1/*
2 * Copyright (C) 2005 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17//
18// Definitions of resource data structures.
19//
20#ifndef _LIBS_UTILS_RESOURCE_TYPES_H
21#define _LIBS_UTILS_RESOURCE_TYPES_H
22
23#include <androidfw/Asset.h>
24#include <androidfw/LocaleData.h>
25#include <utils/Errors.h>
26#include <utils/String16.h>
27#include <utils/Vector.h>
28#include <utils/KeyedVector.h>
29
30#include <utils/threads.h>
31
32#include <stdint.h>
33#include <sys/types.h>
34
35#include <android/configuration.h>
36
37#include <memory>
38
39namespace android {
40
41constexpr const static uint32_t kIdmapMagic = 0x504D4449u;
42constexpr const static uint32_t kIdmapCurrentVersion = 0x00000001u;
43
44/**
45 * In C++11, char16_t is defined as *at least* 16 bits. We do a lot of
46 * casting on raw data and expect char16_t to be exactly 16 bits.
47 */
48#if __cplusplus >= 201103L
49struct __assertChar16Size {
50    static_assert(sizeof(char16_t) == sizeof(uint16_t), "char16_t is not 16 bits");
51    static_assert(alignof(char16_t) == alignof(uint16_t), "char16_t is not 16-bit aligned");
52};
53#endif
54
55/** ********************************************************************
56 *  PNG Extensions
57 *
58 *  New private chunks that may be placed in PNG images.
59 *
60 *********************************************************************** */
61
62/**
63 * This chunk specifies how to split an image into segments for
64 * scaling.
65 *
66 * There are J horizontal and K vertical segments.  These segments divide
67 * the image into J*K regions as follows (where J=4 and K=3):
68 *
69 *      F0   S0    F1     S1
70 *   +-----+----+------+-------+
71 * S2|  0  |  1 |  2   |   3   |
72 *   +-----+----+------+-------+
73 *   |     |    |      |       |
74 *   |     |    |      |       |
75 * F2|  4  |  5 |  6   |   7   |
76 *   |     |    |      |       |
77 *   |     |    |      |       |
78 *   +-----+----+------+-------+
79 * S3|  8  |  9 |  10  |   11  |
80 *   +-----+----+------+-------+
81 *
82 * Each horizontal and vertical segment is considered to by either
83 * stretchable (marked by the Sx labels) or fixed (marked by the Fy
84 * labels), in the horizontal or vertical axis, respectively. In the
85 * above example, the first is horizontal segment (F0) is fixed, the
86 * next is stretchable and then they continue to alternate. Note that
87 * the segment list for each axis can begin or end with a stretchable
88 * or fixed segment.
89 *
90 * The relative sizes of the stretchy segments indicates the relative
91 * amount of stretchiness of the regions bordered by the segments.  For
92 * example, regions 3, 7 and 11 above will take up more horizontal space
93 * than regions 1, 5 and 9 since the horizontal segment associated with
94 * the first set of regions is larger than the other set of regions.  The
95 * ratios of the amount of horizontal (or vertical) space taken by any
96 * two stretchable slices is exactly the ratio of their corresponding
97 * segment lengths.
98 *
99 * xDivs and yDivs are arrays of horizontal and vertical pixel
100 * indices.  The first pair of Divs (in either array) indicate the
101 * starting and ending points of the first stretchable segment in that
102 * axis. The next pair specifies the next stretchable segment, etc. So
103 * in the above example xDiv[0] and xDiv[1] specify the horizontal
104 * coordinates for the regions labeled 1, 5 and 9.  xDiv[2] and
105 * xDiv[3] specify the coordinates for regions 3, 7 and 11. Note that
106 * the leftmost slices always start at x=0 and the rightmost slices
107 * always end at the end of the image. So, for example, the regions 0,
108 * 4 and 8 (which are fixed along the X axis) start at x value 0 and
109 * go to xDiv[0] and slices 2, 6 and 10 start at xDiv[1] and end at
110 * xDiv[2].
111 *
112 * The colors array contains hints for each of the regions. They are
113 * ordered according left-to-right and top-to-bottom as indicated above.
114 * For each segment that is a solid color the array entry will contain
115 * that color value; otherwise it will contain NO_COLOR. Segments that
116 * are completely transparent will always have the value TRANSPARENT_COLOR.
117 *
118 * The PNG chunk type is "npTc".
119 */
120struct alignas(uintptr_t) Res_png_9patch
121{
122    Res_png_9patch() : wasDeserialized(false), xDivsOffset(0),
123                       yDivsOffset(0), colorsOffset(0) { }
124
125    int8_t wasDeserialized;
126    uint8_t numXDivs;
127    uint8_t numYDivs;
128    uint8_t numColors;
129
130    // The offset (from the start of this structure) to the xDivs & yDivs
131    // array for this 9patch. To get a pointer to this array, call
132    // getXDivs or getYDivs. Note that the serialized form for 9patches places
133    // the xDivs, yDivs and colors arrays immediately after the location
134    // of the Res_png_9patch struct.
135    uint32_t xDivsOffset;
136    uint32_t yDivsOffset;
137
138    int32_t paddingLeft, paddingRight;
139    int32_t paddingTop, paddingBottom;
140
141    enum {
142        // The 9 patch segment is not a solid color.
143        NO_COLOR = 0x00000001,
144
145        // The 9 patch segment is completely transparent.
146        TRANSPARENT_COLOR = 0x00000000
147    };
148
149    // The offset (from the start of this structure) to the colors array
150    // for this 9patch.
151    uint32_t colorsOffset;
152
153    // Convert data from device representation to PNG file representation.
154    void deviceToFile();
155    // Convert data from PNG file representation to device representation.
156    void fileToDevice();
157
158    // Serialize/Marshall the patch data into a newly malloc-ed block.
159    static void* serialize(const Res_png_9patch& patchHeader, const int32_t* xDivs,
160                           const int32_t* yDivs, const uint32_t* colors);
161    // Serialize/Marshall the patch data into |outData|.
162    static void serialize(const Res_png_9patch& patchHeader, const int32_t* xDivs,
163                           const int32_t* yDivs, const uint32_t* colors, void* outData);
164    // Deserialize/Unmarshall the patch data
165    static Res_png_9patch* deserialize(void* data);
166    // Compute the size of the serialized data structure
167    size_t serializedSize() const;
168
169    // These tell where the next section of a patch starts.
170    // For example, the first patch includes the pixels from
171    // 0 to xDivs[0]-1 and the second patch includes the pixels
172    // from xDivs[0] to xDivs[1]-1.
173    inline int32_t* getXDivs() const {
174        return reinterpret_cast<int32_t*>(reinterpret_cast<uintptr_t>(this) + xDivsOffset);
175    }
176    inline int32_t* getYDivs() const {
177        return reinterpret_cast<int32_t*>(reinterpret_cast<uintptr_t>(this) + yDivsOffset);
178    }
179    inline uint32_t* getColors() const {
180        return reinterpret_cast<uint32_t*>(reinterpret_cast<uintptr_t>(this) + colorsOffset);
181    }
182
183} __attribute__((packed));
184
185/** ********************************************************************
186 *  Base Types
187 *
188 *  These are standard types that are shared between multiple specific
189 *  resource types.
190 *
191 *********************************************************************** */
192
193/**
194 * Header that appears at the front of every data chunk in a resource.
195 */
196struct ResChunk_header
197{
198    // Type identifier for this chunk.  The meaning of this value depends
199    // on the containing chunk.
200    uint16_t type;
201
202    // Size of the chunk header (in bytes).  Adding this value to
203    // the address of the chunk allows you to find its associated data
204    // (if any).
205    uint16_t headerSize;
206
207    // Total size of this chunk (in bytes).  This is the chunkSize plus
208    // the size of any data associated with the chunk.  Adding this value
209    // to the chunk allows you to completely skip its contents (including
210    // any child chunks).  If this value is the same as chunkSize, there is
211    // no data associated with the chunk.
212    uint32_t size;
213};
214
215enum {
216    RES_NULL_TYPE               = 0x0000,
217    RES_STRING_POOL_TYPE        = 0x0001,
218    RES_TABLE_TYPE              = 0x0002,
219    RES_XML_TYPE                = 0x0003,
220
221    // Chunk types in RES_XML_TYPE
222    RES_XML_FIRST_CHUNK_TYPE    = 0x0100,
223    RES_XML_START_NAMESPACE_TYPE= 0x0100,
224    RES_XML_END_NAMESPACE_TYPE  = 0x0101,
225    RES_XML_START_ELEMENT_TYPE  = 0x0102,
226    RES_XML_END_ELEMENT_TYPE    = 0x0103,
227    RES_XML_CDATA_TYPE          = 0x0104,
228    RES_XML_LAST_CHUNK_TYPE     = 0x017f,
229    // This contains a uint32_t array mapping strings in the string
230    // pool back to resource identifiers.  It is optional.
231    RES_XML_RESOURCE_MAP_TYPE   = 0x0180,
232
233    // Chunk types in RES_TABLE_TYPE
234    RES_TABLE_PACKAGE_TYPE      = 0x0200,
235    RES_TABLE_TYPE_TYPE         = 0x0201,
236    RES_TABLE_TYPE_SPEC_TYPE    = 0x0202,
237    RES_TABLE_LIBRARY_TYPE      = 0x0203
238};
239
240/**
241 * Macros for building/splitting resource identifiers.
242 */
243#define Res_VALIDID(resid) (resid != 0)
244#define Res_CHECKID(resid) ((resid&0xFFFF0000) != 0)
245#define Res_MAKEID(package, type, entry) \
246    (((package+1)<<24) | (((type+1)&0xFF)<<16) | (entry&0xFFFF))
247#define Res_GETPACKAGE(id) ((id>>24)-1)
248#define Res_GETTYPE(id) (((id>>16)&0xFF)-1)
249#define Res_GETENTRY(id) (id&0xFFFF)
250
251#define Res_INTERNALID(resid) ((resid&0xFFFF0000) != 0 && (resid&0xFF0000) == 0)
252#define Res_MAKEINTERNAL(entry) (0x01000000 | (entry&0xFFFF))
253#define Res_MAKEARRAY(entry) (0x02000000 | (entry&0xFFFF))
254
255static const size_t Res_MAXPACKAGE = 255;
256static const size_t Res_MAXTYPE = 255;
257
258/**
259 * Representation of a value in a resource, supplying type
260 * information.
261 */
262struct Res_value
263{
264    // Number of bytes in this structure.
