BitcodeWriter.cpp revision 23c4358f12bd9d0ba7166eceebd683db95a41b3f
1//===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Bitcode writer implementation.
11//
12//===----------------------------------------------------------------------===//
13
14#include "ReaderWriter_2_9_func.h"
15#include "ValueEnumerator.h"
16#include "llvm/ADT/Triple.h"
17#include "llvm/Bitcode/BitstreamWriter.h"
18#include "llvm/Bitcode/LLVMBitCodes.h"
19#include "llvm/IR/Constants.h"
20#include "llvm/IR/DerivedTypes.h"
21#include "llvm/IR/InlineAsm.h"
22#include "llvm/IR/Instructions.h"
23#include "llvm/IR/Module.h"
24#include "llvm/IR/Operator.h"
25#include "llvm/IR/ValueSymbolTable.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/MathExtras.h"
28#include "llvm/Support/Program.h"
29#include "llvm/Support/raw_ostream.h"
30#include <cctype>
31#include <map>
32using namespace llvm;
33
34/// These are manifest constants used by the bitcode writer. They do not need to
35/// be kept in sync with the reader, but need to be consistent within this file.
36enum {
37  CurVersion = 0,
38
39  // VALUE_SYMTAB_BLOCK abbrev id's.
40  VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
41  VST_ENTRY_7_ABBREV,
42  VST_ENTRY_6_ABBREV,
43  VST_BBENTRY_6_ABBREV,
44
45  // CONSTANTS_BLOCK abbrev id's.
46  CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
47  CONSTANTS_INTEGER_ABBREV,
48  CONSTANTS_CE_CAST_Abbrev,
49  CONSTANTS_NULL_Abbrev,
50
51  // FUNCTION_BLOCK abbrev id's.
52  FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
53  FUNCTION_INST_BINOP_ABBREV,
54  FUNCTION_INST_BINOP_FLAGS_ABBREV,
55  FUNCTION_INST_CAST_ABBREV,
56  FUNCTION_INST_RET_VOID_ABBREV,
57  FUNCTION_INST_RET_VAL_ABBREV,
58  FUNCTION_INST_UNREACHABLE_ABBREV
59};
60
61
62static unsigned GetEncodedCastOpcode(unsigned Opcode) {
63  switch (Opcode) {
64  default: llvm_unreachable("Unknown cast instruction!");
65  case Instruction::Trunc   : return bitc::CAST_TRUNC;
66  case Instruction::ZExt    : return bitc::CAST_ZEXT;
67  case Instruction::SExt    : return bitc::CAST_SEXT;
68  case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
69  case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
70  case Instruction::UIToFP  : return bitc::CAST_UITOFP;
71  case Instruction::SIToFP  : return bitc::CAST_SITOFP;
72  case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
73  case Instruction::FPExt   : return bitc::CAST_FPEXT;
74  case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
75  case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
76  case Instruction::BitCast : return bitc::CAST_BITCAST;
77  }
78}
79
80static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
81  switch (Opcode) {
82  default: llvm_unreachable("Unknown binary instruction!");
83  case Instruction::Add:
84  case Instruction::FAdd: return bitc::BINOP_ADD;
85  case Instruction::Sub:
86  case Instruction::FSub: return bitc::BINOP_SUB;
87  case Instruction::Mul:
88  case Instruction::FMul: return bitc::BINOP_MUL;
89  case Instruction::UDiv: return bitc::BINOP_UDIV;
90  case Instruction::FDiv:
91  case Instruction::SDiv: return bitc::BINOP_SDIV;
92  case Instruction::URem: return bitc::BINOP_UREM;
93  case Instruction::FRem:
94  case Instruction::SRem: return bitc::BINOP_SREM;
95  case Instruction::Shl:  return bitc::BINOP_SHL;
96  case Instruction::LShr: return bitc::BINOP_LSHR;
97  case Instruction::AShr: return bitc::BINOP_ASHR;
98  case Instruction::And:  return bitc::BINOP_AND;
99  case Instruction::Or:   return bitc::BINOP_OR;
100  case Instruction::Xor:  return bitc::BINOP_XOR;
101  }
102}
103
104static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
105  switch (Op) {
106  default: llvm_unreachable("Unknown RMW operation!");
107  case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
108  case AtomicRMWInst::Add: return bitc::RMW_ADD;
109  case AtomicRMWInst::Sub: return bitc::RMW_SUB;
110  case AtomicRMWInst::And: return bitc::RMW_AND;
111  case AtomicRMWInst::Nand: return bitc::RMW_NAND;
112  case AtomicRMWInst::Or: return bitc::RMW_OR;
113  case AtomicRMWInst::Xor: return bitc::RMW_XOR;
114  case AtomicRMWInst::Max: return bitc::RMW_MAX;
115  case AtomicRMWInst::Min: return bitc::RMW_MIN;
116  case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
117  case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
118  }
119}
120
121static unsigned GetEncodedOrdering(AtomicOrdering Ordering) {
122  switch (Ordering) {
123  default: llvm_unreachable("Unknown atomic ordering");
124  case NotAtomic: return bitc::ORDERING_NOTATOMIC;
125  case Unordered: return bitc::ORDERING_UNORDERED;
126  case Monotonic: return bitc::ORDERING_MONOTONIC;
127  case Acquire: return bitc::ORDERING_ACQUIRE;
128  case Release: return bitc::ORDERING_RELEASE;
129  case AcquireRelease: return bitc::ORDERING_ACQREL;
130  case SequentiallyConsistent: return bitc::ORDERING_SEQCST;
131  }
132}
133
134static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) {
135  switch (SynchScope) {
136  default: llvm_unreachable("Unknown synchronization scope");
137  case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD;
138  case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD;
139  }
140}
141
142static void WriteStringRecord(unsigned Code, StringRef Str,
143                              unsigned AbbrevToUse, BitstreamWriter &Stream) {
144  SmallVector<unsigned, 64> Vals;
145
146  // Code: [strchar x N]
147  for (unsigned i = 0, e = Str.size(); i != e; ++i) {
148    if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
149      AbbrevToUse = 0;
150    Vals.push_back(Str[i]);
151  }
152
153  // Emit the finished record.
154  Stream.EmitRecord(Code, Vals, AbbrevToUse);
155}
156
157// Emit information about parameter attributes.
158static void WriteAttributeTable(const llvm_2_9_func::ValueEnumerator &VE,
159                                BitstreamWriter &Stream) {
160  const std::vector<AttributeSet> &Attrs = VE.getAttributes();
161  if (Attrs.empty()) return;
162
163  Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
164
165  SmallVector<uint64_t, 64> Record;
166  for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
167    const AttributeSet &A = Attrs[i];
168    for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) {
169      const AttributeWithIndex &PAWI = A.getSlot(i);
170      Record.push_back(PAWI.Index);
171      Record.push_back(Attribute::encodeLLVMAttributesForBitcode(PAWI.Attrs));
172#if 0
173      // FIXME: remove in LLVM 3.0
174      // Store the alignment in the bitcode as a 16-bit raw value instead of a
175      // 5-bit log2 encoded value. Shift the bits above the alignment up by
176      // 11 bits.
177      uint64_t FauxAttr = PAWI.Attrs.Raw() & 0xffff;
178      if (PAWI.Attrs & Attribute::Alignment)
179        FauxAttr |= (1ull<<16)<<
180            (((PAWI.Attrs & Attribute::Alignment).Raw()-1) >> 16);
181      FauxAttr |= (PAWI.Attrs.Raw() & (0x3FFull << 21)) << 11;
182
183      Record.push_back(FauxAttr);
184#endif
185    }
186
187    Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
188    Record.clear();
189  }
190
191  Stream.ExitBlock();
192}
193
194/// WriteTypeTable - Write out the type table for a module.
195static void WriteTypeTable(const llvm_2_9_func::ValueEnumerator &VE,
196                           BitstreamWriter &Stream) {
197  const llvm_2_9_func::ValueEnumerator::TypeList &TypeList = VE.getTypes();
198
199  Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
200  SmallVector<uint64_t, 64> TypeVals;
201
202  // Abbrev for TYPE_CODE_POINTER.
