DispSync.cpp revision 629b98781823db12879d65b5d8480616093b175b
1/*
2 * Copyright (C) 2013 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define ATRACE_TAG ATRACE_TAG_GRAPHICS
18
19// This is needed for stdint.h to define INT64_MAX in C++
20#define __STDC_LIMIT_MACROS
21
22#include <math.h>
23
24#include <cutils/log.h>
25
26#include <ui/Fence.h>
27
28#include <utils/String8.h>
29#include <utils/Thread.h>
30#include <utils/Trace.h>
31#include <utils/Vector.h>
32
33#include "DispSync.h"
34#include "EventLog/EventLog.h"
35
36namespace android {
37
38// Setting this to true enables verbose tracing that can be used to debug
39// vsync event model or phase issues.
40static const bool traceDetailedInfo = false;
41
42// This is the threshold used to determine when hardware vsync events are
43// needed to re-synchronize the software vsync model with the hardware.  The
44// error metric used is the mean of the squared difference between each
45// present time and the nearest software-predicted vsync.
46static const nsecs_t errorThreshold = 160000000000;
47
48// This works around the lack of support for the sync framework on some
49// devices.
50#ifdef RUNNING_WITHOUT_SYNC_FRAMEWORK
51static const bool runningWithoutSyncFramework = true;
52#else
53static const bool runningWithoutSyncFramework = false;
54#endif
55
56// This is the offset from the present fence timestamps to the corresponding
57// vsync event.
58static const int64_t presentTimeOffset = PRESENT_TIME_OFFSET_FROM_VSYNC_NS;
59
60class DispSyncThread: public Thread {
61public:
62
63    DispSyncThread():
64            mStop(false),
65            mPeriod(0),
66            mPhase(0),
67            mWakeupLatency(0) {
68    }
69
70    virtual ~DispSyncThread() {}
71
72    void updateModel(nsecs_t period, nsecs_t phase) {
73        Mutex::Autolock lock(mMutex);
74        mPeriod = period;
75        mPhase = phase;
76        mCond.signal();
77    }
78
79    void stop() {
80        Mutex::Autolock lock(mMutex);
81        mStop = true;
82        mCond.signal();
83    }
84
85    virtual bool threadLoop() {
86        status_t err;
87        nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
88        nsecs_t nextEventTime = 0;
89
90        while (true) {
91            Vector<CallbackInvocation> callbackInvocations;
92
93            nsecs_t targetTime = 0;
94
95            { // Scope for lock
96                Mutex::Autolock lock(mMutex);
97
98                if (mStop) {
99                    return false;
100                }
101
102                if (mPeriod == 0) {
103                    err = mCond.wait(mMutex);
104                    if (err != NO_ERROR) {
105                        ALOGE("error waiting for new events: %s (%d)",
106                                strerror(-err), err);
107                        return false;
108                    }
109                    continue;
110                }
111
112                nextEventTime = computeNextEventTimeLocked(now);
113                targetTime = nextEventTime;
114
115                bool isWakeup = false;
116
117                if (now < targetTime) {
118                    err = mCond.waitRelative(mMutex, targetTime - now);
119
120                    if (err == TIMED_OUT) {
121                        isWakeup = true;
122                    } else if (err != NO_ERROR) {
123                        ALOGE("error waiting for next event: %s (%d)",
124                                strerror(-err), err);
125                        return false;
126                    }
127                }
128
129                now = systemTime(SYSTEM_TIME_MONOTONIC);
130
131                if (isWakeup) {
132                    mWakeupLatency = ((mWakeupLatency * 63) +
133                            (now - targetTime)) / 64;
134                    if (mWakeupLatency > 500000) {
135                        // Don't correct by more than 500 us
136                        mWakeupLatency = 500000;
137                    }
138                    if (traceDetailedInfo) {
139                        ATRACE_INT64("DispSync:WakeupLat", now - nextEventTime);
140                        ATRACE_INT64("DispSync:AvgWakeupLat", mWakeupLatency);
141                    }
142                }
143
144                callbackInvocations = gatherCallbackInvocationsLocked(now);
145            }
146
147            if (callbackInvocations.size() > 0) {
148                fireCallbackInvocations(callbackInvocations);
149            }
150        }
151
152        return false;
153    }
154
155    status_t addEventListener(nsecs_t phase, const sp<DispSync::Callback>& callback) {
156        Mutex::Autolock lock(mMutex);
157
158        for (size_t i = 0; i < mEventListeners.size(); i++) {
159            if (mEventListeners[i].mCallback == callback) {
160                return BAD_VALUE;
161            }
162        }
163
164        EventListener listener;
165        listener.mPhase = phase;
166        listener.mCallback = callback;
167
168        // We want to allow the firstmost future event to fire without
169        // allowing any past events to fire.  Because
170        // computeListenerNextEventTimeLocked filters out events within a half
171        // a period of the last event time, we need to initialize the last
172        // event time to a half a period in the past.
