DispSync.cpp revision 78ce418ea76033a19663dcc0905e0390d21e5baf
1d5e4923d04122f81300fa68fb07d64ede28fd44dDmitry Shmidt/*
2d5e4923d04122f81300fa68fb07d64ede28fd44dDmitry Shmidt * Copyright (C) 2013 The Android Open Source Project
3d5e4923d04122f81300fa68fb07d64ede28fd44dDmitry Shmidt *
4d5e4923d04122f81300fa68fb07d64ede28fd44dDmitry Shmidt * Licensed under the Apache License, Version 2.0 (the "License");
5d5e4923d04122f81300fa68fb07d64ede28fd44dDmitry Shmidt * you may not use this file except in compliance with the License.
6d5e4923d04122f81300fa68fb07d64ede28fd44dDmitry Shmidt * You may obtain a copy of the License at
7d5e4923d04122f81300fa68fb07d64ede28fd44dDmitry Shmidt *
8d5e4923d04122f81300fa68fb07d64ede28fd44dDmitry Shmidt *      http://www.apache.org/licenses/LICENSE-2.0
9d5e4923d04122f81300fa68fb07d64ede28fd44dDmitry Shmidt *
10d5e4923d04122f81300fa68fb07d64ede28fd44dDmitry Shmidt * Unless required by applicable law or agreed to in writing, software
11d5e4923d04122f81300fa68fb07d64ede28fd44dDmitry Shmidt * distributed under the License is distributed on an "AS IS" BASIS,
12d5e4923d04122f81300fa68fb07d64ede28fd44dDmitry Shmidt * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13d5e4923d04122f81300fa68fb07d64ede28fd44dDmitry Shmidt * See the License for the specific language governing permissions and
14d5e4923d04122f81300fa68fb07d64ede28fd44dDmitry Shmidt * limitations under the License.
15d5e4923d04122f81300fa68fb07d64ede28fd44dDmitry Shmidt */
16d5e4923d04122f81300fa68fb07d64ede28fd44dDmitry Shmidt
17d5e4923d04122f81300fa68fb07d64ede28fd44dDmitry Shmidt#define ATRACE_TAG ATRACE_TAG_GRAPHICS
18d5e4923d04122f81300fa68fb07d64ede28fd44dDmitry Shmidt//#define LOG_NDEBUG 0
19d5e4923d04122f81300fa68fb07d64ede28fd44dDmitry Shmidt
20d5e4923d04122f81300fa68fb07d64ede28fd44dDmitry Shmidt// This is needed for stdint.h to define INT64_MAX in C++
21d5e4923d04122f81300fa68fb07d64ede28fd44dDmitry Shmidt#define __STDC_LIMIT_MACROS
22d5e4923d04122f81300fa68fb07d64ede28fd44dDmitry Shmidt
23d5e4923d04122f81300fa68fb07d64ede28fd44dDmitry Shmidt#include <math.h>
24d5e4923d04122f81300fa68fb07d64ede28fd44dDmitry Shmidt
25d5e4923d04122f81300fa68fb07d64ede28fd44dDmitry Shmidt#include <algorithm>
26d5e4923d04122f81300fa68fb07d64ede28fd44dDmitry Shmidt
27d5e4923d04122f81300fa68fb07d64ede28fd44dDmitry Shmidt#include <log/log.h>
28d5e4923d04122f81300fa68fb07d64ede28fd44dDmitry Shmidt#include <utils/String8.h>
29d5e4923d04122f81300fa68fb07d64ede28fd44dDmitry Shmidt#include <utils/Thread.h>
30d5e4923d04122f81300fa68fb07d64ede28fd44dDmitry Shmidt#include <utils/Trace.h>
31d5e4923d04122f81300fa68fb07d64ede28fd44dDmitry Shmidt#include <utils/Vector.h>
32d5e4923d04122f81300fa68fb07d64ede28fd44dDmitry Shmidt
33d5e4923d04122f81300fa68fb07d64ede28fd44dDmitry Shmidt#include <ui/FenceTime.h>
34d5e4923d04122f81300fa68fb07d64ede28fd44dDmitry Shmidt
35d5e4923d04122f81300fa68fb07d64ede28fd44dDmitry Shmidt#include "DispSync.h"
36d5e4923d04122f81300fa68fb07d64ede28fd44dDmitry Shmidt#include "EventLog/EventLog.h"
37d5e4923d04122f81300fa68fb07d64ede28fd44dDmitry Shmidt#include "SurfaceFlinger.h"
38d5e4923d04122f81300fa68fb07d64ede28fd44dDmitry Shmidt
39d5e4923d04122f81300fa68fb07d64ede28fd44dDmitry Shmidtusing std::max;
40d5e4923d04122f81300fa68fb07d64ede28fd44dDmitry Shmidtusing std::min;
41d5e4923d04122f81300fa68fb07d64ede28fd44dDmitry Shmidt
42d5e4923d04122f81300fa68fb07d64ede28fd44dDmitry Shmidtnamespace android {
