VirtualDisplaySurface.cpp revision 06d63de03cb2a551ca99608f5aa0c4f3e200b0fc
1/*
2 * Copyright 2013 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17// #define LOG_NDEBUG 0
18#include "VirtualDisplaySurface.h"
19#include "HWComposer.h"
20
21#include <gui/BufferItem.h>
22#include <gui/IProducerListener.h>
23
24// ---------------------------------------------------------------------------
25namespace android {
26// ---------------------------------------------------------------------------
27
28#if defined(FORCE_HWC_COPY_FOR_VIRTUAL_DISPLAYS)
29static const bool sForceHwcCopy = true;
30#else
31static const bool sForceHwcCopy = false;
32#endif
33
34#define VDS_LOGE(msg, ...) ALOGE("[%s] " msg, \
35        mDisplayName.string(), ##__VA_ARGS__)
36#define VDS_LOGW_IF(cond, msg, ...) ALOGW_IF(cond, "[%s] " msg, \
37        mDisplayName.string(), ##__VA_ARGS__)
38#define VDS_LOGV(msg, ...) ALOGV("[%s] " msg, \
39        mDisplayName.string(), ##__VA_ARGS__)
40
41static const char* dbgCompositionTypeStr(DisplaySurface::CompositionType type) {
42    switch (type) {
43        case DisplaySurface::COMPOSITION_UNKNOWN: return "UNKNOWN";
44        case DisplaySurface::COMPOSITION_GLES:    return "GLES";
45        case DisplaySurface::COMPOSITION_HWC:     return "HWC";
46        case DisplaySurface::COMPOSITION_MIXED:   return "MIXED";
47        default:                                  return "<INVALID>";
48    }
49}
50
51VirtualDisplaySurface::VirtualDisplaySurface(HWComposer& hwc, int32_t dispId,
52        const sp<IGraphicBufferProducer>& sink,
53        const sp<IGraphicBufferProducer>& bqProducer,
54        const sp<IGraphicBufferConsumer>& bqConsumer,
55        const String8& name)
56:   ConsumerBase(bqConsumer),
57    mHwc(hwc),
58    mDisplayId(dispId),
59    mDisplayName(name),
60    mSource{},
61    mDefaultOutputFormat(HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED),
62    mOutputFormat(HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED),
63    mOutputUsage(GRALLOC_USAGE_HW_COMPOSER),
64    mProducerSlotSource(0),
65    mProducerBuffers(),
66    mQueueBufferOutput(),
67    mSinkBufferWidth(0),
68    mSinkBufferHeight(0),
69    mCompositionType(COMPOSITION_UNKNOWN),
70    mFbFence(Fence::NO_FENCE),
71    mOutputFence(Fence::NO_FENCE),
72    mFbProducerSlot(BufferQueue::INVALID_BUFFER_SLOT),
73    mOutputProducerSlot(BufferQueue::INVALID_BUFFER_SLOT),
74    mDbgState(DBG_STATE_IDLE),
75    mDbgLastCompositionType(COMPOSITION_UNKNOWN),
76    mMustRecompose(false)
77{
78    mSource[SOURCE_SINK] = sink;
79    mSource[SOURCE_SCRATCH] = bqProducer;
80
81    resetPerFrameState();
82
83    int sinkWidth, sinkHeight;
84    sink->query(NATIVE_WINDOW_WIDTH, &sinkWidth);
85    sink->query(NATIVE_WINDOW_HEIGHT, &sinkHeight);
86    mSinkBufferWidth = sinkWidth;
87    mSinkBufferHeight = sinkHeight;
88
89    // Pick the buffer format to request from the sink when not rendering to it
90    // with GLES. If the consumer needs CPU access, use the default format
91    // set by the consumer. Otherwise allow gralloc to decide the format based
92    // on usage bits.