203  BitCodeAbbrev *Abbv = new BitCodeAbbrev();
204  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
205  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
206                            Log2_32_Ceil(VE.getTypes().size()+1)));
207  Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
208  unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
209
210  // Abbrev for TYPE_CODE_FUNCTION.
211  Abbv = new BitCodeAbbrev();
212  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION_OLD));
213  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
214  Abbv->Add(BitCodeAbbrevOp(0));  // FIXME: DEAD value, remove in LLVM 3.0
215  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
216  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
217                            Log2_32_Ceil(VE.getTypes().size()+1)));
218  unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
219
220  // Abbrev for TYPE_CODE_STRUCT_ANON.
221  Abbv = new BitCodeAbbrev();
222  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
223  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
224  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
225  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
226                            Log2_32_Ceil(VE.getTypes().size()+1)));
227  unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv);
228
229  // Abbrev for TYPE_CODE_STRUCT_NAME.
230  Abbv = new BitCodeAbbrev();
231  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
232  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
233  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
234  unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv);
235
236  // Abbrev for TYPE_CODE_STRUCT_NAMED.
237  Abbv = new BitCodeAbbrev();
238  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
239  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
240  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
241  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
242                            Log2_32_Ceil(VE.getTypes().size()+1)));
243  unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv);
244
245  // Abbrev for TYPE_CODE_ARRAY.
246  Abbv = new BitCodeAbbrev();
247  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
248  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
249  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
250                            Log2_32_Ceil(VE.getTypes().size()+1)));
251  unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
252
253  // Emit an entry count so the reader can reserve space.
254  TypeVals.push_back(TypeList.size());
255  Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
256  TypeVals.clear();
257
258  // Loop over all of the types, emitting each in turn.
259  for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
260    Type *T = TypeList[i];
261    int AbbrevToUse = 0;
262    unsigned Code = 0;
263
264    switch (T->getTypeID()) {
265    default: llvm_unreachable("Unknown type!");
266    case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;   break;
267    case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;  break;
268    case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE; break;
269    case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80; break;
270    case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128; break;
271    case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
272    case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;  break;
273    case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA; break;
274    case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX; break;
275    case Type::IntegerTyID:
276      // INTEGER: [width]
277      Code = bitc::TYPE_CODE_INTEGER;
278      TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
279      break;
280    case Type::PointerTyID: {
281      PointerType *PTy = cast<PointerType>(T);
282      // POINTER: [pointee type, address space]
283      Code = bitc::TYPE_CODE_POINTER;
284      TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
285      unsigned AddressSpace = PTy->getAddressSpace();
286      TypeVals.push_back(AddressSpace);
287      if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
288      break;
289    }
290    case Type::FunctionTyID: {
291      FunctionType *FT = cast<FunctionType>(T);
292      // FUNCTION: [isvararg, attrid, retty, paramty x N]
293      Code = bitc::TYPE_CODE_FUNCTION_OLD;
294      TypeVals.push_back(FT->isVarArg());
295      TypeVals.push_back(0);  // FIXME: DEAD: remove in llvm 3.0
296      TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
297      for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
298        TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
299      AbbrevToUse = FunctionAbbrev;
300      break;
301    }
302    case Type::StructTyID: {
303      StructType *ST = cast<StructType>(T);
304      // STRUCT: [ispacked, eltty x N]
305      TypeVals.push_back(ST->isPacked());
306      // Output all of the element types.
307      for (StructType::element_iterator I = ST->element_begin(),
308           E = ST->element_end(); I != E; ++I)
309        TypeVals.push_back(VE.getTypeID(*I));
310
311      if (ST->isLiteral()) {
312        Code = bitc::TYPE_CODE_STRUCT_ANON;
313        AbbrevToUse = StructAnonAbbrev;
314      } else {
315        if (ST->isOpaque()) {
316          Code = bitc::TYPE_CODE_OPAQUE;
317        } else {
318          Code = bitc::TYPE_CODE_STRUCT_NAMED;
319          AbbrevToUse = StructNamedAbbrev;
320        }
321
322        // Emit the name if it is present.
323        if (!ST->getName().empty())
324          WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
325                            StructNameAbbrev, Stream);
326      }
327      break;
328    }
329    case Type::ArrayTyID: {
330      ArrayType *AT = cast<ArrayType>(T);
331      // ARRAY: [numelts, eltty]
332      Code = bitc::TYPE_CODE_ARRAY;
333      TypeVals.push_back(AT->getNumElements());
334      TypeVals.push_back(VE.getTypeID(AT->getElementType()));
335      AbbrevToUse = ArrayAbbrev;
336      break;
337    }
338    case Type::VectorTyID: {
339      VectorType *VT = cast<VectorType>(T);
340      // VECTOR [numelts, eltty]
341      Code = bitc::TYPE_CODE_VECTOR;
342      TypeVals.push_back(VT->getNumElements());
343      TypeVals.push_back(VE.getTypeID(VT->getElementType()));
344      break;
345    }
346    }
347
348    // Emit the finished record.
349    Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
350    TypeVals.clear();
351  }
352
353  Stream.ExitBlock();
354}
355
356static unsigned getEncodedLinkage(const GlobalValue *GV) {
357  switch (GV->getLinkage()) {
358  case GlobalValue::ExternalLinkage:                 return 0;
359  case GlobalValue::WeakAnyLinkage:                  return 1;
360  case GlobalValue::AppendingLinkage:                return 2;
361  case GlobalValue::InternalLinkage:                 return 3;
362  case GlobalValue::LinkOnceAnyLinkage:              return 4;
363  case GlobalValue::DLLImportLinkage:                return 5;
364  case GlobalValue::DLLExportLinkage:                return 6;
365  case GlobalValue::ExternalWeakLinkage:             return 7;
366  case GlobalValue::CommonLinkage:                   return 8;
367  case GlobalValue::PrivateLinkage:                  return 9;
368  case GlobalValue::WeakODRLinkage:                  return 10;
369  case GlobalValue::LinkOnceODRLinkage:              return 11;
370  case GlobalValue::AvailableExternallyLinkage:      return 12;
371  case GlobalValue::LinkerPrivateLinkage:            return 13;
372  case GlobalValue::LinkerPrivateWeakLinkage:        return 14;
373  case GlobalValue::LinkOnceODRAutoHideLinkage:      return 15;
374  }
375  llvm_unreachable("Invalid linkage");
376}
377
378static unsigned getEncodedVisibility(const GlobalValue *GV) {
379  switch (GV->getVisibility()) {
380  default: llvm_unreachable("Invalid visibility!");
381  case GlobalValue::DefaultVisibility:   return 0;
382  case GlobalValue::HiddenVisibility:    return 1;
383  case GlobalValue::ProtectedVisibility: return 2;
384  }
385}
386
387// Emit top-level description of module, including target triple, inline asm,
388// descriptors for global variables, and function prototype info.
389static void WriteModuleInfo(const Module *M,
390                            const llvm_2_9_func::ValueEnumerator &VE,
391                            BitstreamWriter &Stream) {
392  // Emit various pieces of data attached to a module.
393  if (!M->getTargetTriple().empty())
394    WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
395                      0/*TODO*/, Stream);
396  if (!M->getDataLayout().empty())
397    WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
398                      0/*TODO*/, Stream);
399  if (!M->getModuleInlineAsm().empty())
400    WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
401                      0/*TODO*/, Stream);
402
403  // Emit information about sections and GC, computing how many there are. Also
404  // compute the maximum alignment value.
405  std::map<std::string, unsigned> SectionMap;
406  std::map<std::string, unsigned> GCMap;
407  unsigned MaxAlignment = 0;
408  unsigned MaxGlobalType = 0;
409  for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
410       GV != E; ++GV) {
411    MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
412    MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
413
414    if (!GV->hasSection()) continue;
415    // Give section names unique ID's.