265    uint16_t size;
266
267    // Always set to 0.
268    uint8_t res0;
269
270    // Type of the data value.
271    enum : uint8_t {
272        // The 'data' is either 0 or 1, specifying this resource is either
273        // undefined or empty, respectively.
274        TYPE_NULL = 0x00,
275        // The 'data' holds a ResTable_ref, a reference to another resource
276        // table entry.
277        TYPE_REFERENCE = 0x01,
278        // The 'data' holds an attribute resource identifier.
279        TYPE_ATTRIBUTE = 0x02,
280        // The 'data' holds an index into the containing resource table's
281        // global value string pool.
282        TYPE_STRING = 0x03,
283        // The 'data' holds a single-precision floating point number.
284        TYPE_FLOAT = 0x04,
285        // The 'data' holds a complex number encoding a dimension value,
286        // such as "100in".
287        TYPE_DIMENSION = 0x05,
288        // The 'data' holds a complex number encoding a fraction of a
289        // container.
290        TYPE_FRACTION = 0x06,
291        // The 'data' holds a dynamic ResTable_ref, which needs to be
292        // resolved before it can be used like a TYPE_REFERENCE.
293        TYPE_DYNAMIC_REFERENCE = 0x07,
294        // The 'data' holds an attribute resource identifier, which needs to be resolved
295        // before it can be used like a TYPE_ATTRIBUTE.
296        TYPE_DYNAMIC_ATTRIBUTE = 0x08,
297
298        // Beginning of integer flavors...
299        TYPE_FIRST_INT = 0x10,
300
301        // The 'data' is a raw integer value of the form n..n.
302        TYPE_INT_DEC = 0x10,
303        // The 'data' is a raw integer value of the form 0xn..n.
304        TYPE_INT_HEX = 0x11,
305        // The 'data' is either 0 or 1, for input "false" or "true" respectively.
306        TYPE_INT_BOOLEAN = 0x12,
307
308        // Beginning of color integer flavors...
309        TYPE_FIRST_COLOR_INT = 0x1c,
310
311        // The 'data' is a raw integer value of the form #aarrggbb.
312        TYPE_INT_COLOR_ARGB8 = 0x1c,
313        // The 'data' is a raw integer value of the form #rrggbb.
314        TYPE_INT_COLOR_RGB8 = 0x1d,
315        // The 'data' is a raw integer value of the form #argb.
316        TYPE_INT_COLOR_ARGB4 = 0x1e,
317        // The 'data' is a raw integer value of the form #rgb.
318        TYPE_INT_COLOR_RGB4 = 0x1f,
319
320        // ...end of integer flavors.
321        TYPE_LAST_COLOR_INT = 0x1f,
322
323        // ...end of integer flavors.
324        TYPE_LAST_INT = 0x1f
325    };
326    uint8_t dataType;
327
328    // Structure of complex data values (TYPE_UNIT and TYPE_FRACTION)
329    enum {
330        // Where the unit type information is.  This gives us 16 possible
331        // types, as defined below.
332        COMPLEX_UNIT_SHIFT = 0,
333        COMPLEX_UNIT_MASK = 0xf,
334
335        // TYPE_DIMENSION: Value is raw pixels.
336        COMPLEX_UNIT_PX = 0,
337        // TYPE_DIMENSION: Value is Device Independent Pixels.
338        COMPLEX_UNIT_DIP = 1,
339        // TYPE_DIMENSION: Value is a Scaled device independent Pixels.
340        COMPLEX_UNIT_SP = 2,
341        // TYPE_DIMENSION: Value is in points.
342        COMPLEX_UNIT_PT = 3,
343        // TYPE_DIMENSION: Value is in inches.
344        COMPLEX_UNIT_IN = 4,
345        // TYPE_DIMENSION: Value is in millimeters.
346        COMPLEX_UNIT_MM = 5,
347
348        // TYPE_FRACTION: A basic fraction of the overall size.
349        COMPLEX_UNIT_FRACTION = 0,
350        // TYPE_FRACTION: A fraction of the parent size.
351        COMPLEX_UNIT_FRACTION_PARENT = 1,
352
353        // Where the radix information is, telling where the decimal place
354        // appears in the mantissa.  This give us 4 possible fixed point
355        // representations as defined below.
356        COMPLEX_RADIX_SHIFT = 4,
357        COMPLEX_RADIX_MASK = 0x3,
358
359        // The mantissa is an integral number -- i.e., 0xnnnnnn.0
360        COMPLEX_RADIX_23p0 = 0,
361        // The mantissa magnitude is 16 bits -- i.e, 0xnnnn.nn
362        COMPLEX_RADIX_16p7 = 1,
363        // The mantissa magnitude is 8 bits -- i.e, 0xnn.nnnn
364        COMPLEX_RADIX_8p15 = 2,
365        // The mantissa magnitude is 0 bits -- i.e, 0x0.nnnnnn
366        COMPLEX_RADIX_0p23 = 3,
367
368        // Where the actual value is.  This gives us 23 bits of
369        // precision.  The top bit is the sign.
370        COMPLEX_MANTISSA_SHIFT = 8,
371        COMPLEX_MANTISSA_MASK = 0xffffff
372    };
373
374    // Possible data values for TYPE_NULL.
375    enum {
376        // The value is not defined.
377        DATA_NULL_UNDEFINED = 0,
378        // The value is explicitly defined as empty.
379        DATA_NULL_EMPTY = 1
380    };
381
382    // The data for this item, as interpreted according to dataType.
383    typedef uint32_t data_type;
384    data_type data;
385
386    void copyFrom_dtoh(const Res_value& src);
387};
388
389/**
390 *  This is a reference to a unique entry (a ResTable_entry structure)
391 *  in a resource table.  The value is structured as: 0xpptteeee,
392 *  where pp is the package index, tt is the type index in that
393 *  package, and eeee is the entry index in that type.  The package
394 *  and type values start at 1 for the first item, to help catch cases
395 *  where they have not been supplied.
396 */
397struct ResTable_ref
398{
399    uint32_t ident;
400};
401
402/**
403 * Reference to a string in a string pool.
404 */
405struct ResStringPool_ref
406{
407    // Index into the string pool table (uint32_t-offset from the indices
408    // immediately after ResStringPool_header) at which to find the location
409    // of the string data in the pool.
410    uint32_t index;
411};
412
413/** ********************************************************************
414 *  String Pool
415 *
416 *  A set of strings that can be references by others through a
417 *  ResStringPool_ref.
418 *
419 *********************************************************************** */
420
421/**
422 * Definition for a pool of strings.  The data of this chunk is an
423 * array of uint32_t providing indices into the pool, relative to
424 * stringsStart.  At stringsStart are all of the UTF-16 strings
425 * concatenated together; each starts with a uint16_t of the string's
426 * length and each ends with a 0x0000 terminator.  If a string is >
427 * 32767 characters, the high bit of the length is set meaning to take
428 * those 15 bits as a high word and it will be followed by another
429 * uint16_t containing the low word.
430 *
431 * If styleCount is not zero, then immediately following the array of
432 * uint32_t indices into the string table is another array of indices
433 * into a style table starting at stylesStart.  Each entry in the
434 * style table is an array of ResStringPool_span structures.
435 */
436struct ResStringPool_header
437{
438    struct ResChunk_header header;
439
440    // Number of strings in this pool (number of uint32_t indices that follow
441    // in the data).
442    uint32_t stringCount;
443
444    // Number of style span arrays in the pool (number of uint32_t indices
445    // follow the string indices).
446    uint32_t styleCount;
447
448    // Flags.
449    enum {
450        // If set, the string index is sorted by the string values (based
451        // on strcmp16()).
452        SORTED_FLAG = 1<<0,
453
454        // String pool is encoded in UTF-8
455        UTF8_FLAG = 1<<8
456    };
457    uint32_t flags;
458
459    // Index from header of the string data.
460    uint32_t stringsStart;
461
462    // Index from header of the style data.
463    uint32_t stylesStart;
464};
465
466/**
467 * This structure defines a span of style information associated with
468 * a string in the pool.
469 */
470struct ResStringPool_span
471{
472    enum {
473        END = 0xFFFFFFFF
474    };
475
476    // This is the name of the span -- that is, the name of the XML
477    // tag that defined it.  The special value END (0xFFFFFFFF) indicates
478    // the end of an array of spans.
479    ResStringPool_ref name;
480
481    // The range of characters in the string that this span applies to.
482    uint32_t firstChar, lastChar;
483};
484
485/**
486 * Convenience class for accessing data in a ResStringPool resource.
487 */
488class ResStringPool
489{
490public:
491    ResStringPool();
492    ResStringPool(const void* data, size_t size, bool copyData=false);
493    ~ResStringPool();
494
495    void setToEmpty();
496    status_t setTo(const void* data, size_t size, bool copyData=false);
497
498    status_t getError() const;
499
500    void uninit();
501
502    // Return string entry as UTF16; if the pool is UTF8, the string will
503    // be converted before returning.
504    inline const char16_t* stringAt(const ResStringPool_ref& ref, size_t* outLen) const {
505        return stringAt(ref.index, outLen);
506    }
507    const char16_t* stringAt(size_t idx, size_t* outLen) const;
508
509    // Note: returns null if the string pool is not UTF8.
510    const char* string8At(size_t idx, size_t* outLen) const;
511
512    // Return string whether the pool is UTF8 or UTF16.  Does not allow you
513    // to distinguish null.
514    const String8 string8ObjectAt(size_t idx) const;
515
516    const ResStringPool_span* styleAt(const ResStringPool_ref& ref) const;
517    const ResStringPool_span* styleAt(size_t idx) const;
518
519    ssize_t indexOfString(const char16_t* str, size_t strLen) const;
520
521    size_t size() const;
522    size_t styleCount() const;
523    size_t bytes() const;
524
525    bool isSorted() const;
526    bool isUTF8() const;
527
528private:
529    status_t                    mError;
530    void*                       mOwnedData;
531    const ResStringPool_header* mHeader;
532    size_t                      mSize;
533    mutable Mutex               mDecodeLock;
534    const uint32_t*             mEntries;
535    const uint32_t*             mEntryStyles;
536    const void*                 mStrings;
537    char16_t mutable**          mCache;
538    uint32_t                    mStringPoolSize;    // number of uint16_t
539    const uint32_t*             mStyles;
540    uint32_t                    mStylePoolSize;    // number of uint32_t
541
542    const char* stringDecodeAt(size_t idx, const uint8_t* str, const size_t encLen,
543                               size_t* outLen) const;
544};
545
546/**
547 * Wrapper class that allows the caller to retrieve a string from
548 * a string pool without knowing which string pool to look.