43d5e4923d04122f81300fa68fb07d64ede28fd44dDmitry Shmidt
44d5e4923d04122f81300fa68fb07d64ede28fd44dDmitry Shmidt// Setting this to true enables verbose tracing that can be used to debug
45d5e4923d04122f81300fa68fb07d64ede28fd44dDmitry Shmidt// vsync event model or phase issues.
46d5e4923d04122f81300fa68fb07d64ede28fd44dDmitry Shmidtstatic const bool kTraceDetailedInfo = false;
47d5e4923d04122f81300fa68fb07d64ede28fd44dDmitry Shmidt
48d5e4923d04122f81300fa68fb07d64ede28fd44dDmitry Shmidt// Setting this to true adds a zero-phase tracer for correlating with hardware
49d5e4923d04122f81300fa68fb07d64ede28fd44dDmitry Shmidt// vsync events
50d5e4923d04122f81300fa68fb07d64ede28fd44dDmitry Shmidtstatic const bool kEnableZeroPhaseTracer = false;
51d5e4923d04122f81300fa68fb07d64ede28fd44dDmitry Shmidt
52d5e4923d04122f81300fa68fb07d64ede28fd44dDmitry Shmidt// This is the threshold used to determine when hardware vsync events are
53d5e4923d04122f81300fa68fb07d64ede28fd44dDmitry Shmidt// needed to re-synchronize the software vsync model with the hardware.  The
54d5e4923d04122f81300fa68fb07d64ede28fd44dDmitry Shmidt// error metric used is the mean of the squared difference between each
55// present time and the nearest software-predicted vsync.
56static const nsecs_t kErrorThreshold = 160000000000; // 400 usec squared
57
58#undef LOG_TAG
59#define LOG_TAG "DispSyncThread"
60class DispSyncThread : public Thread {
61public:
62    explicit DispSyncThread(const char* name)
63          : mName(name),
64            mStop(false),
65            mPeriod(0),
66            mPhase(0),
67            mReferenceTime(0),
68            mWakeupLatency(0),
69            mFrameNumber(0) {}
70
71    virtual ~DispSyncThread() {}
72
73    void updateModel(nsecs_t period, nsecs_t phase, nsecs_t referenceTime) {
74        if (kTraceDetailedInfo) ATRACE_CALL();
75        Mutex::Autolock lock(mMutex);
76        mPeriod = period;
77        mPhase = phase;
78        mReferenceTime = referenceTime;
79        ALOGV("[%s] updateModel: mPeriod = %" PRId64 ", mPhase = %" PRId64
80              " mReferenceTime = %" PRId64,
81              mName, ns2us(mPeriod), ns2us(mPhase), ns2us(mReferenceTime));
82        mCond.signal();
83    }
84
85    void stop() {
86        if (kTraceDetailedInfo) ATRACE_CALL();
87        Mutex::Autolock lock(mMutex);
88        mStop = true;
89        mCond.signal();
90    }
91
92    virtual bool threadLoop() {
93        status_t err;
94        nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
95
96        while (true) {
97            Vector<CallbackInvocation> callbackInvocations;
98
99            nsecs_t targetTime = 0;
100
101            { // Scope for lock
102                Mutex::Autolock lock(mMutex);
103
104                if (kTraceDetailedInfo) {
105                    ATRACE_INT64("DispSync:Frame", mFrameNumber);
106                }
107                ALOGV("[%s] Frame %" PRId64, mName, mFrameNumber);
108                ++mFrameNumber;
109
110                if (mStop) {
111                    return false;
112                }
113
114                if (mPeriod == 0) {
115                    err = mCond.wait(mMutex);
116                    if (err != NO_ERROR) {
117                        ALOGE("error waiting for new events: %s (%d)", strerror(-err), err);
118                        return false;
119                    }
120                    continue;
121                }
122