93    int sinkUsage;
94    sink->query(NATIVE_WINDOW_CONSUMER_USAGE_BITS, &sinkUsage);
95    if (sinkUsage & (GRALLOC_USAGE_SW_READ_MASK | GRALLOC_USAGE_SW_WRITE_MASK)) {
96        int sinkFormat;
97        sink->query(NATIVE_WINDOW_FORMAT, &sinkFormat);
98        mDefaultOutputFormat = sinkFormat;
99    } else {
100        mDefaultOutputFormat = HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED;
101    }
102    mOutputFormat = mDefaultOutputFormat;
103
104    ConsumerBase::mName = String8::format("VDS: %s", mDisplayName.string());
105    mConsumer->setConsumerName(ConsumerBase::mName);
106    mConsumer->setConsumerUsageBits(GRALLOC_USAGE_HW_COMPOSER);
107    mConsumer->setDefaultBufferSize(sinkWidth, sinkHeight);
108    sink->setAsyncMode(true);
109    IGraphicBufferProducer::QueueBufferOutput output;
110    mSource[SOURCE_SCRATCH]->connect(NULL, NATIVE_WINDOW_API_EGL, false, &output);
111}
112
113VirtualDisplaySurface::~VirtualDisplaySurface() {
114    mSource[SOURCE_SCRATCH]->disconnect(NATIVE_WINDOW_API_EGL);
115}
116
117status_t VirtualDisplaySurface::beginFrame(bool mustRecompose) {
118    if (mDisplayId < 0)
119        return NO_ERROR;
120
121    mMustRecompose = mustRecompose;
122
123    VDS_LOGW_IF(mDbgState != DBG_STATE_IDLE,
124            "Unexpected beginFrame() in %s state", dbgStateStr());
125    mDbgState = DBG_STATE_BEGUN;
126
127    return refreshOutputBuffer();
128}
129
130status_t VirtualDisplaySurface::prepareFrame(CompositionType compositionType) {
131    if (mDisplayId < 0)
132        return NO_ERROR;
133
134    VDS_LOGW_IF(mDbgState != DBG_STATE_BEGUN,
135            "Unexpected prepareFrame() in %s state", dbgStateStr());
136    mDbgState = DBG_STATE_PREPARED;
137
138    mCompositionType = compositionType;
139    if (sForceHwcCopy && mCompositionType == COMPOSITION_GLES) {
140        // Some hardware can do RGB->YUV conversion more efficiently in hardware
141        // controlled by HWC than in hardware controlled by the video encoder.
142        // Forcing GLES-composed frames to go through an extra copy by the HWC
143        // allows the format conversion to happen there, rather than passing RGB
144        // directly to the consumer.
145        //
146        // On the other hand, when the consumer prefers RGB or can consume RGB
147        // inexpensively, this forces an unnecessary copy.
148        mCompositionType = COMPOSITION_MIXED;
149    }
150
151    if (mCompositionType != mDbgLastCompositionType) {
152        VDS_LOGV("prepareFrame: composition type changed to %s",
153                dbgCompositionTypeStr(mCompositionType));
154        mDbgLastCompositionType = mCompositionType;
155    }
156
157    if (mCompositionType != COMPOSITION_GLES &&
158            (mOutputFormat != mDefaultOutputFormat ||
159             mOutputUsage != GRALLOC_USAGE_HW_COMPOSER)) {
160        // We must have just switched from GLES-only to MIXED or HWC
161        // composition. Stop using the format and usage requested by the GLES
162        // driver; they may be suboptimal when HWC is writing to the output
163        // buffer. For example, if the output is going to a video encoder, and
164        // HWC can write directly to YUV, some hardware can skip a
165        // memory-to-memory RGB-to-YUV conversion step.
166        //
167        // If we just switched *to* GLES-only mode, we'll change the
168        // format/usage and get a new buffer when the GLES driver calls
169        // dequeueBuffer().