549 */
550class StringPoolRef {
551public:
552 StringPoolRef() = default;
553 StringPoolRef(const ResStringPool* pool, uint32_t index);
554
555 const char* string8(size_t* outLen) const;
556 const char16_t* string16(size_t* outLen) const;
557
558private:
559 const ResStringPool* mPool = nullptr;
560 uint32_t mIndex = 0u;
561};
562
563/** ********************************************************************
564 *  XML Tree
565 *
566 *  Binary representation of an XML document.  This is designed to
567 *  express everything in an XML document, in a form that is much
568 *  easier to parse on the device.
569 *
570 *********************************************************************** */
571
572/**
573 * XML tree header.  This appears at the front of an XML tree,
574 * describing its content.  It is followed by a flat array of
575 * ResXMLTree_node structures; the hierarchy of the XML document
576 * is described by the occurrance of RES_XML_START_ELEMENT_TYPE
577 * and corresponding RES_XML_END_ELEMENT_TYPE nodes in the array.
578 */
579struct ResXMLTree_header
580{
581    struct ResChunk_header header;
582};
583
584/**
585 * Basic XML tree node.  A single item in the XML document.  Extended info
586 * about the node can be found after header.headerSize.
587 */
588struct ResXMLTree_node
589{
590    struct ResChunk_header header;
591
592    // Line number in original source file at which this element appeared.
593    uint32_t lineNumber;
594
595    // Optional XML comment that was associated with this element; -1 if none.
596    struct ResStringPool_ref comment;
597};
598
599/**
600 * Extended XML tree node for CDATA tags -- includes the CDATA string.
601 * Appears header.headerSize bytes after a ResXMLTree_node.
602 */
603struct ResXMLTree_cdataExt
604{
605    // The raw CDATA character data.
606    struct ResStringPool_ref data;
607
608    // The typed value of the character data if this is a CDATA node.
609    struct Res_value typedData;
610};
611
612/**
613 * Extended XML tree node for namespace start/end nodes.
614 * Appears header.headerSize bytes after a ResXMLTree_node.
615 */
616struct ResXMLTree_namespaceExt
617{
618    // The prefix of the namespace.
619    struct ResStringPool_ref prefix;
620
621    // The URI of the namespace.
622    struct ResStringPool_ref uri;
623};
624
625/**
626 * Extended XML tree node for element start/end nodes.
627 * Appears header.headerSize bytes after a ResXMLTree_node.
628 */
629struct ResXMLTree_endElementExt
630{
631    // String of the full namespace of this element.
632    struct ResStringPool_ref ns;
633
634    // String name of this node if it is an ELEMENT; the raw
635    // character data if this is a CDATA node.
636    struct ResStringPool_ref name;
637};
638
639/**
640 * Extended XML tree node for start tags -- includes attribute
641 * information.
642 * Appears header.headerSize bytes after a ResXMLTree_node.
643 */
644struct ResXMLTree_attrExt
645{
646    // String of the full namespace of this element.
647    struct ResStringPool_ref ns;
648
649    // String name of this node if it is an ELEMENT; the raw
650    // character data if this is a CDATA node.
651    struct ResStringPool_ref name;
652
653    // Byte offset from the start of this structure where the attributes start.
654    uint16_t attributeStart;
655
656    // Size of the ResXMLTree_attribute structures that follow.
657    uint16_t attributeSize;
658
659    // Number of attributes associated with an ELEMENT.  These are
660    // available as an array of ResXMLTree_attribute structures
661    // immediately following this node.
662    uint16_t attributeCount;
663
664    // Index (1-based) of the "id" attribute. 0 if none.
665    uint16_t idIndex;
666
667    // Index (1-based) of the "class" attribute. 0 if none.
668    uint16_t classIndex;
669
670    // Index (1-based) of the "style" attribute. 0 if none.
671    uint16_t styleIndex;
672};
673
674struct ResXMLTree_attribute
675{
676    // Namespace of this attribute.
677    struct ResStringPool_ref ns;
678
679    // Name of this attribute.
680    struct ResStringPool_ref name;
681
682    // The original raw string value of this attribute.
683    struct ResStringPool_ref rawValue;
684
685    // Processesd typed value of this attribute.
686    struct Res_value typedValue;
687};
688
689class ResXMLTree;
690
691class ResXMLParser
692{
693public:
694    ResXMLParser(const ResXMLTree& tree);
695
696    enum event_code_t {
697        BAD_DOCUMENT = -1,
698        START_DOCUMENT = 0,
699        END_DOCUMENT = 1,
700
701        FIRST_CHUNK_CODE = RES_XML_FIRST_CHUNK_TYPE,
702
703        START_NAMESPACE = RES_XML_START_NAMESPACE_TYPE,
704        END_NAMESPACE = RES_XML_END_NAMESPACE_TYPE,
705        START_TAG = RES_XML_START_ELEMENT_TYPE,
706        END_TAG = RES_XML_END_ELEMENT_TYPE,
707        TEXT = RES_XML_CDATA_TYPE
708    };
709
710    struct ResXMLPosition
711    {
712        event_code_t                eventCode;
713        const ResXMLTree_node*      curNode;
714        const void*                 curExt;
715    };
716
717    void restart();
718
719    const ResStringPool& getStrings() const;
720
721    event_code_t getEventType() const;
722    // Note, unlike XmlPullParser, the first call to next() will return
723    // START_TAG of the first element.
724    event_code_t next();
725
726    // These are available for all nodes:
727    int32_t getCommentID() const;
728    const char16_t* getComment(size_t* outLen) const;
729    uint32_t getLineNumber() const;
730
731    // This is available for TEXT:
732    int32_t getTextID() const;
733    const char16_t* getText(size_t* outLen) const;
734    ssize_t getTextValue(Res_value* outValue) const;
735
736    // These are available for START_NAMESPACE and END_NAMESPACE:
737    int32_t getNamespacePrefixID() const;
738    const char16_t* getNamespacePrefix(size_t* outLen) const;
739    int32_t getNamespaceUriID() const;
740    const char16_t* getNamespaceUri(size_t* outLen) const;
741
742    // These are available for START_TAG and END_TAG:
743    int32_t getElementNamespaceID() const;
744    const char16_t* getElementNamespace(size_t* outLen) const;
745    int32_t getElementNameID() const;
746    const char16_t* getElementName(size_t* outLen) const;
747
748    // Remaining methods are for retrieving information about attributes
749    // associated with a START_TAG:
750
751    size_t getAttributeCount() const;
752
753    // Returns -1 if no namespace, -2 if idx out of range.
754    int32_t getAttributeNamespaceID(size_t idx) const;
755    const char16_t* getAttributeNamespace(size_t idx, size_t* outLen) const;
756
757    int32_t getAttributeNameID(size_t idx) const;
758    const char16_t* getAttributeName(size_t idx, size_t* outLen) const;
759    uint32_t getAttributeNameResID(size_t idx) const;
760
761    // These will work only if the underlying string pool is UTF-8.
762    const char* getAttributeNamespace8(size_t idx, size_t* outLen) const;
763    const char* getAttributeName8(size_t idx, size_t* outLen) const;
764
765    int32_t getAttributeValueStringID(size_t idx) const;
766    const char16_t* getAttributeStringValue(size_t idx, size_t* outLen) const;
767
768    int32_t getAttributeDataType(size_t idx) const;
769    int32_t getAttributeData(size_t idx) const;
770    ssize_t getAttributeValue(size_t idx, Res_value* outValue) const;
771
772    ssize_t indexOfAttribute(const char* ns, const char* attr) const;
773    ssize_t indexOfAttribute(const char16_t* ns, size_t nsLen,
774                             const char16_t* attr, size_t attrLen) const;
775
776    ssize_t indexOfID() const;
777    ssize_t indexOfClass() const;
778    ssize_t indexOfStyle() const;
779
780    void getPosition(ResXMLPosition* pos) const;
781    void setPosition(const ResXMLPosition& pos);
782
783private:
784    friend class ResXMLTree;
785
786    event_code_t nextNode();
787
788    const ResXMLTree&           mTree;
789    event_code_t                mEventCode;
790    const ResXMLTree_node*      mCurNode;
791    const void*                 mCurExt;
792};
793
794class DynamicRefTable;
795
796/**
797 * Convenience class for accessing data in a ResXMLTree resource.
798 */
799class ResXMLTree : public ResXMLParser
800{
801public:
802    /**
803     * Creates a ResXMLTree with the specified DynamicRefTable for run-time package id translation.
804     * The tree stores a clone of the specified DynamicRefTable, so any changes to the original
805     * DynamicRefTable will not affect this tree after instantiation.
806     **/
807    ResXMLTree(const DynamicRefTable* dynamicRefTable);
808    ResXMLTree();
809    ~ResXMLTree();
810
811    status_t setTo(const void* data, size_t size, bool copyData=false);
812
813    status_t getError() const;
814
815    void uninit();
816
817private:
818    friend class ResXMLParser;
819
820    status_t validateNode(const ResXMLTree_node* node) const;
821
822    std::unique_ptr<const DynamicRefTable> mDynamicRefTable;
823
824    status_t                    mError;
825    void*                       mOwnedData;
826    const ResXMLTree_header*    mHeader;
827    size_t                      mSize;
828    const uint8_t*              mDataEnd;
829    ResStringPool               mStrings;
830    const uint32_t*             mResIds;
831    size_t                      mNumResIds;
832    const ResXMLTree_node*      mRootNode;
833    const void*                 mRootExt;
834    event_code_t                mRootCode;
835};
836
837/** ********************************************************************
838 *  RESOURCE TABLE
839 *
840 *********************************************************************** */
841
842/**
843 * Header for a resource table.  Its data contains a series of
844 * additional chunks:
845 *   * A ResStringPool_header containing all table values.  This string pool
846 *     contains all of the string values in the entire resource table (not
847 *     the names of entries or type identifiers however).
848 *   * One or more ResTable_package chunks.
849 *
850 * Specific entries within a resource table can be uniquely identified
851 * with a single integer as defined by the ResTable_ref structure.
852 */
853struct ResTable_header
854{
855    struct ResChunk_header header;
856
857    // The number of ResTable_package structures.
858    uint32_t packageCount;
859};
860
861/**
862 * A collection of resource data types within a package.  Followed by
863 * one or more ResTable_type and ResTable_typeSpec structures containing the
864 * entry values for each resource type.