123                targetTime = computeNextEventTimeLocked(now);
124
125                bool isWakeup = false;
126
127                if (now < targetTime) {
128                    if (kTraceDetailedInfo) ATRACE_NAME("DispSync waiting");
129
130                    if (targetTime == INT64_MAX) {
131                        ALOGV("[%s] Waiting forever", mName);
132                        err = mCond.wait(mMutex);
133                    } else {
134                        ALOGV("[%s] Waiting until %" PRId64, mName, ns2us(targetTime));
135                        err = mCond.waitRelative(mMutex, targetTime - now);
136                    }
137
138                    if (err == TIMED_OUT) {
139                        isWakeup = true;
140                    } else if (err != NO_ERROR) {
141                        ALOGE("error waiting for next event: %s (%d)", strerror(-err), err);
142                        return false;
143                    }
144                }
145
146                now = systemTime(SYSTEM_TIME_MONOTONIC);
147
148                // Don't correct by more than 1.5 ms
149                static const nsecs_t kMaxWakeupLatency = us2ns(1500);
150
151                if (isWakeup) {
152                    mWakeupLatency = ((mWakeupLatency * 63) + (now - targetTime)) / 64;
153                    mWakeupLatency = min(mWakeupLatency, kMaxWakeupLatency);
154                    if (kTraceDetailedInfo) {
155                        ATRACE_INT64("DispSync:WakeupLat", now - targetTime);
156                        ATRACE_INT64("DispSync:AvgWakeupLat", mWakeupLatency);
157                    }
158                }
159
160                callbackInvocations = gatherCallbackInvocationsLocked(now);
161            }
162
163            if (callbackInvocations.size() > 0) {
164                fireCallbackInvocations(callbackInvocations);
165            }
166        }
167
168        return false;
169    }
170
171    status_t addEventListener(const char* name, nsecs_t phase,
172                              const sp<DispSync::Callback>& callback) {
173        if (kTraceDetailedInfo) ATRACE_CALL();
174        Mutex::Autolock lock(mMutex);
175
176        for (size_t i = 0; i < mEventListeners.size(); i++) {
177            if (mEventListeners[i].mCallback == callback) {
178                return BAD_VALUE;
179            }
180        }
181
182        EventListener listener;
183        listener.mName = name;
184        listener.mPhase = phase;
185        listener.mCallback = callback;
186
187        // We want to allow the firstmost future event to fire without
188        // allowing any past events to fire
189        listener.mLastEventTime = systemTime() - mPeriod / 2 + mPhase - mWakeupLatency;
190
191        mEventListeners.push(listener);
192
193        mCond.signal();
194
195        return NO_ERROR;
196    }
197
198    status_t removeEventListener(const sp<DispSync::Callback>& callback) {
199        if (kTraceDetailedInfo) ATRACE_CALL();
200        Mutex::Autolock lock(mMutex);
201
202        for (size_t i = 0; i < mEventListeners.size(); i++) {
203            if (mEventListeners[i].mCallback == callback) {
204                mEventListeners.removeAt(i);
205                mCond.signal();
206                return NO_ERROR;
207            }
208        }
209
210        return BAD_VALUE;
211    }
212
213    // This method is only here to handle the !SurfaceFlinger::hasSyncFramework
214    // case.