170        mOutputFormat = mDefaultOutputFormat;
171        mOutputUsage = GRALLOC_USAGE_HW_COMPOSER;
172        refreshOutputBuffer();
173    }
174
175    return NO_ERROR;
176}
177
178#ifndef USE_HWC2
179status_t VirtualDisplaySurface::compositionComplete() {
180    return NO_ERROR;
181}
182#endif
183
184status_t VirtualDisplaySurface::advanceFrame() {
185    if (mDisplayId < 0)
186        return NO_ERROR;
187
188    if (mCompositionType == COMPOSITION_HWC) {
189        VDS_LOGW_IF(mDbgState != DBG_STATE_PREPARED,
190                "Unexpected advanceFrame() in %s state on HWC frame",
191                dbgStateStr());
192    } else {
193        VDS_LOGW_IF(mDbgState != DBG_STATE_GLES_DONE,
194                "Unexpected advanceFrame() in %s state on GLES/MIXED frame",
195                dbgStateStr());
196    }
197    mDbgState = DBG_STATE_HWC;
198
199    if (mOutputProducerSlot < 0 ||
200            (mCompositionType != COMPOSITION_HWC && mFbProducerSlot < 0)) {
201        // Last chance bailout if something bad happened earlier. For example,
202        // in a GLES configuration, if the sink disappears then dequeueBuffer
203        // will fail, the GLES driver won't queue a buffer, but SurfaceFlinger
204        // will soldier on. So we end up here without a buffer. There should
205        // be lots of scary messages in the log just before this.
206        VDS_LOGE("advanceFrame: no buffer, bailing out");
207        return NO_MEMORY;
208    }
209
210    sp<GraphicBuffer> fbBuffer = mFbProducerSlot >= 0 ?
211            mProducerBuffers[mFbProducerSlot] : sp<GraphicBuffer>(NULL);
212    sp<GraphicBuffer> outBuffer = mProducerBuffers[mOutputProducerSlot];
213    VDS_LOGV("advanceFrame: fb=%d(%p) out=%d(%p)",
214            mFbProducerSlot, fbBuffer.get(),
215            mOutputProducerSlot, outBuffer.get());
216
217    // At this point we know the output buffer acquire fence,
218    // so update HWC state with it.
219    mHwc.setOutputBuffer(mDisplayId, mOutputFence, outBuffer);
220
221    status_t result = NO_ERROR;
222    if (fbBuffer != NULL) {
223#ifdef USE_HWC2
224        uint32_t hwcSlot = 0;
225        sp<GraphicBuffer> hwcBuffer;
226        mHwcBufferCache->getHwcBuffer(mFbProducerSlot, fbBuffer,
227                &hwcSlot, &hwcBuffer);
228
229        // TODO: Correctly propagate the dataspace from GL composition
230        result = mHwc.setClientTarget(mDisplayId, hwcSlot, mFbFence,
231                hwcBuffer, HAL_DATASPACE_UNKNOWN);
232#else
233        result = mHwc.fbPost(mDisplayId, mFbFence, fbBuffer);
234#endif
235    }
236
237    return result;
238}
239
240void VirtualDisplaySurface::onFrameCommitted() {
241    if (mDisplayId < 0)
242        return;
243
244    VDS_LOGW_IF(mDbgState != DBG_STATE_HWC,
245            "Unexpected onFrameCommitted() in %s state", dbgStateStr());
246    mDbgState = DBG_STATE_IDLE;
247
248#ifdef USE_HWC2
249    sp<Fence> retireFence = mHwc.getPresentFence(mDisplayId);
250#else
251    sp<Fence> fbFence = mHwc.getAndResetReleaseFence(mDisplayId);
252#endif
253    if (mCompositionType == COMPOSITION_MIXED && mFbProducerSlot >= 0) {
254        // release the scratch buffer back to the pool
255        Mutex::Autolock lock(mMutex);
256        int sslot = mapProducer2SourceSlot(SOURCE_SCRATCH, mFbProducerSlot);
257        VDS_LOGV("onFrameCommitted: release scratch sslot=%d", sslot);
258#ifdef USE_HWC2
259        addReleaseFenceLocked(sslot, mProducerBuffers[mFbProducerSlot],
260                retireFence);
261#else
262        addReleaseFenceLocked(sslot, mProducerBuffers[mFbProducerSlot], fbFence);
263#endif
264        releaseBufferLocked(sslot, mProducerBuffers[mFbProducerSlot],