865 */
866struct ResTable_package
867{
868    struct ResChunk_header header;
869
870    // If this is a base package, its ID.  Package IDs start
871    // at 1 (corresponding to the value of the package bits in a
872    // resource identifier).  0 means this is not a base package.
873    uint32_t id;
874
875    // Actual name of this package, \0-terminated.
876    uint16_t name[128];
877
878    // Offset to a ResStringPool_header defining the resource
879    // type symbol table.  If zero, this package is inheriting from
880    // another base package (overriding specific values in it).
881    uint32_t typeStrings;
882
883    // Last index into typeStrings that is for public use by others.
884    uint32_t lastPublicType;
885
886    // Offset to a ResStringPool_header defining the resource
887    // key symbol table.  If zero, this package is inheriting from
888    // another base package (overriding specific values in it).
889    uint32_t keyStrings;
890
891    // Last index into keyStrings that is for public use by others.
892    uint32_t lastPublicKey;
893
894    uint32_t typeIdOffset;
895};
896
897// The most specific locale can consist of:
898//
899// - a 3 char language code
900// - a 3 char region code prefixed by a 'r'
901// - a 4 char script code prefixed by a 's'
902// - a 8 char variant code prefixed by a 'v'
903//
904// each separated by a single char separator, which sums up to a total of 24
905// chars, (25 include the string terminator). Numbering system specificator,
906// if present, can add up to 14 bytes (-u-nu-xxxxxxxx), giving 39 bytes,
907// or 40 bytes to make it 4 bytes aligned.
908#define RESTABLE_MAX_LOCALE_LEN 40
909
910
911/**
912 * Describes a particular resource configuration.
913 */
914struct ResTable_config
915{
916    // Number of bytes in this structure.
917    uint32_t size;
918
919    union {
920        struct {
921            // Mobile country code (from SIM).  0 means "any".
922            uint16_t mcc;
923            // Mobile network code (from SIM).  0 means "any".
924            uint16_t mnc;
925        };
926        uint32_t imsi;
927    };
928
929    union {
930        struct {
931            // This field can take three different forms:
932            // - \0\0 means "any".
933            //
934            // - Two 7 bit ascii values interpreted as ISO-639-1 language
935            //   codes ('fr', 'en' etc. etc.). The high bit for both bytes is
936            //   zero.
937            //
938            // - A single 16 bit little endian packed value representing an
939            //   ISO-639-2 3 letter language code. This will be of the form:
940            //
941            //   {1, t, t, t, t, t, s, s, s, s, s, f, f, f, f, f}
942            //
943            //   bit[0, 4] = first letter of the language code
944            //   bit[5, 9] = second letter of the language code
945            //   bit[10, 14] = third letter of the language code.
946            //   bit[15] = 1 always
947            //
948            // For backwards compatibility, languages that have unambiguous
949            // two letter codes are represented in that format.
950            //
951            // The layout is always bigendian irrespective of the runtime
952            // architecture.
953            char language[2];
954
955            // This field can take three different forms:
956            // - \0\0 means "any".
957            //
958            // - Two 7 bit ascii values interpreted as 2 letter region
959            //   codes ('US', 'GB' etc.). The high bit for both bytes is zero.
960            //
961            // - An UN M.49 3 digit region code. For simplicity, these are packed
962            //   in the same manner as the language codes, though we should need
963            //   only 10 bits to represent them, instead of the 15.
964            //
965            // The layout is always bigendian irrespective of the runtime
966            // architecture.
967            char country[2];
968        };
969        uint32_t locale;
970    };
971
972    enum {
973        ORIENTATION_ANY  = ACONFIGURATION_ORIENTATION_ANY,
974        ORIENTATION_PORT = ACONFIGURATION_ORIENTATION_PORT,
975        ORIENTATION_LAND = ACONFIGURATION_ORIENTATION_LAND,
976        ORIENTATION_SQUARE = ACONFIGURATION_ORIENTATION_SQUARE,
977    };
978
979    enum {
980        TOUCHSCREEN_ANY  = ACONFIGURATION_TOUCHSCREEN_ANY,
981        TOUCHSCREEN_NOTOUCH  = ACONFIGURATION_TOUCHSCREEN_NOTOUCH,
982        TOUCHSCREEN_STYLUS  = ACONFIGURATION_TOUCHSCREEN_STYLUS,
983        TOUCHSCREEN_FINGER  = ACONFIGURATION_TOUCHSCREEN_FINGER,
984    };
985
986    enum {
987        DENSITY_DEFAULT = ACONFIGURATION_DENSITY_DEFAULT,
988        DENSITY_LOW = ACONFIGURATION_DENSITY_LOW,
989        DENSITY_MEDIUM = ACONFIGURATION_DENSITY_MEDIUM,
990        DENSITY_TV = ACONFIGURATION_DENSITY_TV,
991        DENSITY_HIGH = ACONFIGURATION_DENSITY_HIGH,
992        DENSITY_XHIGH = ACONFIGURATION_DENSITY_XHIGH,
993        DENSITY_XXHIGH = ACONFIGURATION_DENSITY_XXHIGH,
994        DENSITY_XXXHIGH = ACONFIGURATION_DENSITY_XXXHIGH,
995        DENSITY_ANY = ACONFIGURATION_DENSITY_ANY,
996        DENSITY_NONE = ACONFIGURATION_DENSITY_NONE
997    };
998
999    union {
1000        struct {
1001            uint8_t orientation;
1002            uint8_t touchscreen;
1003            uint16_t density;
1004        };
1005        uint32_t screenType;
1006    };
1007
1008    enum {
1009        KEYBOARD_ANY  = ACONFIGURATION_KEYBOARD_ANY,
1010        KEYBOARD_NOKEYS  = ACONFIGURATION_KEYBOARD_NOKEYS,
1011        KEYBOARD_QWERTY  = ACONFIGURATION_KEYBOARD_QWERTY,
1012        KEYBOARD_12KEY  = ACONFIGURATION_KEYBOARD_12KEY,
1013    };
1014
1015    enum {
1016        NAVIGATION_ANY  = ACONFIGURATION_NAVIGATION_ANY,
1017        NAVIGATION_NONAV  = ACONFIGURATION_NAVIGATION_NONAV,
1018        NAVIGATION_DPAD  = ACONFIGURATION_NAVIGATION_DPAD,
1019        NAVIGATION_TRACKBALL  = ACONFIGURATION_NAVIGATION_TRACKBALL,
1020        NAVIGATION_WHEEL  = ACONFIGURATION_NAVIGATION_WHEEL,
1021    };
1022
1023    enum {
1024        MASK_KEYSHIDDEN = 0x0003,
1025        KEYSHIDDEN_ANY = ACONFIGURATION_KEYSHIDDEN_ANY,
1026        KEYSHIDDEN_NO = ACONFIGURATION_KEYSHIDDEN_NO,
1027        KEYSHIDDEN_YES = ACONFIGURATION_KEYSHIDDEN_YES,
1028        KEYSHIDDEN_SOFT = ACONFIGURATION_KEYSHIDDEN_SOFT,
1029    };
1030
1031    enum {
1032        MASK_NAVHIDDEN = 0x000c,
1033        SHIFT_NAVHIDDEN = 2,
1034        NAVHIDDEN_ANY = ACONFIGURATION_NAVHIDDEN_ANY << SHIFT_NAVHIDDEN,
1035        NAVHIDDEN_NO = ACONFIGURATION_NAVHIDDEN_NO << SHIFT_NAVHIDDEN,
1036        NAVHIDDEN_YES = ACONFIGURATION_NAVHIDDEN_YES << SHIFT_NAVHIDDEN,
1037    };
1038
1039    union {
1040        struct {
1041            uint8_t keyboard;
1042            uint8_t navigation;
1043            uint8_t inputFlags;
1044            uint8_t inputPad0;
1045        };
1046        uint32_t input;
1047    };
1048
1049    enum {
1050        SCREENWIDTH_ANY = 0
1051    };
1052
1053    enum {
1054        SCREENHEIGHT_ANY = 0
1055    };
1056
1057    union {
1058        struct {
1059            uint16_t screenWidth;
1060            uint16_t screenHeight;
1061        };
1062        uint32_t screenSize;
1063    };
1064
1065    enum {
1066        SDKVERSION_ANY = 0
1067    };
1068
1069  enum {
1070        MINORVERSION_ANY = 0
1071    };
1072
1073    union {
1074        struct {
1075            uint16_t sdkVersion;
1076            // For now minorVersion must always be 0!!!  Its meaning
1077            // is currently undefined.
1078            uint16_t minorVersion;
1079        };
1080        uint32_t version;
1081    };
1082
1083    enum {
1084        // screenLayout bits for screen size class.
1085        MASK_SCREENSIZE = 0x0f,
1086        SCREENSIZE_ANY = ACONFIGURATION_SCREENSIZE_ANY,
1087        SCREENSIZE_SMALL = ACONFIGURATION_SCREENSIZE_SMALL,
1088        SCREENSIZE_NORMAL = ACONFIGURATION_SCREENSIZE_NORMAL,
1089        SCREENSIZE_LARGE = ACONFIGURATION_SCREENSIZE_LARGE,
1090        SCREENSIZE_XLARGE = ACONFIGURATION_SCREENSIZE_XLARGE,
1091
1092        // screenLayout bits for wide/long screen variation.
1093        MASK_SCREENLONG = 0x30,
1094        SHIFT_SCREENLONG = 4,
1095        SCREENLONG_ANY = ACONFIGURATION_SCREENLONG_ANY << SHIFT_SCREENLONG,
1096        SCREENLONG_NO = ACONFIGURATION_SCREENLONG_NO << SHIFT_SCREENLONG,
1097        SCREENLONG_YES = ACONFIGURATION_SCREENLONG_YES << SHIFT_SCREENLONG,
1098
1099        // screenLayout bits for layout direction.
1100        MASK_LAYOUTDIR = 0xC0,
1101        SHIFT_LAYOUTDIR = 6,
1102        LAYOUTDIR_ANY = ACONFIGURATION_LAYOUTDIR_ANY << SHIFT_LAYOUTDIR,
1103        LAYOUTDIR_LTR = ACONFIGURATION_LAYOUTDIR_LTR << SHIFT_LAYOUTDIR,
1104        LAYOUTDIR_RTL = ACONFIGURATION_LAYOUTDIR_RTL << SHIFT_LAYOUTDIR,
1105    };
1106
1107    enum {
1108        // uiMode bits for the mode type.
