value from the parcel at the current dataPosition().
2046     */
2047    public final String readString() {
2048        return mReadWriteHelper.readString(this);
2049    }
2050
2051    /**
2052     * Read a string without going though a {@link ReadWriteHelper}.  Subclasses of
2053     * {@link ReadWriteHelper} must use this method instead of {@link #readString} to avoid
2054     * infinity recursive calls.
2055     *
2056     * @hide
2057     */
2058    public String readStringNoHelper() {
2059        return nativeReadString(mNativePtr);
2060    }
2061
2062    /** @hide */
2063    public final boolean readBoolean() {
2064        return readInt() != 0;
2065    }
2066
2067    /**
2068     * Read a CharSequence value from the parcel at the current dataPosition().
2069     * @hide
2070     */
2071    public final CharSequence readCharSequence() {
2072        return TextUtils.CHAR_SEQUENCE_CREATOR.createFromParcel(this);
2073    }
2074
2075    /**
2076     * Read an object from the parcel at the current dataPosition().
2077     */
2078    public final IBinder readStrongBinder() {
2079        return nativeReadStrongBinder(mNativePtr);
2080    }
2081
2082    /**
2083     * Read a FileDescriptor from the parcel at the current dataPosition().
2084     */
2085    public final ParcelFileDescriptor readFileDescriptor() {
2086        FileDescriptor fd = nativeReadFileDescriptor(mNativePtr);
2087        return fd != null ? new ParcelFileDescriptor(fd) : null;
2088    }
2089
2090    /** {@hide} */
2091    public final FileDescriptor readRawFileDescriptor() {
2092        return nativeReadFileDescriptor(mNativePtr);
2093    }
2094
2095    /**
2096     * {@hide}
2097     * Read and return a new array of FileDescriptors from the parcel.
2098     * @return the FileDescriptor array, or null if the array is null.
2099     **/
2100    public final FileDescriptor[] createRawFileDescriptorArray() {
2101        int N = readInt();
2102        if (N < 0) {
2103            return null;
2104        }
2105        FileDescriptor[] f = new FileDescriptor[N];
2106        for (int i = 0; i < N; i++) {
2107            f[i] = readRawFileDescriptor();
2108        }
2109        return f;
2110    }
2111
2112    /**
2113     * {@hide}
2114     * Read an array of FileDescriptors from a parcel.
2115     * The passed array must be exactly the length of the array in the parcel.
2116     * @return the FileDescriptor array, or null if the array is null.
2117     **/
2118    public final void readRawFileDescriptorArray(FileDescriptor[] val) {
2119        int N = readInt();
2120        if (N == val.length) {
2121            for (int i=0; i<N; i++) {
2122                val[i] = readRawFileDescriptor();
2123            }
2124        } else {
2125            throw new RuntimeException("bad array lengths");
2126        }
2127    }
2128
2129    /** @deprecated use {@link android.system.Os#open(String, int, int)} */
2130    @Deprecated
2131    static native FileDescriptor openFileDescriptor(String file, int mode)
2132            throws FileNotFoundException;
2133
2134    /** @deprecated use {@link android.system.Os#dup(FileDescriptor)} */
2135    @Deprecated
2136    static native FileDescriptor dupFileDescriptor(FileDescriptor orig) throws IOException;
2137
2138    /** @deprecated use {@link android.system.Os#close(FileDescriptor)} */
2139    @Deprecated
2140    static native void closeFileDescriptor(FileDescriptor desc) throws IOException;
2141
2142    static native void clearFileDescriptor(FileDescriptor desc);
2143
2144    /**
2145     * Read a byte value from the parcel at the current dataPosition().
2146     */
2147    public final byte readByte() {
2148        return (byte)(readInt() & 0xff);
2149    }
2150
2151    /**
2152     * Please use {@link #readBundle(ClassLoader)} instead (whose data must have
2153     * been written with {@link #writeBundle}.  Read into an existing Map object
2154     * from the parcel at the current dataPosition().
2155     */
2156    public final void readMap(Map outVal, ClassLoader loader) {
2157        int N = readInt();
2158        readMapInternal(outVal, N, loader);
2159    }
2160
2161    /**
2162     * Read into an existing List object from the parcel at the current
2163     * dataPosition(), using the given class loader to load any enclosed
2164     * Parcelables.  If it is null, the default class loader is used.
2165     */
2166    public final void readList(List outVal, ClassLoader loader) {
2167        int N = readInt();
2168        readListInternal(outVal, N, loader);
2169    }
2170
2171    /**
2172     * Please use {@link #readBundle(ClassLoader)} instead (whose data must have
2173     * been written with {@link #writeBundle}.  Read and return a new HashMap
2174     * object from the parcel at the current dataPosition(), using the given
2175     * class loader to load any enclosed Parcelables.  Returns null if
2176     * the previously written map object was null.
