Collections.java revision 2c87ad3a45cecf9e344487cad1abfdebe79f2c7c
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.  Oracle designates this
9 * particular file as subject to the "Classpath" exception as provided
10 * by Oracle in the LICENSE file that accompanied this code.
11 *
12 * This code is distributed in the hope that it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 * version 2 for more details (a copy is included in the LICENSE file that
16 * accompanied this code).
17 *
18 * You should have received a copy of the GNU General Public License version
19 * 2 along with this work; if not, write to the Free Software Foundation,
20 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
21 *
22 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
23 * or visit www.oracle.com if you need additional information or have any
24 * questions.
25 */
26
27package java.util;
28import java.io.Serializable;
29import java.io.ObjectOutputStream;
30import java.io.IOException;
31import java.lang.reflect.Array;
32
33/**
34 * This class consists exclusively of static methods that operate on or return
35 * collections.  It contains polymorphic algorithms that operate on
36 * collections, "wrappers", which return a new collection backed by a
37 * specified collection, and a few other odds and ends.
38 *
39 * <p>The methods of this class all throw a <tt>NullPointerException</tt>
40 * if the collections or class objects provided to them are null.
41 *
42 * <p>The documentation for the polymorphic algorithms contained in this class
43 * generally includes a brief description of the <i>implementation</i>.  Such
44 * descriptions should be regarded as <i>implementation notes</i>, rather than
45 * parts of the <i>specification</i>.  Implementors should feel free to
46 * substitute other algorithms, so long as the specification itself is adhered
47 * to.  (For example, the algorithm used by <tt>sort</tt> does not have to be
48 * a mergesort, but it does have to be <i>stable</i>.)
49 *
50 * <p>The "destructive" algorithms contained in this class, that is, the
51 * algorithms that modify the collection on which they operate, are specified
52 * to throw <tt>UnsupportedOperationException</tt> if the collection does not
53 * support the appropriate mutation primitive(s), such as the <tt>set</tt>
54 * method.  These algorithms may, but are not required to, throw this
55 * exception if an invocation would have no effect on the collection.  For
56 * example, invoking the <tt>sort</tt> method on an unmodifiable list that is
57 * already sorted may or may not throw <tt>UnsupportedOperationException</tt>.
58 *
59 * <p>This class is a member of the
60 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
61 * Java Collections Framework</a>.
62 *
63 * @author  Josh Bloch
64 * @author  Neal Gafter
65 * @see     Collection
66 * @see     Set
67 * @see     List
68 * @see     Map
69 * @since   1.2
70 */
71
72public class Collections {
73    // Suppresses default constructor, ensuring non-instantiability.
74    private Collections() {
75    }
76
77    // Algorithms
78
79    /*
80     * Tuning parameters for algorithms - Many of the List algorithms have
81     * two implementations, one of which is appropriate for RandomAccess
82     * lists, the other for "sequential."  Often, the random access variant
83     * yields better performance on small sequential access lists.  The
84     * tuning parameters below determine the cutoff point for what constitutes
85     * a "small" sequential access list for each algorithm.  The values below
86     * were empirically determined to work well for LinkedList. Hopefully
87     * they should be reasonable for other sequential access List
88     * implementations.  Those doing performance work on this code would
89     * do well to validate the values of these parameters from time to time.
90     * (The first word of each tuning parameter name is the algorithm to which
91     * it applies.)
92     */
93    private static final int BINARYSEARCH_THRESHOLD   = 5000;
94    private static final int REVERSE_THRESHOLD        =   18;
95    private static final int SHUFFLE_THRESHOLD        =    5;
96    private static final int FILL_THRESHOLD           =   25;
97    private static final int ROTATE_THRESHOLD         =  100;
98    private static final int COPY_THRESHOLD           =   10;
99    private static final int REPLACEALL_THRESHOLD     =   11;
100    private static final int INDEXOFSUBLIST_THRESHOLD =   35;
101
102    /**
103     * Sorts the specified list into ascending order, according to the
104     * {@linkplain Comparable natural ordering} of its elements.
105     * All elements in the list must implement the {@link Comparable}
106     * interface.  Furthermore, all elements in the list must be
107     * <i>mutually comparable</i> (that is, {@code e1.compareTo(e2)}
108     * must not throw a {@code ClassCastException} for any elements
109     * {@code e1} and {@code e2} in the list).
110     *
111     * <p>This sort is guaranteed to be <i>stable</i>:  equal elements will
112     * not be reordered as a result of the sort.
113     *
114     * <p>The specified list must be modifiable, but need not be resizable.
115     *
116     * <p>Implementation note: This implementation is a stable, adaptive,
117     * iterative mergesort that requires far fewer than n lg(n) comparisons
118     * when the input array is partially sorted, while offering the
119     * performance of a traditional mergesort when the input array is
120     * randomly ordered.  If the input array is nearly sorted, the
121     * implementation requires approximately n comparisons.  Temporary
122     * storage requirements vary from a small constant for nearly sorted
123     * input arrays to n/2 object references for randomly ordered input
124     * arrays.
125     *
126     * <p>The implementation takes equal advantage of ascending and
127     * descending order in its input array, and can take advantage of
128     * ascending and descending order in different parts of the same
129     * input array.  It is well-suited to merging two or more sorted arrays:
130     * simply concatenate the arrays and sort the resulting array.
131     *
132     * <p>The implementation was adapted from Tim Peters's list sort for Python
133     * (<a href="http://svn.python.org/projects/python/trunk/Objects/listsort.txt">
134     * TimSort</a>).  It uses techiques from Peter McIlroy's "Optimistic
135     * Sorting and Information Theoretic Complexity", in Proceedings of the
136     * Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 467-474,
137     * January 1993.
138     *
139     * <p>This implementation dumps the specified list into an array, sorts
140     * the array, and iterates over the list resetting each element
141     * from the corresponding position in the array.  This avoids the
142     * n<sup>2</sup> log(n) performance that would result from attempting
143     * to sort a linked list in place.
144     *
145     * @param  list the list to be sorted.
146     * @throws ClassCastException if the list contains elements that are not
147     *         <i>mutually comparable</i> (for example, strings and integers).
148     * @throws UnsupportedOperationException if the specified list's
149     *         list-iterator does not support the {@code set} operation.
150     * @throws IllegalArgumentException (optional) if the implementation
151     *         detects that the natural ordering of the list elements is
152     *         found to violate the {@link Comparable} contract
153     */
154    public static <T extends Comparable<? super T>> void sort(List<T> list) {
155        if (list.getClass() == ArrayList.class) {
156            Arrays.sort(((ArrayList) list).elementData, 0, list.size());
157            return;
158        }
159
160        Object[] a = list.toArray();
161        Arrays.sort(a);
162        ListIterator<T> i = list.listIterator();
163        for (int j=0; j<a.length; j++) {
164            i.next();
165            i.set((T)a[j]);
166        }
167    }
168
169    /**
170     * Sorts the specified list according to the order induced by the
171     * specified comparator.  All elements in the list must be <i>mutually
172     * comparable</i> using the specified comparator (that is,
173     * {@code c.compare(e1, e2)} must not throw a {@code ClassCastException}
174     * for any elements {@code e1} and {@code e2} in the list).
175     *
176     * <p>This sort is guaranteed to be <i>stable</i>:  equal elements will
177     * not be reordered as a result of the sort.
178     *
179     * <p>The specified list must be modifiable, but need not be resizable.
180     *
181     * <p>Implementation note: This implementation is a stable, adaptive,
182     * iterative mergesort that requires far fewer than n lg(n) comparisons
183     * when the input array is partially sorted, while offering the
184     * performance of a traditional mergesort when the input array is
185     * randomly ordered.  If the input array is nearly sorted, the
186     * implementation requires approximately n comparisons.  Temporary
187     * storage requirements vary from a small constant for nearly sorted
188     * input arrays to n/2 object references for randomly ordered input
189     * arrays.
190     *
191     * <p>The implementation takes equal advantage of ascending and
192     * descending order in its input array, and can take advantage of
193     * ascending and descending order in different parts of the same
194     * input array.  It is well-suited to merging two or more sorted arrays:
195     * simply concatenate the arrays and sort the resulting array.
196     *
197     * <p>The implementation was adapted from Tim Peters's list sort for Python
198     * (<a href="http://svn.python.org/projects/python/trunk/Objects/listsort.txt">
199     * TimSort</a>).  It uses techiques from Peter McIlroy's "Optimistic
200     * Sorting and Information Theoretic Complexity", in Proceedings of the
201     * Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 467-474,
202     * January 1993.
203     *
204     * <p>This implementation dumps the specified list into an array, sorts
205     * the array, and iterates over the list resetting each element
206     * from the corresponding position in the array.  This avoids the
207     * n<sup>2</sup> log(n) performance that would result from attempting
208     * to sort a linked list in place.
209     *
210     * @param  list the list to be sorted.
211     * @param  c the comparator to determine the order of the list.  A
212     *        {@code null} value indicates that the elements' <i>natural
213     *        ordering</i> should be used.
214     * @throws ClassCastException if the list contains elements that are not
215     *         <i>mutually comparable</i> using the specified comparator.
216     * @throws UnsupportedOperationException if the specified list's
217     *         list-iterator does not support the {@code set} operation.
218     * @throws IllegalArgumentException (optional) if the comparator is
219     *         found to violate the {@link Comparator} contract
220     */
221    public static <T> void sort(List<T> list, Comparator<? super T> c) {
222        if (list.getClass() == ArrayList.class) {
223            Arrays.sort(((ArrayList) list).elementData, 0, list.size(), (Comparator) c);
224            return;
225        }
226
227        Object[] a = list.toArray();
228        Arrays.sort(a, (Comparator)c);
229        ListIterator i = list.listIterator();
230        for (int j=0; j<a.length; j++) {
231            i.next();
232            i.set(a[j]);
233        }
234    }
235
236
237    /**
238     * Searches the specified list for the specified object using the binary
239     * search algorithm.  The list must be sorted into ascending order
240     * according to the {@linkplain Comparable natural ordering} of its
241     * elements (as by the {@link #sort(List)} method) prior to making this
242     * call.  If it is not sorted, the results are undefined.  If the list
243     * contains multiple elements equal to the specified object, there is no
244     * guarantee which one will be found.
245     *
246     * <p>This method runs in log(n) time for a "random access" list (which
247     * provides near-constant-time positional access).  If the specified list
248     * does not implement the {@link RandomAccess} interface and is large,
249     * this method will do an iterator-based binary search that performs
250     * O(n) link traversals and O(log n) element comparisons.
251     *
252     * @param  list the list to be searched.
253     * @param  key the key to be searched for.
254     * @return the index of the search key, if it is contained in the list;
255     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
256     *         <i>insertion point</i> is defined as the point at which the
257     *         key would be inserted into the list: the index of the first
258     *         element greater than the key, or <tt>list.size()</tt> if all
259     *         elements in the list are less than the specified key.  Note
260     *         that this guarantees that the return value will be &gt;= 0 if
261     *         and only if the key is found.
262     * @throws ClassCastException if the list contains elements that are not
263     *         <i>mutually comparable</i> (for example, strings and
264     *         integers), or the search key is not mutually comparable
265     *         with the elements of the list.
266     */
267    public static <T>
268    int binarySearch(List<? extends Comparable<? super T>> list, T key) {
269        if (list instanceof RandomAccess || list.size()<BINARYSEARCH_THRESHOLD)
270            return Collections.indexedBinarySearch(list, key);
271        else
272            return Collections.iteratorBinarySearch(list, key);
273    }
274
275    private static <T>
276    int indexedBinarySearch(List<? extends Comparable<? super T>> list, T key)
277    {
278        int low = 0;
279        int high = list.size()-1;
280
281        while (low <= high) {
282            int mid = (low + high) >>> 1;
283            Comparable<? super T> midVal = list.get(mid);
284            int cmp = midVal.compareTo(key);
285
286            if (cmp < 0)
287                low = mid + 1;
288            else if (cmp > 0)
289                high = mid - 1;
290            else
291                return mid; // key found
292        }
293        return -(low + 1);  // key not found
294    }
295
296    private static <T>
297    int iteratorBinarySearch(List<? extends Comparable<? super T>> list, T key)
298    {
299        int low = 0;
300        int high = list.size()-1;
301        ListIterator<? extends Comparable<? super T>> i = list.listIterator();
302
303        while (low <= high) {
304            int mid = (low + high) >>> 1;
305            Comparable<? super T> midVal = get(i, mid);
306            int cmp = midVal.compareTo(key);
307
308            if (cmp < 0)
309                low = mid + 1;
310            else if (cmp > 0)
311                high = mid - 1;
312            else
313                return mid; // key found
314        }
315        return -(low + 1);  // key not found
316    }
317
318    /**
319     * Gets the ith element from the given list by repositioning the specified
320     * list listIterator.
321     */
322    private static <T> T get(ListIterator<? extends T> i, int index) {
323        T obj = null;
324        int pos = i.nextIndex();
325        if (pos <= index) {
326            do {
327                obj = i.next();
328            } while (pos++ < index);
329        } else {
330            do {
331                obj = i.previous();
332            } while (--pos > index);
333        }
334        return obj;
335    }
336
337    /**
338     * Searches the specified list for the specified object using the binary
339     * search algorithm.  The list must be sorted into ascending order
340     * according to the specified comparator (as by the
341     * {@link #sort(List, Comparator) sort(List, Comparator)}
342     * method), prior to making this call.  If it is
343     * not sorted, the results are undefined.  If the list contains multiple
344     * elements equal to the specified object, there is no guarantee which one
345     * will be found.
346     *
347     * <p>This method runs in log(n) time for a "random access" list (which
348     * provides near-constant-time positional access).  If the specified list
349     * does not implement the {@link RandomAccess} interface and is large,
350     * this method will do an iterator-based binary search that performs
351     * O(n) link traversals and O(log n) element comparisons.
352     *
353     * @param  list the list to be searched.
354     * @param  key the key to be searched for.
355     * @param  c the comparator by which the list is ordered.
356     *         A <tt>null</tt> value indicates that the elements'
357     *         {@linkplain Comparable natural ordering} should be used.
358     * @return the index of the search key, if it is contained in the list;
359     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
360     *         <i>insertion point</i> is defined as the point at which the
361     *         key would be inserted into the list: the index of the first
362     *         element greater than the key, or <tt>list.size()</tt> if all
363     *         elements in the list are less than the specified key.  Note
364     *         that this guarantees that the return value will be &gt;= 0 if
365     *         and only if the key is found.
366     * @throws ClassCastException if the list contains elements that are not
367     *         <i>mutually comparable</i> using the specified comparator,
368     *         or the search key is not mutually comparable with the
369     *         elements of the list using this comparator.
370     */
371    public static <T> int binarySearch(List<? extends T> list, T key, Comparator<? super T> c) {
372        if (c==null)
373            return binarySearch((List) list, key);
374
375        if (list instanceof RandomAccess || list.size()<BINARYSEARCH_THRESHOLD)
376            return Collections.indexedBinarySearch(list, key, c);
377        else
378            return Collections.iteratorBinarySearch(list, key, c);
379    }
380
381    private static <T> int indexedBinarySearch(List<? extends T> l, T key, Comparator<? super T> c) {
382        int low = 0;
383        int high = l.size()-1;
384
385        while (low <= high) {
386            int mid = (low + high) >>> 1;
387            T midVal = l.get(mid);
388            int cmp = c.compare(midVal, key);
389
390            if (cmp < 0)
391                low = mid + 1;
392            else if (cmp > 0)
393                high = mid - 1;
394            else
395                return mid; // key found
396        }
397        return -(low + 1);  // key not found
398    }
399
400    private static <T> int iteratorBinarySearch(List<? extends T> l, T key, Comparator<? super T> c) {
401        int low = 0;
402        int high = l.size()-1;
403        ListIterator<? extends T> i = l.listIterator();
404
405        while (low <= high) {
406            int mid = (low + high) >>> 1;
407            T midVal = get(i, mid);
408            int cmp = c.compare(midVal, key);
409
410            if (cmp < 0)
411                low = mid + 1;
412            else if (cmp > 0)
413                high = mid - 1;
414            else
415                return mid; // key found
416        }
417        return -(low + 1);  // key not found
418    }
419
420    private interface SelfComparable extends Comparable<SelfComparable> {}
421
422
423    /**
424     * Reverses the order of the elements in the specified list.<p>
425     *
426     * This method runs in linear time.