1109        MASK_UI_MODE_TYPE = 0x0f,
1110        UI_MODE_TYPE_ANY = ACONFIGURATION_UI_MODE_TYPE_ANY,
1111        UI_MODE_TYPE_NORMAL = ACONFIGURATION_UI_MODE_TYPE_NORMAL,
1112        UI_MODE_TYPE_DESK = ACONFIGURATION_UI_MODE_TYPE_DESK,
1113        UI_MODE_TYPE_CAR = ACONFIGURATION_UI_MODE_TYPE_CAR,
1114        UI_MODE_TYPE_TELEVISION = ACONFIGURATION_UI_MODE_TYPE_TELEVISION,
1115        UI_MODE_TYPE_APPLIANCE = ACONFIGURATION_UI_MODE_TYPE_APPLIANCE,
1116        UI_MODE_TYPE_WATCH = ACONFIGURATION_UI_MODE_TYPE_WATCH,
1117        UI_MODE_TYPE_VR_HEADSET = ACONFIGURATION_UI_MODE_TYPE_VR_HEADSET,
1118
1119        // uiMode bits for the night switch.
1120        MASK_UI_MODE_NIGHT = 0x30,
1121        SHIFT_UI_MODE_NIGHT = 4,
1122        UI_MODE_NIGHT_ANY = ACONFIGURATION_UI_MODE_NIGHT_ANY << SHIFT_UI_MODE_NIGHT,
1123        UI_MODE_NIGHT_NO = ACONFIGURATION_UI_MODE_NIGHT_NO << SHIFT_UI_MODE_NIGHT,
1124        UI_MODE_NIGHT_YES = ACONFIGURATION_UI_MODE_NIGHT_YES << SHIFT_UI_MODE_NIGHT,
1125    };
1126
1127    union {
1128        struct {
1129            uint8_t screenLayout;
1130            uint8_t uiMode;
1131            uint16_t smallestScreenWidthDp;
1132        };
1133        uint32_t screenConfig;
1134    };
1135
1136    union {
1137        struct {
1138            uint16_t screenWidthDp;
1139            uint16_t screenHeightDp;
1140        };
1141        uint32_t screenSizeDp;
1142    };
1143
1144    // The ISO-15924 short name for the script corresponding to this
1145    // configuration. (eg. Hant, Latn, etc.). Interpreted in conjunction with
1146    // the locale field.
1147    char localeScript[4];
1148
1149    // A single BCP-47 variant subtag. Will vary in length between 4 and 8
1150    // chars. Interpreted in conjunction with the locale field.
1151    char localeVariant[8];
1152
1153    enum {
1154        // screenLayout2 bits for round/notround.
1155        MASK_SCREENROUND = 0x03,
1156        SCREENROUND_ANY = ACONFIGURATION_SCREENROUND_ANY,
1157        SCREENROUND_NO = ACONFIGURATION_SCREENROUND_NO,
1158        SCREENROUND_YES = ACONFIGURATION_SCREENROUND_YES,
1159    };
1160
1161    enum {
1162        // colorMode bits for wide-color gamut/narrow-color gamut.
1163        MASK_WIDE_COLOR_GAMUT = 0x03,
1164        WIDE_COLOR_GAMUT_ANY = ACONFIGURATION_WIDE_COLOR_GAMUT_ANY,
1165        WIDE_COLOR_GAMUT_NO = ACONFIGURATION_WIDE_COLOR_GAMUT_NO,
1166        WIDE_COLOR_GAMUT_YES = ACONFIGURATION_WIDE_COLOR_GAMUT_YES,
1167
1168        // colorMode bits for HDR/LDR.
1169        MASK_HDR = 0x0c,
1170        SHIFT_COLOR_MODE_HDR = 2,
1171        HDR_ANY = ACONFIGURATION_HDR_ANY << SHIFT_COLOR_MODE_HDR,
1172        HDR_NO = ACONFIGURATION_HDR_NO << SHIFT_COLOR_MODE_HDR,
1173        HDR_YES = ACONFIGURATION_HDR_YES << SHIFT_COLOR_MODE_HDR,
1174    };
1175
1176    // An extension of screenConfig.
1177    union {
1178        struct {
1179            uint8_t screenLayout2;      // Contains round/notround qualifier.
1180            uint8_t colorMode;          // Wide-gamut, HDR, etc.
1181            uint16_t screenConfigPad2;  // Reserved padding.
1182        };
1183        uint32_t screenConfig2;
1184    };
1185
1186    // If false and localeScript is set, it means that the script of the locale
1187    // was explicitly provided.
1188    //
1189    // If true, it means that localeScript was automatically computed.
1190    // localeScript may still not be set in this case, which means that we
1191    // tried but could not compute a script.
1192    bool localeScriptWasComputed;
1193
1194    // The value of BCP 47 Unicode extension for key 'nu' (numbering system).
1195    // Varies in length from 3 to 8 chars. Zero-filled value.
1196    char localeNumberingSystem[8];
1197
1198    void copyFromDeviceNoSwap(const ResTable_config& o);
1199
1200    void copyFromDtoH(const ResTable_config& o);
1201
1202    void swapHtoD();
1203
1204    int compare(const ResTable_config& o) const;
1205    int compareLogical(const ResTable_config& o) const;
1206
1207    inline bool operator<(const ResTable_config& o) const { return compare(o) < 0; }
1208
1209    // Flags indicating a set of config values.  These flag constants must
1210    // match the corresponding ones in android.content.pm.ActivityInfo and
1211    // attrs_manifest.xml.
1212    enum {
1213        CONFIG_MCC = ACONFIGURATION_MCC,
1214        CONFIG_MNC = ACONFIGURATION_MNC,
1215        CONFIG_LOCALE = ACONFIGURATION_LOCALE,
1216        CONFIG_TOUCHSCREEN = ACONFIGURATION_TOUCHSCREEN,
1217        CONFIG_KEYBOARD = ACONFIGURATION_KEYBOARD,
1218        CONFIG_KEYBOARD_HIDDEN = ACONFIGURATION_KEYBOARD_HIDDEN,
1219        CONFIG_NAVIGATION = ACONFIGURATION_NAVIGATION,
1220        CONFIG_ORIENTATION = ACONFIGURATION_ORIENTATION,
1221        CONFIG_DENSITY = ACONFIGURATION_DENSITY,
1222        CONFIG_SCREEN_SIZE = ACONFIGURATION_SCREEN_SIZE,
1223        CONFIG_SMALLEST_SCREEN_SIZE = ACONFIGURATION_SMALLEST_SCREEN_SIZE,
1224        CONFIG_VERSION = ACONFIGURATION_VERSION,
1225        CONFIG_SCREEN_LAYOUT = ACONFIGURATION_SCREEN_LAYOUT,
1226        CONFIG_UI_MODE = ACONFIGURATION_UI_MODE,
1227        CONFIG_LAYOUTDIR = ACONFIGURATION_LAYOUTDIR,
1228        CONFIG_SCREEN_ROUND = ACONFIGURATION_SCREEN_ROUND,
1229        CONFIG_COLOR_MODE = ACONFIGURATION_COLOR_MODE,
1230    };
1231
1232    // Compare two configuration, returning CONFIG_* flags set for each value
1233    // that is different.
1234    int diff(const ResTable_config& o) const;
1235
1236    // Return true if 'this' is more specific than 'o'.
1237    bool isMoreSpecificThan(const ResTable_config& o) const;
1238
1239    // Return true if 'this' is a better match than 'o' for the 'requested'
1240    // configuration.  This assumes that match() has already been used to
1241    // remove any configurations that don't match the requested configuration
1242    // at all; if they are not first filtered, non-matching results can be
1243    // considered better than matching ones.
1244    // The general rule per attribute: if the request cares about an attribute
1245    // (it normally does), if the two (this and o) are equal it's a tie.  If
1246    // they are not equal then one must be generic because only generic and
1247    // '==requested' will pass the match() call.  So if this is not generic,
1248    // it wins.  If this IS generic, o wins (return false).
1249    bool isBetterThan(const ResTable_config& o, const ResTable_config* requested) const;
1250
1251    // Return true if 'this' can be considered a match for the parameters in
1252    // 'settings'.
1253    // Note this is asymetric.  A default piece of data will match every request
1254    // but a request for the default should not match odd specifics
1255    // (ie, request with no mcc should not match a particular mcc's data)
1256    // settings is the requested settings
1257    bool match(const ResTable_config& settings) const;
1258
1259    // Get the string representation of the locale component of this
1260    // Config. The maximum size of this representation will be
1261    // |RESTABLE_MAX_LOCALE_LEN| (including a terminating '\0').
1262    //
1263    // Example: en-US, en-Latn-US, en-POSIX.
1264    //
1265    // If canonicalize is set, Tagalog (tl) locales get converted
1266    // to Filipino (fil).
1267    void getBcp47Locale(char* out, bool canonicalize=false) const;
1268
1269    // Append to str the resource-qualifer string representation of the
1270    // locale component of this Config. If the locale is only country
1271    // and language, it will look like en-rUS. If it has scripts and
1272    // variants, it will be a modified bcp47 tag: b+en+Latn+US.
1273    void appendDirLocale(String8& str) const;
1274
1275    // Sets the values of language, region, script, variant and numbering
1276    // system to the well formed BCP 47 locale contained in |in|.
1277    // The input locale is assumed to be valid and no validation is performed.
1278    void setBcp47Locale(const char* in);
1279
1280    inline void clearLocale() {
1281        locale = 0;
1282        localeScriptWasComputed = false;
1283        memset(localeScript, 0, sizeof(localeScript));
1284        memset(localeVariant, 0, sizeof(localeVariant));
1285        memset(localeNumberingSystem, 0, sizeof(localeNumberingSystem));
1286    }
1287
1288    inline void computeScript() {
1289        localeDataComputeScript(localeScript, language, country);
1290    }
1291
1292    // Get the 2 or 3 letter language code of this configuration. Trailing
1293    // bytes are set to '\0'.
1294    size_t unpackLanguage(char language[4]) const;
1295    // Get the 2 or 3 letter language code of this configuration. Trailing
1296    // bytes are set to '\0'.
1297    size_t unpackRegion(char region[4]) const;
1298
1299    // Sets the language code of this configuration to the first three
1300    // chars at |language|.
1301    //
1302    // If |language| is a 2 letter code, the trailing byte must be '\0' or
1303    // the BCP-47 separator '-'.