2177     */
2178    public final HashMap readHashMap(ClassLoader loader)
2179    {
2180        int N = readInt();
2181        if (N < 0) {
2182            return null;
2183        }
2184        HashMap m = new HashMap(N);
2185        readMapInternal(m, N, loader);
2186        return m;
2187    }
2188
2189    /**
2190     * Read and return a new Bundle object from the parcel at the current
2191     * dataPosition().  Returns null if the previously written Bundle object was
2192     * null.
2193     */
2194    public final Bundle readBundle() {
2195        return readBundle(null);
2196    }
2197
2198    /**
2199     * Read and return a new Bundle object from the parcel at the current
2200     * dataPosition(), using the given class loader to initialize the class
2201     * loader of the Bundle for later retrieval of Parcelable objects.
2202     * Returns null if the previously written Bundle object was null.
2203     */
2204    public final Bundle readBundle(ClassLoader loader) {
2205        int length = readInt();
2206        if (length < 0) {
2207            if (Bundle.DEBUG) Log.d(TAG, "null bundle: length=" + length);
2208            return null;
2209        }
2210
2211        final Bundle bundle = new Bundle(this, length);
2212        if (loader != null) {
2213            bundle.setClassLoader(loader);
2214        }
2215        return bundle;
2216    }
2217
2218    /**
2219     * Read and return a new Bundle object from the parcel at the current
2220     * dataPosition().  Returns null if the previously written Bundle object was
2221     * null.
2222     */
2223    public final PersistableBundle readPersistableBundle() {
2224        return readPersistableBundle(null);
2225    }
2226
2227    /**
2228     * Read and return a new Bundle object from the parcel at the current
2229     * dataPosition(), using the given class loader to initialize the class
2230     * loader of the Bundle for later retrieval of Parcelable objects.
2231     * Returns null if the previously written Bundle object was null.
2232     */
2233    public final PersistableBundle readPersistableBundle(ClassLoader loader) {
2234        int length = readInt();
2235        if (length < 0) {
2236            if (Bundle.DEBUG) Log.d(TAG, "null bundle: length=" + length);
2237            return null;
2238        }
2239
2240        final PersistableBundle bundle = new PersistableBundle(this, length);
2241        if (loader != null) {
2242            bundle.setClassLoader(loader);
2243        }
2244        return bundle;
2245    }
2246
2247    /**
2248     * Read a Size from the parcel at the current dataPosition().
2249     */
2250    public final Size readSize() {
2251        final int width = readInt();
2252        final int height = readInt();
2253        return new Size(width, height);
2254    }
2255
2256    /**
2257     * Read a SizeF from the parcel at the current dataPosition().
2258     */
2259    public final SizeF readSizeF() {
2260        final float width = readFloat();
2261        final float height = readFloat();
2262        return new SizeF(width, height);
2263    }
2264
2265    /**
2266     * Read and return a byte[] object from the parcel.
2267     */
2268    public final byte[] createByteArray() {
2269        return nativeCreateByteArray(mNativePtr);
2270    }
2271
2272    /**
2273     * Read a byte[] object from the parcel and copy it into the
2274     * given byte array.
2275     */
2276    public final void readByteArray(byte[] val) {
2277        boolean valid = nativeReadByteArray(mNativePtr, val, (val != null) ? val.length : 0);
2278        if (!valid) {
2279            throw new RuntimeException("bad array lengths");
2280        }
2281    }
2282
2283    /**
2284     * Read a blob of data from the parcel and return it as a byte array.
2285     * {@hide}
2286     * {@SystemApi}
2287     */
2288    public final byte[] readBlob() {
2289        return nativeReadBlob(mNativePtr);
2290    }
2291
2292    /**
2293     * Read and return a String[] object from the parcel.
2294     * {@hide}
2295     */
2296    public final String[] readStringArray() {
2297        String[] array = null;
2298
2299        int length = readInt();
2300        if (length >= 0)
2301        {
2302            array = new String[length];
2303
2304            for (int i = 0 ; i < length ; i++)
2305            {
2306                array[i] = readString();
2307            }
2308        }
2309
2310        return array;
2311    }
2312
2313    /**
2314     * Read and return a CharSequence[] object from the parcel.
2315     * {@hide}
2316     */
2317    public final CharSequence[] readCharSequenceArray() {
2318        CharSequence[] array = null;
2319
2320        int length = readInt();
2321        if (length >= 0)
2322        {
2323            array = new CharSequence[length];
2324
2325            for (int i = 0 ; i < length ; i++)
2326            {
2327                array[i] = readCharSequence();
2328            }
2329        }
2330
2331        return array;
2332    }
2333
2334    /**
2335     * Read and return an ArrayList&lt;CharSequence&gt; object from the parcel.