215    bool hasAnyEventListeners() {
216        if (kTraceDetailedInfo) ATRACE_CALL();
217        Mutex::Autolock lock(mMutex);
218        return !mEventListeners.empty();
219    }
220
221private:
222    struct EventListener {
223        const char* mName;
224        nsecs_t mPhase;
225        nsecs_t mLastEventTime;
226        sp<DispSync::Callback> mCallback;
227    };
228
229    struct CallbackInvocation {
230        sp<DispSync::Callback> mCallback;
231        nsecs_t mEventTime;
232    };
233
234    nsecs_t computeNextEventTimeLocked(nsecs_t now) {
235        if (kTraceDetailedInfo) ATRACE_CALL();
236        ALOGV("[%s] computeNextEventTimeLocked", mName);
237        nsecs_t nextEventTime = INT64_MAX;
238        for (size_t i = 0; i < mEventListeners.size(); i++) {
239            nsecs_t t = computeListenerNextEventTimeLocked(mEventListeners[i], now);
240
241            if (t < nextEventTime) {
242                nextEventTime = t;
243            }
244        }
245
246        ALOGV("[%s] nextEventTime = %" PRId64, mName, ns2us(nextEventTime));
247        return nextEventTime;
248    }
249
250    Vector<CallbackInvocation> gatherCallbackInvocationsLocked(nsecs_t now) {
251        if (kTraceDetailedInfo) ATRACE_CALL();
252        ALOGV("[%s] gatherCallbackInvocationsLocked @ %" PRId64, mName, ns2us(now));
253
254        Vector<CallbackInvocation> callbackInvocations;
255        nsecs_t onePeriodAgo = now - mPeriod;
256
257        for (size_t i = 0; i < mEventListeners.size(); i++) {
258            nsecs_t t = computeListenerNextEventTimeLocked(mEventListeners[i], onePeriodAgo);
259
260            if (t < now) {
261                CallbackInvocation ci;
262                ci.mCallback = mEventListeners[i].mCallback;
263                ci.mEventTime = t;
264                ALOGV("[%s] [%s] Preparing to fire", mName, mEventListeners[i].mName);
265                callbackInvocations.push(ci);
266                mEventListeners.editItemAt(i).mLastEventTime = t;
267            }
268        }
269
270        return callbackInvocations;
271    }
272
273    nsecs_t computeListenerNextEventTimeLocked(const EventListener& listener, nsecs_t baseTime) {
274        if (kTraceDetailedInfo) ATRACE_CALL();
275        ALOGV("[%s] [%s] computeListenerNextEventTimeLocked(%" PRId64 ")", mName, listener.mName,
276              ns2us(baseTime));
277
278        nsecs_t lastEventTime = listener.mLastEventTime + mWakeupLatency;
279        ALOGV("[%s] lastEventTime: %" PRId64, mName, ns2us(lastEventTime));
280        if (baseTime < lastEventTime) {
281            baseTime = lastEventTime;
282            ALOGV("[%s] Clamping baseTime to lastEventTime -> %" PRId64, mName, ns2us(baseTime));
283        }
284
285        baseTime -= mReferenceTime;
286        ALOGV("[%s] Relative baseTime = %" PRId64, mName, ns2us(baseTime));
287        nsecs_t phase = mPhase + listener.mPhase;
288        ALOGV("[%s] Phase = %" PRId64, mName, ns2us(phase));
289        baseTime -= phase;
290        ALOGV("[%s] baseTime - phase = %" PRId64, mName, ns2us(baseTime));
291
292        // If our previous time is before the reference (because the reference
293        // has since been updated), the division by mPeriod will truncate
294        // towards zero instead of computing the floor. Since in all cases
295        // before the reference we want the next time to be effectively now, we
296        // set baseTime to -mPeriod so that numPeriods will be -1.
297        // When we add 1 and the phase, we will be at the correct event time for
298        // this period.