427     *
428     * @param  list the list whose elements are to be reversed.
429     * @throws UnsupportedOperationException if the specified list or
430     *         its list-iterator does not support the <tt>set</tt> operation.
431     */
432    public static void reverse(List<?> list) {
433        int size = list.size();
434        if (size < REVERSE_THRESHOLD || list instanceof RandomAccess) {
435            for (int i=0, mid=size>>1, j=size-1; i<mid; i++, j--)
436                swap(list, i, j);
437        } else {
438            ListIterator fwd = list.listIterator();
439            ListIterator rev = list.listIterator(size);
440            for (int i=0, mid=list.size()>>1; i<mid; i++) {
441                Object tmp = fwd.next();
442                fwd.set(rev.previous());
443                rev.set(tmp);
444            }
445        }
446    }
447
448    /**
449     * Randomly permutes the specified list using a default source of
450     * randomness.  All permutations occur with approximately equal
451     * likelihood.<p>
452     *
453     * The hedge "approximately" is used in the foregoing description because
454     * default source of randomness is only approximately an unbiased source
455     * of independently chosen bits. If it were a perfect source of randomly
456     * chosen bits, then the algorithm would choose permutations with perfect
457     * uniformity.<p>
458     *
459     * This implementation traverses the list backwards, from the last element
460     * up to the second, repeatedly swapping a randomly selected element into
461     * the "current position".  Elements are randomly selected from the
462     * portion of the list that runs from the first element to the current
463     * position, inclusive.<p>
464     *
465     * This method runs in linear time.  If the specified list does not
466     * implement the {@link RandomAccess} interface and is large, this
467     * implementation dumps the specified list into an array before shuffling
468     * it, and dumps the shuffled array back into the list.  This avoids the
469     * quadratic behavior that would result from shuffling a "sequential
470     * access" list in place.
471     *
472     * @param  list the list to be shuffled.
473     * @throws UnsupportedOperationException if the specified list or
474     *         its list-iterator does not support the <tt>set</tt> operation.
475     */
476    public static void shuffle(List<?> list) {
477        Random rnd = r;
478        if (rnd == null)
479            r = rnd = new Random();
480        shuffle(list, rnd);
481    }
482    private static Random r;
483
484    /**
485     * Randomly permute the specified list using the specified source of
486     * randomness.  All permutations occur with equal likelihood
487     * assuming that the source of randomness is fair.<p>
488     *
489     * This implementation traverses the list backwards, from the last element
490     * up to the second, repeatedly swapping a randomly selected element into
491     * the "current position".  Elements are randomly selected from the
492     * portion of the list that runs from the first element to the current
493     * position, inclusive.<p>
494     *
495     * This method runs in linear time.  If the specified list does not
496     * implement the {@link RandomAccess} interface and is large, this
497     * implementation dumps the specified list into an array before shuffling
498     * it, and dumps the shuffled array back into the list.  This avoids the
499     * quadratic behavior that would result from shuffling a "sequential
500     * access" list in place.
501     *
502     * @param  list the list to be shuffled.
503     * @param  rnd the source of randomness to use to shuffle the list.
504     * @throws UnsupportedOperationException if the specified list or its
505     *         list-iterator does not support the <tt>set</tt> operation.
506     */
507    public static void shuffle(List<?> list, Random rnd) {
508        int size = list.size();
509        if (size < SHUFFLE_THRESHOLD || list instanceof RandomAccess) {
510            for (int i=size; i>1; i--)
511                swap(list, i-1, rnd.nextInt(i));
512        } else {
513            Object arr[] = list.toArray();
514
515            // Shuffle array
516            for (int i=size; i>1; i--)
517                swap(arr, i-1, rnd.nextInt(i));
518
519            // Dump array back into list
520            ListIterator it = list.listIterator();
521            for (int i=0; i<arr.length; i++) {
522                it.next();
523                it.set(arr[i]);
524            }
525        }
526    }
527
528    /**
529     * Swaps the elements at the specified positions in the specified list.
530     * (If the specified positions are equal, invoking this method leaves
531     * the list unchanged.)
532     *
533     * @param list The list in which to swap elements.
534     * @param i the index of one element to be swapped.
535     * @param j the index of the other element to be swapped.
536     * @throws IndexOutOfBoundsException if either <tt>i</tt> or <tt>j</tt>
537     *         is out of range (i &lt; 0 || i &gt;= list.size()
538     *         || j &lt; 0 || j &gt;= list.size()).
539     * @since 1.4
540     */
541    public static void swap(List<?> list, int i, int j) {
542        final List l = list;
543        l.set(i, l.set(j, l.get(i)));
544    }
545
546    /**
547     * Swaps the two specified elements in the specified array.
548     */
549    private static void swap(Object[] arr, int i, int j) {
550        Object tmp = arr[i];
551        arr[i] = arr[j];
552        arr[j] = tmp;
553    }
554
555    /**
556     * Replaces all of the elements of the specified list with the specified
557     * element. <p>
558     *
559     * This method runs in linear time.
560     *
561     * @param  list the list to be filled with the specified element.
562     * @param  obj The element with which to fill the specified list.
563     * @throws UnsupportedOperationException if the specified list or its
564     *         list-iterator does not support the <tt>set</tt> operation.
565     */
566    public static <T> void fill(List<? super T> list, T obj) {
567        int size = list.size();
568
569        if (size < FILL_THRESHOLD || list instanceof RandomAccess) {
570            for (int i=0; i<size; i++)
571                list.set(i, obj);
572        } else {
573            ListIterator<? super T> itr = list.listIterator();
574            for (int i=0; i<size; i++) {
575                itr.next();
576                itr.set(obj);
577            }
578        }
579    }
580
581    /**
582     * Copies all of the elements from one list into another.  After the
583     * operation, the index of each copied element in the destination list
584     * will be identical to its index in the source list.  The destination
585     * list must be at least as long as the source list.  If it is longer, the
586     * remaining elements in the destination list are unaffected. <p>
587     *
588     * This method runs in linear time.
589     *
590     * @param  dest The destination list.
591     * @param  src The source list.
592     * @throws IndexOutOfBoundsException if the destination list is too small
593     *         to contain the entire source List.
594     * @throws UnsupportedOperationException if the destination list's
595     *         list-iterator does not support the <tt>set</tt> operation.
596     */
597    public static <T> void copy(List<? super T> dest, List<? extends T> src) {
598        int srcSize = src.size();
599        if (srcSize > dest.size())
600            throw new IndexOutOfBoundsException("Source does not fit in dest");
601
602        if (srcSize < COPY_THRESHOLD ||
603            (src instanceof RandomAccess && dest instanceof RandomAccess)) {
604            for (int i=0; i<srcSize; i++)
605                dest.set(i, src.get(i));
606        } else {
607            ListIterator<? super T> di=dest.listIterator();
608            ListIterator<? extends T> si=src.listIterator();
609            for (int i=0; i<srcSize; i++) {
610                di.next();
611                di.set(si.next());
612            }
613        }
614    }
615
616    /**
617     * Returns the minimum element of the given collection, according to the
618     * <i>natural ordering</i> of its elements.  All elements in the
619     * collection must implement the <tt>Comparable</tt> interface.
620     * Furthermore, all elements in the collection must be <i>mutually
621     * comparable</i> (that is, <tt>e1.compareTo(e2)</tt> must not throw a
622     * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
623     * <tt>e2</tt> in the collection).<p>
624     *
625     * This method iterates over the entire collection, hence it requires
626     * time proportional to the size of the collection.
627     *
628     * @param  coll the collection whose minimum element is to be determined.
629     * @return the minimum element of the given collection, according
630     *         to the <i>natural ordering</i> of its elements.
631     * @throws ClassCastException if the collection contains elements that are
632     *         not <i>mutually comparable</i> (for example, strings and
633     *         integers).
634     * @throws NoSuchElementException if the collection is empty.
635     * @see Comparable
636     */
637    public static <T extends Object & Comparable<? super T>> T min(Collection<? extends T> coll) {
638        Iterator<? extends T> i = coll.iterator();
639        T candidate = i.next();
640
641        while (i.hasNext()) {
642            T next = i.next();
643            if (next.compareTo(candidate) < 0)
644                candidate = next;
645        }
646        return candidate;
647    }
648
649    /**
650     * Returns the minimum element of the given collection, according to the
651     * order induced by the specified comparator.  All elements in the
652     * collection must be <i>mutually comparable</i> by the specified
653     * comparator (that is, <tt>comp.compare(e1, e2)</tt> must not throw a
654     * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
655     * <tt>e2</tt> in the collection).<p>
656     *
657     * This method iterates over the entire collection, hence it requires
658     * time proportional to the size of the collection.
659     *
660     * @param  coll the collection whose minimum element is to be determined.
661     * @param  comp the comparator with which to determine the minimum element.
662     *         A <tt>null</tt> value indicates that the elements' <i>natural
663     *         ordering</i> should be used.
664     * @return the minimum element of the given collection, according
665     *         to the specified comparator.
666     * @throws ClassCastException if the collection contains elements that are
667     *         not <i>mutually comparable</i> using the specified comparator.
668     * @throws NoSuchElementException if the collection is empty.
669     * @see Comparable
670     */
671    public static <T> T min(Collection<? extends T> coll, Comparator<? super T> comp) {
672        if (comp==null)
673            return (T)min((Collection<SelfComparable>) (Collection) coll);
674
675        Iterator<? extends T> i = coll.iterator();
676        T candidate = i.next();
677
678        while (i.hasNext()) {
679            T next = i.next();
680            if (comp.compare(next, candidate) < 0)
681                candidate = next;
682        }
683        return candidate;
684    }
685
686    /**
687     * Returns the maximum element of the given collection, according to the
688     * <i>natural ordering</i> of its elements.  All elements in the
689     * collection must implement the <tt>Comparable</tt> interface.
690     * Furthermore, all elements in the collection must be <i>mutually
691     * comparable</i> (that is, <tt>e1.compareTo(e2)</tt> must not throw a
692     * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
693     * <tt>e2</tt> in the collection).<p>
694     *
695     * This method iterates over the entire collection, hence it requires
696     * time proportional to the size of the collection.
697     *
698     * @param  coll the collection whose maximum element is to be determined.
699     * @return the maximum element of the given collection, according
700     *         to the <i>natural ordering</i> of its elements.
701     * @throws ClassCastException if the collection contains elements that are
702     *         not <i>mutually comparable</i> (for example, strings and
703     *         integers).
704     * @throws NoSuchElementException if the collection is empty.
705     * @see Comparable
706     */
707    public static <T extends Object & Comparable<? super T>> T max(Collection<? extends T> coll) {
708        Iterator<? extends T> i = coll.iterator();
709        T candidate = i.next();
710
711        while (i.hasNext()) {
712            T next = i.next();
713            if (next.compareTo(candidate) > 0)
714                candidate = next;
715        }
716        return candidate;
717    }
718
719    /**
720     * Returns the maximum element of the given collection, according to the
721     * order induced by the specified comparator.  All elements in the
722     * collection must be <i>mutually comparable</i> by the specified
723     * comparator (that is, <tt>comp.compare(e1, e2)</tt> must not throw a
724     * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
725     * <tt>e2</tt> in the collection).<p>
726     *
727     * This method iterates over the entire collection, hence it requires
728     * time proportional to the size of the collection.
729     *
730     * @param  coll the collection whose maximum element is to be determined.
731     * @param  comp the comparator with which to determine the maximum element.
732     *         A <tt>null</tt> value indicates that the elements' <i>natural
733     *        ordering</i> should be used.
734     * @return the maximum element of the given collection, according
735     *         to the specified comparator.
736     * @throws ClassCastException if the collection contains elements that are
737     *         not <i>mutually comparable</i> using the specified comparator.
738     * @throws NoSuchElementException if the collection is empty.
739     * @see Comparable
740     */
741    public static <T> T max(Collection<? extends T> coll, Comparator<? super T> comp) {
742        if (comp==null)
743            return (T)max((Collection<SelfComparable>) (Collection) coll);
744
745        Iterator<? extends T> i = coll.iterator();
746        T candidate = i.next();
747
748        while (i.hasNext()) {
749            T next = i.next();
750            if (comp.compare(next, candidate) > 0)
751                candidate = next;
752        }
753        return candidate;
754    }
755
756    /**
757     * Rotates the elements in the specified list by the specified distance.
758     * After calling this method, the element at index <tt>i</tt> will be
759     * the element previously at index <tt>(i - distance)</tt> mod
760     * <tt>list.size()</tt>, for all values of <tt>i</tt> between <tt>0</tt>
761     * and <tt>list.size()-1</tt>, inclusive.  (This method has no effect on
762     * the size of the list.)
763     *
764     * <p>For example, suppose <tt>list</tt> comprises<tt> [t, a, n, k, s]</tt>.
765     * After invoking <tt>Collections.rotate(list, 1)</tt> (or
766     * <tt>Collections.rotate(list, -4)</tt>), <tt>list</tt> will comprise
767     * <tt>[s, t, a, n, k]</tt>.
768     *
769     * <p>Note that this method can usefully be applied to sublists to
770     * move one or more elements within a list while preserving the
771     * order of the remaining elements.  For example, the following idiom
772     * moves the element at index <tt>j</tt> forward to position
773     * <tt>k</tt> (which must be greater than or equal to <tt>j</tt>):
774     * <pre>
775     *     Collections.rotate(list.subList(j, k+1), -1);
776     * </pre>
777     * To make this concrete, suppose <tt>list</tt> comprises
778     * <tt>[a, b, c, d, e]</tt>.  To move the element at index <tt>1</tt>
779     * (<tt>b</tt>) forward two positions, perform the following invocation:
780     * <pre>
781     *     Collections.rotate(l.subList(1, 4), -1);
782     * </pre>
783     * The resulting list is <tt>[a, c, d, b, e]</tt>.
784     *
785     * <p>To move more than one element forward, increase the absolute value
786     * of the rotation distance.  To move elements backward, use a positive
787     * shift distance.
788     *
789     * <p>If the specified list is small or implements the {@link
790     * RandomAccess} interface, this implementation exchanges the first
791     * element into the location it should go, and then repeatedly exchanges
792     * the displaced element into the location it should go until a displaced
793     * element is swapped into the first element.  If necessary, the process
794     * is repeated on the second and successive elements, until the rotation
795     * is complete.  If the specified list is large and doesn't implement the
796     * <tt>RandomAccess</tt> interface, this implementation breaks the
797     * list into two sublist views around index <tt>-distance mod size</tt>.
798     * Then the {@link #reverse(List)} method is invoked on each sublist view,
799     * and finally it is invoked on the entire list.  For a more complete
800     * description of both algorithms, see Section 2.3 of Jon Bentley's
801     * <i>Programming Pearls</i> (Addison-Wesley, 1986).
802     *
803     * @param list the list to be rotated.
804     * @param distance the distance to rotate the list.  There are no
805     *        constraints on this value; it may be zero, negative, or
806     *        greater than <tt>list.size()</tt>.
807     * @throws UnsupportedOperationException if the specified list or
808     *         its list-iterator does not support the <tt>set</tt> operation.
809     * @since 1.4
810     */
811    public static void rotate(List<?> list, int distance) {
812        if (list instanceof RandomAccess || list.size() < ROTATE_THRESHOLD)
813            rotate1(list, distance);
814        else
815            rotate2(list, distance);
816    }
817
818    private static <T> void rotate1(List<T> list, int distance) {
819        int size = list.size();
820        if (size == 0)
821            return;
822        distance = distance % size;
823        if (distance < 0)
824            distance += size;
825        if (distance == 0)
826            return;
827
828        for (int cycleStart = 0, nMoved = 0; nMoved != size; cycleStart++) {
829            T displaced = list.get(cycleStart);
830            int i = cycleStart;
831            do {
832                i += distance;
833                if (i >= size)
834                    i -= size;
835                displaced = list.set(i, displaced);
836                nMoved ++;
837            } while (i != cycleStart);
838        }
839    }
840
841    private static void rotate2(List<?> list, int distance) {
842        int size = list.size();
843        if (size == 0)
844            return;
845        int mid =  -distance % size;
846        if (mid < 0)
847            mid += size;
848        if (mid == 0)
849            return;
850
851        reverse(list.subList(0, mid));
852        reverse(list.subList(mid, size));
853        reverse(list);
854    }
855
856    /**
857     * Replaces all occurrences of one specified value in a list with another.