2336     * {@hide}
2337     */
2338    public final ArrayList<CharSequence> readCharSequenceList() {
2339        ArrayList<CharSequence> array = null;
2340
2341        int length = readInt();
2342        if (length >= 0) {
2343            array = new ArrayList<CharSequence>(length);
2344
2345            for (int i = 0 ; i < length ; i++) {
2346                array.add(readCharSequence());
2347            }
2348        }
2349
2350        return array;
2351    }
2352
2353    /**
2354     * Read and return a new ArrayList object from the parcel at the current
2355     * dataPosition().  Returns null if the previously written list object was
2356     * null.  The given class loader will be used to load any enclosed
2357     * Parcelables.
2358     */
2359    public final ArrayList readArrayList(ClassLoader loader) {
2360        int N = readInt();
2361        if (N < 0) {
2362            return null;
2363        }
2364        ArrayList l = new ArrayList(N);
2365        readListInternal(l, N, loader);
2366        return l;
2367    }
2368
2369    /**
2370     * Read and return a new Object array from the parcel at the current
2371     * dataPosition().  Returns null if the previously written array was
2372     * null.  The given class loader will be used to load any enclosed
2373     * Parcelables.
2374     */
2375    public final Object[] readArray(ClassLoader loader) {
2376        int N = readInt();
2377        if (N < 0) {
2378            return null;
2379        }
2380        Object[] l = new Object[N];
2381        readArrayInternal(l, N, loader);
2382        return l;
2383    }
2384
2385    /**
2386     * Read and return a new SparseArray object from the parcel at the current
2387     * dataPosition().  Returns null if the previously written list object was
2388     * null.  The given class loader will be used to load any enclosed
2389     * Parcelables.
2390     */
2391    public final SparseArray readSparseArray(ClassLoader loader) {
2392        int N = readInt();
2393        if (N < 0) {
2394            return null;
2395        }
2396        SparseArray sa = new SparseArray(N);
2397        readSparseArrayInternal(sa, N, loader);
2398        return sa;
2399    }
2400
2401    /**
2402     * Read and return a new SparseBooleanArray object from the parcel at the current
2403     * dataPosition().  Returns null if the previously written list object was
2404     * null.
2405     */
2406    public final SparseBooleanArray readSparseBooleanArray() {
2407        int N = readInt();
2408        if (N < 0) {
2409            return null;
2410        }
2411        SparseBooleanArray sa = new SparseBooleanArray(N);
2412        readSparseBooleanArrayInternal(sa, N);
2413        return sa;
2414    }
2415
2416    /**
2417     * Read and return a new SparseIntArray object from the parcel at the current
2418     * dataPosition(). Returns null if the previously written array object was null.
2419     * @hide
2420     */
2421    public final SparseIntArray readSparseIntArray() {
2422        int N = readInt();
2423        if (N < 0) {
2424            return null;
2425        }
2426        SparseIntArray sa = new SparseIntArray(N);
2427        readSparseIntArrayInternal(sa, N);
2428        return sa;
2429    }
2430
2431    /**
2432     * Read and return a new ArrayList containing a particular object type from
2433     * the parcel that was written with {@link #writeTypedList} at the
2434     * current dataPosition().  Returns null if the
2435     * previously written list object was null.  The list <em>must</em> have
2436     * previously been written via {@link #writeTypedList} with the same object
2437     * type.
2438     *
2439     * @return A newly created ArrayList containing objects with the same data
2440     *         as those that were previously written.
2441     *
2442     * @see #writeTypedList
2443     */
2444    public final <T> ArrayList<T> createTypedArrayList(Parcelable.Creator<T> c) {
2445        int N = readInt();
2446        if (N < 0) {
2447            return null;
2448        }
2449        ArrayList<T> l = new ArrayList<T>(N);
2450        while (N > 0) {
2451            if (readInt() != 0) {
2452                l.add(c.createFromParcel(this));
2453            } else {
2454                l.add(null);
2455            }
2456            N--;
2457        }
2458        return l;
2459    }
2460
2461    /**
2462     * Read into the given List items containing a particular object type
2463     * that were written with {@link #writeTypedList} at the
2464     * current dataPosition().  The list <em>must</em> have
2465     * previously been written via {@link #writeTypedList} with the same object
2466     * type.
2467     *
2468     * @return A newly created ArrayList containing objects with the same data
2469     *         as those that were previously written.
2470     *
2471     * @see #writeTypedList
2472     */
2473    public final <T> void readTypedList(List<T> list, Parcelable.Creator<T> c) {
2474        int M = list.size();
2475        int N = readInt();
2476        int i = 0;
2477        for (; i < M && i < N; i++) {
2478            if (readInt() != 0) {
2479                list.set(i, c.createFromParcel(this));
2480            } else {
2481                list.set(i, null);
2482            }
2483        }
2484        for (; i<N; i++) {
2485            if (readInt() != 0) {
2486                list.add(c.createFromParcel(this));
2487            } else {
2488                list.add(null);
2489            }
2490        }
2491        for (; i<M; i++) {
2492            list.remove(N);
2493        }
2494    }
2495
2496    /**
2497     * Read and return a new ArrayList containing String objects from
2498     * the parcel that was written with {@link #writeStringList} at the
2499     * current dataPosition().  Returns null if the
2500     * previously written list object was null.