416    unsigned &Entry = SectionMap[GV->getSection()];
417    if (Entry != 0) continue;
418    WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
419                      0/*TODO*/, Stream);
420    Entry = SectionMap.size();
421  }
422  for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
423    MaxAlignment = std::max(MaxAlignment, F->getAlignment());
424    if (F->hasSection()) {
425      // Give section names unique ID's.
426      unsigned &Entry = SectionMap[F->getSection()];
427      if (!Entry) {
428        WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
429                          0/*TODO*/, Stream);
430        Entry = SectionMap.size();
431      }
432    }
433    if (F->hasGC()) {
434      // Same for GC names.
435      unsigned &Entry = GCMap[F->getGC()];
436      if (!Entry) {
437        WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(),
438                          0/*TODO*/, Stream);
439        Entry = GCMap.size();
440      }
441    }
442  }
443
444  // Emit abbrev for globals, now that we know # sections and max alignment.
445  unsigned SimpleGVarAbbrev = 0;
446  if (!M->global_empty()) {
447    // Add an abbrev for common globals with no visibility or thread localness.
448    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
449    Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
450    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
451                              Log2_32_Ceil(MaxGlobalType+1)));
452    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
453    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
454    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));      // Linkage.
455    if (MaxAlignment == 0)                                      // Alignment.
456      Abbv->Add(BitCodeAbbrevOp(0));
457    else {
458      unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
459      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
460                               Log2_32_Ceil(MaxEncAlignment+1)));
461    }
462    if (SectionMap.empty())                                    // Section.
463      Abbv->Add(BitCodeAbbrevOp(0));
464    else
465      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
466                               Log2_32_Ceil(SectionMap.size()+1)));
467    // Don't bother emitting vis + thread local.
468    SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
469  }
470
471  // Emit the global variable information.
472  SmallVector<unsigned, 64> Vals;
473  for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
474       GV != E; ++GV) {
475    unsigned AbbrevToUse = 0;
476
477    // GLOBALVAR: [type, isconst, initid,
478    //             linkage, alignment, section, visibility, threadlocal,
479    //             unnamed_addr]
480    Vals.push_back(VE.getTypeID(GV->getType()));
481    Vals.push_back(GV->isConstant());
482    Vals.push_back(GV->isDeclaration() ? 0 :
483                   (VE.getValueID(GV->getInitializer()) + 1));
484    Vals.push_back(getEncodedLinkage(GV));
485    Vals.push_back(Log2_32(GV->getAlignment())+1);
486    Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
487    if (GV->isThreadLocal() ||
488        GV->getVisibility() != GlobalValue::DefaultVisibility ||
489        GV->hasUnnamedAddr()) {
490      Vals.push_back(getEncodedVisibility(GV));
491      Vals.push_back(GV->isThreadLocal());
492      Vals.push_back(GV->hasUnnamedAddr());
493    } else {
494      AbbrevToUse = SimpleGVarAbbrev;
495    }
496
497    Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
498    Vals.clear();
499  }
500
501  // Emit the function proto information.
502  for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
503    // FUNCTION:  [type, callingconv, isproto, paramattr,
504    //             linkage, alignment, section, visibility, gc, unnamed_addr]
505    Vals.push_back(VE.getTypeID(F->getType()));
506    Vals.push_back(F->getCallingConv());
507    Vals.push_back(F->isDeclaration());
508    Vals.push_back(getEncodedLinkage(F));
509    Vals.push_back(VE.getAttributeID(F->getAttributes()));
510    Vals.push_back(Log2_32(F->getAlignment())+1);
511    Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
512    Vals.push_back(getEncodedVisibility(F));
513    Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0);
514    Vals.push_back(F->hasUnnamedAddr());
515
516    unsigned AbbrevToUse = 0;
517    Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
518    Vals.clear();
519  }
520
521  // Emit the alias information.
522  for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
523       AI != E; ++AI) {
524    Vals.push_back(VE.getTypeID(AI->getType()));
525    Vals.push_back(VE.getValueID(AI->getAliasee()));
526    Vals.push_back(getEncodedLinkage(AI));
527    Vals.push_back(getEncodedVisibility(AI));
528    unsigned AbbrevToUse = 0;
529    Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
530    Vals.clear();
531  }
532}
533
534static uint64_t GetOptimizationFlags(const Value *V) {
535  uint64_t Flags = 0;
536
537  if (const OverflowingBinaryOperator *OBO =
538        dyn_cast<OverflowingBinaryOperator>(V)) {
539    if (OBO->hasNoSignedWrap())
540      Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
541    if (OBO->hasNoUnsignedWrap())
542      Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
543  } else if (const PossiblyExactOperator *PEO =
544               dyn_cast<PossiblyExactOperator>(V)) {
545    if (PEO->isExact())
546      Flags |= 1 << bitc::PEO_EXACT;
547  }
548
549  return Flags;
550}
551
552static void WriteMDNode(const MDNode *N,
553                        const llvm_2_9_func::ValueEnumerator &VE,
554                        BitstreamWriter &Stream,
555                        SmallVector<uint64_t, 64> &Record) {
556  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
557    if (N->getOperand(i)) {
558      Record.push_back(VE.getTypeID(N->getOperand(i)->getType()));
559      Record.push_back(VE.getValueID(N->getOperand(i)));
560    } else {
561      Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext())));
562      Record.push_back(0);
563    }
564  }
565  unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE :
566                                           bitc::METADATA_NODE;
567  Stream.EmitRecord(MDCode, Record, 0);
568  Record.clear();
569}
570
571static void WriteModuleMetadata(const Module *M,
572                                const llvm_2_9_func::ValueEnumerator &VE,
573                                BitstreamWriter &Stream) {
574  const llvm_2_9_func::ValueEnumerator::ValueList &Vals = VE.getMDValues();
575  bool StartedMetadataBlock = false;
576  unsigned MDSAbbrev = 0;
577  SmallVector<uint64_t, 64> Record;
578  for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
579
580    if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) {
581      if (!N->isFunctionLocal() || !N->getFunction()) {
582        if (!StartedMetadataBlock) {
583          Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
584          StartedMetadataBlock = true;
585        }
586        WriteMDNode(N, VE, Stream, Record);
587      }
588    } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) {
589      if (!StartedMetadataBlock)  {
590        Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
591
592        // Abbrev for METADATA_STRING.
593        BitCodeAbbrev *Abbv = new BitCodeAbbrev();
594        Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
595        Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
596        Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
597        MDSAbbrev = Stream.EmitAbbrev(Abbv);
598        StartedMetadataBlock = true;
599      }
600
601      // Code: [strchar x N]
602      Record.append(MDS->begin(), MDS->end());
603
604      // Emit the finished record.
605      Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
606      Record.clear();
607    }
608  }
609
610  // Write named metadata.
611  for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
612       E = M->named_metadata_end(); I != E; ++I) {
613    const NamedMDNode *NMD = I;
614    if (!StartedMetadataBlock)  {
615      Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
616      StartedMetadataBlock = true;
617    }
618
619    // Write name.
620    StringRef Str = NMD->getName();
621    for (unsigned i = 0, e = Str.size(); i != e; ++i)
622      Record.push_back(Str[i]);
623    Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/);
624    Record.clear();
625
626    // Write named metadata operands.
627    for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i)
628      Record.push_back(VE.getValueID(NMD->getOperand(i)));
629    Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
630    Record.clear();
631  }
632
633  if (StartedMetadataBlock)
634    Stream.ExitBlock();
635}
636
637static void WriteFunctionLocalMetadata(const Function &F,
638                                       const llvm_2_9_func::ValueEnumerator &VE,
639                                       BitstreamWriter &Stream) {
640  bool StartedMetadataBlock = false;
641  SmallVector<uint64_t, 64> Record;
642  const SmallVector<const MDNode *, 8> &Vals = VE.getFunctionLocalMDValues();
643  for (unsigned i = 0, e = Vals.size(); i != e; ++i)
644    if (const MDNode *N = Vals[i])
645      if (N->isFunctionLocal() && N->getFunction() == &F) {
646        if (!StartedMetadataBlock) {
647          Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
648          StartedMetadataBlock = true;
649        }
650        WriteMDNode(N, VE, Stream, Record);
651      }
652
653  if (StartedMetadataBlock)
654    Stream.ExitBlock();
655}
656
657static void WriteMetadataAttachment(const Function &F,
658                                    const llvm_2_9_func::ValueEnumerator &VE,
659                                    BitstreamWriter &Stream) {
660  Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
661
662  SmallVector<uint64_t, 64> Record;
663
664  // Write metadata attachments
665  // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
666  SmallVector<std::pair<unsigned, MDNode*>, 4> MDs;
667
668  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
669    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
670         I != E; ++I) {
671      MDs.clear();
672      I->getAllMetadataOtherThanDebugLoc(MDs);
673
674      // If no metadata, ignore instruction.