858     * More formally, replaces with <tt>newVal</tt> each element <tt>e</tt>
859     * in <tt>list</tt> such that
860     * <tt>(oldVal==null ? e==null : oldVal.equals(e))</tt>.
861     * (This method has no effect on the size of the list.)
862     *
863     * @param list the list in which replacement is to occur.
864     * @param oldVal the old value to be replaced.
865     * @param newVal the new value with which <tt>oldVal</tt> is to be
866     *        replaced.
867     * @return <tt>true</tt> if <tt>list</tt> contained one or more elements
868     *         <tt>e</tt> such that
869     *         <tt>(oldVal==null ?  e==null : oldVal.equals(e))</tt>.
870     * @throws UnsupportedOperationException if the specified list or
871     *         its list-iterator does not support the <tt>set</tt> operation.
872     * @since  1.4
873     */
874    public static <T> boolean replaceAll(List<T> list, T oldVal, T newVal) {
875        boolean result = false;
876        int size = list.size();
877        if (size < REPLACEALL_THRESHOLD || list instanceof RandomAccess) {
878            if (oldVal==null) {
879                for (int i=0; i<size; i++) {
880                    if (list.get(i)==null) {
881                        list.set(i, newVal);
882                        result = true;
883                    }
884                }
885            } else {
886                for (int i=0; i<size; i++) {
887                    if (oldVal.equals(list.get(i))) {
888                        list.set(i, newVal);
889                        result = true;
890                    }
891                }
892            }
893        } else {
894            ListIterator<T> itr=list.listIterator();
895            if (oldVal==null) {
896                for (int i=0; i<size; i++) {
897                    if (itr.next()==null) {
898                        itr.set(newVal);
899                        result = true;
900                    }
901                }
902            } else {
903                for (int i=0; i<size; i++) {
904                    if (oldVal.equals(itr.next())) {
905                        itr.set(newVal);
906                        result = true;
907                    }
908                }
909            }
910        }
911        return result;
912    }
913
914    /**
915     * Returns the starting position of the first occurrence of the specified
916     * target list within the specified source list, or -1 if there is no
917     * such occurrence.  More formally, returns the lowest index <tt>i</tt>
918     * such that <tt>source.subList(i, i+target.size()).equals(target)</tt>,
919     * or -1 if there is no such index.  (Returns -1 if
920     * <tt>target.size() > source.size()</tt>.)
921     *
922     * <p>This implementation uses the "brute force" technique of scanning
923     * over the source list, looking for a match with the target at each
924     * location in turn.
925     *
926     * @param source the list in which to search for the first occurrence
927     *        of <tt>target</tt>.
928     * @param target the list to search for as a subList of <tt>source</tt>.
929     * @return the starting position of the first occurrence of the specified
930     *         target list within the specified source list, or -1 if there
931     *         is no such occurrence.
932     * @since  1.4
933     */
934    public static int indexOfSubList(List<?> source, List<?> target) {
935        int sourceSize = source.size();
936        int targetSize = target.size();
937        int maxCandidate = sourceSize - targetSize;
938
939        if (sourceSize < INDEXOFSUBLIST_THRESHOLD ||
940            (source instanceof RandomAccess&&target instanceof RandomAccess)) {
941        nextCand:
942            for (int candidate = 0; candidate <= maxCandidate; candidate++) {
943                for (int i=0, j=candidate; i<targetSize; i++, j++)
944                    if (!eq(target.get(i), source.get(j)))
945                        continue nextCand;  // Element mismatch, try next cand
946                return candidate;  // All elements of candidate matched target
947            }
948        } else {  // Iterator version of above algorithm
949            ListIterator<?> si = source.listIterator();
950        nextCand:
951            for (int candidate = 0; candidate <= maxCandidate; candidate++) {
952                ListIterator<?> ti = target.listIterator();
953                for (int i=0; i<targetSize; i++) {
954                    if (!eq(ti.next(), si.next())) {
955                        // Back up source iterator to next candidate
956                        for (int j=0; j<i; j++)
957                            si.previous();
958                        continue nextCand;
959                    }
960                }
961                return candidate;
962            }
963        }
964        return -1;  // No candidate matched the target
965    }
966
967    /**
968     * Returns the starting position of the last occurrence of the specified
969     * target list within the specified source list, or -1 if there is no such
970     * occurrence.  More formally, returns the highest index <tt>i</tt>
971     * such that <tt>source.subList(i, i+target.size()).equals(target)</tt>,
972     * or -1 if there is no such index.  (Returns -1 if
973     * <tt>target.size() > source.size()</tt>.)
974     *
975     * <p>This implementation uses the "brute force" technique of iterating
976     * over the source list, looking for a match with the target at each
977     * location in turn.
978     *
979     * @param source the list in which to search for the last occurrence
980     *        of <tt>target</tt>.
981     * @param target the list to search for as a subList of <tt>source</tt>.
982     * @return the starting position of the last occurrence of the specified
983     *         target list within the specified source list, or -1 if there
984     *         is no such occurrence.
985     * @since  1.4
986     */
987    public static int lastIndexOfSubList(List<?> source, List<?> target) {
988        int sourceSize = source.size();
989        int targetSize = target.size();
990        int maxCandidate = sourceSize - targetSize;
991
992        if (sourceSize < INDEXOFSUBLIST_THRESHOLD ||
993            source instanceof RandomAccess) {   // Index access version
994        nextCand:
995            for (int candidate = maxCandidate; candidate >= 0; candidate--) {
996                for (int i=0, j=candidate; i<targetSize; i++, j++)
997                    if (!eq(target.get(i), source.get(j)))
998                        continue nextCand;  // Element mismatch, try next cand
999                return candidate;  // All elements of candidate matched target
1000            }
1001        } else {  // Iterator version of above algorithm
1002            if (maxCandidate < 0)
1003                return -1;
1004            ListIterator<?> si = source.listIterator(maxCandidate);
1005        nextCand:
1006            for (int candidate = maxCandidate; candidate >= 0; candidate--) {
1007                ListIterator<?> ti = target.listIterator();
1008                for (int i=0; i<targetSize; i++) {
1009                    if (!eq(ti.next(), si.next())) {
1010                        if (candidate != 0) {
1011                            // Back up source iterator to next candidate
1012                            for (int j=0; j<=i+1; j++)
1013                                si.previous();
1014                        }
1015                        continue nextCand;
1016                    }
1017                }
1018                return candidate;
1019            }
1020        }
1021        return -1;  // No candidate matched the target
1022    }
1023
1024
1025    // Unmodifiable Wrappers
1026
1027    /**
1028     * Returns an unmodifiable view of the specified collection.  This method
1029     * allows modules to provide users with "read-only" access to internal
1030     * collections.  Query operations on the returned collection "read through"
1031     * to the specified collection, and attempts to modify the returned
1032     * collection, whether direct or via its iterator, result in an
1033     * <tt>UnsupportedOperationException</tt>.<p>
1034     *
1035     * The returned collection does <i>not</i> pass the hashCode and equals
1036     * operations through to the backing collection, but relies on
1037     * <tt>Object</tt>'s <tt>equals</tt> and <tt>hashCode</tt> methods.  This
1038     * is necessary to preserve the contracts of these operations in the case
1039     * that the backing collection is a set or a list.<p>
1040     *
1041     * The returned collection will be serializable if the specified collection
1042     * is serializable.
1043     *
1044     * @param  c the collection for which an unmodifiable view is to be
1045     *         returned.
1046     * @return an unmodifiable view of the specified collection.
1047     */
1048    public static <T> Collection<T> unmodifiableCollection(Collection<? extends T> c) {
1049        return new UnmodifiableCollection<>(c);
1050    }
1051
1052    /**
1053     * @serial include
1054     */
1055    static class UnmodifiableCollection<E> implements Collection<E>, Serializable {
1056        private static final long serialVersionUID = 1820017752578914078L;
1057
1058        final Collection<? extends E> c;
1059
1060        UnmodifiableCollection(Collection<? extends E> c) {
1061            if (c==null)
1062                throw new NullPointerException();
1063            this.c = c;
1064        }
1065
1066        public int size()                   {return c.size();}
1067        public boolean isEmpty()            {return c.isEmpty();}
1068        public boolean contains(Object o)   {return c.contains(o);}
1069        public Object[] toArray()           {return c.toArray();}
1070        public <T> T[] toArray(T[] a)       {return c.toArray(a);}
1071        public String toString()            {return c.toString();}
1072
1073        public Iterator<E> iterator() {
1074            return new Iterator<E>() {
1075                private final Iterator<? extends E> i = c.iterator();
1076
1077                public boolean hasNext() {return i.hasNext();}
1078                public E next()          {return i.next();}
1079                public void remove() {
1080                    throw new UnsupportedOperationException();
1081                }
1082            };
1083        }
1084
1085        public boolean add(E e) {
1086            throw new UnsupportedOperationException();
1087        }
1088        public boolean remove(Object o) {
1089            throw new UnsupportedOperationException();
1090        }
1091
1092        public boolean containsAll(Collection<?> coll) {
1093            return c.containsAll(coll);
1094        }
1095        public boolean addAll(Collection<? extends E> coll) {
1096            throw new UnsupportedOperationException();
1097        }
1098        public boolean removeAll(Collection<?> coll) {
1099            throw new UnsupportedOperationException();
1100        }
1101        public boolean retainAll(Collection<?> coll) {
1102            throw new UnsupportedOperationException();
1103        }
1104        public void clear() {
1105            throw new UnsupportedOperationException();
1106        }
1107    }
1108
1109    /**
1110     * Returns an unmodifiable view of the specified set.  This method allows
1111     * modules to provide users with "read-only" access to internal sets.
1112     * Query operations on the returned set "read through" to the specified
1113     * set, and attempts to modify the returned set, whether direct or via its
1114     * iterator, result in an <tt>UnsupportedOperationException</tt>.<p>
1115     *
1116     * The returned set will be serializable if the specified set
1117     * is serializable.
1118     *
1119     * @param  s the set for which an unmodifiable view is to be returned.
1120     * @return an unmodifiable view of the specified set.
1121     */
1122    public static <T> Set<T> unmodifiableSet(Set<? extends T> s) {
1123        return new UnmodifiableSet<>(s);
1124    }
1125
1126    /**
1127     * @serial include
1128     */
1129    static class UnmodifiableSet<E> extends UnmodifiableCollection<E>
1130                                 implements Set<E>, Serializable {
1131        private static final long serialVersionUID = -9215047833775013803L;
1132
1133        UnmodifiableSet(Set<? extends E> s)     {super(s);}
1134        public boolean equals(Object o) {return o == this || c.equals(o);}
1135        public int hashCode()           {return c.hashCode();}
1136    }
1137
1138    /**
1139     * Returns an unmodifiable view of the specified sorted set.  This method
1140     * allows modules to provide users with "read-only" access to internal
1141     * sorted sets.  Query operations on the returned sorted set "read
1142     * through" to the specified sorted set.  Attempts to modify the returned
1143     * sorted set, whether direct, via its iterator, or via its
1144     * <tt>subSet</tt>, <tt>headSet</tt>, or <tt>tailSet</tt> views, result in
1145     * an <tt>UnsupportedOperationException</tt>.<p>
1146     *
1147     * The returned sorted set will be serializable if the specified sorted set
1148     * is serializable.
1149     *
1150     * @param s the sorted set for which an unmodifiable view is to be
1151     *        returned.
1152     * @return an unmodifiable view of the specified sorted set.
1153     */
1154    public static <T> SortedSet<T> unmodifiableSortedSet(SortedSet<T> s) {
1155        return new UnmodifiableSortedSet<>(s);
1156    }
1157
1158    /**
1159     * @serial include
1160     */
1161    static class UnmodifiableSortedSet<E>
1162                             extends UnmodifiableSet<E>
1163                             implements SortedSet<E>, Serializable {
1164        private static final long serialVersionUID = -4929149591599911165L;
1165        private final SortedSet<E> ss;
1166
1167        UnmodifiableSortedSet(SortedSet<E> s) {super(s); ss = s;}
1168
1169        public Comparator<? super E> comparator() {return ss.comparator();}
1170
1171        public SortedSet<E> subSet(E fromElement, E toElement) {
1172            return new UnmodifiableSortedSet<>(ss.subSet(fromElement,toElement));
1173        }
1174        public SortedSet<E> headSet(E toElement) {
1175            return new UnmodifiableSortedSet<>(ss.headSet(toElement));
1176        }
1177        public SortedSet<E> tailSet(E fromElement) {
1178            return new UnmodifiableSortedSet<>(ss.tailSet(fromElement));
1179        }
1180
1181        public E first()                   {return ss.first();}
1182        public E last()                    {return ss.last();}
1183    }
1184
1185    /**
1186     * Returns an unmodifiable view of the specified list.  This method allows
1187     * modules to provide users with "read-only" access to internal
1188     * lists.  Query operations on the returned list "read through" to the
1189     * specified list, and attempts to modify the returned list, whether
1190     * direct or via its iterator, result in an
1191     * <tt>UnsupportedOperationException</tt>.<p>
1192     *
1193     * The returned list will be serializable if the specified list
1194     * is serializable. Similarly, the returned list will implement
1195     * {@link RandomAccess} if the specified list does.
1196     *
1197     * @param  list the list for which an unmodifiable view is to be returned.
1198     * @return an unmodifiable view of the specified list.
1199     */
1200    public static <T> List<T> unmodifiableList(List<? extends T> list) {
1201        return (list instanceof RandomAccess ?
1202                new UnmodifiableRandomAccessList<>(list) :
1203                new UnmodifiableList<>(list));
1204    }
1205
1206    /**
1207     * @serial include
1208     */
1209    static class UnmodifiableList<E> extends UnmodifiableCollection<E>
1210                                  implements List<E> {
1211        private static final long serialVersionUID = -283967356065247728L;
1212        final List<? extends E> list;
1213
1214        UnmodifiableList(List<? extends E> list) {
1215            super(list);
1216            this.list = list;
1217        }
1218
1219        public boolean equals(Object o) {return o == this || list.equals(o);}
1220        public int hashCode()           {return list.hashCode();}
1221
1222        public E get(int index) {return list.get(index);}
1223        public E set(int index, E element) {
1224            throw new UnsupportedOperationException();
1225        }
1226        public void add(int index, E element) {
1227            throw new UnsupportedOperationException();
1228        }
1229        public E remove(int index) {
1230            throw new UnsupportedOperationException();
1231        }
1232        public int indexOf(Object o)            {return list.indexOf(o);}
1233        public int lastIndexOf(Object o)        {return list.lastIndexOf(o);}
1234        public boolean addAll(int index, Collection<? extends E> c) {
1235            throw new UnsupportedOperationException();
1236        }
1237        public ListIterator<E> listIterator()   {return listIterator(0);}
1238
1239        public ListIterator<E> listIterator(final int index) {
1240            return new ListIterator<E>() {
1241                private final ListIterator<? extends E> i
1242                    = list.listIterator(index);
1243
1244                public boolean hasNext()     {return i.hasNext();}
1245                public E next()              {return i.next();}
1246                public boolean hasPrevious() {return i.hasPrevious();}
1247                public E previous()          {return i.previous();}
1248                public int nextIndex()       {return i.nextIndex();}
1249                public int previousIndex()   {return i.previousIndex();}
1250
1251                public void remove() {
1252                    throw new UnsupportedOperationException();
1253                }
1254                public void set(E e) {
1255                    throw new UnsupportedOperationException();
1256                }
1257                public void add(E e) {
1258                    throw new UnsupportedOperationException();
1259                }
1260            };
1261        }
1262
1263        public List<E> subList(int fromIndex, int toIndex) {
1264            return new UnmodifiableList<>(list.subList(fromIndex, toIndex));
1265        }
1266
1267        /**
1268         * UnmodifiableRandomAccessList instances are serialized as
1269         * UnmodifiableList instances to allow them to be deserialized
1270         * in pre-1.4 JREs (which do not have UnmodifiableRandomAccessList).