2501     *
2502     * @return A newly created ArrayList containing strings with the same data
2503     *         as those that were previously written.
2504     *
2505     * @see #writeStringList
2506     */
2507    public final ArrayList<String> createStringArrayList() {
2508        int N = readInt();
2509        if (N < 0) {
2510            return null;
2511        }
2512        ArrayList<String> l = new ArrayList<String>(N);
2513        while (N > 0) {
2514            l.add(readString());
2515            N--;
2516        }
2517        return l;
2518    }
2519
2520    /**
2521     * Read and return a new ArrayList containing IBinder objects from
2522     * the parcel that was written with {@link #writeBinderList} at the
2523     * current dataPosition().  Returns null if the
2524     * previously written list object was null.
2525     *
2526     * @return A newly created ArrayList containing strings with the same data
2527     *         as those that were previously written.
2528     *
2529     * @see #writeBinderList
2530     */
2531    public final ArrayList<IBinder> createBinderArrayList() {
2532        int N = readInt();
2533        if (N < 0) {
2534            return null;
2535        }
2536        ArrayList<IBinder> l = new ArrayList<IBinder>(N);
2537        while (N > 0) {
2538            l.add(readStrongBinder());
2539            N--;
2540        }
2541        return l;
2542    }
2543
2544    /**
2545     * Read into the given List items String objects that were written with
2546     * {@link #writeStringList} at the current dataPosition().
2547     *
2548     * @return A newly created ArrayList containing strings with the same data
2549     *         as those that were previously written.
2550     *
2551     * @see #writeStringList
2552     */
2553    public final void readStringList(List<String> list) {
2554        int M = list.size();
2555        int N = readInt();
2556        int i = 0;
2557        for (; i < M && i < N; i++) {
2558            list.set(i, readString());
2559        }
2560        for (; i<N; i++) {
2561            list.add(readString());
2562        }
2563        for (; i<M; i++) {
2564            list.remove(N);
2565        }
2566    }
2567
2568    /**
2569     * Read into the given List items IBinder objects that were written with
2570     * {@link #writeBinderList} at the current dataPosition().
2571     *
2572     * @see #writeBinderList
2573     */
2574    public final void readBinderList(List<IBinder> list) {
2575        int M = list.size();
2576        int N = readInt();
2577        int i = 0;
2578        for (; i < M && i < N; i++) {
2579            list.set(i, readStrongBinder());
2580        }
2581        for (; i<N; i++) {
2582            list.add(readStrongBinder());
2583        }
2584        for (; i<M; i++) {
2585            list.remove(N);
2586        }
2587    }
2588
2589    /**
2590     * Read the list of {@code Parcelable} objects at the current data position into the
2591     * given {@code list}. The contents of the {@code list} are replaced. If the serialized
2592     * list was {@code null}, {@code list} is cleared.
2593     *
2594     * @see #writeParcelableList(List, int)
2595     * @hide
2596     */
2597    public final <T extends Parcelable> List<T> readParcelableList(List<T> list, ClassLoader cl) {
2598        final int N = readInt();
2599        if (N == -1) {
2600            list.clear();
2601            return list;
2602        }
2603
2604        final int M = list.size();
2605        int i = 0;
2606        for (; i < M && i < N; i++) {
2607            list.set(i, (T) readParcelable(cl));
2608        }
2609        for (; i<N; i++) {
2610            list.add((T) readParcelable(cl));
2611        }
2612        for (; i<M; i++) {
2613            list.remove(N);
2614        }
2615        return list;
2616    }
2617
2618    /**
2619     * Read and return a new array containing a particular object type from
2620     * the parcel at the current dataPosition().  Returns null if the
2621     * previously written array was null.  The array <em>must</em> have
2622     * previously been written via {@link #writeTypedArray} with the same
2623     * object type.
2624     *
2625     * @return A newly created array containing objects with the same data
2626     *         as those that were previously written.
2627     *
2628     * @see #writeTypedArray
2629     */
2630    public final <T> T[] createTypedArray(Parcelable.Creator<T> c) {
2631        int N = readInt();
2632        if (N < 0) {
2633            return null;
2634        }
2635        T[] l = c.newArray(N);
2636        for (int i=0; i<N; i++) {
2637            if (readInt() != 0) {
2638                l[i] = c.createFromParcel(this);
2639            }
2640        }
2641        return l;
2642    }
2643
2644    public final <T> void readTypedArray(T[] val, Parcelable.Creator<T> c) {
2645        int N = readInt();
2646        if (N == val.length) {
2647            for (int i=0; i<N; i++) {
2648                if (readInt() != 0) {
2649                    val[i] = c.createFromParcel(this);
2650                } else {
2651                    val[i] = null;
2652                }
2653            }
2654        } else {
2655            throw new RuntimeException("bad array lengths");
2656        }
2657    }
2658
2659    /**
2660     * @deprecated
2661     * @hide
2662     */
2663    @Deprecated
2664    public final <T> T[] readTypedArray(Parcelable.Creator<T> c) {
2665        return createTypedArray(c);
2666    }
2667
2668    /**
2669     * Read and return a typed Parcelable object from a parcel.