675      if (MDs.empty()) continue;
676
677      Record.push_back(VE.getInstructionID(I));
678
679      for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
680        Record.push_back(MDs[i].first);
681        Record.push_back(VE.getValueID(MDs[i].second));
682      }
683      Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
684      Record.clear();
685    }
686
687  Stream.ExitBlock();
688}
689
690static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
691  SmallVector<uint64_t, 64> Record;
692
693  // Write metadata kinds
694  // METADATA_KIND - [n x [id, name]]
695  SmallVector<StringRef, 4> Names;
696  M->getMDKindNames(Names);
697
698  if (Names.empty()) return;
699
700  Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
701
702  for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
703    Record.push_back(MDKindID);
704    StringRef KName = Names[MDKindID];
705    Record.append(KName.begin(), KName.end());
706
707    Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
708    Record.clear();
709  }
710
711  Stream.ExitBlock();
712}
713
714static void WriteConstants(unsigned FirstVal, unsigned LastVal,
715                           const llvm_2_9_func::ValueEnumerator &VE,
716                           BitstreamWriter &Stream, bool isGlobal) {
717  if (FirstVal == LastVal) return;
718
719  Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
720
721  unsigned AggregateAbbrev = 0;
722  unsigned String8Abbrev = 0;
723  unsigned CString7Abbrev = 0;
724  unsigned CString6Abbrev = 0;
725  // If this is a constant pool for the module, emit module-specific abbrevs.
726  if (isGlobal) {
727    // Abbrev for CST_CODE_AGGREGATE.
728    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
729    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
730    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
731    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
732    AggregateAbbrev = Stream.EmitAbbrev(Abbv);
733
734    // Abbrev for CST_CODE_STRING.
735    Abbv = new BitCodeAbbrev();
736    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
737    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
738    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
739    String8Abbrev = Stream.EmitAbbrev(Abbv);
740    // Abbrev for CST_CODE_CSTRING.
741    Abbv = new BitCodeAbbrev();
742    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
743    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
744    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
745    CString7Abbrev = Stream.EmitAbbrev(Abbv);
746    // Abbrev for CST_CODE_CSTRING.
747    Abbv = new BitCodeAbbrev();
748    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
749    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
750    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
751    CString6Abbrev = Stream.EmitAbbrev(Abbv);
752  }
753
754  SmallVector<uint64_t, 64> Record;
755
756  const llvm_2_9_func::ValueEnumerator::ValueList &Vals = VE.getValues();
757  Type *LastTy = 0;
758  for (unsigned i = FirstVal; i != LastVal; ++i) {
759    const Value *V = Vals[i].first;
760    // If we need to switch types, do so now.
761    if (V->getType() != LastTy) {
762      LastTy = V->getType();
763      Record.push_back(VE.getTypeID(LastTy));
764      Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
765                        CONSTANTS_SETTYPE_ABBREV);
766      Record.clear();
767    }
768
769    if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
770      Record.push_back(unsigned(IA->hasSideEffects()) |
771                       unsigned(IA->isAlignStack()) << 1);
772
773      // Add the asm string.
774      const std::string &AsmStr = IA->getAsmString();
775      Record.push_back(AsmStr.size());
776      for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
777        Record.push_back(AsmStr[i]);
778
779      // Add the constraint string.
780      const std::string &ConstraintStr = IA->getConstraintString();
781      Record.push_back(ConstraintStr.size());
782      for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
783        Record.push_back(ConstraintStr[i]);
784      Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
785      Record.clear();
786      continue;
787    }
788    const Constant *C = cast<Constant>(V);
789    unsigned Code = -1U;
790    unsigned AbbrevToUse = 0;
791    if (C->isNullValue()) {
792      Code = bitc::CST_CODE_NULL;
793    } else if (isa<UndefValue>(C)) {
794      Code = bitc::CST_CODE_UNDEF;
795    } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
796      if (IV->getBitWidth() <= 64) {
797        uint64_t V = IV->getSExtValue();
798        if ((int64_t)V >= 0)
799          Record.push_back(V << 1);
800        else
801          Record.push_back((-V << 1) | 1);
802        Code = bitc::CST_CODE_INTEGER;
803        AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
804      } else {                             // Wide integers, > 64 bits in size.
805        // We have an arbitrary precision integer value to write whose
806        // bit width is > 64. However, in canonical unsigned integer
807        // format it is likely that the high bits are going to be zero.
808        // So, we only write the number of active words.
809        unsigned NWords = IV->getValue().getActiveWords();
810        const uint64_t *RawWords = IV->getValue().getRawData();
811        for (unsigned i = 0; i != NWords; ++i) {
812          int64_t V = RawWords[i];
813          if (V >= 0)
814            Record.push_back(V << 1);
815          else
816            Record.push_back((-V << 1) | 1);
817        }
818        Code = bitc::CST_CODE_WIDE_INTEGER;
819      }
820    } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
821      Code = bitc::CST_CODE_FLOAT;
822      Type *Ty = CFP->getType();
823      if (Ty->isFloatTy() || Ty->isDoubleTy()) {
824        Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
825      } else if (Ty->isX86_FP80Ty()) {
826        // api needed to prevent premature destruction
827        // bits are not in the same order as a normal i80 APInt, compensate.
828        APInt api = CFP->getValueAPF().bitcastToAPInt();
829        const uint64_t *p = api.getRawData();
830        Record.push_back((p[1] << 48) | (p[0] >> 16));
831        Record.push_back(p[0] & 0xffffLL);
832      } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
833        APInt api = CFP->getValueAPF().bitcastToAPInt();
834        const uint64_t *p = api.getRawData();
835        Record.push_back(p[0]);
836        Record.push_back(p[1]);
837      } else {
838        assert (0 && "Unknown FP type!");
839      }
840    } else if (isa<ConstantDataSequential>(C) &&
841               cast<ConstantDataSequential>(C)->isString()) {
842      const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
843      // Emit constant strings specially.
844      unsigned NumElts = Str->getNumElements();
845      // If this is a null-terminated string, use the denser CSTRING encoding.
846      if (Str->isCString()) {
847        Code = bitc::CST_CODE_CSTRING;
848        --NumElts;  // Don't encode the null, which isn't allowed by char6.
849      } else {
850        Code = bitc::CST_CODE_STRING;
851        AbbrevToUse = String8Abbrev;
852      }
853      bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
854      bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
855      for (unsigned i = 0; i != NumElts; ++i) {
856        unsigned char V = Str->getElementAsInteger(i);
857        Record.push_back(V);
858        isCStr7 &= (V & 128) == 0;
859        if (isCStrChar6)
860          isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
861      }
862
863      if (isCStrChar6)
864        AbbrevToUse = CString6Abbrev;
865      else if (isCStr7)
866        AbbrevToUse = CString7Abbrev;
867    } else if (const ConstantDataSequential *CDS =
868                  dyn_cast<ConstantDataSequential>(C)) {
869      // We must replace ConstantDataSequential's representation with the
870      // legacy ConstantArray/ConstantVector/ConstantStruct version.
871      // ValueEnumerator is similarly modified to mark the appropriate
872      // Constants as used (so they are emitted).