1271         * This method inverts the transformation.  As a beneficial
1272         * side-effect, it also grafts the RandomAccess marker onto
1273         * UnmodifiableList instances that were serialized in pre-1.4 JREs.
1274         *
1275         * Note: Unfortunately, UnmodifiableRandomAccessList instances
1276         * serialized in 1.4.1 and deserialized in 1.4 will become
1277         * UnmodifiableList instances, as this method was missing in 1.4.
1278         */
1279        private Object readResolve() {
1280            return (list instanceof RandomAccess
1281                    ? new UnmodifiableRandomAccessList<>(list)
1282                    : this);
1283        }
1284    }
1285
1286    /**
1287     * @serial include
1288     */
1289    static class UnmodifiableRandomAccessList<E> extends UnmodifiableList<E>
1290                                              implements RandomAccess
1291    {
1292        UnmodifiableRandomAccessList(List<? extends E> list) {
1293            super(list);
1294        }
1295
1296        public List<E> subList(int fromIndex, int toIndex) {
1297            return new UnmodifiableRandomAccessList<>(
1298                list.subList(fromIndex, toIndex));
1299        }
1300
1301        private static final long serialVersionUID = -2542308836966382001L;
1302
1303        /**
1304         * Allows instances to be deserialized in pre-1.4 JREs (which do
1305         * not have UnmodifiableRandomAccessList).  UnmodifiableList has
1306         * a readResolve method that inverts this transformation upon
1307         * deserialization.
1308         */
1309        private Object writeReplace() {
1310            return new UnmodifiableList<>(list);
1311        }
1312    }
1313
1314    /**
1315     * Returns an unmodifiable view of the specified map.  This method
1316     * allows modules to provide users with "read-only" access to internal
1317     * maps.  Query operations on the returned map "read through"
1318     * to the specified map, and attempts to modify the returned
1319     * map, whether direct or via its collection views, result in an
1320     * <tt>UnsupportedOperationException</tt>.<p>
1321     *
1322     * The returned map will be serializable if the specified map
1323     * is serializable.
1324     *
1325     * @param  m the map for which an unmodifiable view is to be returned.
1326     * @return an unmodifiable view of the specified map.
1327     */
1328    public static <K,V> Map<K,V> unmodifiableMap(Map<? extends K, ? extends V> m) {
1329        return new UnmodifiableMap<>(m);
1330    }
1331
1332    /**
1333     * @serial include
1334     */
1335    private static class UnmodifiableMap<K,V> implements Map<K,V>, Serializable {
1336        private static final long serialVersionUID = -1034234728574286014L;
1337
1338        private final Map<? extends K, ? extends V> m;
1339
1340        UnmodifiableMap(Map<? extends K, ? extends V> m) {
1341            if (m==null)
1342                throw new NullPointerException();
1343            this.m = m;
1344        }
1345
1346        public int size()                        {return m.size();}
1347        public boolean isEmpty()                 {return m.isEmpty();}
1348        public boolean containsKey(Object key)   {return m.containsKey(key);}
1349        public boolean containsValue(Object val) {return m.containsValue(val);}
1350        public V get(Object key)                 {return m.get(key);}
1351
1352        public V put(K key, V value) {
1353            throw new UnsupportedOperationException();
1354        }
1355        public V remove(Object key) {
1356            throw new UnsupportedOperationException();
1357        }
1358        public void putAll(Map<? extends K, ? extends V> m) {
1359            throw new UnsupportedOperationException();
1360        }
1361        public void clear() {
1362            throw new UnsupportedOperationException();
1363        }
1364
1365        private transient Set<K> keySet = null;
1366        private transient Set<Map.Entry<K,V>> entrySet = null;
1367        private transient Collection<V> values = null;
1368
1369        public Set<K> keySet() {
1370            if (keySet==null)
1371                keySet = unmodifiableSet(m.keySet());
1372            return keySet;
1373        }
1374
1375        public Set<Map.Entry<K,V>> entrySet() {
1376            if (entrySet==null)
1377                entrySet = new UnmodifiableEntrySet<>(m.entrySet());
1378            return entrySet;
1379        }
1380
1381        public Collection<V> values() {
1382            if (values==null)
1383                values = unmodifiableCollection(m.values());
1384            return values;
1385        }
1386
1387        public boolean equals(Object o) {return o == this || m.equals(o);}
1388        public int hashCode()           {return m.hashCode();}
1389        public String toString()        {return m.toString();}
1390
1391        /**
1392         * We need this class in addition to UnmodifiableSet as
1393         * Map.Entries themselves permit modification of the backing Map
1394         * via their setValue operation.  This class is subtle: there are
1395         * many possible attacks that must be thwarted.
1396         *
1397         * @serial include
1398         */
1399        static class UnmodifiableEntrySet<K,V>
1400            extends UnmodifiableSet<Map.Entry<K,V>> {
1401            private static final long serialVersionUID = 7854390611657943733L;
1402
1403            UnmodifiableEntrySet(Set<? extends Map.Entry<? extends K, ? extends V>> s) {
1404                super((Set)s);
1405            }
1406            public Iterator<Map.Entry<K,V>> iterator() {
1407                return new Iterator<Map.Entry<K,V>>() {
1408                    private final Iterator<? extends Map.Entry<? extends K, ? extends V>> i = c.iterator();
1409
1410                    public boolean hasNext() {
1411                        return i.hasNext();
1412                    }
1413                    public Map.Entry<K,V> next() {
1414                        return new UnmodifiableEntry<>(i.next());
1415                    }
1416                    public void remove() {
1417                        throw new UnsupportedOperationException();
1418                    }
1419                };
1420            }
1421
1422            public Object[] toArray() {
1423                Object[] a = c.toArray();
1424                for (int i=0; i<a.length; i++)
1425                    a[i] = new UnmodifiableEntry<>((Map.Entry<K,V>)a[i]);
1426                return a;
1427            }
1428
1429            public <T> T[] toArray(T[] a) {
1430                // We don't pass a to c.toArray, to avoid window of
1431                // vulnerability wherein an unscrupulous multithreaded client
1432                // could get his hands on raw (unwrapped) Entries from c.
1433                Object[] arr = c.toArray(a.length==0 ? a : Arrays.copyOf(a, 0));
1434
1435                for (int i=0; i<arr.length; i++)
1436                    arr[i] = new UnmodifiableEntry<>((Map.Entry<K,V>)arr[i]);
1437
1438                if (arr.length > a.length)
1439                    return (T[])arr;
1440
1441                System.arraycopy(arr, 0, a, 0, arr.length);
1442                if (a.length > arr.length)
1443                    a[arr.length] = null;
1444                return a;
1445            }
1446
1447            /**
1448             * This method is overridden to protect the backing set against
1449             * an object with a nefarious equals function that senses
1450             * that the equality-candidate is Map.Entry and calls its
1451             * setValue method.
1452             */
1453            public boolean contains(Object o) {
1454                if (!(o instanceof Map.Entry))
1455                    return false;
1456                return c.contains(
1457                    new UnmodifiableEntry<>((Map.Entry<?,?>) o));
1458            }
1459
1460            /**
1461             * The next two methods are overridden to protect against
1462             * an unscrupulous List whose contains(Object o) method senses
1463             * when o is a Map.Entry, and calls o.setValue.
1464             */
1465            public boolean containsAll(Collection<?> coll) {
1466                for (Object e : coll) {
1467                    if (!contains(e)) // Invokes safe contains() above
1468                        return false;
1469                }
1470                return true;
1471            }
1472            public boolean equals(Object o) {
1473                if (o == this)
1474                    return true;
1475
1476                if (!(o instanceof Set))
1477                    return false;
1478                Set s = (Set) o;
1479                if (s.size() != c.size())
1480                    return false;
1481                return containsAll(s); // Invokes safe containsAll() above
1482            }
1483
1484            /**
1485             * This "wrapper class" serves two purposes: it prevents
1486             * the client from modifying the backing Map, by short-circuiting
1487             * the setValue method, and it protects the backing Map against
1488             * an ill-behaved Map.Entry that attempts to modify another
1489             * Map Entry when asked to perform an equality check.
1490             */
1491            private static class UnmodifiableEntry<K,V> implements Map.Entry<K,V> {
1492                private Map.Entry<? extends K, ? extends V> e;
1493
1494                UnmodifiableEntry(Map.Entry<? extends K, ? extends V> e) {this.e = e;}
1495
1496                public K getKey()        {return e.getKey();}
1497                public V getValue()      {return e.getValue();}
1498                public V setValue(V value) {
1499                    throw new UnsupportedOperationException();
1500                }
1501                public int hashCode()    {return e.hashCode();}
1502                public boolean equals(Object o) {
1503                    if (this == o)
1504                        return true;
1505                    if (!(o instanceof Map.Entry))
1506                        return false;
1507                    Map.Entry t = (Map.Entry)o;
1508                    return eq(e.getKey(),   t.getKey()) &&
1509                           eq(e.getValue(), t.getValue());
1510                }
1511                public String toString() {return e.toString();}
1512            }
1513        }
1514    }
1515
1516    /**
1517     * Returns an unmodifiable view of the specified sorted map.  This method
1518     * allows modules to provide users with "read-only" access to internal
1519     * sorted maps.  Query operations on the returned sorted map "read through"
1520     * to the specified sorted map.  Attempts to modify the returned
1521     * sorted map, whether direct, via its collection views, or via its
1522     * <tt>subMap</tt>, <tt>headMap</tt>, or <tt>tailMap</tt> views, result in
1523     * an <tt>UnsupportedOperationException</tt>.<p>
1524     *
1525     * The returned sorted map will be serializable if the specified sorted map
1526     * is serializable.
1527     *
1528     * @param m the sorted map for which an unmodifiable view is to be
1529     *        returned.
1530     * @return an unmodifiable view of the specified sorted map.
1531     */
1532    public static <K,V> SortedMap<K,V> unmodifiableSortedMap(SortedMap<K, ? extends V> m) {
1533        return new UnmodifiableSortedMap<>(m);
1534    }
1535
1536    /**
1537     * @serial include
1538     */
1539    static class UnmodifiableSortedMap<K,V>
1540          extends UnmodifiableMap<K,V>
1541          implements SortedMap<K,V>, Serializable {
1542        private static final long serialVersionUID = -8806743815996713206L;
1543
1544        private final SortedMap<K, ? extends V> sm;
1545
1546        UnmodifiableSortedMap(SortedMap<K, ? extends V> m) {super(m); sm = m;}
1547
1548        public Comparator<? super K> comparator() {return sm.comparator();}
1549
1550        public SortedMap<K,V> subMap(K fromKey, K toKey) {
1551            return new UnmodifiableSortedMap<>(sm.subMap(fromKey, toKey));
1552        }
1553        public SortedMap<K,V> headMap(K toKey) {
1554            return new UnmodifiableSortedMap<>(sm.headMap(toKey));
1555        }
1556        public SortedMap<K,V> tailMap(K fromKey) {
1557            return new UnmodifiableSortedMap<>(sm.tailMap(fromKey));
1558        }
1559
1560        public K firstKey()           {return sm.firstKey();}
1561        public K lastKey()            {return sm.lastKey();}
1562    }
1563
1564
1565    // Synch Wrappers
1566
1567    /**
1568     * Returns a synchronized (thread-safe) collection backed by the specified
1569     * collection.  In order to guarantee serial access, it is critical that
1570     * <strong>all</strong> access to the backing collection is accomplished
1571     * through the returned collection.<p>
1572     *
1573     * It is imperative that the user manually synchronize on the returned
1574     * collection when iterating over it:
1575     * <pre>
1576     *  Collection c = Collections.synchronizedCollection(myCollection);
1577     *     ...
1578     *  synchronized (c) {
1579     *      Iterator i = c.iterator(); // Must be in the synchronized block
1580     *      while (i.hasNext())
1581     *         foo(i.next());
1582     *  }
1583     * </pre>
1584     * Failure to follow this advice may result in non-deterministic behavior.
1585     *
1586     * <p>The returned collection does <i>not</i> pass the <tt>hashCode</tt>
1587     * and <tt>equals</tt> operations through to the backing collection, but
1588     * relies on <tt>Object</tt>'s equals and hashCode methods.  This is
1589     * necessary to preserve the contracts of these operations in the case
1590     * that the backing collection is a set or a list.<p>
1591     *
1592     * The returned collection will be serializable if the specified collection
1593     * is serializable.
1594     *
1595     * @param  c the collection to be "wrapped" in a synchronized collection.
1596     * @return a synchronized view of the specified collection.
1597     */
1598    public static <T> Collection<T> synchronizedCollection(Collection<T> c) {
1599        return new SynchronizedCollection<>(c);
1600    }
1601
1602    static <T> Collection<T> synchronizedCollection(Collection<T> c, Object mutex) {
1603        return new SynchronizedCollection<>(c, mutex);
1604    }
1605
1606    /**
1607     * @serial include
1608     */
1609    static class SynchronizedCollection<E> implements Collection<E>, Serializable {
1610        private static final long serialVersionUID = 3053995032091335093L;
1611
1612        final Collection<E> c;  // Backing Collection
1613        final Object mutex;     // Object on which to synchronize
1614
1615        SynchronizedCollection(Collection<E> c) {
1616            if (c==null)
1617                throw new NullPointerException();
1618            this.c = c;
1619            mutex = this;
1620        }
1621        SynchronizedCollection(Collection<E> c, Object mutex) {
1622            this.c = c;
1623            this.mutex = mutex;
1624        }
1625
1626        public int size() {
1627            synchronized (mutex) {return c.size();}
1628        }
1629        public boolean isEmpty() {
1630            synchronized (mutex) {return c.isEmpty();}
1631        }
1632        public boolean contains(Object o) {
1633            synchronized (mutex) {return c.contains(o);}
1634        }
1635        public Object[] toArray() {
1636            synchronized (mutex) {return c.toArray();}
1637        }
1638        public <T> T[] toArray(T[] a) {
1639            synchronized (mutex) {return c.toArray(a);}
1640        }
1641
1642        public Iterator<E> iterator() {
1643            return c.iterator(); // Must be manually synched by user!
1644        }
1645
1646        public boolean add(E e) {
1647            synchronized (mutex) {return c.add(e);}
1648        }
1649        public boolean remove(Object o) {
1650            synchronized (mutex) {return c.remove(o);}
1651        }
1652
1653        public boolean containsAll(Collection<?> coll) {
1654            synchronized (mutex) {return c.containsAll(coll);}
1655        }
1656        public boolean addAll(Collection<? extends E> coll) {
1657            synchronized (mutex) {return c.addAll(coll);}
1658        }
1659        public boolean removeAll(Collection<?> coll) {
1660            synchronized (mutex) {return c.removeAll(coll);}
1661        }
1662        public boolean retainAll(Collection<?> coll) {
1663            synchronized (mutex) {return c.retainAll(coll);}
1664        }
1665        public void clear() {
1666            synchronized (mutex) {c.clear();}
1667        }
1668        public String toString() {
1669            synchronized (mutex) {return c.toString();}
1670        }
1671        private void writeObject(ObjectOutputStream s) throws IOException {
1672            synchronized (mutex) {s.defaultWriteObject();}
1673        }
1674    }
1675
1676    /**
1677     * Returns a synchronized (thread-safe) set backed by the specified
1678     * set.  In order to guarantee serial access, it is critical that
1679     * <strong>all</strong> access to the backing set is accomplished
1680     * through the returned set.<p>
1681     *
1682     * It is imperative that the user manually synchronize on the returned
1683     * set when iterating over it:
1684     * <pre>
1685     *  Set s = Collections.synchronizedSet(new HashSet());
1686     *      ...
1687     *  synchronized (s) {
1688     *      Iterator i = s.iterator(); // Must be in the synchronized block
1689     *      while (i.hasNext())
1690     *          foo(i.next());
1691     *  }
1692     * </pre>
1693     * Failure to follow this advice may result in non-deterministic behavior.
1694     *
1695     * <p>The returned set will be serializable if the specified set is
1696     * serializable.
1697     *
1698     * @param  s the set to be "wrapped" in a synchronized set.
1699     * @return a synchronized view of the specified set.