299        if (baseTime < 0) {
300            ALOGV("[%s] Correcting negative baseTime", mName);
301            baseTime = -mPeriod;
302        }
303
304        nsecs_t numPeriods = baseTime / mPeriod;
305        ALOGV("[%s] numPeriods = %" PRId64, mName, numPeriods);
306        nsecs_t t = (numPeriods + 1) * mPeriod + phase;
307        ALOGV("[%s] t = %" PRId64, mName, ns2us(t));
308        t += mReferenceTime;
309        ALOGV("[%s] Absolute t = %" PRId64, mName, ns2us(t));
310
311        // Check that it's been slightly more than half a period since the last
312        // event so that we don't accidentally fall into double-rate vsyncs
313        if (t - listener.mLastEventTime < (3 * mPeriod / 5)) {
314            t += mPeriod;
315            ALOGV("[%s] Modifying t -> %" PRId64, mName, ns2us(t));
316        }
317
318        t -= mWakeupLatency;
319        ALOGV("[%s] Corrected for wakeup latency -> %" PRId64, mName, ns2us(t));
320
321        return t;
322    }
323
324    void fireCallbackInvocations(const Vector<CallbackInvocation>& callbacks) {
325        if (kTraceDetailedInfo) ATRACE_CALL();
326        for (size_t i = 0; i < callbacks.size(); i++) {
327            callbacks[i].mCallback->onDispSyncEvent(callbacks[i].mEventTime);
328        }
329    }
330
331    const char* const mName;
332
333    bool mStop;
334
335    nsecs_t mPeriod;
336    nsecs_t mPhase;
337    nsecs_t mReferenceTime;
338    nsecs_t mWakeupLatency;
339
340    int64_t mFrameNumber;
341
342    Vector<EventListener> mEventListeners;
343
344    Mutex mMutex;
345    Condition mCond;
346};
347
348#undef LOG_TAG
349#define LOG_TAG "DispSync"
350
351class ZeroPhaseTracer : public DispSync::Callback {
352public:
353    ZeroPhaseTracer() : mParity(false) {}
354
355    virtual void onDispSyncEvent(nsecs_t /*when*/) {
356        mParity = !mParity;
357        ATRACE_INT("ZERO_PHASE_VSYNC", mParity ? 1 : 0);
358    }
359
360private:
361    bool mParity;
362};
363
364DispSync::DispSync(const char* name)
365      : mName(name), mRefreshSkipCount(0), mThread(new DispSyncThread(name)) {}
366
367DispSync::~DispSync() {}
368
369void DispSync::init(bool hasSyncFramework, int64_t dispSyncPresentTimeOffset) {
370    mIgnorePresentFences = !hasSyncFramework;
371    mPresentTimeOffset = dispSyncPresentTimeOffset;
372    mThread->run("DispSync", PRIORITY_URGENT_DISPLAY + PRIORITY_MORE_FAVORABLE);
373
374    // set DispSync to SCHED_FIFO to minimize jitter
375    struct sched_param param = {0};
376    param.sched_priority = 2;
377    if (sched_setscheduler(mThread->getTid(), SCHED_FIFO, &param) != 0) {
378        ALOGE("Couldn't set SCHED_FIFO for DispSyncThread");
379    }
380
381    reset();
382    beginResync();
383
384    if (kTraceDetailedInfo) {
385        // If we're not getting present fences then the ZeroPhaseTracer
386        // would prevent HW vsync event from ever being turned off.
387        // Even if we're just ignoring the fences, the zero-phase tracing is
388        // not needed because any time there is an event registered we will
389        // turn on the HW vsync events.