265                EGL_NO_DISPLAY, EGL_NO_SYNC_KHR);
266    }
267
268    if (mOutputProducerSlot >= 0) {
269        int sslot = mapProducer2SourceSlot(SOURCE_SINK, mOutputProducerSlot);
270        QueueBufferOutput qbo;
271#ifndef USE_HWC2
272        sp<Fence> outFence = mHwc.getLastRetireFence(mDisplayId);
273#endif
274        VDS_LOGV("onFrameCommitted: queue sink sslot=%d", sslot);
275        if (mMustRecompose) {
276            status_t result = mSource[SOURCE_SINK]->queueBuffer(sslot,
277                    QueueBufferInput(
278                        systemTime(), false /* isAutoTimestamp */,
279                        HAL_DATASPACE_UNKNOWN,
280                        Rect(mSinkBufferWidth, mSinkBufferHeight),
281                        NATIVE_WINDOW_SCALING_MODE_FREEZE, 0 /* transform */,
282#ifdef USE_HWC2
283                        retireFence),
284#else
285                        outFence),
286#endif
287                    &qbo);
288            if (result == NO_ERROR) {
289                updateQueueBufferOutput(std::move(qbo));
290            }
291        } else {
292            // If the surface hadn't actually been updated, then we only went
293            // through the motions of updating the display to keep our state
294            // machine happy. We cancel the buffer to avoid triggering another
295            // re-composition and causing an infinite loop.
296#ifdef USE_HWC2
297            mSource[SOURCE_SINK]->cancelBuffer(sslot, retireFence);
298#else
299            mSource[SOURCE_SINK]->cancelBuffer(sslot, outFence);
300#endif
301        }
302    }
303
304    resetPerFrameState();
305}
306
307void VirtualDisplaySurface::dumpAsString(String8& /* result */) const {
308}
309
310void VirtualDisplaySurface::resizeBuffers(const uint32_t w, const uint32_t h) {
311    mQueueBufferOutput.width = w;
312    mQueueBufferOutput.height = h;
313    mSinkBufferWidth = w;
314    mSinkBufferHeight = h;
315}
316
317const sp<Fence>& VirtualDisplaySurface::getClientTargetAcquireFence() const {
318    return mFbFence;
319}
320
321status_t VirtualDisplaySurface::requestBuffer(int pslot,
322        sp<GraphicBuffer>* outBuf) {
323    if (mDisplayId < 0)
324        return mSource[SOURCE_SINK]->requestBuffer(pslot, outBuf);
325
326    VDS_LOGW_IF(mDbgState != DBG_STATE_GLES,
327            "Unexpected requestBuffer pslot=%d in %s state",
328            pslot, dbgStateStr());
329
330    *outBuf = mProducerBuffers[pslot];
331    return NO_ERROR;
332}
333
334status_t VirtualDisplaySurface::setMaxDequeuedBufferCount(
335        int maxDequeuedBuffers) {
336    return mSource[SOURCE_SINK]->setMaxDequeuedBufferCount(maxDequeuedBuffers);
337}
338
339status_t VirtualDisplaySurface::setAsyncMode(bool async) {
340    return mSource[SOURCE_SINK]->setAsyncMode(async);
341}
342
343status_t VirtualDisplaySurface::dequeueBuffer(Source source,
344        PixelFormat format, uint32_t usage, int* sslot, sp<Fence>* fence) {
345    LOG_FATAL_IF(mDisplayId < 0, "mDisplayId=%d but should not be < 0.", mDisplayId);
346
347    status_t result = mSource[source]->dequeueBuffer(sslot, fence,
348            mSinkBufferWidth, mSinkBufferHeight, format, usage, nullptr);
349    if (result < 0)
350        return result;
351    int pslot = mapSource2ProducerSlot(source, *sslot);
352    VDS_LOGV("dequeueBuffer(%s): sslot=%d pslot=%d result=%d",
353            dbgSourceStr(source), *sslot, pslot, result);
354    uint64_t sourceBit = static_cast<uint64_t>(source) << pslot;
355
356    if ((mProducerSlotSource & (1ULL << pslot)) != sourceBit) {
357        // This slot was previously dequeued from the other source; must
358        // re-request the buffer.