1700     */
1701    public static <T> Set<T> synchronizedSet(Set<T> s) {
1702        return new SynchronizedSet<>(s);
1703    }
1704
1705    static <T> Set<T> synchronizedSet(Set<T> s, Object mutex) {
1706        return new SynchronizedSet<>(s, mutex);
1707    }
1708
1709    /**
1710     * @serial include
1711     */
1712    static class SynchronizedSet<E>
1713          extends SynchronizedCollection<E>
1714          implements Set<E> {
1715        private static final long serialVersionUID = 487447009682186044L;
1716
1717        SynchronizedSet(Set<E> s) {
1718            super(s);
1719        }
1720        SynchronizedSet(Set<E> s, Object mutex) {
1721            super(s, mutex);
1722        }
1723
1724        public boolean equals(Object o) {
1725            if (this == o)
1726                return true;
1727            synchronized (mutex) {return c.equals(o);}
1728        }
1729        public int hashCode() {
1730            synchronized (mutex) {return c.hashCode();}
1731        }
1732    }
1733
1734    /**
1735     * Returns a synchronized (thread-safe) sorted set backed by the specified
1736     * sorted set.  In order to guarantee serial access, it is critical that
1737     * <strong>all</strong> access to the backing sorted set is accomplished
1738     * through the returned sorted set (or its views).<p>
1739     *
1740     * It is imperative that the user manually synchronize on the returned
1741     * sorted set when iterating over it or any of its <tt>subSet</tt>,
1742     * <tt>headSet</tt>, or <tt>tailSet</tt> views.
1743     * <pre>
1744     *  SortedSet s = Collections.synchronizedSortedSet(new TreeSet());
1745     *      ...
1746     *  synchronized (s) {
1747     *      Iterator i = s.iterator(); // Must be in the synchronized block
1748     *      while (i.hasNext())
1749     *          foo(i.next());
1750     *  }
1751     * </pre>
1752     * or:
1753     * <pre>
1754     *  SortedSet s = Collections.synchronizedSortedSet(new TreeSet());
1755     *  SortedSet s2 = s.headSet(foo);
1756     *      ...
1757     *  synchronized (s) {  // Note: s, not s2!!!
1758     *      Iterator i = s2.iterator(); // Must be in the synchronized block
1759     *      while (i.hasNext())
1760     *          foo(i.next());
1761     *  }
1762     * </pre>
1763     * Failure to follow this advice may result in non-deterministic behavior.
1764     *
1765     * <p>The returned sorted set will be serializable if the specified
1766     * sorted set is serializable.
1767     *
1768     * @param  s the sorted set to be "wrapped" in a synchronized sorted set.
1769     * @return a synchronized view of the specified sorted set.
1770     */
1771    public static <T> SortedSet<T> synchronizedSortedSet(SortedSet<T> s) {
1772        return new SynchronizedSortedSet<>(s);
1773    }
1774
1775    /**
1776     * @serial include
1777     */
1778    static class SynchronizedSortedSet<E>
1779        extends SynchronizedSet<E>
1780        implements SortedSet<E>
1781    {
1782        private static final long serialVersionUID = 8695801310862127406L;
1783
1784        private final SortedSet<E> ss;
1785
1786        SynchronizedSortedSet(SortedSet<E> s) {
1787            super(s);
1788            ss = s;
1789        }
1790        SynchronizedSortedSet(SortedSet<E> s, Object mutex) {
1791            super(s, mutex);
1792            ss = s;
1793        }
1794
1795        public Comparator<? super E> comparator() {
1796            synchronized (mutex) {return ss.comparator();}
1797        }
1798
1799        public SortedSet<E> subSet(E fromElement, E toElement) {
1800            synchronized (mutex) {
1801                return new SynchronizedSortedSet<>(
1802                    ss.subSet(fromElement, toElement), mutex);
1803            }
1804        }
1805        public SortedSet<E> headSet(E toElement) {
1806            synchronized (mutex) {
1807                return new SynchronizedSortedSet<>(ss.headSet(toElement), mutex);
1808            }
1809        }
1810        public SortedSet<E> tailSet(E fromElement) {
1811            synchronized (mutex) {
1812               return new SynchronizedSortedSet<>(ss.tailSet(fromElement),mutex);
1813            }
1814        }
1815
1816        public E first() {
1817            synchronized (mutex) {return ss.first();}
1818        }
1819        public E last() {
1820            synchronized (mutex) {return ss.last();}
1821        }
1822    }
1823
1824    /**
1825     * Returns a synchronized (thread-safe) list backed by the specified
1826     * list.  In order to guarantee serial access, it is critical that
1827     * <strong>all</strong> access to the backing list is accomplished
1828     * through the returned list.<p>
1829     *
1830     * It is imperative that the user manually synchronize on the returned
1831     * list when iterating over it:
1832     * <pre>
1833     *  List list = Collections.synchronizedList(new ArrayList());
1834     *      ...
1835     *  synchronized (list) {
1836     *      Iterator i = list.iterator(); // Must be in synchronized block
1837     *      while (i.hasNext())
1838     *          foo(i.next());
1839     *  }
1840     * </pre>
1841     * Failure to follow this advice may result in non-deterministic behavior.
1842     *
1843     * <p>The returned list will be serializable if the specified list is
1844     * serializable.
1845     *
1846     * @param  list the list to be "wrapped" in a synchronized list.
1847     * @return a synchronized view of the specified list.
1848     */
1849    public static <T> List<T> synchronizedList(List<T> list) {
1850        return (list instanceof RandomAccess ?
1851                new SynchronizedRandomAccessList<>(list) :
1852                new SynchronizedList<>(list));
1853    }
1854
1855    static <T> List<T> synchronizedList(List<T> list, Object mutex) {
1856        return (list instanceof RandomAccess ?
1857                new SynchronizedRandomAccessList<>(list, mutex) :
1858                new SynchronizedList<>(list, mutex));
1859    }
1860
1861    /**
1862     * @serial include
1863     */
1864    static class SynchronizedList<E>
1865        extends SynchronizedCollection<E>
1866        implements List<E> {
1867        private static final long serialVersionUID = -7754090372962971524L;
1868
1869        final List<E> list;
1870
1871        SynchronizedList(List<E> list) {
1872            super(list);
1873            this.list = list;
1874        }
1875        SynchronizedList(List<E> list, Object mutex) {
1876            super(list, mutex);
1877            this.list = list;
1878        }
1879
1880        public boolean equals(Object o) {
1881            if (this == o)
1882                return true;
1883            synchronized (mutex) {return list.equals(o);}
1884        }
1885        public int hashCode() {
1886            synchronized (mutex) {return list.hashCode();}
1887        }
1888
1889        public E get(int index) {
1890            synchronized (mutex) {return list.get(index);}
1891        }
1892        public E set(int index, E element) {
1893            synchronized (mutex) {return list.set(index, element);}
1894        }
1895        public void add(int index, E element) {
1896            synchronized (mutex) {list.add(index, element);}
1897        }
1898        public E remove(int index) {
1899            synchronized (mutex) {return list.remove(index);}
1900        }
1901
1902        public int indexOf(Object o) {
1903            synchronized (mutex) {return list.indexOf(o);}
1904        }
1905        public int lastIndexOf(Object o) {
1906            synchronized (mutex) {return list.lastIndexOf(o);}
1907        }
1908
1909        public boolean addAll(int index, Collection<? extends E> c) {
1910            synchronized (mutex) {return list.addAll(index, c);}
1911        }
1912
1913        public ListIterator<E> listIterator() {
1914            return list.listIterator(); // Must be manually synched by user
1915        }
1916
1917        public ListIterator<E> listIterator(int index) {
1918            return list.listIterator(index); // Must be manually synched by user
1919        }
1920
1921        public List<E> subList(int fromIndex, int toIndex) {
1922            synchronized (mutex) {
1923                return new SynchronizedList<>(list.subList(fromIndex, toIndex),
1924                                            mutex);
1925            }
1926        }
1927
1928        /**
1929         * SynchronizedRandomAccessList instances are serialized as
1930         * SynchronizedList instances to allow them to be deserialized
1931         * in pre-1.4 JREs (which do not have SynchronizedRandomAccessList).
1932         * This method inverts the transformation.  As a beneficial
1933         * side-effect, it also grafts the RandomAccess marker onto
1934         * SynchronizedList instances that were serialized in pre-1.4 JREs.
1935         *
1936         * Note: Unfortunately, SynchronizedRandomAccessList instances
1937         * serialized in 1.4.1 and deserialized in 1.4 will become
1938         * SynchronizedList instances, as this method was missing in 1.4.
1939         */
1940        private Object readResolve() {
1941            return (list instanceof RandomAccess
1942                    ? new SynchronizedRandomAccessList<>(list)
1943                    : this);
1944        }
1945    }
1946
1947    /**
1948     * @serial include
1949     */
1950    static class SynchronizedRandomAccessList<E>
1951        extends SynchronizedList<E>
1952        implements RandomAccess {
1953
1954        SynchronizedRandomAccessList(List<E> list) {
1955            super(list);
1956        }
1957
1958        SynchronizedRandomAccessList(List<E> list, Object mutex) {
1959            super(list, mutex);
1960        }
1961
1962        public List<E> subList(int fromIndex, int toIndex) {
1963            synchronized (mutex) {
1964                return new SynchronizedRandomAccessList<>(
1965                    list.subList(fromIndex, toIndex), mutex);
1966            }
1967        }
1968
1969        private static final long serialVersionUID = 1530674583602358482L;
1970
1971        /**
1972         * Allows instances to be deserialized in pre-1.4 JREs (which do
1973         * not have SynchronizedRandomAccessList).  SynchronizedList has
1974         * a readResolve method that inverts this transformation upon
1975         * deserialization.
1976         */
1977        private Object writeReplace() {
1978            return new SynchronizedList<>(list);
1979        }
1980    }
1981
1982    /**
1983     * Returns a synchronized (thread-safe) map backed by the specified
1984     * map.  In order to guarantee serial access, it is critical that
1985     * <strong>all</strong> access to the backing map is accomplished
1986     * through the returned map.<p>
1987     *
1988     * It is imperative that the user manually synchronize on the returned
1989     * map when iterating over any of its collection views:
1990     * <pre>
1991     *  Map m = Collections.synchronizedMap(new HashMap());
1992     *      ...
1993     *  Set s = m.keySet();  // Needn't be in synchronized block
1994     *      ...
1995     *  synchronized (m) {  // Synchronizing on m, not s!
1996     *      Iterator i = s.iterator(); // Must be in synchronized block
1997     *      while (i.hasNext())
1998     *          foo(i.next());
1999     *  }
2000     * </pre>
2001     * Failure to follow this advice may result in non-deterministic behavior.
2002     *
2003     * <p>The returned map will be serializable if the specified map is
2004     * serializable.
2005     *
2006     * @param  m the map to be "wrapped" in a synchronized map.
2007     * @return a synchronized view of the specified map.
2008     */
2009    public static <K,V> Map<K,V> synchronizedMap(Map<K,V> m) {
2010        return new SynchronizedMap<>(m);
2011    }
2012
2013    /**
2014     * @serial include
2015     */
2016    private static class SynchronizedMap<K,V>
2017        implements Map<K,V>, Serializable {
2018        private static final long serialVersionUID = 1978198479659022715L;
2019
2020        private final Map<K,V> m;     // Backing Map
2021        final Object      mutex;        // Object on which to synchronize
2022
2023        SynchronizedMap(Map<K,V> m) {
2024            if (m==null)
2025                throw new NullPointerException();
2026            this.m = m;
2027            mutex = this;
2028        }
2029
2030        SynchronizedMap(Map<K,V> m, Object mutex) {
2031            this.m = m;
2032            this.mutex = mutex;
2033        }
2034
2035        public int size() {
2036            synchronized (mutex) {return m.size();}
2037        }
2038        public boolean isEmpty() {
2039            synchronized (mutex) {return m.isEmpty();}
2040        }
2041        public boolean containsKey(Object key) {
2042            synchronized (mutex) {return m.containsKey(key);}
2043        }
2044        public boolean containsValue(Object value) {
2045            synchronized (mutex) {return m.containsValue(value);}
2046        }
2047        public V get(Object key) {
2048            synchronized (mutex) {return m.get(key);}
2049        }
2050
2051        public V put(K key, V value) {
2052            synchronized (mutex) {return m.put(key, value);}
2053        }
2054        public V remove(Object key) {
2055            synchronized (mutex) {return m.remove(key);}
2056        }
2057        public void putAll(Map<? extends K, ? extends V> map) {
2058            synchronized (mutex) {m.putAll(map);}
2059        }
2060        public void clear() {
2061            synchronized (mutex) {m.clear();}
2062        }
2063
2064        private transient Set<K> keySet = null;
2065        private transient Set<Map.Entry<K,V>> entrySet = null;
2066        private transient Collection<V> values = null;
2067
2068        public Set<K> keySet() {
2069            synchronized (mutex) {
2070                if (keySet==null)
2071                    keySet = new SynchronizedSet<>(m.keySet(), mutex);
2072                return keySet;
2073            }
2074        }
2075
2076        public Set<Map.Entry<K,V>> entrySet() {
2077            synchronized (mutex) {
2078                if (entrySet==null)
2079                    entrySet = new SynchronizedSet<>(m.entrySet(), mutex);
2080                return entrySet;
2081            }
2082        }
2083
2084        public Collection<V> values() {
2085            synchronized (mutex) {
2086                if (values==null)
2087                    values = new SynchronizedCollection<>(m.values(), mutex);
2088                return values;
2089            }
2090        }
2091
2092        public boolean equals(Object o) {
2093            if (this == o)
2094                return true;
2095            synchronized (mutex) {return m.equals(o);}
2096        }
2097        public int hashCode() {
2098            synchronized (mutex) {return m.hashCode();}
2099        }
2100        public String toString() {
2101            synchronized (mutex) {return m.toString();}
2102        }
2103        private void writeObject(ObjectOutputStream s) throws IOException {
2104            synchronized (mutex) {s.defaultWriteObject();}
2105        }
2106    }
2107
2108    /**
2109     * Returns a synchronized (thread-safe) sorted map backed by the specified
2110     * sorted map.  In order to guarantee serial access, it is critical that
2111     * <strong>all</strong> access to the backing sorted map is accomplished
2112     * through the returned sorted map (or its views).<p>
2113     *
2114     * It is imperative that the user manually synchronize on the returned
2115     * sorted map when iterating over any of its collection views, or the
2116     * collections views of any of its <tt>subMap</tt>, <tt>headMap</tt> or
2117     * <tt>tailMap</tt> views.
2118     * <pre>
2119     *  SortedMap m = Collections.synchronizedSortedMap(new TreeMap());
2120     *      ...
2121     *  Set s = m.keySet();  // Needn't be in synchronized block
2122     *      ...
2123     *  synchronized (m) {  // Synchronizing on m, not s!
2124     *      Iterator i = s.iterator(); // Must be in synchronized block
2125     *      while (i.hasNext())
2126     *          foo(i.next());
2127     *  }
2128     * </pre>
2129     * or:
2130     * <pre>
2131     *  SortedMap m = Collections.synchronizedSortedMap(new TreeMap());
2132     *  SortedMap m2 = m.subMap(foo, bar);
2133     *      ...
2134     *  Set s2 = m2.keySet();  // Needn't be in synchronized block
2135     *      ...
2136     *  synchronized (m) {  // Synchronizing on m, not m2 or s2!
2137     *      Iterator i = s.iterator(); // Must be in synchronized block
2138     *      while (i.hasNext())
2139     *          foo(i.next());
2140     *  }
2141     * </pre>
2142     * Failure to follow this advice may result in non-deterministic behavior.
2143     *
2144     * <p>The returned sorted map will be serializable if the specified
2145     * sorted map is serializable.
2146     *
2147     * @param  m the sorted map to be "wrapped" in a synchronized sorted map.
2148     * @return a synchronized view of the specified sorted map.
