Conv2D.cpp revision 27e9be3904b034e422ee9b6ab70b35ea994d2b39
1/* 2 * Copyright (C) 2017 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17#include "Operations.h" 18#include "OperationsUtils.h" 19 20#include "internal/optimized/optimized_ops.h" 21 22namespace android { 23namespace nn { 24 25// If possible we will use this static buffer for the tensor. 26static constexpr int kStaticBufferSize = 1605632; 27static char static_scratch_buffer[kStaticBufferSize]; 28 29bool convPrepare(const Shape& input, 30 const Shape& filter, 31 const Shape& bias, 32 int32_t padding, 33 int32_t stride_width, int32_t stride_height, 34 Shape* output) { 35 DCHECK_EQ(getNumberOfDimensions(input), 4); 36 DCHECK_EQ(getNumberOfDimensions(filter), 4); 37 DCHECK_EQ(getNumberOfDimensions(bias), 1); 38 39 DCHECK_EQ(getSizeOfDimension(filter, 3), getSizeOfDimension(bias, 0)); 40 DCHECK_EQ(stride_width, stride_height); 41 42 uint32_t channels_out = getSizeOfDimension(filter, 0); 43 uint32_t width = getSizeOfDimension(input, 2); 44 uint32_t height = getSizeOfDimension(input, 1); 45 uint32_t filterWidth = getSizeOfDimension(filter, 2); 46 uint32_t filterHeight = getSizeOfDimension(filter, 1); 47 uint32_t batches = getSizeOfDimension(input, 0); 48 49 // Matching GetWindowedOutputSize in TensorFlow. 50 // TODO: changing this to explicit padding. 51 auto computeOutSize = [padding](uint32_t imageSize, uint32_t filterSize, 52 uint32_t stride) -> int { 53 return padding == kPaddingSame 54 ? (imageSize + stride - 1) / stride 55 : padding == kPaddingValid 56 ? (imageSize - filterSize + stride) / stride 57 : 0; 58 }; 59 60 uint32_t outWidth = computeOutSize(width, filterWidth, stride_width); 61 uint32_t outHeight = computeOutSize(height, filterHeight, stride_height); 62 63 output->type = input.type; 64 output->dimensions = {batches, outHeight, outWidth, channels_out}; 65 return true; 66} 67 68#define ANDROID_NN_CONV_PARAMETERS(Type) \ 69 uint32_t height = getSizeOfDimension(inputShape, 1); \ 70 uint32_t width = getSizeOfDimension(inputShape, 2); \ 71 uint32_t filterHeight = getSizeOfDimension(filterShape, 1); \ 72 uint32_t filterWidth = getSizeOfDimension(filterShape, 2); \ 73 uint32_t outHeight = getSizeOfDimension(outputShape, 1); \ 74 uint32_t outWidth = getSizeOfDimension(outputShape, 2); \ 75 uint32_t inDepth = getSizeOfDimension(inputShape, 3); \ 76 \ 77 uint32_t paddingHeight = \ 78 ComputePadding(stride_height, height, filterHeight, outHeight); \ 79 uint32_t paddingWidth = \ 80 ComputePadding(stride_width, width, filterWidth, outWidth); \ 81 \ 82 Dims<4> im2colDim; \ 83 im2colDim.sizes[3] = (int)getSizeOfDimension(outputShape, 0); \ 84 im2colDim.sizes[2] = (int)getSizeOfDimension(outputShape, 1); \ 85 im2colDim.sizes[1] = (int)getSizeOfDimension(outputShape, 2); \ 86 im2colDim.sizes[0] = (int)inDepth * filterHeight * filterWidth; \ 87 \ 88 im2colDim.strides[0] = 1; \ 89 for (int i=1; i<4; i++) { \ 90 im2colDim.strides[i] = im2colDim.strides[i-1] * im2colDim.sizes[i-1]; \ 91 } \ 92 \ 93 Type* im2colData = nullptr; \ 94 int im2colByteSize = sizeof(Type); \ 95 for (int i=0; i<4; i++) { \ 96 im2colByteSize *= im2colDim.sizes[i]; \ 97 } \ 98 if (im2colByteSize <= kStaticBufferSize) { \ 99 im2colData = reinterpret_cast<Type *>(static_scratch_buffer); \ 