1304    void packLanguage(const char* language);
1305    // Sets the region code of this configuration to the first three bytes
1306    // at |region|. If |region| is a 2 letter code, the trailing byte must be '\0'
1307    // or the BCP-47 separator '-'.
1308    void packRegion(const char* region);
1309
1310    // Returns a positive integer if this config is more specific than |o|
1311    // with respect to their locales, a negative integer if |o| is more specific
1312    // and 0 if they're equally specific.
1313    int isLocaleMoreSpecificThan(const ResTable_config &o) const;
1314
1315    // Returns an integer representng the imporance score of the configuration locale.
1316    int getImportanceScoreOfLocale() const;
1317
1318    // Return true if 'this' is a better locale match than 'o' for the
1319    // 'requested' configuration. Similar to isBetterThan(), this assumes that
1320    // match() has already been used to remove any configurations that don't
1321    // match the requested configuration at all.
1322    bool isLocaleBetterThan(const ResTable_config& o, const ResTable_config* requested) const;
1323
1324    String8 toString() const;
1325};
1326
1327/**
1328 * A specification of the resources defined by a particular type.
1329 *
1330 * There should be one of these chunks for each resource type.
1331 *
1332 * This structure is followed by an array of integers providing the set of
1333 * configuration change flags (ResTable_config::CONFIG_*) that have multiple
1334 * resources for that configuration.  In addition, the high bit is set if that
1335 * resource has been made public.
1336 */
1337struct ResTable_typeSpec
1338{
1339    struct ResChunk_header header;
1340
1341    // The type identifier this chunk is holding.  Type IDs start
1342    // at 1 (corresponding to the value of the type bits in a
1343    // resource identifier).  0 is invalid.
1344    uint8_t id;
1345
1346    // Must be 0.
1347    uint8_t res0;
1348    // Must be 0.
1349    uint16_t res1;
1350
1351    // Number of uint32_t entry configuration masks that follow.
1352    uint32_t entryCount;
1353
1354    enum : uint32_t {
1355        // Additional flag indicating an entry is public.
1356        SPEC_PUBLIC = 0x40000000u,
1357
1358        // Additional flag indicating an entry is overlayable at runtime.
1359        // Added in Android-P.
1360        SPEC_OVERLAYABLE = 0x80000000u,
1361    };
1362};
1363
1364/**
1365 * A collection of resource entries for a particular resource data
1366 * type.
1367 *
1368 * If the flag FLAG_SPARSE is not set in `flags`, then this struct is
1369 * followed by an array of uint32_t defining the resource
1370 * values, corresponding to the array of type strings in the
1371 * ResTable_package::typeStrings string block. Each of these hold an
1372 * index from entriesStart; a value of NO_ENTRY means that entry is
1373 * not defined.
1374 *
1375 * If the flag FLAG_SPARSE is set in `flags`, then this struct is followed
1376 * by an array of ResTable_sparseTypeEntry defining only the entries that
1377 * have values for this type. Each entry is sorted by their entry ID such
1378 * that a binary search can be performed over the entries. The ID and offset
1379 * are encoded in a uint32_t. See ResTabe_sparseTypeEntry.
1380 *
1381 * There may be multiple of these chunks for a particular resource type,
1382 * supply different configuration variations for the resource values of
1383 * that type.
1384 *
1385 * It would be nice to have an additional ordered index of entries, so
1386 * we can do a binary search if trying to find a resource by string name.
1387 */
1388struct ResTable_type
1389{
1390    struct ResChunk_header header;
1391
1392    enum {
1393        NO_ENTRY = 0xFFFFFFFF
1394    };
1395
1396    // The type identifier this chunk is holding.  Type IDs start
1397    // at 1 (corresponding to the value of the type bits in a
1398    // resource identifier).  0 is invalid.
1399    uint8_t id;
1400
1401    enum {
1402        // If set, the entry is sparse, and encodes both the entry ID and offset into each entry,
1403        // and a binary search is used to find the key. Only available on platforms >= O.
1404        // Mark any types that use this with a v26 qualifier to prevent runtime issues on older
1405        // platforms.
1406        FLAG_SPARSE = 0x01,
1407    };
1408    uint8_t flags;
1409
1410    // Must be 0.
1411    uint16_t reserved;
1412
1413    // Number of uint32_t entry indices that follow.
1414    uint32_t entryCount;
1415
1416    // Offset from header where ResTable_entry data starts.
1417    uint32_t entriesStart;
1418
1419    // Configuration this collection of entries is designed for. This must always be last.
1420    ResTable_config config;
1421};
1422
1423// The minimum size required to read any version of ResTable_type.
1424constexpr size_t kResTableTypeMinSize =
1425    sizeof(ResTable_type) - sizeof(ResTable_config) + sizeof(ResTable_config::size);
1426
1427// Assert that the ResTable_config is always the last field. This poses a problem for extending
1428// ResTable_type in the future, as ResTable_config is variable (over different releases).
1429static_assert(sizeof(ResTable_type) == offsetof(ResTable_type, config) + sizeof(ResTable_config),
1430              "ResTable_config must be last field in ResTable_type");
1431
1432/**
1433 * An entry in a ResTable_type with the flag `FLAG_SPARSE` set.
1434 */
1435union ResTable_sparseTypeEntry {
1436    // Holds the raw uint32_t encoded value. Do not read this.
1437    uint32_t entry;
1438    struct {
1439        // The index of the entry.
1440        uint16_t idx;
1441
1442        // The offset from ResTable_type::entriesStart, divided by 4.
1443        uint16_t offset;
1444    };
1445};
1446
1447static_assert(sizeof(ResTable_sparseTypeEntry) == sizeof(uint32_t),
1448        "ResTable_sparseTypeEntry must be 4 bytes in size");
1449
1450/**
1451 * This is the beginning of information about an entry in the resource
1452 * table.  It holds the reference to the name of this entry, and is
1453 * immediately followed by one of:
1454 *   * A Res_value structure, if FLAG_COMPLEX is -not- set.
1455 *   * An array of ResTable_map structures, if FLAG_COMPLEX is set.
1456 *     These supply a set of name/value mappings of data.
1457 */
1458struct ResTable_entry
1459{
1460    // Number of bytes in this structure.
1461    uint16_t size;
1462
1463    enum {
1464        // If set, this is a complex entry, holding a set of name/value
1465        // mappings.  It is followed by an array of ResTable_map structures.
1466        FLAG_COMPLEX = 0x0001,
1467        // If set, this resource has been declared public, so libraries
1468        // are allowed to reference it.
1469        FLAG_PUBLIC = 0x0002,
1470        // If set, this is a weak resource and may be overriden by strong
1471        // resources of the same name/type. This is only useful during
1472        // linking with other resource tables.
1473        FLAG_WEAK = 0x0004
1474    };
1475    uint16_t flags;
1476
1477    // Reference into ResTable_package::keyStrings identifying this entry.
1478    struct ResStringPool_ref key;
1479};
1480
1481/**
1482 * Extended form of a ResTable_entry for map entries, defining a parent map
1483 * resource from which to inherit values.
1484 */
1485struct ResTable_map_entry : public ResTable_entry
1486{
1487    // Resource identifier of the parent mapping, or 0 if there is none.
1488    // This is always treated as a TYPE_DYNAMIC_REFERENCE.
1489    ResTable_ref parent;
1490    // Number of name/value pairs that follow for FLAG_COMPLEX.
1491    uint32_t count;
1492};
1493
1494/**
1495 * A single name/value mapping that is part of a complex resource
1496 * entry.
1497 */
1498struct ResTable_map
1499{
1500    // The resource identifier defining this mapping's name.  For attribute
1501    // resources, 'name' can be one of the following special resource types
1502    // to supply meta-data about the attribute; for all other resource types
1503    // it must be an attribute resource.
1504    ResTable_ref name;
1505
1506    // Special values for 'name' when defining attribute resources.
1507    enum {
1508        // This entry holds the attribute's type code.
1509        ATTR_TYPE = Res_MAKEINTERNAL(0),
1510
1511        // For integral attributes, this is the minimum value it can hold.
1512        ATTR_MIN = Res_MAKEINTERNAL(1),
1513
1514        // For integral attributes, this is the maximum value it can hold.
1515        ATTR_MAX = Res_MAKEINTERNAL(2),
1516
1517        // Localization of this resource is can be encouraged or required with
1518        // an aapt flag if this is set
1519        ATTR_L10N = Res_MAKEINTERNAL(3),
1520
1521        // for plural support, see android.content.res.PluralRules#attrForQuantity(int)
1522        ATTR_OTHER = Res_MAKEINTERNAL(4),
1523        ATTR_ZERO = Res_MAKEINTERNAL(5),
1524        ATTR_ONE = Res_MAKEINTERNAL(6),
1525        ATTR_TWO = Res_MAKEINTERNAL(7),
1526        ATTR_FEW = Res_MAKEINTERNAL(8),
1527        ATTR_MANY = Res_MAKEINTERNAL(9)
1528
1529    };
1530
1531    // Bit mask of allowed types, for use with ATTR_TYPE.
1532    enum {
1533        // No type has been defined for this attribute, use generic
1534        // type handling.  The low 16 bits are for types that can be
1535        // handled generically; the upper 16 require additional information
1536        // in the bag so can not be handled generically for TYPE_ANY.
1537        TYPE_ANY = 0x0000FFFF,
1538
1539        // Attribute holds a references to another resource.
1540        TYPE_REFERENCE = 1<<0,
1541
1542        // Attribute holds a generic string.
1543        TYPE_STRING = 1<<1,
1544
1545        // Attribute holds an integer value.  ATTR_MIN and ATTR_MIN can
1546        // optionally specify a constrained range of possible integer values.
1547        TYPE_INTEGER = 1<<2,
1548
1549        // Attribute holds a boolean integer.
1550        TYPE_BOOLEAN = 1<<3,
1551
1552        // Attribute holds a color value.
1553        TYPE_COLOR = 1<<4,
1554
1555        // Attribute holds a floating point value.
1556        TYPE_FLOAT = 1<<5,
1557
1558        // Attribute holds a dimension value, such as "20px".
1559        TYPE_DIMENSION = 1<<6,
1560
1561        // Attribute holds a fraction value, such as "20%".
1562        TYPE_FRACTION = 1<<7,
1563
1564        // Attribute holds an enumeration.  The enumeration values are
1565        // supplied as additional entries in the map.