390        if (!mIgnorePresentFences && kEnableZeroPhaseTracer) {
391            addEventListener("ZeroPhaseTracer", 0, new ZeroPhaseTracer());
392        }
393    }
394}
395
396void DispSync::reset() {
397    Mutex::Autolock lock(mMutex);
398
399    mPhase = 0;
400    mReferenceTime = 0;
401    mModelUpdated = false;
402    mNumResyncSamples = 0;
403    mFirstResyncSample = 0;
404    mNumResyncSamplesSincePresent = 0;
405    resetErrorLocked();
406}
407
408bool DispSync::addPresentFence(const std::shared_ptr<FenceTime>& fenceTime) {
409    Mutex::Autolock lock(mMutex);
410
411    mPresentFences[mPresentSampleOffset] = fenceTime;
412    mPresentSampleOffset = (mPresentSampleOffset + 1) % NUM_PRESENT_SAMPLES;
413    mNumResyncSamplesSincePresent = 0;
414
415    updateErrorLocked();
416
417    return !mModelUpdated || mError > kErrorThreshold;
418}
419
420void DispSync::beginResync() {
421    Mutex::Autolock lock(mMutex);
422    ALOGV("[%s] beginResync", mName);
423    mModelUpdated = false;
424    mNumResyncSamples = 0;
425}
426
427bool DispSync::addResyncSample(nsecs_t timestamp) {
428    Mutex::Autolock lock(mMutex);
429
430    ALOGV("[%s] addResyncSample(%" PRId64 ")", mName, ns2us(timestamp));
431
432    size_t idx = (mFirstResyncSample + mNumResyncSamples) % MAX_RESYNC_SAMPLES;
433    mResyncSamples[idx] = timestamp;
434    if (mNumResyncSamples == 0) {
435        mPhase = 0;
436        mReferenceTime = timestamp;
437        ALOGV("[%s] First resync sample: mPeriod = %" PRId64 ", mPhase = 0, "
438              "mReferenceTime = %" PRId64,
439              mName, ns2us(mPeriod), ns2us(mReferenceTime));
440        mThread->updateModel(mPeriod, mPhase, mReferenceTime);
441    }
442
443    if (mNumResyncSamples < MAX_RESYNC_SAMPLES) {
444        mNumResyncSamples++;
445    } else {
446        mFirstResyncSample = (mFirstResyncSample + 1) % MAX_RESYNC_SAMPLES;
447    }
448
449    updateModelLocked();
450
451    if (mNumResyncSamplesSincePresent++ > MAX_RESYNC_SAMPLES_WITHOUT_PRESENT) {
452        resetErrorLocked();
453    }
454
455    if (mIgnorePresentFences) {
456        // If we don't have the sync framework we will never have
457        // addPresentFence called.  This means we have no way to know whether
458        // or not we're synchronized with the HW vsyncs, so we just request
459        // that the HW vsync events be turned on whenever we need to generate
460        // SW vsync events.
461        return mThread->hasAnyEventListeners();
462    }
463
464    // Check against kErrorThreshold / 2 to add some hysteresis before having to
465    // resync again
466    bool modelLocked = mModelUpdated && mError < (kErrorThreshold / 2);
467    ALOGV("[%s] addResyncSample returning %s", mName, modelLocked ? "locked" : "unlocked");
468    return !modelLocked;
469}
470
471void DispSync::endResync() {}
472
473status_t DispSync::addEventListener(const char* name, nsecs_t phase, const sp<Callback>& callback) {
474    Mutex::Autolock lock(mMutex);
475    return mThread->addEventListener(name, phase, callback);
476}
477
478void DispSync::setRefreshSkipCount(int count) {
479    Mutex::Autolock lock(mMutex);
480    ALOGD("setRefreshSkipCount(%d)", count);
481    mRefreshSkipCount = count;
482    updateModelLocked();
483}
484
485status_t DispSync::removeEventListener(const sp<Callback>& callback) {
486    Mutex::Autolock lock(mMutex);
487    return mThread->removeEventListener(callback);
488}
489
490void DispSync::setPeriod(nsecs_t period) {
491    Mutex::Autolock lock(mMutex);
492    mPeriod = period;
493    mPhase = 0;
494    mReferenceTime = 0;
495    mThread->updateModel(mPeriod, mPhase, mReferenceTime);
496}
497
498nsecs_t DispSync::getPeriod() {
499    // lock mutex as mPeriod changes multiple times in updateModelLocked
500    Mutex::Autolock lock(mMutex);
501    return mPeriod;
502}
503
504void DispSync::updateModelLocked() {