173        listener.mLastEventTime = systemTime(SYSTEM_TIME_MONOTONIC) - mPeriod / 2;
174
175        mEventListeners.push(listener);
176
177        mCond.signal();
178
179        return NO_ERROR;
180    }
181
182    status_t removeEventListener(const sp<DispSync::Callback>& callback) {
183        Mutex::Autolock lock(mMutex);
184
185        for (size_t i = 0; i < mEventListeners.size(); i++) {
186            if (mEventListeners[i].mCallback == callback) {
187                mEventListeners.removeAt(i);
188                mCond.signal();
189                return NO_ERROR;
190            }
191        }
192
193        return BAD_VALUE;
194    }
195
196    // This method is only here to handle the runningWithoutSyncFramework
197    // case.
198    bool hasAnyEventListeners() {
199        Mutex::Autolock lock(mMutex);
200        return !mEventListeners.empty();
201    }
202
203private:
204
205    struct EventListener {
206        nsecs_t mPhase;
207        nsecs_t mLastEventTime;
208        sp<DispSync::Callback> mCallback;
209    };
210
211    struct CallbackInvocation {
212        sp<DispSync::Callback> mCallback;
213        nsecs_t mEventTime;
214    };
215
216    nsecs_t computeNextEventTimeLocked(nsecs_t now) {
217        nsecs_t nextEventTime = INT64_MAX;
218        for (size_t i = 0; i < mEventListeners.size(); i++) {
219            nsecs_t t = computeListenerNextEventTimeLocked(mEventListeners[i],
220                    now);
221
222            if (t < nextEventTime) {
223                nextEventTime = t;
224            }
225        }
226
227        return nextEventTime;
228    }
229
230    Vector<CallbackInvocation> gatherCallbackInvocationsLocked(nsecs_t now) {
231        Vector<CallbackInvocation> callbackInvocations;
232        nsecs_t ref = now - mPeriod;
233
234        for (size_t i = 0; i < mEventListeners.size(); i++) {
235            nsecs_t t = computeListenerNextEventTimeLocked(mEventListeners[i],
236                    ref);
237
238            if (t < now) {
239                CallbackInvocation ci;
240                ci.mCallback = mEventListeners[i].mCallback;
241                ci.mEventTime = t;
242                callbackInvocations.push(ci);
243                mEventListeners.editItemAt(i).mLastEventTime = t;
244            }
245        }
246
247        return callbackInvocations;
248    }
249
250    nsecs_t computeListenerNextEventTimeLocked(const EventListener& listener,
251            nsecs_t ref) {
252
253        nsecs_t lastEventTime = listener.mLastEventTime;
254        if (ref < lastEventTime) {
255            ref = lastEventTime;
256        }
257
258        nsecs_t phase = mPhase + listener.mPhase;
259        nsecs_t t = (((ref - phase) / mPeriod) + 1) * mPeriod + phase;
260
261        if (t - listener.mLastEventTime < mPeriod / 2) {
262            t += mPeriod;
263        }
264
265        return t;
266    }
267
268    void fireCallbackInvocations(const Vector<CallbackInvocation>& callbacks) {
269        for (size_t i = 0; i < callbacks.size(); i++) {
270            callbacks[i].mCallback->onDispSyncEvent(callbacks[i].mEventTime);
271        }
272    }
273
274    bool mStop;
275
276    nsecs_t mPeriod;
277    nsecs_t mPhase;