1566        TYPE_ENUM = 1<<16,
1567
1568        // Attribute holds a bitmaks of flags.  The flag bit values are
1569        // supplied as additional entries in the map.
1570        TYPE_FLAGS = 1<<17
1571    };
1572
1573    // Enum of localization modes, for use with ATTR_L10N.
1574    enum {
1575        L10N_NOT_REQUIRED = 0,
1576        L10N_SUGGESTED    = 1
1577    };
1578
1579    // This mapping's value.
1580    Res_value value;
1581};
1582
1583/**
1584 * A package-id to package name mapping for any shared libraries used
1585 * in this resource table. The package-id's encoded in this resource
1586 * table may be different than the id's assigned at runtime. We must
1587 * be able to translate the package-id's based on the package name.
1588 */
1589struct ResTable_lib_header
1590{
1591    struct ResChunk_header header;
1592
1593    // The number of shared libraries linked in this resource table.
1594    uint32_t count;
1595};
1596
1597/**
1598 * A shared library package-id to package name entry.
1599 */
1600struct ResTable_lib_entry
1601{
1602    // The package-id this shared library was assigned at build time.
1603    // We use a uint32 to keep the structure aligned on a uint32 boundary.
1604    uint32_t packageId;
1605
1606    // The package name of the shared library. \0 terminated.
1607    uint16_t packageName[128];
1608};
1609
1610struct alignas(uint32_t) Idmap_header {
1611  // Always 0x504D4449 ('IDMP')
1612  uint32_t magic;
1613
1614  uint32_t version;
1615
1616  uint32_t target_crc32;
1617  uint32_t overlay_crc32;
1618
1619  uint8_t target_path[256];
1620  uint8_t overlay_path[256];
1621
1622  uint16_t target_package_id;
1623  uint16_t type_count;
1624} __attribute__((packed));
1625
1626struct alignas(uint32_t) IdmapEntry_header {
1627  uint16_t target_type_id;
1628  uint16_t overlay_type_id;
1629  uint16_t entry_count;
1630  uint16_t entry_id_offset;
1631  uint32_t entries[0];
1632} __attribute__((packed));
1633
1634class AssetManager2;
1635
1636/**
1637 * Holds the shared library ID table. Shared libraries are assigned package IDs at
1638 * build time, but they may be loaded in a different order, so we need to maintain
1639 * a mapping of build-time package ID to run-time assigned package ID.
1640 *
1641 * Dynamic references are not currently supported in overlays. Only the base package
1642 * may have dynamic references.
1643 */
1644class DynamicRefTable
1645{
1646    friend class AssetManager2;
1647public:
1648    DynamicRefTable();
1649    DynamicRefTable(uint8_t packageId, bool appAsLib);
1650
1651    // Loads an unmapped reference table from the package.
1652    status_t load(const ResTable_lib_header* const header);
1653
1654    // Adds mappings from the other DynamicRefTable
1655    status_t addMappings(const DynamicRefTable& other);
1656
1657    // Creates a mapping from build-time package ID to run-time package ID for
1658    // the given package.
1659    status_t addMapping(const String16& packageName, uint8_t packageId);
1660
1661    void addMapping(uint8_t buildPackageId, uint8_t runtimePackageId);
1662
1663    // Creates a new clone of the reference table
1664    std::unique_ptr<DynamicRefTable> clone() const;
1665
1666    // Performs the actual conversion of build-time resource ID to run-time
1667    // resource ID.
1668    status_t lookupResourceId(uint32_t* resId) const;
1669    status_t lookupResourceValue(Res_value* value) const;
1670
1671    inline const KeyedVector<String16, uint8_t>& entries() const {
1672        return mEntries;
1673    }
1674
1675private:
1676    uint8_t                         mAssignedPackageId;
1677    uint8_t                         mLookupTable[256];
1678    KeyedVector<String16, uint8_t>  mEntries;
1679    bool                            mAppAsLib;
1680};
1681
1682bool U16StringToInt(const char16_t* s, size_t len, Res_value* outValue);
1683
1684/**
1685 * Convenience class for accessing data in a ResTable resource.
1686 */
1687class ResTable
1688{
1689public:
1690    ResTable();
1691    ResTable(const void* data, size_t size, const int32_t cookie,
1692             bool copyData=false);
1693    ~ResTable();
1694
1695    status_t add(const void* data, size_t size, const int32_t cookie=-1, bool copyData=false);
1696    status_t add(const void* data, size_t size, const void* idmapData, size_t idmapDataSize,
1697            const int32_t cookie=-1, bool copyData=false, bool appAsLib=false);
1698
1699    status_t add(Asset* asset, const int32_t cookie=-1, bool copyData=false);
1700    status_t add(Asset* asset, Asset* idmapAsset, const int32_t cookie=-1, bool copyData=false,
1701            bool appAsLib=false, bool isSystemAsset=false);
1702
1703    status_t add(ResTable* src, bool isSystemAsset=false);
1704    status_t addEmpty(const int32_t cookie);
1705
1706    status_t getError() const;
1707
1708    void uninit();
1709
1710    struct resource_name
1711    {
1712        const char16_t* package;
1713        size_t packageLen;
1714        const char16_t* type;
1715        const char* type8;
1716        size_t typeLen;
1717        const char16_t* name;
1718        const char* name8;
1719        size_t nameLen;
1720    };
1721
1722    bool getResourceName(uint32_t resID, bool allowUtf8, resource_name* outName) const;
1723
1724    bool getResourceFlags(uint32_t resID, uint32_t* outFlags) const;
1725
1726    /**
1727     * Returns whether or not the package for the given resource has been dynamically assigned.
1728     * If the resource can't be found, returns 'false'.
1729     */
1730    bool isResourceDynamic(uint32_t resID) const;
1731
1732    /**
1733     * Returns whether or not the given package has been dynamically assigned.
1734     * If the package can't be found, returns 'false'.
1735     */
1736    bool isPackageDynamic(uint8_t packageID) const;
1737
1738    /**
1739     * Retrieve the value of a resource.  If the resource is found, returns a
1740     * value >= 0 indicating the table it is in (for use with
1741     * getTableStringBlock() and getTableCookie()) and fills in 'outValue'.  If
1742     * not found, returns a negative error code.
1743     *
1744     * Note that this function does not do reference traversal.  If you want
1745     * to follow references to other resources to get the "real" value to
1746     * use, you need to call resolveReference() after this function.
1747     *
1748     * @param resID The desired resoruce identifier.
1749     * @param outValue Filled in with the resource data that was found.
1750     *
1751     * @return ssize_t Either a >= 0 table index or a negative error code.
1752     */
1753    ssize_t getResource(uint32_t resID, Res_value* outValue, bool mayBeBag = false,
1754                    uint16_t density = 0,
1755                    uint32_t* outSpecFlags = NULL,
1756                    ResTable_config* outConfig = NULL) const;
1757
1758    inline ssize_t getResource(const ResTable_ref& res, Res_value* outValue,
1759            uint32_t* outSpecFlags=NULL) const {
1760        return getResource(res.ident, outValue, false, 0, outSpecFlags, NULL);
1761    }
1762
1763    ssize_t resolveReference(Res_value* inOutValue,
1764                             ssize_t blockIndex,
1765                             uint32_t* outLastRef = NULL,
1766                             uint32_t* inoutTypeSpecFlags = NULL,
1767                             ResTable_config* outConfig = NULL) const;
1768
1769    enum {
1770        TMP_BUFFER_SIZE = 16
1771    };
1772    const char16_t* valueToString(const Res_value* value, size_t stringBlock,
1773                                  char16_t tmpBuffer[TMP_BUFFER_SIZE],
1774                                  size_t* outLen) const;
1775
1776    struct bag_entry {
1777        ssize_t stringBlock;
1778        ResTable_map map;
1779    };
1780
1781    /**
1782     * Retrieve the bag of a resource.  If the resoruce is found, returns the
1783     * number of bags it contains and 'outBag' points to an array of their
1784     * values.  If not found, a negative error code is returned.
1785     *
1786     * Note that this function -does- do reference traversal of the bag data.
1787     *
1788     * @param resID The desired resource identifier.
1789     * @param outBag Filled inm with a pointer to the bag mappings.
1790     *
1791     * @return ssize_t Either a >= 0 bag count of negative error code.
1792     */
1793    ssize_t lockBag(uint32_t resID, const bag_entry** outBag) const;
1794
1795    void unlockBag(const bag_entry* bag) const;
1796
1797    void lock() const;
1798
1799    ssize_t getBagLocked(uint32_t resID, const bag_entry** outBag,
1800            uint32_t* outTypeSpecFlags=NULL) const;
1801
1802    void unlock() const;
1803
1804    class Theme {
1805    public:
1806        Theme(const ResTable& table);
1807        ~Theme();
1808
1809        inline const ResTable& getResTable() const { return mTable; }
1810
1811        status_t applyStyle(uint32_t resID, bool force=false);
1812        status_t setTo(const Theme& other);
1813        status_t clear();
1814
1815        /**
1816         * Retrieve a value in the theme.  If the theme defines this
1817         * value, returns a value >= 0 indicating the table it is in
1818         * (for use with getTableStringBlock() and getTableCookie) and
1819         * fills in 'outValue'.  If not found, returns a negative error
1820         * code.
1821         *
1822         * Note that this function does not do reference traversal.  If you want
1823         * to follow references to other resources to get the "real" value to
1824         * use, you need to call resolveReference() after this function.
1825         *
1826         * @param resID A resource identifier naming the desired theme
1827         *              attribute.
1828         * @param outValue Filled in with the theme value that was
1829         *                 found.
1830         *
1831         * @return ssize_t Either a >= 0 table index or a negative error code.
1832         */
1833        ssize_t getAttribute(uint32_t resID, Res_value* outValue,
1834                uint32_t* outTypeSpecFlags = NULL) const;
1835
1836        /**
1837         * This is like ResTable::resolveReference(), but also takes
1838         * care of resolving attribute references to the theme.
1839         */
1840        ssize_t resolveAttributeReference(Res_value* inOutValue,
1841                ssize_t blockIndex, uint32_t* outLastRef = NULL,
1842                uint32_t* inoutTypeSpecFlags = NULL,
1843                ResTable_config* inoutConfig = NULL) const;
1844
1845        /**
1846         * Returns a bit mask of configuration changes that will impact this
1847         * theme (and thus require completely reloading it).