359        result |= BUFFER_NEEDS_REALLOCATION;
360        mProducerSlotSource &= ~(1ULL << pslot);
361        mProducerSlotSource |= sourceBit;
362    }
363
364    if (result & RELEASE_ALL_BUFFERS) {
365        for (uint32_t i = 0; i < BufferQueue::NUM_BUFFER_SLOTS; i++) {
366            if ((mProducerSlotSource & (1ULL << i)) == sourceBit)
367                mProducerBuffers[i].clear();
368        }
369    }
370    if (result & BUFFER_NEEDS_REALLOCATION) {
371        result = mSource[source]->requestBuffer(*sslot, &mProducerBuffers[pslot]);
372        if (result < 0) {
373            mProducerBuffers[pslot].clear();
374            mSource[source]->cancelBuffer(*sslot, *fence);
375            return result;
376        }
377        VDS_LOGV("dequeueBuffer(%s): buffers[%d]=%p fmt=%d usage=%#x",
378                dbgSourceStr(source), pslot, mProducerBuffers[pslot].get(),
379                mProducerBuffers[pslot]->getPixelFormat(),
380                mProducerBuffers[pslot]->getUsage());
381    }
382
383    return result;
384}
385
386status_t VirtualDisplaySurface::dequeueBuffer(int* pslot, sp<Fence>* fence,
387        uint32_t w, uint32_t h, PixelFormat format, uint32_t usage,
388        FrameEventHistoryDelta* outTimestamps) {
389    if (mDisplayId < 0) {
390        return mSource[SOURCE_SINK]->dequeueBuffer(
391                pslot, fence, w, h, format, usage, outTimestamps);
392    }
393
394    VDS_LOGW_IF(mDbgState != DBG_STATE_PREPARED,
395            "Unexpected dequeueBuffer() in %s state", dbgStateStr());
396    mDbgState = DBG_STATE_GLES;
397
398    VDS_LOGV("dequeueBuffer %dx%d fmt=%d usage=%#x", w, h, format, usage);
399
400    status_t result = NO_ERROR;
401    Source source = fbSourceForCompositionType(mCompositionType);
402
403    if (source == SOURCE_SINK) {
404
405        if (mOutputProducerSlot < 0) {
406            // Last chance bailout if something bad happened earlier. For example,
407            // in a GLES configuration, if the sink disappears then dequeueBuffer
408            // will fail, the GLES driver won't queue a buffer, but SurfaceFlinger
409            // will soldier on. So we end up here without a buffer. There should
410            // be lots of scary messages in the log just before this.
411            VDS_LOGE("dequeueBuffer: no buffer, bailing out");
412            return NO_MEMORY;
413        }
414
415        // We already dequeued the output buffer. If the GLES driver wants
416        // something incompatible, we have to cancel and get a new one. This
417        // will mean that HWC will see a different output buffer between
418        // prepare and set, but since we're in GLES-only mode already it
419        // shouldn't matter.