2670     * Returns null if the previous written object was null.
2671     * The object <em>must</em> have previous been written via
2672     * {@link #writeTypedObject} with the same object type.
2673     *
2674     * @return A newly created object of the type that was previously
2675     *         written.
2676     *
2677     * @see #writeTypedObject
2678     */
2679    public final <T> T readTypedObject(Parcelable.Creator<T> c) {
2680        if (readInt() != 0) {
2681            return c.createFromParcel(this);
2682        } else {
2683            return null;
2684        }
2685    }
2686
2687    /**
2688     * Write a heterogeneous array of Parcelable objects into the Parcel.
2689     * Each object in the array is written along with its class name, so
2690     * that the correct class can later be instantiated.  As a result, this
2691     * has significantly more overhead than {@link #writeTypedArray}, but will
2692     * correctly handle an array containing more than one type of object.
2693     *
2694     * @param value The array of objects to be written.
2695     * @param parcelableFlags Contextual flags as per
2696     * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
2697     *
2698     * @see #writeTypedArray
2699     */
2700    public final <T extends Parcelable> void writeParcelableArray(T[] value,
2701            int parcelableFlags) {
2702        if (value != null) {
2703            int N = value.length;
2704            writeInt(N);
2705            for (int i=0; i<N; i++) {
2706                writeParcelable(value[i], parcelableFlags);
2707            }
2708        } else {
2709            writeInt(-1);
2710        }
2711    }
2712
2713    /**
2714     * Read a typed object from a parcel.  The given class loader will be
2715     * used to load any enclosed Parcelables.  If it is null, the default class
2716     * loader will be used.
2717     */
2718    public final Object readValue(ClassLoader loader) {
2719        int type = readInt();
2720
2721        switch (type) {
2722        case VAL_NULL:
2723            return null;
2724
2725        case VAL_STRING:
2726            return readString();
2727
2728        case VAL_INTEGER:
2729            return readInt();
2730
2731        case VAL_MAP:
2732            return readHashMap(loader);
2733
2734        case VAL_PARCELABLE:
2735            return readParcelable(loader);
2736
2737        case VAL_SHORT:
2738            return (short) readInt();
2739
2740        case VAL_LONG:
2741            return readLong();
2742
2743        case VAL_FLOAT:
2744            return readFloat();
2745
2746        case VAL_DOUBLE:
2747            return readDouble();
2748
2749        case VAL_BOOLEAN:
2750            return readInt() == 1;
2751
2752        case VAL_CHARSEQUENCE:
2753            return readCharSequence();
2754
2755        case VAL_LIST:
2756            return readArrayList(loader);
2757
2758        case VAL_BOOLEANARRAY:
2759            return createBooleanArray();
2760
2761        case VAL_BYTEARRAY:
2762            return createByteArray();
2763
2764        case VAL_STRINGARRAY:
2765            return readStringArray();
2766
2767        case VAL_CHARSEQUENCEARRAY:
2768            return readCharSequenceArray();
2769
2770        case VAL_IBINDER:
2771            return readStrongBinder();
2772
2773        case VAL_OBJECTARRAY:
2774            return readArray(loader);
2775
2776        case VAL_INTARRAY:
2777            return createIntArray();
2778
2779        case VAL_LONGARRAY:
2780            return createLongArray();
2781
2782        case VAL_BYTE:
2783            return readByte();
2784
2785        case VAL_SERIALIZABLE:
2786            return readSerializable(loader);
2787
2788        case VAL_PARCELABLEARRAY:
2789            return readParcelableArray(loader);
2790
2791        case VAL_SPARSEARRAY:
2792            return readSparseArray(loader);
2793
2794        case VAL_SPARSEBOOLEANARRAY:
2795            return readSparseBooleanArray();
2796
2797        case VAL_BUNDLE:
2798            return readBundle(loader); // loading will be deferred
2799
2800        case VAL_PERSISTABLEBUNDLE:
2801            return readPersistableBundle(loader);
2802
2803        case VAL_SIZE:
2804            return readSize();
2805
2806        case VAL_SIZEF:
2807            return readSizeF();
2808
2809        case VAL_DOUBLEARRAY:
2810            return createDoubleArray();
2811
2812        default:
2813            int off = dataPosition() - 4;
2814            throw new RuntimeException(
2815                "Parcel " + this + ": Unmarshalling unknown type code " + type + " at offset " + off);
2816        }
2817    }
2818
2819    /**
2820     * Read and return a new Parcelable from the parcel.  The given class loader
2821     * will be used to load any enclosed Parcelables.  If it is null, the default
2822     * class loader will be used.
2823     * @param loader A ClassLoader from which to instantiate the Parcelable
2824     * object, or null for the default class loader.