2149     */
2150    public static <K,V> SortedMap<K,V> synchronizedSortedMap(SortedMap<K,V> m) {
2151        return new SynchronizedSortedMap<>(m);
2152    }
2153
2154
2155    /**
2156     * @serial include
2157     */
2158    static class SynchronizedSortedMap<K,V>
2159        extends SynchronizedMap<K,V>
2160        implements SortedMap<K,V>
2161    {
2162        private static final long serialVersionUID = -8798146769416483793L;
2163
2164        private final SortedMap<K,V> sm;
2165
2166        SynchronizedSortedMap(SortedMap<K,V> m) {
2167            super(m);
2168            sm = m;
2169        }
2170        SynchronizedSortedMap(SortedMap<K,V> m, Object mutex) {
2171            super(m, mutex);
2172            sm = m;
2173        }
2174
2175        public Comparator<? super K> comparator() {
2176            synchronized (mutex) {return sm.comparator();}
2177        }
2178
2179        public SortedMap<K,V> subMap(K fromKey, K toKey) {
2180            synchronized (mutex) {
2181                return new SynchronizedSortedMap<>(
2182                    sm.subMap(fromKey, toKey), mutex);
2183            }
2184        }
2185        public SortedMap<K,V> headMap(K toKey) {
2186            synchronized (mutex) {
2187                return new SynchronizedSortedMap<>(sm.headMap(toKey), mutex);
2188            }
2189        }
2190        public SortedMap<K,V> tailMap(K fromKey) {
2191            synchronized (mutex) {
2192               return new SynchronizedSortedMap<>(sm.tailMap(fromKey),mutex);
2193            }
2194        }
2195
2196        public K firstKey() {
2197            synchronized (mutex) {return sm.firstKey();}
2198        }
2199        public K lastKey() {
2200            synchronized (mutex) {return sm.lastKey();}
2201        }
2202    }
2203
2204    // Dynamically typesafe collection wrappers
2205
2206    /**
2207     * Returns a dynamically typesafe view of the specified collection.
2208     * Any attempt to insert an element of the wrong type will result in an
2209     * immediate {@link ClassCastException}.  Assuming a collection
2210     * contains no incorrectly typed elements prior to the time a
2211     * dynamically typesafe view is generated, and that all subsequent
2212     * access to the collection takes place through the view, it is
2213     * <i>guaranteed</i> that the collection cannot contain an incorrectly
2214     * typed element.
2215     *
2216     * <p>The generics mechanism in the language provides compile-time
2217     * (static) type checking, but it is possible to defeat this mechanism
2218     * with unchecked casts.  Usually this is not a problem, as the compiler
2219     * issues warnings on all such unchecked operations.  There are, however,
2220     * times when static type checking alone is not sufficient.  For example,
2221     * suppose a collection is passed to a third-party library and it is
2222     * imperative that the library code not corrupt the collection by
2223     * inserting an element of the wrong type.
2224     *
2225     * <p>Another use of dynamically typesafe views is debugging.  Suppose a
2226     * program fails with a {@code ClassCastException}, indicating that an
2227     * incorrectly typed element was put into a parameterized collection.
2228     * Unfortunately, the exception can occur at any time after the erroneous
2229     * element is inserted, so it typically provides little or no information
2230     * as to the real source of the problem.  If the problem is reproducible,
2231     * one can quickly determine its source by temporarily modifying the
2232     * program to wrap the collection with a dynamically typesafe view.
2233     * For example, this declaration:
2234     *  <pre> {@code
2235     *     Collection<String> c = new HashSet<String>();
2236     * }</pre>
2237     * may be replaced temporarily by this one:
2238     *  <pre> {@code
2239     *     Collection<String> c = Collections.checkedCollection(
2240     *         new HashSet<String>(), String.class);
2241     * }</pre>
2242     * Running the program again will cause it to fail at the point where
2243     * an incorrectly typed element is inserted into the collection, clearly
2244     * identifying the source of the problem.  Once the problem is fixed, the
2245     * modified declaration may be reverted back to the original.
2246     *
2247     * <p>The returned collection does <i>not</i> pass the hashCode and equals
2248     * operations through to the backing collection, but relies on
2249     * {@code Object}'s {@code equals} and {@code hashCode} methods.  This
2250     * is necessary to preserve the contracts of these operations in the case
2251     * that the backing collection is a set or a list.
2252     *
2253     * <p>The returned collection will be serializable if the specified
2254     * collection is serializable.
2255     *
2256     * <p>Since {@code null} is considered to be a value of any reference
2257     * type, the returned collection permits insertion of null elements
2258     * whenever the backing collection does.
2259     *
2260     * @param c the collection for which a dynamically typesafe view is to be
2261     *          returned
2262     * @param type the type of element that {@code c} is permitted to hold
2263     * @return a dynamically typesafe view of the specified collection
2264     * @since 1.5
2265     */
2266    public static <E> Collection<E> checkedCollection(Collection<E> c,
2267                                                      Class<E> type) {
2268        return new CheckedCollection<>(c, type);
2269    }
2270
2271    @SuppressWarnings("unchecked")
2272    static <T> T[] zeroLengthArray(Class<T> type) {
2273        return (T[]) Array.newInstance(type, 0);
2274    }
2275
2276    /**
2277     * @serial include
2278     */
2279    static class CheckedCollection<E> implements Collection<E>, Serializable {
2280        private static final long serialVersionUID = 1578914078182001775L;
2281
2282        final Collection<E> c;
2283        final Class<E> type;
2284
2285        void typeCheck(Object o) {
2286            if (o != null && !type.isInstance(o))
2287                throw new ClassCastException(badElementMsg(o));
2288        }
2289
2290        private String badElementMsg(Object o) {
2291            return "Attempt to insert " + o.getClass() +
2292                " element into collection with element type " + type;
2293        }
2294
2295        CheckedCollection(Collection<E> c, Class<E> type) {
2296            if (c==null || type == null)
2297                throw new NullPointerException();
2298            this.c = c;
2299            this.type = type;
2300        }
2301
2302        public int size()                 { return c.size(); }
2303        public boolean isEmpty()          { return c.isEmpty(); }
2304        public boolean contains(Object o) { return c.contains(o); }
2305        public Object[] toArray()         { return c.toArray(); }
2306        public <T> T[] toArray(T[] a)     { return c.toArray(a); }
2307        public String toString()          { return c.toString(); }
2308        public boolean remove(Object o)   { return c.remove(o); }
2309        public void clear()               {        c.clear(); }
2310
2311        public boolean containsAll(Collection<?> coll) {
2312            return c.containsAll(coll);
2313        }
2314        public boolean removeAll(Collection<?> coll) {
2315            return c.removeAll(coll);
2316        }
2317        public boolean retainAll(Collection<?> coll) {
2318            return c.retainAll(coll);
2319        }
2320
2321        public Iterator<E> iterator() {
2322            final Iterator<E> it = c.iterator();
2323            return new Iterator<E>() {
2324                public boolean hasNext() { return it.hasNext(); }
2325                public E next()          { return it.next(); }
2326                public void remove()     {        it.remove(); }};
2327        }
2328
2329        public boolean add(E e) {
2330            typeCheck(e);
2331            return c.add(e);
2332        }
2333
2334        private E[] zeroLengthElementArray = null; // Lazily initialized
2335
2336        private E[] zeroLengthElementArray() {
2337            return zeroLengthElementArray != null ? zeroLengthElementArray :
2338                (zeroLengthElementArray = zeroLengthArray(type));
2339        }
2340
2341        @SuppressWarnings("unchecked")
2342        Collection<E> checkedCopyOf(Collection<? extends E> coll) {
2343            Object[] a = null;
2344            try {
2345                E[] z = zeroLengthElementArray();
2346                a = coll.toArray(z);
2347                // Defend against coll violating the toArray contract
2348                if (a.getClass() != z.getClass())
2349                    a = Arrays.copyOf(a, a.length, z.getClass());
2350            } catch (ArrayStoreException ignore) {
2351                // To get better and consistent diagnostics,
2352                // we call typeCheck explicitly on each element.
2353                // We call clone() to defend against coll retaining a
2354                // reference to the returned array and storing a bad
2355                // element into it after it has been type checked.
2356                a = coll.toArray().clone();
2357                for (Object o : a)
2358                    typeCheck(o);
2359            }
2360            // A slight abuse of the type system, but safe here.
2361            return (Collection<E>) Arrays.asList(a);
2362        }
2363
2364        public boolean addAll(Collection<? extends E> coll) {
2365            // Doing things this way insulates us from concurrent changes
2366            // in the contents of coll and provides all-or-nothing
2367            // semantics (which we wouldn't get if we type-checked each
2368            // element as we added it)
2369            return c.addAll(checkedCopyOf(coll));
2370        }
2371    }
2372
2373    /**
2374     * Returns a dynamically typesafe view of the specified set.
2375     * Any attempt to insert an element of the wrong type will result in
2376     * an immediate {@link ClassCastException}.  Assuming a set contains
2377     * no incorrectly typed elements prior to the time a dynamically typesafe
2378     * view is generated, and that all subsequent access to the set
2379     * takes place through the view, it is <i>guaranteed</i> that the
2380     * set cannot contain an incorrectly typed element.
2381     *
2382     * <p>A discussion of the use of dynamically typesafe views may be
2383     * found in the documentation for the {@link #checkedCollection
2384     * checkedCollection} method.
2385     *
2386     * <p>The returned set will be serializable if the specified set is
2387     * serializable.
2388     *
2389     * <p>Since {@code null} is considered to be a value of any reference
2390     * type, the returned set permits insertion of null elements whenever
2391     * the backing set does.
2392     *
2393     * @param s the set for which a dynamically typesafe view is to be
2394     *          returned
2395     * @param type the type of element that {@code s} is permitted to hold
2396     * @return a dynamically typesafe view of the specified set
2397     * @since 1.5
2398     */
2399    public static <E> Set<E> checkedSet(Set<E> s, Class<E> type) {
2400        return new CheckedSet<>(s, type);
2401    }
2402
2403    /**
2404     * @serial include
2405     */
2406    static class CheckedSet<E> extends CheckedCollection<E>
2407                                 implements Set<E>, Serializable
2408    {
2409        private static final long serialVersionUID = 4694047833775013803L;
2410
2411        CheckedSet(Set<E> s, Class<E> elementType) { super(s, elementType); }
2412
2413        public boolean equals(Object o) { return o == this || c.equals(o); }
2414        public int hashCode()           { return c.hashCode(); }
2415    }
2416
2417    /**
2418     * Returns a dynamically typesafe view of the specified sorted set.
2419     * Any attempt to insert an element of the wrong type will result in an
2420     * immediate {@link ClassCastException}.  Assuming a sorted set
2421     * contains no incorrectly typed elements prior to the time a
2422     * dynamically typesafe view is generated, and that all subsequent
2423     * access to the sorted set takes place through the view, it is
2424     * <i>guaranteed</i> that the sorted set cannot contain an incorrectly
2425     * typed element.
2426     *
2427     * <p>A discussion of the use of dynamically typesafe views may be
2428     * found in the documentation for the {@link #checkedCollection
2429     * checkedCollection} method.
2430     *
2431     * <p>The returned sorted set will be serializable if the specified sorted
2432     * set is serializable.
2433     *
2434     * <p>Since {@code null} is considered to be a value of any reference
2435     * type, the returned sorted set permits insertion of null elements
2436     * whenever the backing sorted set does.
2437     *
2438     * @param s the sorted set for which a dynamically typesafe view is to be
2439     *          returned
2440     * @param type the type of element that {@code s} is permitted to hold
2441     * @return a dynamically typesafe view of the specified sorted set
2442     * @since 1.5
2443     */
2444    public static <E> SortedSet<E> checkedSortedSet(SortedSet<E> s,
2445                                                    Class<E> type) {
2446        return new CheckedSortedSet<>(s, type);
2447    }
2448
2449    /**
2450     * @serial include
2451     */
2452    static class CheckedSortedSet<E> extends CheckedSet<E>
2453        implements SortedSet<E>, Serializable
2454    {
2455        private static final long serialVersionUID = 1599911165492914959L;
2456        private final SortedSet<E> ss;
2457
2458        CheckedSortedSet(SortedSet<E> s, Class<E> type) {
2459            super(s, type);
2460            ss = s;
2461        }
2462
2463        public Comparator<? super E> comparator() { return ss.comparator(); }
2464        public E first()                   { return ss.first(); }
2465        public E last()                    { return ss.last(); }
2466
2467        public SortedSet<E> subSet(E fromElement, E toElement) {
2468            return checkedSortedSet(ss.subSet(fromElement,toElement), type);
2469        }
2470        public SortedSet<E> headSet(E toElement) {
2471            return checkedSortedSet(ss.headSet(toElement), type);
2472        }
2473        public SortedSet<E> tailSet(E fromElement) {
2474            return checkedSortedSet(ss.tailSet(fromElement), type);
2475        }
2476    }
2477
2478    /**
2479     * Returns a dynamically typesafe view of the specified list.
2480     * Any attempt to insert an element of the wrong type will result in
2481     * an immediate {@link ClassCastException}.  Assuming a list contains
2482     * no incorrectly typed elements prior to the time a dynamically typesafe
2483     * view is generated, and that all subsequent access to the list
2484     * takes place through the view, it is <i>guaranteed</i> that the
2485     * list cannot contain an incorrectly typed element.
2486     *
2487     * <p>A discussion of the use of dynamically typesafe views may be
2488     * found in the documentation for the {@link #checkedCollection
2489     * checkedCollection} method.
2490     *
2491     * <p>The returned list will be serializable if the specified list
2492     * is serializable.
2493     *
2494     * <p>Since {@code null} is considered to be a value of any reference
2495     * type, the returned list permits insertion of null elements whenever
2496     * the backing list does.
2497     *
2498     * @param list the list for which a dynamically typesafe view is to be
2499     *             returned
2500     * @param type the type of element that {@code list} is permitted to hold
2501     * @return a dynamically typesafe view of the specified list
2502     * @since 1.5
2503     */
2504    public static <E> List<E> checkedList(List<E> list, Class<E> type) {
2505        return (list instanceof RandomAccess ?
2506                new CheckedRandomAccessList<>(list, type) :
2507                new CheckedList<>(list, type));
2508    }
2509
2510    /**
2511     * @serial include
2512     */
2513    static class CheckedList<E>
2514        extends CheckedCollection<E>
2515        implements List<E>
2516    {
2517        private static final long serialVersionUID = 65247728283967356L;
2518        final List<E> list;
2519
2520        CheckedList(List<E> list, Class<E> type) {
2521            super(list, type);
2522            this.list = list;
2523        }
2524
2525        public boolean equals(Object o)  { return o == this || list.equals(o); }
2526        public int hashCode()            { return list.hashCode(); }
2527        public E get(int index)          { return list.get(index); }
2528        public E remove(int index)       { return list.remove(index); }
2529        public int indexOf(Object o)     { return list.indexOf(o); }
2530        public int lastIndexOf(Object o) { return list.lastIndexOf(o); }
2531
2532        public E set(int index, E element) {
2533            typeCheck(element);
2534            return list.set(index, element);
2535        }
2536
2537        public void add(int index, E element) {
2538            typeCheck(element);
2539            list.add(index, element);
2540        }
2541
2542        public boolean addAll(int index, Collection<? extends E> c) {
2543            return list.addAll(index, checkedCopyOf(c));
2544        }
2545        public ListIterator<E> listIterator()   { return listIterator(0); }
2546
2547        public ListIterator<E> listIterator(final int index) {
2548            final ListIterator<E> i = list.listIterator(index);
2549
2550            return new ListIterator<E>() {
2551                public boolean hasNext()     { return i.hasNext(); }
2552                public E next()              { return i.next(); }
2553                public boolean hasPrevious() { return i.hasPrevious(); }
2554                public E previous()          { return i.previous(); }
2555                public int nextIndex()       { return i.nextIndex(); }
2556                public int previousIndex()   { return i.previousIndex(); }
2557                public void remove()         {        i.remove(); }
2558
2559                public void set(E e) {
2560                    typeCheck(e);
2561                    i.set(e);
2562                }
2563
2564                public void add(E e) {
2565                    typeCheck(e);
2566                    i.add(e);
2567                }
2568            };
2569        }
2570
2571        public List<E> subList(int fromIndex, int toIndex) {
2572            return new CheckedList<>(list.subList(fromIndex, toIndex), type);
2573        }
2574    }
2575
2576    /**
2577     * @serial include
2578     */
2579    static class CheckedRandomAccessList<E> extends CheckedList<E>
2580                                            implements RandomAccess
2581    {
2582        private static final long serialVersionUID = 1638200125423088369L;
2583
2584        CheckedRandomAccessList(List<E> list, Class<E> type) {
2585            super(list, type);
2586        }
2587
2588        public List<E> subList(int fromIndex, int toIndex) {
2589            return new CheckedRandomAccessList<>(
2590                list.subList(fromIndex, toIndex), type);
2591        }
2592    }
2593
2594    /**
2595     * Returns a dynamically typesafe view of the specified map.