873      Code = bitc::CST_CODE_AGGREGATE;
874      for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
875        Record.push_back(VE.getValueID(CDS->getElementAsConstant(i)));
876      AbbrevToUse = AggregateAbbrev;
877    } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
878               isa<ConstantVector>(C)) {
879      Code = bitc::CST_CODE_AGGREGATE;
880      for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
881        Record.push_back(VE.getValueID(C->getOperand(i)));
882      AbbrevToUse = AggregateAbbrev;
883    } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
884      switch (CE->getOpcode()) {
885      default:
886        if (Instruction::isCast(CE->getOpcode())) {
887          Code = bitc::CST_CODE_CE_CAST;
888          Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
889          Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
890          Record.push_back(VE.getValueID(C->getOperand(0)));
891          AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
892        } else {
893          assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
894          Code = bitc::CST_CODE_CE_BINOP;
895          Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
896          Record.push_back(VE.getValueID(C->getOperand(0)));
897          Record.push_back(VE.getValueID(C->getOperand(1)));
898          uint64_t Flags = GetOptimizationFlags(CE);
899          if (Flags != 0)
900            Record.push_back(Flags);
901        }
902        break;
903      case Instruction::GetElementPtr:
904        Code = bitc::CST_CODE_CE_GEP;
905        if (cast<GEPOperator>(C)->isInBounds())
906          Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
907        for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
908          Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
909          Record.push_back(VE.getValueID(C->getOperand(i)));
910        }
911        break;
912      case Instruction::Select:
913        Code = bitc::CST_CODE_CE_SELECT;
914        Record.push_back(VE.getValueID(C->getOperand(0)));
915        Record.push_back(VE.getValueID(C->getOperand(1)));
916        Record.push_back(VE.getValueID(C->getOperand(2)));
917        break;
918      case Instruction::ExtractElement:
919        Code = bitc::CST_CODE_CE_EXTRACTELT;
920        Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
921        Record.push_back(VE.getValueID(C->getOperand(0)));
922        Record.push_back(VE.getValueID(C->getOperand(1)));
923        break;
924      case Instruction::InsertElement:
925        Code = bitc::CST_CODE_CE_INSERTELT;
926        Record.push_back(VE.getValueID(C->getOperand(0)));
927        Record.push_back(VE.getValueID(C->getOperand(1)));
928        Record.push_back(VE.getValueID(C->getOperand(2)));
929        break;
930      case Instruction::ShuffleVector:
931        // If the return type and argument types are the same, this is a
932        // standard shufflevector instruction.  If the types are different,
933        // then the shuffle is widening or truncating the input vectors, and
934        // the argument type must also be encoded.
935        if (C->getType() == C->getOperand(0)->getType()) {
936          Code = bitc::CST_CODE_CE_SHUFFLEVEC;
937        } else {
938          Code = bitc::CST_CODE_CE_SHUFVEC_EX;
939          Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
940        }
941        Record.push_back(VE.getValueID(C->getOperand(0)));
942        Record.push_back(VE.getValueID(C->getOperand(1)));
943        Record.push_back(VE.getValueID(C->getOperand(2)));
944        break;
945      case Instruction::ICmp:
946      case Instruction::FCmp:
947        Code = bitc::CST_CODE_CE_CMP;
948        Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
949        Record.push_back(VE.getValueID(C->getOperand(0)));
950        Record.push_back(VE.getValueID(C->getOperand(1)));
951        Record.push_back(CE->getPredicate());
952        break;
953      }
954    } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
955      Code = bitc::CST_CODE_BLOCKADDRESS;
956      Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
957      Record.push_back(VE.getValueID(BA->getFunction()));
958      Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
959    } else {
960#ifndef NDEBUG
961      C->dump();
962#endif
963      llvm_unreachable("Unknown constant!");
964    }
965    Stream.EmitRecord(Code, Record, AbbrevToUse);
966    Record.clear();
967  }
968
969  Stream.ExitBlock();
970}
971
972static void WriteModuleConstants(const llvm_2_9_func::ValueEnumerator &VE,
973                                 BitstreamWriter &Stream) {
974  const llvm_2_9_func::ValueEnumerator::ValueList &Vals = VE.getValues();
975
976  // Find the first constant to emit, which is the first non-globalvalue value.
977  // We know globalvalues have been emitted by WriteModuleInfo.
978  for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
979    if (!isa<GlobalValue>(Vals[i].first)) {
980      WriteConstants(i, Vals.size(), VE, Stream, true);
981      return;
982    }
983  }
984}
985
986/// PushValueAndType - The file has to encode both the value and type id for
987/// many values, because we need to know what type to create for forward
988/// references.  However, most operands are not forward references, so this type
989/// field is not needed.
990///
991/// This function adds V's value ID to Vals.  If the value ID is higher than the
992/// instruction ID, then it is a forward reference, and it also includes the
993/// type ID.
994static bool PushValueAndType(const Value *V, unsigned InstID,
995                             SmallVector<unsigned, 64> &Vals,
996                             llvm_2_9_func::ValueEnumerator &VE) {
997  unsigned ValID = VE.getValueID(V);
998  Vals.push_back(ValID);
999  if (ValID >= InstID) {
1000    Vals.push_back(VE.getTypeID(V->getType()));
1001    return true;
1002  }
1003  return false;
1004}
1005
1006/// WriteInstruction - Emit an instruction to the specified stream.
1007static void WriteInstruction(const Instruction &I, unsigned InstID,
1008                             llvm_2_9_func::ValueEnumerator &VE,
1009                             BitstreamWriter &Stream,
1010                             SmallVector<unsigned, 64> &Vals) {
1011  unsigned Code = 0;
1012  unsigned AbbrevToUse = 0;
1013  VE.setInstructionID(&I);
1014  switch (I.getOpcode()) {
1015  default:
1016    if (Instruction::isCast(I.getOpcode())) {
1017      Code = bitc::FUNC_CODE_INST_CAST;
1018      if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1019        AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
1020      Vals.push_back(VE.getTypeID(I.getType()));
1021      Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
1022    } else {
1023      assert(isa<BinaryOperator>(I) && "Unknown instruction!");
1024      Code = bitc::FUNC_CODE_INST_BINOP;
1025      if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1026        AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
1027      Vals.push_back(VE.getValueID(I.getOperand(1)));
1028      Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
1029      uint64_t Flags = GetOptimizationFlags(&I);
1030      if (Flags != 0) {
1031        if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
1032          AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
1033        Vals.push_back(Flags);
1034      }
1035    }
1036    break;
1037
1038  case Instruction::GetElementPtr:
1039    Code = bitc::FUNC_CODE_INST_GEP;
1040    if (cast<GEPOperator>(&I)->isInBounds())
1041      Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP;
1042    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1043      PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1044    break;
1045  case Instruction::ExtractValue: {
1046    Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
1047    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1048    const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
1049    for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
1050      Vals.push_back(*i);
1051    break;
1052  }
1053  case Instruction::InsertValue: {
1054    Code = bitc::FUNC_CODE_INST_INSERTVAL;
1055    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1056    PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1057    const InsertValueInst *IVI = cast<InsertValueInst>(&I);
1058    for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
1059      Vals.push_back(*i);
1060    break;
1061  }
1062  case Instruction::Select:
1063    Code = bitc::FUNC_CODE_INST_VSELECT;
1064    PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1065    Vals.push_back(VE.getValueID(I.getOperand(2)));
1066    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1067    break;
1068  case Instruction::ExtractElement:
1069    Code = bitc::FUNC_CODE_INST_EXTRACTELT;
1070    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1071    Vals.push_back(VE.getValueID(I.getOperand(1)));
1072    break;
1073  case Instruction::InsertElement:
1074    Code = bitc::FUNC_CODE_INST_INSERTELT;
1075    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1076    Vals.push_back(VE.getValueID(I.getOperand(1)));