2825     * @return Returns the newly created Parcelable, or null if a null
2826     * object has been written.
2827     * @throws BadParcelableException Throws BadParcelableException if there
2828     * was an error trying to instantiate the Parcelable.
2829     */
2830    @SuppressWarnings("unchecked")
2831    public final <T extends Parcelable> T readParcelable(ClassLoader loader) {
2832        Parcelable.Creator<?> creator = readParcelableCreator(loader);
2833        if (creator == null) {
2834            return null;
2835        }
2836        if (creator instanceof Parcelable.ClassLoaderCreator<?>) {
2837          Parcelable.ClassLoaderCreator<?> classLoaderCreator =
2838              (Parcelable.ClassLoaderCreator<?>) creator;
2839          return (T) classLoaderCreator.createFromParcel(this, loader);
2840        }
2841        return (T) creator.createFromParcel(this);
2842    }
2843
2844    /** @hide */
2845    @SuppressWarnings("unchecked")
2846    public final <T extends Parcelable> T readCreator(Parcelable.Creator<?> creator,
2847            ClassLoader loader) {
2848        if (creator instanceof Parcelable.ClassLoaderCreator<?>) {
2849          Parcelable.ClassLoaderCreator<?> classLoaderCreator =
2850              (Parcelable.ClassLoaderCreator<?>) creator;
2851          return (T) classLoaderCreator.createFromParcel(this, loader);
2852        }
2853        return (T) creator.createFromParcel(this);
2854    }
2855
2856    /** @hide */
2857    public final Parcelable.Creator<?> readParcelableCreator(ClassLoader loader) {
2858        String name = readString();
2859        if (name == null) {
2860            return null;
2861        }
2862        Parcelable.Creator<?> creator;
2863        synchronized (mCreators) {
2864            HashMap<String,Parcelable.Creator<?>> map = mCreators.get(loader);
2865            if (map == null) {
2866                map = new HashMap<>();
2867                mCreators.put(loader, map);
2868            }
2869            creator = map.get(name);
2870            if (creator == null) {
2871                try {
2872                    // If loader == null, explicitly emulate Class.forName(String) "caller
2873                    // classloader" behavior.
2874                    ClassLoader parcelableClassLoader =
2875                            (loader == null ? getClass().getClassLoader() : loader);
2876                    // Avoid initializing the Parcelable class until we know it implements
2877                    // Parcelable and has the necessary CREATOR field. http://b/1171613.
2878                    Class<?> parcelableClass = Class.forName(name, false /* initialize */,
2879                            parcelableClassLoader);
2880                    if (!Parcelable.class.isAssignableFrom(parcelableClass)) {
2881                        throw new BadParcelableException("Parcelable protocol requires that the "
2882                                + "class implements Parcelable");
2883                    }
2884                    Field f = parcelableClass.getField("CREATOR");
2885                    if ((f.getModifiers() & Modifier.STATIC) == 0) {
2886                        throw new BadParcelableException("Parcelable protocol requires "
2887                                + "the CREATOR object to be static on class " + name);
2888                    }
2889                    Class<?> creatorType = f.getType();
2890                    if (!Parcelable.Creator.class.isAssignableFrom(creatorType)) {
2891                        // Fail before calling Field.get(), not after, to avoid initializing
2892                        // parcelableClass unnecessarily.
2893                        throw new BadParcelableException("Parcelable protocol requires a "
2894                                + "Parcelable.Creator object called "
2895                                + "CREATOR on class " + name);
2896                    }
2897                    creator = (Parcelable.Creator<?>) f.get(null);
2898                }
2899                catch (IllegalAccessException e) {
2900                    Log.e(TAG, "Illegal access when unmarshalling: " + name, e);
2901                    throw new BadParcelableException(
2902                            "IllegalAccessException when unmarshalling: " + name);
2903                }
2904                catch (ClassNotFoundException e) {
2905                    Log.e(TAG, "Class not found when unmarshalling: " + name, e);
2906                    throw new BadParcelableException(
2907                            "ClassNotFoundException when unmarshalling: " + name);
2908                }
2909                catch (NoSuchFieldException e) {
2910                    throw new BadParcelableException("Parcelable protocol requires a "
2911                            + "Parcelable.Creator object called "
2912                            + "CREATOR on class " + name);
2913                }
2914                if (creator == null) {
2915                    throw new BadParcelableException("Parcelable protocol requires a "
2916                            + "non-null Parcelable.Creator object called "
2917                            + "CREATOR on class " + name);
2918                }
2919
2920                map.put(name, creator);
2921            }
2922        }
2923
2924        return creator;
2925    }
2926
2927    /**
2928     * Read and return a new Parcelable array from the parcel.
2929     * The given class loader will be used to load any enclosed
2930     * Parcelables.