2596     * Any attempt to insert a mapping whose key or value have the wrong
2597     * type will result in an immediate {@link ClassCastException}.
2598     * Similarly, any attempt to modify the value currently associated with
2599     * a key will result in an immediate {@link ClassCastException},
2600     * whether the modification is attempted directly through the map
2601     * itself, or through a {@link Map.Entry} instance obtained from the
2602     * map's {@link Map#entrySet() entry set} view.
2603     *
2604     * <p>Assuming a map contains no incorrectly typed keys or values
2605     * prior to the time a dynamically typesafe view is generated, and
2606     * that all subsequent access to the map takes place through the view
2607     * (or one of its collection views), it is <i>guaranteed</i> that the
2608     * map cannot contain an incorrectly typed key or value.
2609     *
2610     * <p>A discussion of the use of dynamically typesafe views may be
2611     * found in the documentation for the {@link #checkedCollection
2612     * checkedCollection} method.
2613     *
2614     * <p>The returned map will be serializable if the specified map is
2615     * serializable.
2616     *
2617     * <p>Since {@code null} is considered to be a value of any reference
2618     * type, the returned map permits insertion of null keys or values
2619     * whenever the backing map does.
2620     *
2621     * @param m the map for which a dynamically typesafe view is to be
2622     *          returned
2623     * @param keyType the type of key that {@code m} is permitted to hold
2624     * @param valueType the type of value that {@code m} is permitted to hold
2625     * @return a dynamically typesafe view of the specified map
2626     * @since 1.5
2627     */
2628    public static <K, V> Map<K, V> checkedMap(Map<K, V> m,
2629                                              Class<K> keyType,
2630                                              Class<V> valueType) {
2631        return new CheckedMap<>(m, keyType, valueType);
2632    }
2633
2634
2635    /**
2636     * @serial include
2637     */
2638    private static class CheckedMap<K,V>
2639        implements Map<K,V>, Serializable
2640    {
2641        private static final long serialVersionUID = 5742860141034234728L;
2642
2643        private final Map<K, V> m;
2644        final Class<K> keyType;
2645        final Class<V> valueType;
2646
2647        private void typeCheck(Object key, Object value) {
2648            if (key != null && !keyType.isInstance(key))
2649                throw new ClassCastException(badKeyMsg(key));
2650
2651            if (value != null && !valueType.isInstance(value))
2652                throw new ClassCastException(badValueMsg(value));
2653        }
2654
2655        private String badKeyMsg(Object key) {
2656            return "Attempt to insert " + key.getClass() +
2657                " key into map with key type " + keyType;
2658        }
2659
2660        private String badValueMsg(Object value) {
2661            return "Attempt to insert " + value.getClass() +
2662                " value into map with value type " + valueType;
2663        }
2664
2665        CheckedMap(Map<K, V> m, Class<K> keyType, Class<V> valueType) {
2666            if (m == null || keyType == null || valueType == null)
2667                throw new NullPointerException();
2668            this.m = m;
2669            this.keyType = keyType;
2670            this.valueType = valueType;
2671        }
2672
2673        public int size()                      { return m.size(); }
2674        public boolean isEmpty()               { return m.isEmpty(); }
2675        public boolean containsKey(Object key) { return m.containsKey(key); }
2676        public boolean containsValue(Object v) { return m.containsValue(v); }
2677        public V get(Object key)               { return m.get(key); }
2678        public V remove(Object key)            { return m.remove(key); }
2679        public void clear()                    { m.clear(); }
2680        public Set<K> keySet()                 { return m.keySet(); }
2681        public Collection<V> values()          { return m.values(); }
2682        public boolean equals(Object o)        { return o == this || m.equals(o); }
2683        public int hashCode()                  { return m.hashCode(); }
2684        public String toString()               { return m.toString(); }
2685
2686        public V put(K key, V value) {
2687            typeCheck(key, value);
2688            return m.put(key, value);
2689        }
2690
2691        @SuppressWarnings("unchecked")
2692        public void putAll(Map<? extends K, ? extends V> t) {
2693            // Satisfy the following goals:
2694            // - good diagnostics in case of type mismatch
2695            // - all-or-nothing semantics
2696            // - protection from malicious t
2697            // - correct behavior if t is a concurrent map
2698            Object[] entries = t.entrySet().toArray();
2699            List<Map.Entry<K,V>> checked = new ArrayList<>(entries.length);
2700            for (Object o : entries) {
2701                Map.Entry<?,?> e = (Map.Entry<?,?>) o;
2702                Object k = e.getKey();
2703                Object v = e.getValue();
2704                typeCheck(k, v);
2705                checked.add(
2706                    new AbstractMap.SimpleImmutableEntry<>((K) k, (V) v));
2707            }
2708            for (Map.Entry<K,V> e : checked)
2709                m.put(e.getKey(), e.getValue());
2710        }
2711
2712        private transient Set<Map.Entry<K,V>> entrySet = null;
2713
2714        public Set<Map.Entry<K,V>> entrySet() {
2715            if (entrySet==null)
2716                entrySet = new CheckedEntrySet<>(m.entrySet(), valueType);
2717            return entrySet;
2718        }
2719
2720        /**
2721         * We need this class in addition to CheckedSet as Map.Entry permits
2722         * modification of the backing Map via the setValue operation.  This
2723         * class is subtle: there are many possible attacks that must be
2724         * thwarted.
2725         *
2726         * @serial exclude
2727         */
2728        static class CheckedEntrySet<K,V> implements Set<Map.Entry<K,V>> {
2729            private final Set<Map.Entry<K,V>> s;
2730            private final Class<V> valueType;
2731
2732            CheckedEntrySet(Set<Map.Entry<K, V>> s, Class<V> valueType) {
2733                this.s = s;
2734                this.valueType = valueType;
2735            }
2736
2737            public int size()        { return s.size(); }
2738            public boolean isEmpty() { return s.isEmpty(); }
2739            public String toString() { return s.toString(); }
2740            public int hashCode()    { return s.hashCode(); }
2741            public void clear()      {        s.clear(); }
2742
2743            public boolean add(Map.Entry<K, V> e) {
2744                throw new UnsupportedOperationException();
2745            }
2746            public boolean addAll(Collection<? extends Map.Entry<K, V>> coll) {
2747                throw new UnsupportedOperationException();
2748            }
2749
2750            public Iterator<Map.Entry<K,V>> iterator() {
2751                final Iterator<Map.Entry<K, V>> i = s.iterator();
2752                final Class<V> valueType = this.valueType;
2753
2754                return new Iterator<Map.Entry<K,V>>() {
2755                    public boolean hasNext() { return i.hasNext(); }
2756                    public void remove()     { i.remove(); }
2757
2758                    public Map.Entry<K,V> next() {
2759                        return checkedEntry(i.next(), valueType);
2760                    }
2761                };
2762            }
2763
2764            @SuppressWarnings("unchecked")
2765            public Object[] toArray() {
2766                Object[] source = s.toArray();
2767
2768                /*
2769                 * Ensure that we don't get an ArrayStoreException even if
2770                 * s.toArray returns an array of something other than Object
2771                 */
2772                Object[] dest = (CheckedEntry.class.isInstance(
2773                    source.getClass().getComponentType()) ? source :
2774                                 new Object[source.length]);
2775
2776                for (int i = 0; i < source.length; i++)
2777                    dest[i] = checkedEntry((Map.Entry<K,V>)source[i],
2778                                           valueType);
2779                return dest;
2780            }
2781
2782            @SuppressWarnings("unchecked")
2783            public <T> T[] toArray(T[] a) {
2784                // We don't pass a to s.toArray, to avoid window of
2785                // vulnerability wherein an unscrupulous multithreaded client
2786                // could get his hands on raw (unwrapped) Entries from s.
2787                T[] arr = s.toArray(a.length==0 ? a : Arrays.copyOf(a, 0));
2788
2789                for (int i=0; i<arr.length; i++)
2790                    arr[i] = (T) checkedEntry((Map.Entry<K,V>)arr[i],
2791                                              valueType);
2792                if (arr.length > a.length)
2793                    return arr;
2794
2795                System.arraycopy(arr, 0, a, 0, arr.length);
2796                if (a.length > arr.length)
2797                    a[arr.length] = null;
2798                return a;
2799            }
2800
2801            /**
2802             * This method is overridden to protect the backing set against
2803             * an object with a nefarious equals function that senses
2804             * that the equality-candidate is Map.Entry and calls its
2805             * setValue method.
2806             */
2807            public boolean contains(Object o) {
2808                if (!(o instanceof Map.Entry))
2809                    return false;
2810                Map.Entry<?,?> e = (Map.Entry<?,?>) o;
2811                return s.contains(
2812                    (e instanceof CheckedEntry) ? e : checkedEntry(e, valueType));
2813            }
2814
2815            /**
2816             * The bulk collection methods are overridden to protect
2817             * against an unscrupulous collection whose contains(Object o)
2818             * method senses when o is a Map.Entry, and calls o.setValue.
2819             */
2820            public boolean containsAll(Collection<?> c) {
2821                for (Object o : c)
2822                    if (!contains(o)) // Invokes safe contains() above
2823                        return false;
2824                return true;
2825            }
2826
2827            public boolean remove(Object o) {
2828                if (!(o instanceof Map.Entry))
2829                    return false;
2830                return s.remove(new AbstractMap.SimpleImmutableEntry
2831                                <>((Map.Entry<?,?>)o));
2832            }
2833
2834            public boolean removeAll(Collection<?> c) {
2835                return batchRemove(c, false);
2836            }
2837            public boolean retainAll(Collection<?> c) {
2838                return batchRemove(c, true);
2839            }
2840            private boolean batchRemove(Collection<?> c, boolean complement) {
2841                boolean modified = false;
2842                Iterator<Map.Entry<K,V>> it = iterator();
2843                while (it.hasNext()) {
2844                    if (c.contains(it.next()) != complement) {
2845                        it.remove();
2846                        modified = true;
2847                    }
2848                }
2849                return modified;
2850            }
2851
2852            public boolean equals(Object o) {
2853                if (o == this)
2854                    return true;
2855                if (!(o instanceof Set))
2856                    return false;
2857                Set<?> that = (Set<?>) o;
2858                return that.size() == s.size()
2859                    && containsAll(that); // Invokes safe containsAll() above
2860            }
2861
2862            static <K,V,T> CheckedEntry<K,V,T> checkedEntry(Map.Entry<K,V> e,
2863                                                            Class<T> valueType) {
2864                return new CheckedEntry<>(e, valueType);
2865            }
2866
2867            /**
2868             * This "wrapper class" serves two purposes: it prevents
2869             * the client from modifying the backing Map, by short-circuiting
2870             * the setValue method, and it protects the backing Map against
2871             * an ill-behaved Map.Entry that attempts to modify another
2872             * Map.Entry when asked to perform an equality check.
2873             */
2874            private static class CheckedEntry<K,V,T> implements Map.Entry<K,V> {
2875                private final Map.Entry<K, V> e;
2876                private final Class<T> valueType;
2877
2878                CheckedEntry(Map.Entry<K, V> e, Class<T> valueType) {
2879                    this.e = e;
2880                    this.valueType = valueType;
2881                }
2882
2883                public K getKey()        { return e.getKey(); }
2884                public V getValue()      { return e.getValue(); }
2885                public int hashCode()    { return e.hashCode(); }
2886                public String toString() { return e.toString(); }
2887
2888                public V setValue(V value) {
2889                    if (value != null && !valueType.isInstance(value))
2890                        throw new ClassCastException(badValueMsg(value));
2891                    return e.setValue(value);
2892                }
2893
2894                private String badValueMsg(Object value) {
2895                    return "Attempt to insert " + value.getClass() +
2896                        " value into map with value type " + valueType;
2897                }
2898
2899                public boolean equals(Object o) {
2900                    if (o == this)
2901                        return true;
2902                    if (!(o instanceof Map.Entry))
2903                        return false;
2904                    return e.equals(new AbstractMap.SimpleImmutableEntry
2905                                    <>((Map.Entry<?,?>)o));
2906                }
2907            }
2908        }
2909    }
2910
2911    /**
2912     * Returns a dynamically typesafe view of the specified sorted map.
2913     * Any attempt to insert a mapping whose key or value have the wrong
2914     * type will result in an immediate {@link ClassCastException}.
2915     * Similarly, any attempt to modify the value currently associated with
2916     * a key will result in an immediate {@link ClassCastException},
2917     * whether the modification is attempted directly through the map
2918     * itself, or through a {@link Map.Entry} instance obtained from the
2919     * map's {@link Map#entrySet() entry set} view.
2920     *
2921     * <p>Assuming a map contains no incorrectly typed keys or values
2922     * prior to the time a dynamically typesafe view is generated, and
2923     * that all subsequent access to the map takes place through the view
2924     * (or one of its collection views), it is <i>guaranteed</i> that the
2925     * map cannot contain an incorrectly typed key or value.
2926     *
2927     * <p>A discussion of the use of dynamically typesafe views may be
2928     * found in the documentation for the {@link #checkedCollection
2929     * checkedCollection} method.
2930     *
2931     * <p>The returned map will be serializable if the specified map is
2932     * serializable.
2933     *
2934     * <p>Since {@code null} is considered to be a value of any reference
2935     * type, the returned map permits insertion of null keys or values
2936     * whenever the backing map does.
2937     *
2938     * @param m the map for which a dynamically typesafe view is to be
2939     *          returned
2940     * @param keyType the type of key that {@code m} is permitted to hold
2941     * @param valueType the type of value that {@code m} is permitted to hold
2942     * @return a dynamically typesafe view of the specified map
2943     * @since 1.5
2944     */
2945    public static <K,V> SortedMap<K,V> checkedSortedMap(SortedMap<K, V> m,
2946                                                        Class<K> keyType,
2947                                                        Class<V> valueType) {
2948        return new CheckedSortedMap<>(m, keyType, valueType);
2949    }
2950
2951    /**
2952     * @serial include
2953     */
2954    static class CheckedSortedMap<K,V> extends CheckedMap<K,V>
2955        implements SortedMap<K,V>, Serializable
2956    {
2957        private static final long serialVersionUID = 1599671320688067438L;
2958
2959        private final SortedMap<K, V> sm;
2960
2961        CheckedSortedMap(SortedMap<K, V> m,
2962                         Class<K> keyType, Class<V> valueType) {
2963            super(m, keyType, valueType);
2964            sm = m;
2965        }
2966
2967        public Comparator<? super K> comparator() { return sm.comparator(); }
2968        public K firstKey()                       { return sm.firstKey(); }
2969        public K lastKey()                        { return sm.lastKey(); }
2970
2971        public SortedMap<K,V> subMap(K fromKey, K toKey) {
2972            return checkedSortedMap(sm.subMap(fromKey, toKey),
2973                                    keyType, valueType);
2974        }
2975        public SortedMap<K,V> headMap(K toKey) {
2976            return checkedSortedMap(sm.headMap(toKey), keyType, valueType);
2977        }
2978        public SortedMap<K,V> tailMap(K fromKey) {
2979            return checkedSortedMap(sm.tailMap(fromKey), keyType, valueType);
2980        }
2981    }
2982
2983    // Empty collections
2984
2985    /**
2986     * Returns an iterator that has no elements.  More precisely,
2987     *
2988     * <ul compact>
2989     *
2990     * <li>{@link Iterator#hasNext hasNext} always returns {@code
2991     * false}.
2992     *
2993     * <li>{@link Iterator#next next} always throws {@link
2994     * NoSuchElementException}.
2995     *
2996     * <li>{@link Iterator#remove remove} always throws {@link
2997     * IllegalStateException}.
2998     *
2999     * </ul>
3000     *
3001     * <p>Implementations of this method are permitted, but not
3002     * required, to return the same object from multiple invocations.