1077    Vals.push_back(VE.getValueID(I.getOperand(2)));
1078    break;
1079  case Instruction::ShuffleVector:
1080    Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
1081    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1082    Vals.push_back(VE.getValueID(I.getOperand(1)));
1083    Vals.push_back(VE.getValueID(I.getOperand(2)));
1084    break;
1085  case Instruction::ICmp:
1086  case Instruction::FCmp:
1087    // compare returning Int1Ty or vector of Int1Ty
1088    Code = bitc::FUNC_CODE_INST_CMP2;
1089    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1090    Vals.push_back(VE.getValueID(I.getOperand(1)));
1091    Vals.push_back(cast<CmpInst>(I).getPredicate());
1092    break;
1093
1094  case Instruction::Ret:
1095    {
1096      Code = bitc::FUNC_CODE_INST_RET;
1097      unsigned NumOperands = I.getNumOperands();
1098      if (NumOperands == 0)
1099        AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
1100      else if (NumOperands == 1) {
1101        if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1102          AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
1103      } else {
1104        for (unsigned i = 0, e = NumOperands; i != e; ++i)
1105          PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1106      }
1107    }
1108    break;
1109  case Instruction::Br:
1110    {
1111      Code = bitc::FUNC_CODE_INST_BR;
1112      BranchInst &II = cast<BranchInst>(I);
1113      Vals.push_back(VE.getValueID(II.getSuccessor(0)));
1114      if (II.isConditional()) {
1115        Vals.push_back(VE.getValueID(II.getSuccessor(1)));
1116        Vals.push_back(VE.getValueID(II.getCondition()));
1117      }
1118    }
1119    break;
1120  case Instruction::Switch:
1121    {
1122      Code = bitc::FUNC_CODE_INST_SWITCH;
1123      SwitchInst &SI = cast<SwitchInst>(I);
1124
1125      Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
1126      Vals.push_back(VE.getValueID(SI.getCondition()));
1127      Vals.push_back(VE.getValueID(SI.getDefaultDest()));
1128      for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end();
1129           i != e; ++i) {
1130        IntegersSubset& CaseRanges = i.getCaseValueEx();
1131
1132        if (CaseRanges.isSingleNumber()) {
1133          Vals.push_back(VE.getValueID(CaseRanges.getSingleNumber(0).toConstantInt()));
1134          Vals.push_back(VE.getValueID(i.getCaseSuccessor()));
1135        } else if (CaseRanges.isSingleNumbersOnly()) {
1136          for (unsigned ri = 0, rn = CaseRanges.getNumItems();
1137               ri != rn; ++ri) {
1138            Vals.push_back(VE.getValueID(CaseRanges.getSingleNumber(ri).toConstantInt()));
1139            Vals.push_back(VE.getValueID(i.getCaseSuccessor()));
1140          }
1141        } else {
1142          llvm_unreachable("Not single number?");
1143        }
1144      }
1145    }
1146    break;
1147  case Instruction::IndirectBr:
1148    Code = bitc::FUNC_CODE_INST_INDIRECTBR;
1149    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1150    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1151      Vals.push_back(VE.getValueID(I.getOperand(i)));
1152    break;
1153
1154  case Instruction::Invoke: {
1155    const InvokeInst *II = cast<InvokeInst>(&I);
1156    const Value *Callee(II->getCalledValue());
1157    PointerType *PTy = cast<PointerType>(Callee->getType());
1158    FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1159    Code = bitc::FUNC_CODE_INST_INVOKE;
1160
1161    Vals.push_back(VE.getAttributeID(II->getAttributes()));
1162    Vals.push_back(II->getCallingConv());
1163    Vals.push_back(VE.getValueID(II->getNormalDest()));
1164    Vals.push_back(VE.getValueID(II->getUnwindDest()));
1165    PushValueAndType(Callee, InstID, Vals, VE);
1166
1167    // Emit value #'s for the fixed parameters.
1168    for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1169      Vals.push_back(VE.getValueID(I.getOperand(i)));  // fixed param.
1170
1171    // Emit type/value pairs for varargs params.
1172    if (FTy->isVarArg()) {
1173      for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
1174           i != e; ++i)
1175        PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
1176    }
1177    break;
1178  }
1179  case Instruction::Resume:
1180    Code = bitc::FUNC_CODE_INST_RESUME;
1181    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1182    break;
1183  case Instruction::Unreachable:
1184    Code = bitc::FUNC_CODE_INST_UNREACHABLE;
1185    AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
1186    break;
1187
1188  case Instruction::PHI: {
1189    const PHINode &PN = cast<PHINode>(I);
1190    Code = bitc::FUNC_CODE_INST_PHI;
1191    Vals.push_back(VE.getTypeID(PN.getType()));
1192    for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1193      Vals.push_back(VE.getValueID(PN.getIncomingValue(i)));
1194      Vals.push_back(VE.getValueID(PN.getIncomingBlock(i)));
1195    }
1196    break;
1197  }
1198
1199  case Instruction::LandingPad: {
1200    const LandingPadInst &LP = cast<LandingPadInst>(I);
1201    Code = bitc::FUNC_CODE_INST_LANDINGPAD;
1202    Vals.push_back(VE.getTypeID(LP.getType()));
1203    PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE);
1204    Vals.push_back(LP.isCleanup());
1205    Vals.push_back(LP.getNumClauses());
1206    for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
1207      if (LP.isCatch(I))
1208        Vals.push_back(LandingPadInst::Catch);
1209      else
1210        Vals.push_back(LandingPadInst::Filter);
1211      PushValueAndType(LP.getClause(I), InstID, Vals, VE);
1212    }
1213    break;
1214  }
1215
1216  case Instruction::Alloca:
1217    Code = bitc::FUNC_CODE_INST_ALLOCA;
1218    Vals.push_back(VE.getTypeID(I.getType()));
1219    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1220    Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
1221    Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
1222    break;
1223
1224  case Instruction::Load:
1225    if (cast<LoadInst>(I).isAtomic()) {
1226      Code = bitc::FUNC_CODE_INST_LOADATOMIC;
1227      PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1228    } else {
1229      Code = bitc::FUNC_CODE_INST_LOAD;
1230      if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
1231        AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
1232    }
1233    Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
1234    Vals.push_back(cast<LoadInst>(I).isVolatile());
1235    if (cast<LoadInst>(I).isAtomic()) {
1236      Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering()));
1237      Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope()));
1238    }
1239    break;
1240  case Instruction::Store:
1241    if (cast<StoreInst>(I).isAtomic())
1242      Code = bitc::FUNC_CODE_INST_STOREATOMIC;
1243    else
1244      Code = bitc::FUNC_CODE_INST_STORE;
1245    PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
1246    Vals.push_back(VE.getValueID(I.getOperand(0)));       // val.
1247    Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
1248    Vals.push_back(cast<StoreInst>(I).isVolatile());
1249    if (cast<StoreInst>(I).isAtomic()) {
1250      Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering()));
1251      Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope()));
1252    }
1253    break;
1254  case Instruction::AtomicCmpXchg:
1255    Code = bitc::FUNC_CODE_INST_CMPXCHG;
1256    PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
1257    Vals.push_back(VE.getValueID(I.getOperand(1)));       // cmp.
1258    Vals.push_back(VE.getValueID(I.getOperand(2)));       // newval.
1259    Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
1260    Vals.push_back(GetEncodedOrdering(
1261                     cast<AtomicCmpXchgInst>(I).getOrdering()));
1262    Vals.push_back(GetEncodedSynchScope(
1263                     cast<AtomicCmpXchgInst>(I).getSynchScope()));
1264    break;
1265  case Instruction::AtomicRMW:
1266    Code = bitc::FUNC_CODE_INST_ATOMICRMW;
1267    PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
1268    Vals.push_back(VE.getValueID(I.getOperand(1)));       // val.
1269    Vals.push_back(GetEncodedRMWOperation(
1270                     cast<AtomicRMWInst>(I).getOperation()));
1271    Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
1272    Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
1273    Vals.push_back(GetEncodedSynchScope(
1274                     cast<AtomicRMWInst>(I).getSynchScope()));
1275    break;
1276  case Instruction::Fence:
1277    Code = bitc::FUNC_CODE_INST_FENCE;
1278    Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering()));
1279    Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope()));
1280    break;
1281  case Instruction::Call: {
1282    const CallInst &CI = cast<CallInst>(I);
1283    PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType());
1284    FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1285
1286    Code = bitc::FUNC_CODE_INST_CALL;
1287
1288    Vals.push_back(VE.getAttributeID(CI.getAttributes()));
1289    Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()));
1290    PushValueAndType(CI.getCalledValue(), InstID, Vals, VE);  // Callee
1291
1292    // Emit value #'s for the fixed parameters.