505    ALOGV("[%s] updateModelLocked %zu", mName, mNumResyncSamples);
506    if (mNumResyncSamples >= MIN_RESYNC_SAMPLES_FOR_UPDATE) {
507        ALOGV("[%s] Computing...", mName);
508        nsecs_t durationSum = 0;
509        nsecs_t minDuration = INT64_MAX;
510        nsecs_t maxDuration = 0;
511        for (size_t i = 1; i < mNumResyncSamples; i++) {
512            size_t idx = (mFirstResyncSample + i) % MAX_RESYNC_SAMPLES;
513            size_t prev = (idx + MAX_RESYNC_SAMPLES - 1) % MAX_RESYNC_SAMPLES;
514            nsecs_t duration = mResyncSamples[idx] - mResyncSamples[prev];
515            durationSum += duration;
516            minDuration = min(minDuration, duration);
517            maxDuration = max(maxDuration, duration);
518        }
519
520        // Exclude the min and max from the average
521        durationSum -= minDuration + maxDuration;
522        mPeriod = durationSum / (mNumResyncSamples - 3);
523
524        ALOGV("[%s] mPeriod = %" PRId64, mName, ns2us(mPeriod));
525
526        double sampleAvgX = 0;
527        double sampleAvgY = 0;
528        double scale = 2.0 * M_PI / double(mPeriod);
529        // Intentionally skip the first sample
530        for (size_t i = 1; i < mNumResyncSamples; i++) {
531            size_t idx = (mFirstResyncSample + i) % MAX_RESYNC_SAMPLES;
532            nsecs_t sample = mResyncSamples[idx] - mReferenceTime;
533            double samplePhase = double(sample % mPeriod) * scale;
534            sampleAvgX += cos(samplePhase);
535            sampleAvgY += sin(samplePhase);
536        }
537
538        sampleAvgX /= double(mNumResyncSamples - 1);
539        sampleAvgY /= double(mNumResyncSamples - 1);
540
541        mPhase = nsecs_t(atan2(sampleAvgY, sampleAvgX) / scale);
542
543        ALOGV("[%s] mPhase = %" PRId64, mName, ns2us(mPhase));
544
545        if (mPhase < -(mPeriod / 2)) {
546            mPhase += mPeriod;
547            ALOGV("[%s] Adjusting mPhase -> %" PRId64, mName, ns2us(mPhase));
548        }
549
550        if (kTraceDetailedInfo) {
551            ATRACE_INT64("DispSync:Period", mPeriod);
552            ATRACE_INT64("DispSync:Phase", mPhase + mPeriod / 2);
553        }
554
555        // Artificially inflate the period if requested.
556        mPeriod += mPeriod * mRefreshSkipCount;
557
558        mThread->updateModel(mPeriod, mPhase, mReferenceTime);
559        mModelUpdated = true;
560    }
561}
562
563void DispSync::updateErrorLocked() {
564    if (!mModelUpdated) {
565        return;
566    }
567
568    // Need to compare present fences against the un-adjusted refresh period,
569    // since they might arrive between two events.
570    nsecs_t period = mPeriod / (1 + mRefreshSkipCount);
571
572    int numErrSamples = 0;
573    nsecs_t sqErrSum = 0;
574
575    for (size_t i = 0; i < NUM_PRESENT_SAMPLES; i++) {
576        // Only check for the cached value of signal time to avoid unecessary
577        // syscalls. It is the responsibility of the DispSync owner to
578        // call getSignalTime() periodically so the cache is updated when the
579        // fence signals.
580        nsecs_t time = mPresentFences[i]->getCachedSignalTime();
581        if (time == Fence::SIGNAL_TIME_PENDING || time == Fence::SIGNAL_TIME_INVALID) {
582            continue;
583        }
584
585        nsecs_t sample = time - mReferenceTime;
586        if (sample <= mPhase) {
587            continue;
588        }
589
590        nsecs_t sampleErr = (sample - mPhase) % period;
591        if (sampleErr > period / 2) {
592            sampleErr -= period;
593        }
594        sqErrSum += sampleErr * sampleErr;
595        numErrSamples++;
596    }
597
598    if (numErrSamples > 0) {
599        mError = sqErrSum / numErrSamples;
600        mZeroErrSamplesCount = 0;
601    } else {
602        mError = 0;
603        // Use mod ACCEPTABLE_ZERO_ERR_SAMPLES_COUNT to avoid log spam.