100 } else { \ 101 im2colData = new (std::nothrow) Type[im2colByteSize / sizeof(Type)]; \ 102 } 103 104 105bool convFloat32(const float* inputData, const Shape& inputShape, 106 const float* filterData, const Shape& filterShape, 107 const float* biasData, const Shape& biasShape, 108 int32_t padding, int32_t stride_width, int32_t stride_height, int32_t activation, 109 float* outputData, const Shape& outputShape) { 110 111 ANDROID_NN_CONV_PARAMETERS(float) 112 113 #define ANDROID_NN_CONV(activation) \ 114 optimized_ops::Conv<FusedActivationFunctionType::activation>( \ 115 inputData, convertShapeToDims(inputShape), \ 116 filterData, convertShapeToDims(filterShape), \ 117 biasData, convertShapeToDims(biasShape), \ 118 stride_width, paddingWidth, paddingHeight, \ 119 outputData, convertShapeToDims(outputShape), \ 120 im2colData, im2colDim) 121 122 if (activation == kActivationNone) { 123 ANDROID_NN_CONV(kNone); 124 } 125 if (activation == kActivationRelu) { 126 ANDROID_NN_CONV(kRelu); 127 } 128 if (activation == kActivationRelu6) { 129 ANDROID_NN_CONV(kRelu6); 130 } 131 132 #undef ANDROID_NN_CONV 133 134 if (im2colByteSize > kStaticBufferSize) { 135 delete[] im2colData; 136 } 137 return true; 138} 139 140bool convQuant8(const uint8_t* inputData, const Shape& inputShape, 141 const uint8_t* filterData, const Shape& filterShape, 142 const int32_t* biasData, const Shape& biasShape, 143 int32_t padding, int32_t stride_width, int32_t stride_height, int32_t activation, 144 uint8_t* outputData, const Shape& outputShape) { 145 146 ANDROID_NN_CONV_PARAMETERS(uint8_t) 147 148 float real_multiplier = 0.0; 149 int32_t output_multiplier = 0; 150 int32_t output_shift = 0; 151 int32_t output_activation_min = 0; 152 int32_t output_activation_max = 0; 153 154 GetQuantizedConvolutionMultipler(inputShape, filterShape, biasShape, 155 outputShape, &real_multiplier); 156 QuantizeMultiplierSmallerThanOne(real_multiplier, &output_multiplier, 157 &output_shift); 158 CalculateActivationRangeUint8(activation, outputShape, 159 &output_activation_min, 160 &output_activation_max); 161 162 static gemmlowp::GemmContext gemm_context; 163 164 int32_t inputOffset = -inputShape.offset; 165 int32_t filterOffset = -filterShape.offset; 166 int32_t outputOffset = outputShape.offset; 167 #define ANDROID_NN_CONV(activation) \ 168 optimized_ops::Conv<FusedActivationFunctionType::activation>( \ 169 inputData, convertShapeToDims(inputShape), inputOffset, \ 170 filterData, convertShapeToDims(filterShape), filterOffset, \ 171 biasData, convertShapeToDims(biasShape), \ 172 stride_width, paddingWidth, paddingHeight, \ 173 outputOffset, output_multiplier, output_shift, \ 174 output_activation_min, output_activation_max, \ 175 outputData, convertShapeToDims(outputShape), \ 176 im2colData, im2colDim, &gemm_context) 177 178 if (activation == kActivationNone) { 179 ANDROID_NN_CONV(kNone); 180 } 181 if (activation == kActivationRelu) { 182 ANDROID_NN_CONV(kRelu); 183 } 184 if (activation == kActivationRelu6) { 185 ANDROID_NN_CONV(kRelu6); 186 } 187 188 #undef ANDROID_NN_CONV 189 190 if (im2colByteSize > kStaticBufferSize) { 191 delete[] im2colData; 192 } 193 return true; 194} 195 196#undef ANDROID_NN_CONV_PARAMETERS 197} // namespace nn 198} // namespace android 199