420
421        usage |= GRALLOC_USAGE_HW_COMPOSER;
422        const sp<GraphicBuffer>& buf = mProducerBuffers[mOutputProducerSlot];
423        if ((usage & ~buf->getUsage()) != 0 ||
424                (format != 0 && format != buf->getPixelFormat()) ||
425                (w != 0 && w != mSinkBufferWidth) ||
426                (h != 0 && h != mSinkBufferHeight)) {
427            VDS_LOGV("dequeueBuffer: dequeueing new output buffer: "
428                    "want %dx%d fmt=%d use=%#x, "
429                    "have %dx%d fmt=%d use=%#x",
430                    w, h, format, usage,
431                    mSinkBufferWidth, mSinkBufferHeight,
432                    buf->getPixelFormat(), buf->getUsage());
433            mOutputFormat = format;
434            mOutputUsage = usage;
435            result = refreshOutputBuffer();
436            if (result < 0)
437                return result;
438        }
439    }
440
441    if (source == SOURCE_SINK) {
442        *pslot = mOutputProducerSlot;
443        *fence = mOutputFence;
444    } else {
445        int sslot;
446        result = dequeueBuffer(source, format, usage, &sslot, fence);
447        if (result >= 0) {
448            *pslot = mapSource2ProducerSlot(source, sslot);
449        }
450    }
451    return result;
452}
453
454status_t VirtualDisplaySurface::detachBuffer(int /* slot */) {
455    VDS_LOGE("detachBuffer is not available for VirtualDisplaySurface");
456    return INVALID_OPERATION;
457}
458
459status_t VirtualDisplaySurface::detachNextBuffer(
460        sp<GraphicBuffer>* /* outBuffer */, sp<Fence>* /* outFence */) {
461    VDS_LOGE("detachNextBuffer is not available for VirtualDisplaySurface");
462    return INVALID_OPERATION;
463}
464
465status_t VirtualDisplaySurface::attachBuffer(int* /* outSlot */,
466        const sp<GraphicBuffer>& /* buffer */) {
467    VDS_LOGE("attachBuffer is not available for VirtualDisplaySurface");
468    return INVALID_OPERATION;
469}
470
471status_t VirtualDisplaySurface::queueBuffer(int pslot,
472        const QueueBufferInput& input, QueueBufferOutput* output) {
473    if (mDisplayId < 0)
474        return mSource[SOURCE_SINK]->queueBuffer(pslot, input, output);
475
476    VDS_LOGW_IF(mDbgState != DBG_STATE_GLES,
477            "Unexpected queueBuffer(pslot=%d) in %s state", pslot,
478            dbgStateStr());
479    mDbgState = DBG_STATE_GLES_DONE;
480
481    VDS_LOGV("queueBuffer pslot=%d", pslot);
482
483    status_t result;
484    if (mCompositionType == COMPOSITION_MIXED) {
485        // Queue the buffer back into the scratch pool
486        QueueBufferOutput scratchQBO;
487        int sslot = mapProducer2SourceSlot(SOURCE_SCRATCH, pslot);
488        result = mSource[SOURCE_SCRATCH]->queueBuffer(sslot, input, &scratchQBO);
489        if (result != NO_ERROR)
490            return result;
491
492        // Now acquire the buffer from the scratch pool -- should be the same
493        // slot and fence as we just queued.
494        Mutex::Autolock lock(mMutex);
495        BufferItem item;
496        result = acquireBufferLocked(&item, 0);
497        if (result != NO_ERROR)
498            return result;
499        VDS_LOGW_IF(item.mSlot != sslot,
500                "queueBuffer: acquired sslot %d from SCRATCH after queueing sslot %d",
501                item.mSlot, sslot);
502        mFbProducerSlot = mapSource2ProducerSlot(SOURCE_SCRATCH, item.mSlot);
503        mFbFence = mSlots[item.mSlot].mFence;
504
505    } else {
506        LOG_FATAL_IF(mCompositionType != COMPOSITION_GLES,
507                "Unexpected queueBuffer in state %s for compositionType %s",
508                dbgStateStr(), dbgCompositionTypeStr(mCompositionType));
509
510        // Extract the GLES release fence for HWC to acquire
511        int64_t timestamp;
512        bool isAutoTimestamp;
513        android_dataspace dataSpace;
514        Rect crop;
515        int scalingMode;
516        uint32_t transform;
517        input.deflate(&timestamp, &isAutoTimestamp, &dataSpace, &crop,
518                &scalingMode, &transform, &mFbFence);
519
520        mFbProducerSlot = pslot;
521        mOutputFence = mFbFence;
522    }
523
524    // This moves the frame timestamps and keeps a copy of all other fields.