278    nsecs_t mWakeupLatency;
279
280    Vector<EventListener> mEventListeners;
281
282    Mutex mMutex;
283    Condition mCond;
284};
285
286class ZeroPhaseTracer : public DispSync::Callback {
287public:
288    ZeroPhaseTracer() : mParity(false) {}
289
290    virtual void onDispSyncEvent(nsecs_t when) {
291        mParity = !mParity;
292        ATRACE_INT("ZERO_PHASE_VSYNC", mParity ? 1 : 0);
293    }
294
295private:
296    bool mParity;
297};
298
299DispSync::DispSync() {
300    mThread = new DispSyncThread();
301    mThread->run("DispSync", PRIORITY_URGENT_DISPLAY + PRIORITY_MORE_FAVORABLE);
302
303    reset();
304    beginResync();
305
306    if (traceDetailedInfo) {
307        // If runningWithoutSyncFramework is true then the ZeroPhaseTracer
308        // would prevent HW vsync event from ever being turned off.
309        // Furthermore the zero-phase tracing is not needed because any time
310        // there is an event registered we will turn on the HW vsync events.
311        if (!runningWithoutSyncFramework) {
312            addEventListener(0, new ZeroPhaseTracer());
313        }
314    }
315}
316
317DispSync::~DispSync() {}
318
319void DispSync::reset() {
320    Mutex::Autolock lock(mMutex);
321
322    mNumResyncSamples = 0;
323    mFirstResyncSample = 0;
324    mNumResyncSamplesSincePresent = 0;
325    resetErrorLocked();
326}
327
328bool DispSync::addPresentFence(const sp<Fence>& fence) {
329    Mutex::Autolock lock(mMutex);
330
331    mPresentFences[mPresentSampleOffset] = fence;
332    mPresentTimes[mPresentSampleOffset] = 0;
333    mPresentSampleOffset = (mPresentSampleOffset + 1) % NUM_PRESENT_SAMPLES;
334    mNumResyncSamplesSincePresent = 0;
335
336    for (size_t i = 0; i < NUM_PRESENT_SAMPLES; i++) {
337        const sp<Fence>& f(mPresentFences[i]);
338        if (f != NULL) {
339            nsecs_t t = f->getSignalTime();
340            if (t < INT64_MAX) {
341                mPresentFences[i].clear();
342                mPresentTimes[i] = t + presentTimeOffset;
343            }
344        }
345    }
346
347    updateErrorLocked();
348
349    return mPeriod == 0 || mError > errorThreshold;
350}
351
352void DispSync::beginResync() {
353    Mutex::Autolock lock(mMutex);
354
355    mNumResyncSamples = 0;
356}
357
358bool DispSync::addResyncSample(nsecs_t timestamp) {
359    Mutex::Autolock lock(mMutex);
360
361    size_t idx = (mFirstResyncSample + mNumResyncSamples) % MAX_RESYNC_SAMPLES;
362    mResyncSamples[idx] = timestamp;
363
364    if (mNumResyncSamples < MAX_RESYNC_SAMPLES) {
365        mNumResyncSamples++;
366    } else {
367        mFirstResyncSample = (mFirstResyncSample + 1) % MAX_RESYNC_SAMPLES;
368    }
369
370    updateModelLocked();
371
372    if (mNumResyncSamplesSincePresent++ > MAX_RESYNC_SAMPLES_WITHOUT_PRESENT) {
373        resetErrorLocked();
374    }
375
376    if (runningWithoutSyncFramework) {
377        // If we don't have the sync framework we will never have
378        // addPresentFence called.  This means we have no way to know whether
379        // or not we're synchronized with the HW vsyncs, so we just request
380        // that the HW vsync events be turned on whenever we need to generate
381        // SW vsync events.