1293    for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1294      Vals.push_back(VE.getValueID(CI.getArgOperand(i)));  // fixed param.
1295
1296    // Emit type/value pairs for varargs params.
1297    if (FTy->isVarArg()) {
1298      for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
1299           i != e; ++i)
1300        PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE);  // varargs
1301    }
1302    break;
1303  }
1304  case Instruction::VAArg:
1305    Code = bitc::FUNC_CODE_INST_VAARG;
1306    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
1307    Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
1308    Vals.push_back(VE.getTypeID(I.getType())); // restype.
1309    break;
1310  }
1311
1312  Stream.EmitRecord(Code, Vals, AbbrevToUse);
1313  Vals.clear();
1314}
1315
1316// Emit names for globals/functions etc.
1317static void WriteValueSymbolTable(const ValueSymbolTable &VST,
1318                                  const llvm_2_9_func::ValueEnumerator &VE,
1319                                  BitstreamWriter &Stream) {
1320  if (VST.empty()) return;
1321  Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
1322
1323  // FIXME: Set up the abbrev, we know how many values there are!
1324  // FIXME: We know if the type names can use 7-bit ascii.
1325  SmallVector<unsigned, 64> NameVals;
1326
1327  for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
1328       SI != SE; ++SI) {
1329
1330    const ValueName &Name = *SI;
1331
1332    // Figure out the encoding to use for the name.
1333    bool is7Bit = true;
1334    bool isChar6 = true;
1335    for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
1336         C != E; ++C) {
1337      if (isChar6)
1338        isChar6 = BitCodeAbbrevOp::isChar6(*C);
1339      if ((unsigned char)*C & 128) {
1340        is7Bit = false;
1341        break;  // don't bother scanning the rest.
1342      }
1343    }
1344
1345    unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
1346
1347    // VST_ENTRY:   [valueid, namechar x N]
1348    // VST_BBENTRY: [bbid, namechar x N]
1349    unsigned Code;
1350    if (isa<BasicBlock>(SI->getValue())) {
1351      Code = bitc::VST_CODE_BBENTRY;
1352      if (isChar6)
1353        AbbrevToUse = VST_BBENTRY_6_ABBREV;
1354    } else {
1355      Code = bitc::VST_CODE_ENTRY;
1356      if (isChar6)
1357        AbbrevToUse = VST_ENTRY_6_ABBREV;
1358      else if (is7Bit)
1359        AbbrevToUse = VST_ENTRY_7_ABBREV;
1360    }
1361
1362    NameVals.push_back(VE.getValueID(SI->getValue()));
1363    for (const char *P = Name.getKeyData(),
1364         *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
1365      NameVals.push_back((unsigned char)*P);
1366
1367    // Emit the finished record.
1368    Stream.EmitRecord(Code, NameVals, AbbrevToUse);
1369    NameVals.clear();
1370  }
1371  Stream.ExitBlock();
1372}
1373
1374/// WriteFunction - Emit a function body to the module stream.
1375static void WriteFunction(const Function &F, llvm_2_9_func::ValueEnumerator &VE,
1376                          BitstreamWriter &Stream) {
1377  Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
1378  VE.incorporateFunction(F);
1379
1380  SmallVector<unsigned, 64> Vals;
1381
1382  // Emit the number of basic blocks, so the reader can create them ahead of
1383  // time.
1384  Vals.push_back(VE.getBasicBlocks().size());
1385  Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
1386  Vals.clear();
1387
1388  // If there are function-local constants, emit them now.
1389  unsigned CstStart, CstEnd;
1390  VE.getFunctionConstantRange(CstStart, CstEnd);
1391  WriteConstants(CstStart, CstEnd, VE, Stream, false);
1392
1393  // If there is function-local metadata, emit it now.
1394  WriteFunctionLocalMetadata(F, VE, Stream);
1395
1396  // Keep a running idea of what the instruction ID is.
1397  unsigned InstID = CstEnd;
1398
1399  bool NeedsMetadataAttachment = false;
1400
1401  DebugLoc LastDL;
1402
1403  // Finally, emit all the instructions, in order.
1404  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1405    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1406         I != E; ++I) {
1407      WriteInstruction(*I, InstID, VE, Stream, Vals);
1408
1409      if (!I->getType()->isVoidTy())
1410        ++InstID;
1411
1412      // If the instruction has metadata, write a metadata attachment later.
1413      NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
1414
1415      // If the instruction has a debug location, emit it.
1416      DebugLoc DL = I->getDebugLoc();
1417      if (DL.isUnknown()) {
1418        // nothing todo.
1419      } else if (DL == LastDL) {
1420        // Just repeat the same debug loc as last time.
1421        Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
1422      } else {
1423        MDNode *Scope, *IA;
1424        DL.getScopeAndInlinedAt(Scope, IA, I->getContext());
1425
1426        Vals.push_back(DL.getLine());
1427        Vals.push_back(DL.getCol());
1428        Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0);
1429        Vals.push_back(IA ? VE.getValueID(IA)+1 : 0);
1430        Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
1431        Vals.clear();
1432
1433        LastDL = DL;
1434      }
1435    }
1436
1437  // Emit names for all the instructions etc.
1438  WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
1439
1440  if (NeedsMetadataAttachment)
1441    WriteMetadataAttachment(F, VE, Stream);
1442  VE.purgeFunction();
1443  Stream.ExitBlock();
1444}
1445
1446// Emit blockinfo, which defines the standard abbreviations etc.
1447static void WriteBlockInfo(const llvm_2_9_func::ValueEnumerator &VE,
1448                           BitstreamWriter &Stream) {
1449  // We only want to emit block info records for blocks that have multiple
1450  // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.  Other
1451  // blocks can defined their abbrevs inline.
1452  Stream.EnterBlockInfoBlock(2);
1453
1454  { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1455    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1456    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1457    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1458    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1459    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1460    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1461                                   Abbv) != VST_ENTRY_8_ABBREV)
1462      llvm_unreachable("Unexpected abbrev ordering!");
1463  }
1464
1465  { // 7-bit fixed width VST_ENTRY strings.
1466    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1467    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1468    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1469    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1470    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1471    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1472                                   Abbv) != VST_ENTRY_7_ABBREV)
1473      llvm_unreachable("Unexpected abbrev ordering!");
1474  }
1475  { // 6-bit char6 VST_ENTRY strings.
1476    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1477    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1478    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1479    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1480    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1481    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1482                                   Abbv) != VST_ENTRY_6_ABBREV)
1483      llvm_unreachable("Unexpected abbrev ordering!");
1484  }
1485  { // 6-bit char6 VST_BBENTRY strings.
1486    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1487    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1488    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1489    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1490    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1491    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1492                                   Abbv) != VST_BBENTRY_6_ABBREV)
1493      llvm_unreachable("Unexpected abbrev ordering!");
1494  }
1495
1496
1497
1498  { // SETTYPE abbrev for CONSTANTS_BLOCK.
1499    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1500    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1501    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1502                              Log2_32_Ceil(VE.getTypes().size()+1)));
1503    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1504                                   Abbv) != CONSTANTS_SETTYPE_ABBREV)
1505      llvm_unreachable("Unexpected abbrev ordering!");
1506  }
1507
1508  { // INTEGER abbrev for CONSTANTS_BLOCK.
1509    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1510    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1511    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1512    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1513                                   Abbv) != CONSTANTS_INTEGER_ABBREV)
1514      llvm_unreachable("Unexpected abbrev ordering!");
1515  }
1516
1517  { // CE_CAST abbrev for CONSTANTS_BLOCK.