525    *output = std::move(mQueueBufferOutput);
526    return NO_ERROR;
527}
528
529status_t VirtualDisplaySurface::cancelBuffer(int pslot,
530        const sp<Fence>& fence) {
531    if (mDisplayId < 0)
532        return mSource[SOURCE_SINK]->cancelBuffer(mapProducer2SourceSlot(SOURCE_SINK, pslot), fence);
533
534    VDS_LOGW_IF(mDbgState != DBG_STATE_GLES,
535            "Unexpected cancelBuffer(pslot=%d) in %s state", pslot,
536            dbgStateStr());
537    VDS_LOGV("cancelBuffer pslot=%d", pslot);
538    Source source = fbSourceForCompositionType(mCompositionType);
539    return mSource[source]->cancelBuffer(
540            mapProducer2SourceSlot(source, pslot), fence);
541}
542
543int VirtualDisplaySurface::query(int what, int* value) {
544    switch (what) {
545        case NATIVE_WINDOW_WIDTH:
546            *value = mSinkBufferWidth;
547            break;
548        case NATIVE_WINDOW_HEIGHT:
549            *value = mSinkBufferHeight;
550            break;
551        default:
552            return mSource[SOURCE_SINK]->query(what, value);
553    }
554    return NO_ERROR;
555}
556
557status_t VirtualDisplaySurface::connect(const sp<IProducerListener>& listener,
558        int api, bool producerControlledByApp,
559        QueueBufferOutput* output) {
560    QueueBufferOutput qbo;
561    status_t result = mSource[SOURCE_SINK]->connect(listener, api,
562            producerControlledByApp, &qbo);
563    if (result == NO_ERROR) {
564        updateQueueBufferOutput(std::move(qbo));
565        // This moves the frame timestamps and keeps a copy of all other fields.
566        *output = std::move(mQueueBufferOutput);
567    }
568    return result;
569}
570
571status_t VirtualDisplaySurface::disconnect(int api, DisconnectMode mode) {
572    return mSource[SOURCE_SINK]->disconnect(api, mode);
573}
574
575status_t VirtualDisplaySurface::setSidebandStream(const sp<NativeHandle>& /*stream*/) {
576    return INVALID_OPERATION;
577}
578
579void VirtualDisplaySurface::allocateBuffers(uint32_t /* width */,
580        uint32_t /* height */, PixelFormat /* format */, uint32_t /* usage */) {
581    // TODO: Should we actually allocate buffers for a virtual display?
582}
583
584status_t VirtualDisplaySurface::allowAllocation(bool /* allow */) {
585    return INVALID_OPERATION;
586}
587
588status_t VirtualDisplaySurface::setGenerationNumber(uint32_t /* generation */) {
589    ALOGE("setGenerationNumber not supported on VirtualDisplaySurface");
590    return INVALID_OPERATION;
591}
592
593String8 VirtualDisplaySurface::getConsumerName() const {
594    return String8("VirtualDisplaySurface");
595}
596
597status_t VirtualDisplaySurface::setSharedBufferMode(bool /*sharedBufferMode*/) {
598    ALOGE("setSharedBufferMode not supported on VirtualDisplaySurface");
599    return INVALID_OPERATION;
600}
601
602status_t VirtualDisplaySurface::setAutoRefresh(bool /*autoRefresh*/) {
603    ALOGE("setAutoRefresh not supported on VirtualDisplaySurface");
604    return INVALID_OPERATION;
605}
606
607status_t VirtualDisplaySurface::setDequeueTimeout(nsecs_t /* timeout */) {
608    ALOGE("setDequeueTimeout not supported on VirtualDisplaySurface");
609    return INVALID_OPERATION;
610}
611
612status_t VirtualDisplaySurface::getLastQueuedBuffer(
613        sp<GraphicBuffer>* /*outBuffer*/, sp<Fence>* /*outFence*/,
614        float[16] /* outTransformMatrix*/) {