2931     * @return the Parcelable array, or null if the array is null
2932     */
2933    public final Parcelable[] readParcelableArray(ClassLoader loader) {
2934        int N = readInt();
2935        if (N < 0) {
2936            return null;
2937        }
2938        Parcelable[] p = new Parcelable[N];
2939        for (int i = 0; i < N; i++) {
2940            p[i] = readParcelable(loader);
2941        }
2942        return p;
2943    }
2944
2945    /** @hide */
2946    public final <T extends Parcelable> T[] readParcelableArray(ClassLoader loader,
2947            Class<T> clazz) {
2948        int N = readInt();
2949        if (N < 0) {
2950            return null;
2951        }
2952        T[] p = (T[]) Array.newInstance(clazz, N);
2953        for (int i = 0; i < N; i++) {
2954            p[i] = readParcelable(loader);
2955        }
2956        return p;
2957    }
2958
2959    /**
2960     * Read and return a new Serializable object from the parcel.
2961     * @return the Serializable object, or null if the Serializable name
2962     * wasn't found in the parcel.
2963     */
2964    public final Serializable readSerializable() {
2965        return readSerializable(null);
2966    }
2967
2968    private final Serializable readSerializable(final ClassLoader loader) {
2969        String name = readString();
2970        if (name == null) {
2971            // For some reason we were unable to read the name of the Serializable (either there
2972            // is nothing left in the Parcel to read, or the next value wasn't a String), so
2973            // return null, which indicates that the name wasn't found in the parcel.
2974            return null;
2975        }
2976
2977        byte[] serializedData = createByteArray();
2978        ByteArrayInputStream bais = new ByteArrayInputStream(serializedData);
2979        try {
2980            ObjectInputStream ois = new ObjectInputStream(bais) {
2981                @Override
2982                protected Class<?> resolveClass(ObjectStreamClass osClass)
2983                        throws IOException, ClassNotFoundException {
2984                    // try the custom classloader if provided
2985                    if (loader != null) {
2986                        Class<?> c = Class.forName(osClass.getName(), false, loader);
2987                        if (c != null) {
2988                            return c;
2989                        }
2990                    }
2991                    return super.resolveClass(osClass);
2992                }
2993            };
2994            return (Serializable) ois.readObject();
2995        } catch (IOException ioe) {
2996            throw new RuntimeException("Parcelable encountered " +
2997                "IOException reading a Serializable object (name = " + name +
2998                ")", ioe);
2999        } catch (ClassNotFoundException cnfe) {
3000            throw new RuntimeException("Parcelable encountered " +
3001                "ClassNotFoundException reading a Serializable object (name = "
3002                + name + ")", cnfe);
3003        }
3004    }
3005
3006    // Cache of previously looked up CREATOR.createFromParcel() methods for
3007    // particular classes.  Keys are the names of the classes, values are
3008    // Method objects.
3009    private static final HashMap<ClassLoader,HashMap<String,Parcelable.Creator<?>>>
3010        mCreators = new HashMap<>();
3011
3012    /** @hide for internal use only. */
3013    static protected final Parcel obtain(int obj) {
3014        throw new UnsupportedOperationException();
3015    }
3016
3017    /** @hide */
3018    static protected final Parcel obtain(long obj) {
3019        final Parcel[] pool = sHolderPool;
3020        synchronized (pool) {
3021            Parcel p;
3022            for (int i=0; i<POOL_SIZE; i++) {
3023                p = pool[i];
3024                if (p != null) {
3025                    pool[i] = null;
3026                    if (DEBUG_RECYCLE) {
3027                        p.mStack = new RuntimeException();
3028                    }
3029                    p.init(obj);
3030                    return p;
3031                }
3032            }
3033        }
3034        return new Parcel(obj);
3035    }
3036
3037    private Parcel(long nativePtr) {
3038        if (DEBUG_RECYCLE) {
3039            mStack = new RuntimeException();
3040        }
3041        //Log.i(TAG, "Initializing obj=0x" + Integer.toHexString(obj), mStack);
3042        init(nativePtr);
3043    }
3044
3045    private void init(long nativePtr) {
3046        if (nativePtr != 0) {
3047            mNativePtr = nativePtr;
3048            mOwnsNativeParcelObject = false;
3049        } else {
3050            mNativePtr = nativeCreate();
3051            mOwnsNativeParcelObject = true;
3052        }
3053    }
3054
3055    private void freeBuffer() {
3056        if (mOwnsNativeParcelObject) {
3057            updateNativeSize(nativeFreeBuffer(mNativePtr));
3058        }
3059        mReadWriteHelper = ReadWriteHelper.DEFAULT;
3060    }
3061
3062    private void destroy() {
3063        if (mNativePtr != 0) {
3064            if (mOwnsNativeParcelObject) {