1518    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1519    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1520    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
1521    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
1522                              Log2_32_Ceil(VE.getTypes().size()+1)));
1523    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
1524
1525    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1526                                   Abbv) != CONSTANTS_CE_CAST_Abbrev)
1527      llvm_unreachable("Unexpected abbrev ordering!");
1528  }
1529  { // NULL abbrev for CONSTANTS_BLOCK.
1530    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1531    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1532    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1533                                   Abbv) != CONSTANTS_NULL_Abbrev)
1534      llvm_unreachable("Unexpected abbrev ordering!");
1535  }
1536
1537  // FIXME: This should only use space for first class types!
1538
1539  { // INST_LOAD abbrev for FUNCTION_BLOCK.
1540    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1541    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1542    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1543    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1544    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1545    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1546                                   Abbv) != FUNCTION_INST_LOAD_ABBREV)
1547      llvm_unreachable("Unexpected abbrev ordering!");
1548  }
1549  { // INST_BINOP abbrev for FUNCTION_BLOCK.
1550    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1551    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1552    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1553    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1554    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1555    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1556                                   Abbv) != FUNCTION_INST_BINOP_ABBREV)
1557      llvm_unreachable("Unexpected abbrev ordering!");
1558  }
1559  { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
1560    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1561    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1562    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1563    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1564    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1565    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
1566    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1567                                   Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
1568      llvm_unreachable("Unexpected abbrev ordering!");
1569  }
1570  { // INST_CAST abbrev for FUNCTION_BLOCK.
1571    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1572    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1573    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
1574    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
1575                              Log2_32_Ceil(VE.getTypes().size()+1)));
1576    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
1577    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1578                                   Abbv) != FUNCTION_INST_CAST_ABBREV)
1579      llvm_unreachable("Unexpected abbrev ordering!");
1580  }
1581
1582  { // INST_RET abbrev for FUNCTION_BLOCK.
1583    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1584    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1585    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1586                                   Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1587      llvm_unreachable("Unexpected abbrev ordering!");
1588  }
1589  { // INST_RET abbrev for FUNCTION_BLOCK.
1590    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1591    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1592    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1593    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1594                                   Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1595      llvm_unreachable("Unexpected abbrev ordering!");
1596  }
1597  { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1598    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1599    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1600    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1601                                   Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1602      llvm_unreachable("Unexpected abbrev ordering!");
1603  }
1604
1605  Stream.ExitBlock();
1606}
1607
1608
1609/// WriteModule - Emit the specified module to the bitstream.
1610static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1611  Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1612
1613  // Emit the version number if it is non-zero.
1614  if (CurVersion) {
1615    SmallVector<unsigned, 1> Vals;
1616    Vals.push_back(CurVersion);
1617    Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1618  }
1619
1620  // Analyze the module, enumerating globals, functions, etc.
1621  llvm_2_9_func::ValueEnumerator VE(M);
1622
1623  // Emit blockinfo, which defines the standard abbreviations etc.
1624  WriteBlockInfo(VE, Stream);
1625
1626  // Emit information about parameter attributes.
1627  WriteAttributeTable(VE, Stream);
1628
1629  // Emit information describing all of the types in the module.
1630  WriteTypeTable(VE, Stream);
1631
1632  // Emit top-level description of module, including target triple, inline asm,
1633  // descriptors for global variables, and function prototype info.
1634  WriteModuleInfo(M, VE, Stream);
1635
1636  // Emit constants.
1637  WriteModuleConstants(VE, Stream);
1638
1639  // Emit metadata.
1640  WriteModuleMetadata(M, VE, Stream);
1641
1642  // Emit function bodies.
1643  for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F)
1644    if (!F->isDeclaration())
1645      WriteFunction(*F, VE, Stream);
1646
1647  // Emit metadata.
1648  WriteModuleMetadataStore(M, Stream);
1649
1650  // Emit names for globals/functions etc.
1651  WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1652
1653  Stream.ExitBlock();
1654}
1655
1656/// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
1657/// header and trailer to make it compatible with the system archiver.  To do
1658/// this we emit the following header, and then emit a trailer that pads the
1659/// file out to be a multiple of 16 bytes.
1660///
1661/// struct bc_header {
1662///   uint32_t Magic;         // 0x0B17C0DE
1663///   uint32_t Version;       // Version, currently always 0.
1664///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
1665///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
1666///   uint32_t CPUType;       // CPU specifier.
1667///   ... potentially more later ...
1668/// };
1669enum {
1670  DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
1671  DarwinBCHeaderSize = 5*4
1672};
1673
1674static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
1675                               uint32_t &Position) {
1676  Buffer[Position + 0] = (unsigned char) (Value >>  0);
1677  Buffer[Position + 1] = (unsigned char) (Value >>  8);
1678  Buffer[Position + 2] = (unsigned char) (Value >> 16);
1679  Buffer[Position + 3] = (unsigned char) (Value >> 24);
1680  Position += 4;
1681}
1682
1683static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
1684                                         const Triple &TT) {
1685  unsigned CPUType = ~0U;
1686
1687  // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
1688  // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
1689  // number from /usr/include/mach/machine.h.  It is ok to reproduce the
1690  // specific constants here because they are implicitly part of the Darwin ABI.
1691  enum {
1692    DARWIN_CPU_ARCH_ABI64      = 0x01000000,
1693    DARWIN_CPU_TYPE_X86        = 7,
1694    DARWIN_CPU_TYPE_ARM        = 12,
1695    DARWIN_CPU_TYPE_POWERPC    = 18
1696  };
1697
1698  Triple::ArchType Arch = TT.getArch();
1699  if (Arch == Triple::x86_64)
1700    CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
1701  else if (Arch == Triple::x86)
1702    CPUType = DARWIN_CPU_TYPE_X86;
1703  else if (Arch == Triple::ppc)
1704    CPUType = DARWIN_CPU_TYPE_POWERPC;
1705  else if (Arch == Triple::ppc64)
1706    CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
1707  else if (Arch == Triple::arm || Arch == Triple::thumb)
1708    CPUType = DARWIN_CPU_TYPE_ARM;
1709
1710  // Traditional Bitcode starts after header.
1711  assert(Buffer.size() >= DarwinBCHeaderSize &&
1712         "Expected header size to be reserved");
1713  unsigned BCOffset = DarwinBCHeaderSize;
1714  unsigned BCSize = Buffer.size()-DarwinBCHeaderSize;
1715
1716  // Write the magic and version.
1717  unsigned Position = 0;
1718  WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position);
1719  WriteInt32ToBuffer(0          , Buffer, Position); // Version.
1720  WriteInt32ToBuffer(BCOffset   , Buffer, Position);
1721  WriteInt32ToBuffer(BCSize     , Buffer, Position);
1722  WriteInt32ToBuffer(CPUType    , Buffer, Position);
1723
1724  // If the file is not a multiple of 16 bytes, insert dummy padding.
1725  while (Buffer.size() & 15)
1726    Buffer.push_back(0);
1727}
1728
1729/// WriteBitcodeToFile - Write the specified module to the specified output
1730/// stream.
1731void llvm_2_9_func::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
1732  SmallVector<char, 1024> Buffer;
1733  Buffer.reserve(256*1024);
1734
1735  // If this is darwin or another generic macho target, reserve space for the
1736  // header.
1737  Triple TT(M->getTargetTriple());
1738  if (TT.isOSDarwin())
1739    Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0);
1740
1741  // Emit the module into the buffer.
1742  {
1743    BitstreamWriter Stream(Buffer);
1744
1745    // Emit the file header.
1746    Stream.Emit((unsigned)'B', 8);
1747    Stream.Emit((unsigned)'C', 8);
1748    Stream.Emit(0x0, 4);
1749    Stream.Emit(0xC, 4);
1750    Stream.Emit(0xE, 4);
1751    Stream.Emit(0xD, 4);
1752
1753    // Emit the module.
1754    WriteModule(M, Stream);
1755  }
1756
1757  if (TT.isOSDarwin())
1758    EmitDarwinBCHeaderAndTrailer(Buffer, TT);
1759
1760  // Write the generated bitstream to "Out".
1761  Out.write((char*)&Buffer.front(), Buffer.size());
1762}
1763