604        mZeroErrSamplesCount++;
605        ALOGE_IF((mZeroErrSamplesCount % ACCEPTABLE_ZERO_ERR_SAMPLES_COUNT) == 0,
606                 "No present times for model error.");
607    }
608
609    if (kTraceDetailedInfo) {
610        ATRACE_INT64("DispSync:Error", mError);
611    }
612}
613
614void DispSync::resetErrorLocked() {
615    mPresentSampleOffset = 0;
616    mError = 0;
617    mZeroErrSamplesCount = 0;
618    for (size_t i = 0; i < NUM_PRESENT_SAMPLES; i++) {
619        mPresentFences[i] = FenceTime::NO_FENCE;
620    }
621}
622
623nsecs_t DispSync::computeNextRefresh(int periodOffset) const {
624    Mutex::Autolock lock(mMutex);
625    nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
626    nsecs_t phase = mReferenceTime + mPhase;
627    return (((now - phase) / mPeriod) + periodOffset + 1) * mPeriod + phase;
628}
629
630void DispSync::dump(String8& result) const {
631    Mutex::Autolock lock(mMutex);
632    result.appendFormat("present fences are %s\n", mIgnorePresentFences ? "ignored" : "used");
633    result.appendFormat("mPeriod: %" PRId64 " ns (%.3f fps; skipCount=%d)\n", mPeriod,
634                        1000000000.0 / mPeriod, mRefreshSkipCount);
635    result.appendFormat("mPhase: %" PRId64 " ns\n", mPhase);
636    result.appendFormat("mError: %" PRId64 " ns (sqrt=%.1f)\n", mError, sqrt(mError));
637    result.appendFormat("mNumResyncSamplesSincePresent: %d (limit %d)\n",
638                        mNumResyncSamplesSincePresent, MAX_RESYNC_SAMPLES_WITHOUT_PRESENT);
639    result.appendFormat("mNumResyncSamples: %zd (max %d)\n", mNumResyncSamples, MAX_RESYNC_SAMPLES);
640
641    result.appendFormat("mResyncSamples:\n");
642    nsecs_t previous = -1;
643    for (size_t i = 0; i < mNumResyncSamples; i++) {
644        size_t idx = (mFirstResyncSample + i) % MAX_RESYNC_SAMPLES;
645        nsecs_t sampleTime = mResyncSamples[idx];
646        if (i == 0) {
647            result.appendFormat("  %" PRId64 "\n", sampleTime);
648        } else {
649            result.appendFormat("  %" PRId64 " (+%" PRId64 ")\n", sampleTime,
650                                sampleTime - previous);
651        }
652        previous = sampleTime;
653    }
654
655    result.appendFormat("mPresentFences [%d]:\n", NUM_PRESENT_SAMPLES);
656    nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
657    previous = Fence::SIGNAL_TIME_INVALID;
658    for (size_t i = 0; i < NUM_PRESENT_SAMPLES; i++) {
659        size_t idx = (i + mPresentSampleOffset) % NUM_PRESENT_SAMPLES;
660        nsecs_t presentTime = mPresentFences[idx]->getSignalTime();
661        if (presentTime == Fence::SIGNAL_TIME_PENDING) {
662            result.appendFormat("  [unsignaled fence]\n");
663        } else if (presentTime == Fence::SIGNAL_TIME_INVALID) {
664            result.appendFormat("  [invalid fence]\n");
665        } else if (previous == Fence::SIGNAL_TIME_PENDING ||
666                   previous == Fence::SIGNAL_TIME_INVALID) {
667            result.appendFormat("  %" PRId64 "  (%.3f ms ago)\n", presentTime,
668                                (now - presentTime) / 1000000.0);
669        } else {
670            result.appendFormat("  %" PRId64 " (+%" PRId64 " / %.3f)  (%.3f ms ago)\n", presentTime,
671                                presentTime - previous, (presentTime - previous) / (double)mPeriod,
672                                (now - presentTime) / 1000000.0);
673        }
674        previous = presentTime;
675    }
676
677    result.appendFormat("current monotonic time: %" PRId64 "\n", now);
678}
679
680} // namespace android
681