3065                nativeDestroy(mNativePtr);
3066                updateNativeSize(0);
3067            }
3068            mNativePtr = 0;
3069        }
3070        mReadWriteHelper = null;
3071    }
3072
3073    @Override
3074    protected void finalize() throws Throwable {
3075        if (DEBUG_RECYCLE) {
3076            if (mStack != null) {
3077                Log.w(TAG, "Client did not call Parcel.recycle()", mStack);
3078            }
3079        }
3080        destroy();
3081    }
3082
3083    /* package */ void readMapInternal(Map outVal, int N,
3084        ClassLoader loader) {
3085        while (N > 0) {
3086            Object key = readValue(loader);
3087            Object value = readValue(loader);
3088            outVal.put(key, value);
3089            N--;
3090        }
3091    }
3092
3093    /* package */ void readArrayMapInternal(ArrayMap outVal, int N,
3094        ClassLoader loader) {
3095        if (DEBUG_ARRAY_MAP) {
3096            RuntimeException here =  new RuntimeException("here");
3097            here.fillInStackTrace();
3098            Log.d(TAG, "Reading " + N + " ArrayMap entries", here);
3099        }
3100        int startPos;
3101        while (N > 0) {
3102            if (DEBUG_ARRAY_MAP) startPos = dataPosition();
3103            String key = readString();
3104            Object value = readValue(loader);
3105            if (DEBUG_ARRAY_MAP) Log.d(TAG, "  Read #" + (N-1) + " "
3106                    + (dataPosition()-startPos) + " bytes: key=0x"
3107                    + Integer.toHexString((key != null ? key.hashCode() : 0)) + " " + key);
3108            outVal.append(key, value);
3109            N--;
3110        }
3111        outVal.validate();
3112    }
3113
3114    /* package */ void readArrayMapSafelyInternal(ArrayMap outVal, int N,
3115        ClassLoader loader) {
3116        if (DEBUG_ARRAY_MAP) {
3117            RuntimeException here =  new RuntimeException("here");
3118            here.fillInStackTrace();
3119            Log.d(TAG, "Reading safely " + N + " ArrayMap entries", here);
3120        }
3121        while (N > 0) {
3122            String key = readString();
3123            if (DEBUG_ARRAY_MAP) Log.d(TAG, "  Read safe #" + (N-1) + ": key=0x"
3124                    + (key != null ? key.hashCode() : 0) + " " + key);
3125            Object value = readValue(loader);
3126            outVal.put(key, value);
3127            N--;
3128        }
3129    }
3130
3131    /**
3132     * @hide For testing only.
3133     */
3134    public void readArrayMap(ArrayMap outVal, ClassLoader loader) {
3135        final int N = readInt();
3136        if (N < 0) {
3137            return;
3138        }
3139        readArrayMapInternal(outVal, N, loader);
3140    }
3141
3142    /**
3143     * Reads an array set.
3144     *
3145     * @param loader The class loader to use.
3146     *
3147     * @hide
3148     */
3149    public @Nullable ArraySet<? extends Object> readArraySet(ClassLoader loader) {
3150        final int size = readInt();
3151        if (size < 0) {
3152            return null;
3153        }
3154        ArraySet<Object> result = new ArraySet<>(size);
3155        for (int i = 0; i < size; i++) {
3156            Object value = readValue(loader);
3157            result.append(value);
3158        }
3159        return result;
3160    }
3161
3162    private void readListInternal(List outVal, int N,
3163        ClassLoader loader) {
3164        while (N > 0) {
3165            Object value = readValue(loader);
3166            //Log.d(TAG, "Unmarshalling value=" + value);
3167            outVal.add(value);
3168            N--;
3169        }
3170    }
3171
3172    private void readArrayInternal(Object[] outVal, int N,
3173        ClassLoader loader) {
3174        for (int i = 0; i < N; i++) {
3175            Object value = readValue(loader);
3176            //Log.d(TAG, "Unmarshalling value=" + value);
3177            outVal[i] = value;
3178        }
3179    }
3180
3181    private void readSparseArrayInternal(SparseArray outVal, int N,
3182        ClassLoader loader) {
3183        while (N > 0) {
3184            int key = readInt();
3185            Object value = readValue(loader);
3186            //Log.i(TAG, "Unmarshalling key=" + key + " value=" + value);
3187            outVal.append(key, value);
3188            N--;
3189        }
3190    }
3191
3192
3193    private void readSparseBooleanArrayInternal(SparseBooleanArray outVal, int N) {
3194        while (N > 0) {
3195            int key = readInt();
3196            boolean value = this.readByte() == 1;
3197            //Log.i(TAG, "Unmarshalling key=" + key + " value=" + value);
3198            outVal.append(key, value);
3199            N--;
3200        }
3201    }
3202
3203    private void readSparseIntArrayInternal(SparseIntArray outVal, int N) {
3204        while (N > 0) {
3205            int key = readInt();
3206            int value = readInt();
3207            outVal.append(key, value);
3208            N--;
3209        }
3210    }
3211
3212    /**
3213     * @hide For testing
3214     */
3215    public long getBlobAshmemSize() {
3216        return nativeGetBlobAshmemSize(mNativePtr);
3217    }
3218}
3219