382        return mThread->hasAnyEventListeners();
383    }
384
385    return mPeriod == 0 || mError > errorThreshold;
386}
387
388void DispSync::endResync() {
389}
390
391status_t DispSync::addEventListener(nsecs_t phase,
392        const sp<Callback>& callback) {
393
394    Mutex::Autolock lock(mMutex);
395    return mThread->addEventListener(phase, callback);
396}
397
398status_t DispSync::removeEventListener(const sp<Callback>& callback) {
399    Mutex::Autolock lock(mMutex);
400    return mThread->removeEventListener(callback);
401}
402
403void DispSync::setPeriod(nsecs_t period) {
404    Mutex::Autolock lock(mMutex);
405    mPeriod = period;
406    mPhase = 0;
407    mThread->updateModel(mPeriod, mPhase);
408}
409
410void DispSync::updateModelLocked() {
411    if (mNumResyncSamples >= MIN_RESYNC_SAMPLES_FOR_UPDATE) {
412        nsecs_t durationSum = 0;
413        for (size_t i = 1; i < mNumResyncSamples; i++) {
414            size_t idx = (mFirstResyncSample + i) % MAX_RESYNC_SAMPLES;
415            size_t prev = (idx + MAX_RESYNC_SAMPLES - 1) % MAX_RESYNC_SAMPLES;
416            durationSum += mResyncSamples[idx] - mResyncSamples[prev];
417        }
418
419        mPeriod = durationSum / (mNumResyncSamples - 1);
420
421        double sampleAvgX = 0;
422        double sampleAvgY = 0;
423        double scale = 2.0 * M_PI / double(mPeriod);
424        for (size_t i = 0; i < mNumResyncSamples; i++) {
425            size_t idx = (mFirstResyncSample + i) % MAX_RESYNC_SAMPLES;
426            nsecs_t sample = mResyncSamples[idx];
427            double samplePhase = double(sample % mPeriod) * scale;
428            sampleAvgX += cos(samplePhase);
429            sampleAvgY += sin(samplePhase);
430        }
431
432        sampleAvgX /= double(mNumResyncSamples);
433        sampleAvgY /= double(mNumResyncSamples);
434
435        mPhase = nsecs_t(atan2(sampleAvgY, sampleAvgX) / scale);
436
437        if (mPhase < 0) {
438            mPhase += mPeriod;
439        }
440
441        if (traceDetailedInfo) {
442            ATRACE_INT64("DispSync:Period", mPeriod);
443            ATRACE_INT64("DispSync:Phase", mPhase);
444        }
445
446        mThread->updateModel(mPeriod, mPhase);
447    }
448}
449
450void DispSync::updateErrorLocked() {
451    if (mPeriod == 0) {
452        return;
453    }
454
455    int numErrSamples = 0;
456    nsecs_t sqErrSum = 0;
457
458    for (size_t i = 0; i < NUM_PRESENT_SAMPLES; i++) {
459        nsecs_t sample = mPresentTimes[i];
460        if (sample > mPhase) {
461            nsecs_t sampleErr = (sample - mPhase) % mPeriod;
462            if (sampleErr > mPeriod / 2) {
463                sampleErr -= mPeriod;
464            }
465            sqErrSum += sampleErr * sampleErr;
466            numErrSamples++;
467        }
468    }
469
470    if (numErrSamples > 0) {
471        mError = sqErrSum / numErrSamples;
472    } else {
473        mError = 0;
474    }
475
476    if (traceDetailedInfo) {
477        ATRACE_INT64("DispSync:Error", mError);
478    }
479}
480
481void DispSync::resetErrorLocked() {
482    mPresentSampleOffset = 0;
483    mError = 0;
484    for (size_t i = 0; i < NUM_PRESENT_SAMPLES; i++) {
485        mPresentFences[i].clear();
486        mPresentTimes[i] = 0;
487    }
488}
489
490} // namespace android
491