615    ALOGE("getLastQueuedBuffer not supported on VirtualDisplaySurface");
616    return INVALID_OPERATION;
617}
618
619status_t VirtualDisplaySurface::getUniqueId(uint64_t* /*outId*/) const {
620    ALOGE("getUniqueId not supported on VirtualDisplaySurface");
621    return INVALID_OPERATION;
622}
623
624void VirtualDisplaySurface::updateQueueBufferOutput(
625        QueueBufferOutput&& qbo) {
626    mQueueBufferOutput = std::move(qbo);
627    mQueueBufferOutput.transformHint = 0;
628}
629
630void VirtualDisplaySurface::resetPerFrameState() {
631    mCompositionType = COMPOSITION_UNKNOWN;
632    mFbFence = Fence::NO_FENCE;
633    mOutputFence = Fence::NO_FENCE;
634    mOutputProducerSlot = -1;
635    mFbProducerSlot = -1;
636}
637
638status_t VirtualDisplaySurface::refreshOutputBuffer() {
639    if (mOutputProducerSlot >= 0) {
640        mSource[SOURCE_SINK]->cancelBuffer(
641                mapProducer2SourceSlot(SOURCE_SINK, mOutputProducerSlot),
642                mOutputFence);
643    }
644
645    int sslot;
646    status_t result = dequeueBuffer(SOURCE_SINK, mOutputFormat, mOutputUsage,
647            &sslot, &mOutputFence);
648    if (result < 0)
649        return result;
650    mOutputProducerSlot = mapSource2ProducerSlot(SOURCE_SINK, sslot);
651
652    // On GLES-only frames, we don't have the right output buffer acquire fence
653    // until after GLES calls queueBuffer(). So here we just set the buffer
654    // (for use in HWC prepare) but not the fence; we'll call this again with
655    // the proper fence once we have it.
656    result = mHwc.setOutputBuffer(mDisplayId, Fence::NO_FENCE,
657            mProducerBuffers[mOutputProducerSlot]);
658
659    return result;
660}
661
662// This slot mapping function is its own inverse, so two copies are unnecessary.
663// Both are kept to make the intent clear where the function is called, and for
664// the (unlikely) chance that we switch to a different mapping function.
665int VirtualDisplaySurface::mapSource2ProducerSlot(Source source, int sslot) {
666    if (source == SOURCE_SCRATCH) {
667        return BufferQueue::NUM_BUFFER_SLOTS - sslot - 1;
668    } else {
669        return sslot;
670    }
671}
672int VirtualDisplaySurface::mapProducer2SourceSlot(Source source, int pslot) {
673    return mapSource2ProducerSlot(source, pslot);
674}
675
676VirtualDisplaySurface::Source
677VirtualDisplaySurface::fbSourceForCompositionType(CompositionType type) {
678    return type == COMPOSITION_MIXED ? SOURCE_SCRATCH : SOURCE_SINK;
679}
680
681const char* VirtualDisplaySurface::dbgStateStr() const {
682    switch (mDbgState) {
683        case DBG_STATE_IDLE:      return "IDLE";
684        case DBG_STATE_PREPARED:  return "PREPARED";
685        case DBG_STATE_GLES:      return "GLES";
686        case DBG_STATE_GLES_DONE: return "GLES_DONE";
687        case DBG_STATE_HWC:       return "HWC";
688        default:                  return "INVALID";
689    }
690}
691
692const char* VirtualDisplaySurface::dbgSourceStr(Source s) {
693    switch (s) {
694        case SOURCE_SINK:    return "SINK";
695        case SOURCE_SCRATCH: return "SCRATCH";
696        default:             return "INVALID";
697    }
698}
699
700// ---------------------------------------------------------------------------
701} // namespace android
702// ---------------------------------------------------------------------------
703