1848         */
1849        uint32_t getChangingConfigurations() const;
1850
1851        void dumpToLog() const;
1852
1853    private:
1854        Theme(const Theme&);
1855        Theme& operator=(const Theme&);
1856
1857        struct theme_entry {
1858            ssize_t stringBlock;
1859            uint32_t typeSpecFlags;
1860            Res_value value;
1861        };
1862
1863        struct type_info {
1864            size_t numEntries;
1865            theme_entry* entries;
1866        };
1867
1868        struct package_info {
1869            type_info types[Res_MAXTYPE + 1];
1870        };
1871
1872        void free_package(package_info* pi);
1873        package_info* copy_package(package_info* pi);
1874
1875        const ResTable& mTable;
1876        package_info*   mPackages[Res_MAXPACKAGE];
1877        uint32_t        mTypeSpecFlags;
1878    };
1879
1880    void setParameters(const ResTable_config* params);
1881    void getParameters(ResTable_config* params) const;
1882
1883    // Retrieve an identifier (which can be passed to getResource)
1884    // for a given resource name.  The 'name' can be fully qualified
1885    // (<package>:<type>.<basename>) or the package or type components
1886    // can be dropped if default values are supplied here.
1887    //
1888    // Returns 0 if no such resource was found, else a valid resource ID.
1889    uint32_t identifierForName(const char16_t* name, size_t nameLen,
1890                               const char16_t* type = 0, size_t typeLen = 0,
1891                               const char16_t* defPackage = 0,
1892                               size_t defPackageLen = 0,
1893                               uint32_t* outTypeSpecFlags = NULL) const;
1894
1895    static bool expandResourceRef(const char16_t* refStr, size_t refLen,
1896                                  String16* outPackage,
1897                                  String16* outType,
1898                                  String16* outName,
1899                                  const String16* defType = NULL,
1900                                  const String16* defPackage = NULL,
1901                                  const char** outErrorMsg = NULL,
1902                                  bool* outPublicOnly = NULL);
1903
1904    static bool stringToInt(const char16_t* s, size_t len, Res_value* outValue);
1905    static bool stringToFloat(const char16_t* s, size_t len, Res_value* outValue);
1906
1907    // Used with stringToValue.
1908    class Accessor
1909    {
1910    public:
1911        inline virtual ~Accessor() { }
1912
1913        virtual const String16& getAssetsPackage() const = 0;
1914
1915        virtual uint32_t getCustomResource(const String16& package,
1916                                           const String16& type,
1917                                           const String16& name) const = 0;
1918        virtual uint32_t getCustomResourceWithCreation(const String16& package,
1919                                                       const String16& type,
1920                                                       const String16& name,
1921                                                       const bool createIfNeeded = false) = 0;
1922        virtual uint32_t getRemappedPackage(uint32_t origPackage) const = 0;
1923        virtual bool getAttributeType(uint32_t attrID, uint32_t* outType) = 0;
1924        virtual bool getAttributeMin(uint32_t attrID, uint32_t* outMin) = 0;
1925        virtual bool getAttributeMax(uint32_t attrID, uint32_t* outMax) = 0;
1926        virtual bool getAttributeEnum(uint32_t attrID,
1927                                      const char16_t* name, size_t nameLen,
1928                                      Res_value* outValue) = 0;
1929        virtual bool getAttributeFlags(uint32_t attrID,
1930                                       const char16_t* name, size_t nameLen,
1931                                       Res_value* outValue) = 0;
1932        virtual uint32_t getAttributeL10N(uint32_t attrID) = 0;
1933        virtual bool getLocalizationSetting() = 0;
1934        virtual void reportError(void* accessorCookie, const char* fmt, ...) = 0;
1935    };
1936
1937    // Convert a string to a resource value.  Handles standard "@res",
1938    // "#color", "123", and "0x1bd" types; performs escaping of strings.
1939    // The resulting value is placed in 'outValue'; if it is a string type,
1940    // 'outString' receives the string.  If 'attrID' is supplied, the value is
1941    // type checked against this attribute and it is used to perform enum
1942    // evaluation.  If 'acccessor' is supplied, it will be used to attempt to
1943    // resolve resources that do not exist in this ResTable.  If 'attrType' is
1944    // supplied, the value will be type checked for this format if 'attrID'
1945    // is not supplied or found.
1946    bool stringToValue(Res_value* outValue, String16* outString,
1947                       const char16_t* s, size_t len,
1948                       bool preserveSpaces, bool coerceType,
1949                       uint32_t attrID = 0,
1950                       const String16* defType = NULL,
1951                       const String16* defPackage = NULL,
1952                       Accessor* accessor = NULL,
1953                       void* accessorCookie = NULL,
1954                       uint32_t attrType = ResTable_map::TYPE_ANY,
1955                       bool enforcePrivate = true) const;
1956
1957    // Perform processing of escapes and quotes in a string.
1958    static bool collectString(String16* outString,
1959                              const char16_t* s, size_t len,
1960                              bool preserveSpaces,
1961                              const char** outErrorMsg = NULL,
1962                              bool append = false);
1963
1964    size_t getBasePackageCount() const;
1965    const String16 getBasePackageName(size_t idx) const;
1966    uint32_t getBasePackageId(size_t idx) const;
1967    uint32_t getLastTypeIdForPackage(size_t idx) const;
1968
1969    // Return the number of resource tables that the object contains.
1970    size_t getTableCount() const;
1971    // Return the values string pool for the resource table at the given
1972    // index.  This string pool contains all of the strings for values
1973    // contained in the resource table -- that is the item values themselves,
1974    // but not the names their entries or types.
1975    const ResStringPool* getTableStringBlock(size_t index) const;
1976    // Return unique cookie identifier for the given resource table.
1977    int32_t getTableCookie(size_t index) const;
1978
1979    const DynamicRefTable* getDynamicRefTableForCookie(int32_t cookie) const;
1980
1981    // Return the configurations (ResTable_config) that we know about
1982    void getConfigurations(Vector<ResTable_config>* configs, bool ignoreMipmap=false,
1983            bool ignoreAndroidPackage=false, bool includeSystemConfigs=true) const;
1984
1985    void getLocales(Vector<String8>* locales, bool includeSystemLocales=true,
1986            bool mergeEquivalentLangs=false) const;
1987
1988    // Generate an idmap.
1989    //
1990    // Return value: on success: NO_ERROR; caller is responsible for free-ing
1991    // outData (using free(3)). On failure, any status_t value other than
1992    // NO_ERROR; the caller should not free outData.
1993    status_t createIdmap(const ResTable& overlay,
1994            uint32_t targetCrc, uint32_t overlayCrc,
1995            const char* targetPath, const char* overlayPath,
1996            void** outData, size_t* outSize) const;
1997
1998    static const size_t IDMAP_HEADER_SIZE_BYTES = 4 * sizeof(uint32_t) + 2 * 256;
1999    static const uint32_t IDMAP_CURRENT_VERSION = 0x00000001;
2000
2001    // Retrieve idmap meta-data.
2002    //
2003    // This function only requires the idmap header (the first
2004    // IDMAP_HEADER_SIZE_BYTES) bytes of an idmap file.
2005    static bool getIdmapInfo(const void* idmap, size_t size,
2006            uint32_t* pVersion,
2007            uint32_t* pTargetCrc, uint32_t* pOverlayCrc,
2008            String8* pTargetPath, String8* pOverlayPath);
2009
2010    void print(bool inclValues) const;
2011    static String8 normalizeForOutput(const char* input);
2012
2013private:
2014    struct Header;
2015    struct Type;
2016    struct Entry;
2017    struct Package;
2018    struct PackageGroup;
2019    typedef Vector<Type*> TypeList;
2020
2021    struct bag_set {
2022        size_t numAttrs;    // number in array
2023        size_t availAttrs;  // total space in array
2024        uint32_t typeSpecFlags;
2025        // Followed by 'numAttr' bag_entry structures.
2026    };
2027
2028    /**
2029     * Configuration dependent cached data. This must be cleared when the configuration is
2030     * changed (setParameters).
2031     */
2032    struct TypeCacheEntry {
2033        TypeCacheEntry() : cachedBags(NULL) {}
2034
2035        // Computed attribute bags for this type.
2036        bag_set** cachedBags;
2037
2038        // Pre-filtered list of configurations (per asset path) that match the parameters set on this
2039        // ResTable.
2040        Vector<std::shared_ptr<Vector<const ResTable_type*>>> filteredConfigs;
2041    };
2042
2043    status_t addInternal(const void* data, size_t size, const void* idmapData, size_t idmapDataSize,
2044            bool appAsLib, const int32_t cookie, bool copyData, bool isSystemAsset=false);
2045
2046    ssize_t getResourcePackageIndex(uint32_t resID) const;
2047    ssize_t getResourcePackageIndexFromPackage(uint8_t packageID) const;
2048
2049    status_t getEntry(
2050        const PackageGroup* packageGroup, int typeIndex, int entryIndex,
2051        const ResTable_config* config,
2052        Entry* outEntry) const;
2053
2054    uint32_t findEntry(const PackageGroup* group, ssize_t typeIndex, const char16_t* name,
2055            size_t nameLen, uint32_t* outTypeSpecFlags) const;
2056
2057    status_t parsePackage(
2058        const ResTable_package* const pkg, const Header* const header,
2059        bool appAsLib, bool isSystemAsset);
2060
2061    void print_value(const Package* pkg, const Res_value& value) const;
2062
2063    template <typename Func>
2064    void forEachConfiguration(bool ignoreMipmap, bool ignoreAndroidPackage,
2065                              bool includeSystemConfigs, const Func& f) const;
2066
2067    mutable Mutex               mLock;
2068
2069    // Mutex that controls access to the list of pre-filtered configurations
2070    // to check when looking up entries.
2071    // When iterating over a bag, the mLock mutex is locked. While mLock is locked,
2072    // we do resource lookups.
2073    // Mutex is not reentrant, so we must use a different lock than mLock.
2074    mutable Mutex               mFilteredConfigLock;
2075
2076    status_t                    mError;
2077
2078    ResTable_config             mParams;
2079
2080    // Array of all resource tables.
2081    Vector<Header*>             mHeaders;
2082
2083    // Array of packages in all resource tables.
2084    Vector<PackageGroup*>       mPackageGroups;
2085
2086    // Mapping from resource package IDs to indices into the internal
2087    // package array.
2088    uint8_t                     mPackageMap[256];
2089
2090    uint8_t                     mNextPackageId;
2091};
2092
2093}   // namespace android
2094
2095#endif // _LIBS_UTILS_RESOURCE_TYPES_H
2096