3003     *
3004     * @return an empty iterator
3005     * @since 1.7
3006     */
3007    @SuppressWarnings("unchecked")
3008    public static <T> Iterator<T> emptyIterator() {
3009        return (Iterator<T>) EmptyIterator.EMPTY_ITERATOR;
3010    }
3011
3012    private static class EmptyIterator<E> implements Iterator<E> {
3013        static final EmptyIterator<Object> EMPTY_ITERATOR
3014            = new EmptyIterator<>();
3015
3016        public boolean hasNext() { return false; }
3017        public E next() { throw new NoSuchElementException(); }
3018        public void remove() { throw new IllegalStateException(); }
3019    }
3020
3021    /**
3022     * Returns a list iterator that has no elements.  More precisely,
3023     *
3024     * <ul compact>
3025     *
3026     * <li>{@link Iterator#hasNext hasNext} and {@link
3027     * ListIterator#hasPrevious hasPrevious} always return {@code
3028     * false}.
3029     *
3030     * <li>{@link Iterator#next next} and {@link ListIterator#previous
3031     * previous} always throw {@link NoSuchElementException}.
3032     *
3033     * <li>{@link Iterator#remove remove} and {@link ListIterator#set
3034     * set} always throw {@link IllegalStateException}.
3035     *
3036     * <li>{@link ListIterator#add add} always throws {@link
3037     * UnsupportedOperationException}.
3038     *
3039     * <li>{@link ListIterator#nextIndex nextIndex} always returns
3040     * {@code 0} .
3041     *
3042     * <li>{@link ListIterator#previousIndex previousIndex} always
3043     * returns {@code -1}.
3044     *
3045     * </ul>
3046     *
3047     * <p>Implementations of this method are permitted, but not
3048     * required, to return the same object from multiple invocations.
3049     *
3050     * @return an empty list iterator
3051     * @since 1.7
3052     */
3053    @SuppressWarnings("unchecked")
3054    public static <T> ListIterator<T> emptyListIterator() {
3055        return (ListIterator<T>) EmptyListIterator.EMPTY_ITERATOR;
3056    }
3057
3058    private static class EmptyListIterator<E>
3059        extends EmptyIterator<E>
3060        implements ListIterator<E>
3061    {
3062        static final EmptyListIterator<Object> EMPTY_ITERATOR
3063            = new EmptyListIterator<>();
3064
3065        public boolean hasPrevious() { return false; }
3066        public E previous() { throw new NoSuchElementException(); }
3067        public int nextIndex()     { return 0; }
3068        public int previousIndex() { return -1; }
3069        public void set(E e) { throw new IllegalStateException(); }
3070        public void add(E e) { throw new UnsupportedOperationException(); }
3071    }
3072
3073    /**
3074     * Returns an enumeration that has no elements.  More precisely,
3075     *
3076     * <ul compact>
3077     *
3078     * <li>{@link Enumeration#hasMoreElements hasMoreElements} always
3079     * returns {@code false}.
3080     *
3081     * <li> {@link Enumeration#nextElement nextElement} always throws
3082     * {@link NoSuchElementException}.
3083     *
3084     * </ul>
3085     *
3086     * <p>Implementations of this method are permitted, but not
3087     * required, to return the same object from multiple invocations.
3088     *
3089     * @return an empty enumeration
3090     * @since 1.7
3091     */
3092    @SuppressWarnings("unchecked")
3093    public static <T> Enumeration<T> emptyEnumeration() {
3094        return (Enumeration<T>) EmptyEnumeration.EMPTY_ENUMERATION;
3095    }
3096
3097    private static class EmptyEnumeration<E> implements Enumeration<E> {
3098        static final EmptyEnumeration<Object> EMPTY_ENUMERATION
3099            = new EmptyEnumeration<>();
3100
3101        public boolean hasMoreElements() { return false; }
3102        public E nextElement() { throw new NoSuchElementException(); }
3103    }
3104
3105    /**
3106     * The empty set (immutable).  This set is serializable.
3107     *
3108     * @see #emptySet()
3109     */
3110    @SuppressWarnings("unchecked")
3111    public static final Set EMPTY_SET = new EmptySet<>();
3112
3113    /**
3114     * Returns the empty set (immutable).  This set is serializable.
3115     * Unlike the like-named field, this method is parameterized.
3116     *
3117     * <p>This example illustrates the type-safe way to obtain an empty set:
3118     * <pre>
3119     *     Set&lt;String&gt; s = Collections.emptySet();
3120     * </pre>
3121     * Implementation note:  Implementations of this method need not
3122     * create a separate <tt>Set</tt> object for each call.   Using this
3123     * method is likely to have comparable cost to using the like-named
3124     * field.  (Unlike this method, the field does not provide type safety.)
3125     *
3126     * @see #EMPTY_SET
3127     * @since 1.5
3128     */
3129    @SuppressWarnings("unchecked")
3130    public static final <T> Set<T> emptySet() {
3131        return (Set<T>) EMPTY_SET;
3132    }
3133
3134    /**
3135     * @serial include
3136     */
3137    private static class EmptySet<E>
3138        extends AbstractSet<E>
3139        implements Serializable
3140    {
3141        private static final long serialVersionUID = 1582296315990362920L;
3142
3143        public Iterator<E> iterator() { return emptyIterator(); }
3144
3145        public int size() {return 0;}
3146        public boolean isEmpty() {return true;}
3147
3148        public boolean contains(Object obj) {return false;}
3149        public boolean containsAll(Collection<?> c) { return c.isEmpty(); }
3150
3151        public Object[] toArray() { return new Object[0]; }
3152
3153        public <T> T[] toArray(T[] a) {
3154            if (a.length > 0)
3155                a[0] = null;
3156            return a;
3157        }
3158
3159        // Preserves singleton property
3160        private Object readResolve() {
3161            return EMPTY_SET;
3162        }
3163    }
3164
3165    /**
3166     * The empty list (immutable).  This list is serializable.
3167     *
3168     * @see #emptyList()
3169     */
3170    @SuppressWarnings("unchecked")
3171    public static final List EMPTY_LIST = new EmptyList<>();
3172
3173    /**
3174     * Returns the empty list (immutable).  This list is serializable.
3175     *
3176     * <p>This example illustrates the type-safe way to obtain an empty list:
3177     * <pre>
3178     *     List&lt;String&gt; s = Collections.emptyList();
3179     * </pre>
3180     * Implementation note:  Implementations of this method need not
3181     * create a separate <tt>List</tt> object for each call.   Using this
3182     * method is likely to have comparable cost to using the like-named
3183     * field.  (Unlike this method, the field does not provide type safety.)
3184     *
3185     * @see #EMPTY_LIST
3186     * @since 1.5
3187     */
3188    @SuppressWarnings("unchecked")
3189    public static final <T> List<T> emptyList() {
3190        return (List<T>) EMPTY_LIST;
3191    }
3192
3193    /**
3194     * @serial include
3195     */
3196    private static class EmptyList<E>
3197        extends AbstractList<E>
3198        implements RandomAccess, Serializable {
3199        private static final long serialVersionUID = 8842843931221139166L;
3200
3201        public Iterator<E> iterator() {
3202            return emptyIterator();
3203        }
3204        public ListIterator<E> listIterator() {
3205            return emptyListIterator();
3206        }
3207
3208        public int size() {return 0;}
3209        public boolean isEmpty() {return true;}
3210
3211        public boolean contains(Object obj) {return false;}
3212        public boolean containsAll(Collection<?> c) { return c.isEmpty(); }
3213
3214        public Object[] toArray() { return new Object[0]; }
3215
3216        public <T> T[] toArray(T[] a) {
3217            if (a.length > 0)
3218                a[0] = null;
3219            return a;
3220        }
3221
3222        public E get(int index) {
3223            throw new IndexOutOfBoundsException("Index: "+index);
3224        }
3225
3226        public boolean equals(Object o) {
3227            return (o instanceof List) && ((List<?>)o).isEmpty();
3228        }
3229
3230        public int hashCode() { return 1; }
3231
3232        // Preserves singleton property
3233        private Object readResolve() {
3234            return EMPTY_LIST;
3235        }
3236    }
3237
3238    /**
3239     * The empty map (immutable).  This map is serializable.
3240     *
3241     * @see #emptyMap()
3242     * @since 1.3
3243     */
3244    @SuppressWarnings("unchecked")
3245    public static final Map EMPTY_MAP = new EmptyMap<>();
3246
3247    /**
3248     * Returns the empty map (immutable).  This map is serializable.
3249     *
3250     * <p>This example illustrates the type-safe way to obtain an empty set:
3251     * <pre>
3252     *     Map&lt;String, Date&gt; s = Collections.emptyMap();
3253     * </pre>
3254     * Implementation note:  Implementations of this method need not
3255     * create a separate <tt>Map</tt> object for each call.   Using this
3256     * method is likely to have comparable cost to using the like-named
3257     * field.  (Unlike this method, the field does not provide type safety.)
3258     *
3259     * @see #EMPTY_MAP
3260     * @since 1.5
3261     */
3262    @SuppressWarnings("unchecked")
3263    public static final <K,V> Map<K,V> emptyMap() {
3264        return (Map<K,V>) EMPTY_MAP;
3265    }
3266
3267    /**
3268     * @serial include
3269     */
3270    private static class EmptyMap<K,V>
3271        extends AbstractMap<K,V>
3272        implements Serializable
3273    {
3274        private static final long serialVersionUID = 6428348081105594320L;
3275
3276        public int size()                          {return 0;}
3277        public boolean isEmpty()                   {return true;}
3278        public boolean containsKey(Object key)     {return false;}
3279        public boolean containsValue(Object value) {return false;}
3280        public V get(Object key)                   {return null;}
3281        public Set<K> keySet()                     {return emptySet();}
3282        public Collection<V> values()              {return emptySet();}
3283        public Set<Map.Entry<K,V>> entrySet()      {return emptySet();}
3284
3285        public boolean equals(Object o) {
3286            return (o instanceof Map) && ((Map<?,?>)o).isEmpty();
3287        }
3288
3289        public int hashCode()                      {return 0;}
3290
3291        // Preserves singleton property
3292        private Object readResolve() {
3293            return EMPTY_MAP;
3294        }
3295    }
3296
3297    // Singleton collections
3298
3299    /**
3300     * Returns an immutable set containing only the specified object.
3301     * The returned set is serializable.
3302     *
3303     * @param o the sole object to be stored in the returned set.
3304     * @return an immutable set containing only the specified object.
3305     */
3306    public static <E> Set<E> singleton(E o) {
3307        return new SingletonSet<>(o);
3308    }
3309
3310    static <E> Iterator<E> singletonIterator(final E e) {
3311        return new Iterator<E>() {
3312            private boolean hasNext = true;
3313            public boolean hasNext() {
3314                return hasNext;
3315            }
3316            public E next() {
3317                if (hasNext) {
3318                    hasNext = false;
3319                    return e;
3320                }
3321                throw new NoSuchElementException();
3322            }
3323            public void remove() {
3324                throw new UnsupportedOperationException();
3325            }
3326        };
3327    }
3328
3329    /**
3330     * @serial include
3331     */
3332    private static class SingletonSet<E>
3333        extends AbstractSet<E>
3334        implements Serializable
3335    {
3336        private static final long serialVersionUID = 3193687207550431679L;
3337
3338        private final E element;
3339
3340        SingletonSet(E e) {element = e;}
3341
3342        public Iterator<E> iterator() {
3343            return singletonIterator(element);
3344        }
3345
3346        public int size() {return 1;}
3347
3348        public boolean contains(Object o) {return eq(o, element);}
3349    }
3350
3351    /**
3352     * Returns an immutable list containing only the specified object.
3353     * The returned list is serializable.
3354     *
3355     * @param o the sole object to be stored in the returned list.
3356     * @return an immutable list containing only the specified object.
3357     * @since 1.3
3358     */
3359    public static <E> List<E> singletonList(E o) {
3360        return new SingletonList<>(o);
3361    }
3362
3363    /**
3364     * @serial include
3365     */
3366    private static class SingletonList<E>
3367        extends AbstractList<E>
3368        implements RandomAccess, Serializable {
3369
3370        private static final long serialVersionUID = 3093736618740652951L;
3371
3372        private final E element;
3373
3374        SingletonList(E obj)                {element = obj;}
3375
3376        public Iterator<E> iterator() {
3377            return singletonIterator(element);
3378        }
3379
3380        public int size()                   {return 1;}
3381
3382        public boolean contains(Object obj) {return eq(obj, element);}
3383
3384        public E get(int index) {
3385            if (index != 0)
3386              throw new IndexOutOfBoundsException("Index: "+index+", Size: 1");
3387            return element;
3388        }
3389    }
3390
3391    /**
3392     * Returns an immutable map, mapping only the specified key to the
3393     * specified value.  The returned map is serializable.
3394     *
3395     * @param key the sole key to be stored in the returned map.
3396     * @param value the value to which the returned map maps <tt>key</tt>.
3397     * @return an immutable map containing only the specified key-value
3398     *         mapping.
3399     * @since 1.3
3400     */
3401    public static <K,V> Map<K,V> singletonMap(K key, V value) {
3402        return new SingletonMap<>(key, value);
3403    }
3404
3405    /**
3406     * @serial include
3407     */
3408    private static class SingletonMap<K,V>
3409          extends AbstractMap<K,V>
3410          implements Serializable {
3411        private static final long serialVersionUID = -6979724477215052911L;
3412
3413        private final K k;
3414        private final V v;
3415
3416        SingletonMap(K key, V value) {
3417            k = key;
3418            v = value;
3419        }
3420
3421        public int size()                          {return 1;}
3422
3423        public boolean isEmpty()                   {return false;}
3424
3425        public boolean containsKey(Object key)     {return eq(key, k);}
3426
3427        public boolean containsValue(Object value) {return eq(value, v);}
3428
3429        public V get(Object key)                   {return (eq(key, k) ? v : null);}
3430
3431        private transient Set<K> keySet = null;
3432        private transient Set<Map.Entry<K,V>> entrySet = null;
3433        private transient Collection<V> values = null;
3434
3435        public Set<K> keySet() {
3436            if (keySet==null)
3437                keySet = singleton(k);
3438            return keySet;
3439        }
3440
3441        public Set<Map.Entry<K,V>> entrySet() {
3442            if (entrySet==null)
3443                entrySet = Collections.<Map.Entry<K,V>>singleton(
3444                    new SimpleImmutableEntry<>(k, v));
3445            return entrySet;
3446        }
3447
3448        public Collection<V> values() {
3449            if (values==null)
3450                values = singleton(v);
3451            return values;
3452        }
3453
3454    }
3455
3456    // Miscellaneous
3457
3458    /**
3459     * Returns an immutable list consisting of <tt>n</tt> copies of the
3460     * specified object.  The newly allocated data object is tiny (it contains
3461     * a single reference to the data object).  This method is useful in
3462     * combination with the <tt>List.addAll</tt> method to grow lists.
3463     * The returned list is serializable.
3464     *
3465     * @param  n the number of elements in the returned list.
3466     * @param  o the element to appear repeatedly in the returned list.
3467     * @return an immutable list consisting of <tt>n</tt> copies of the
3468     *         specified object.
3469     * @throws IllegalArgumentException if {@code n < 0}
3470     * @see    List#addAll(Collection)
3471     * @see    List#addAll(int, Collection)
3472     */
3473    public static <T> List<T> nCopies(int n, T o) {
3474        if (n < 0)
3475            throw new IllegalArgumentException("List length = " + n);
3476        return new CopiesList<>(n, o);
3477    }
3478
3479    /**
3480     * @serial include
3481     */
3482    private static class CopiesList<E>
3483        extends AbstractList<E>
3484        implements RandomAccess, Serializable
3485    {
3486        private static final long serialVersionUID = 2739099268398711800L;
3487
3488        final int n;
3489        final E element;
3490
3491        CopiesList(int n, E e) {
3492            assert n >= 0;
3493            this.n = n;
3494            element = e;
3495        }
3496
3497        public int size() {
3498            return n;
3499        }
3500
3501        public boolean contains(Object obj) {
3502            return n != 0 && eq(obj, element);
3503        }
3504
3505        public int indexOf(Object o) {
3506            return contains(o) ? 0 : -1;
3507        }
3508
3509        public int lastIndexOf(Object o) {
3510            return contains(o) ? n - 1 : -1;
3511        }
3512
3513        public E get(int index) {
3514            if (index < 0 || index >= n)
3515                throw new IndexOutOfBoundsException("Index: "+index+
3516                                                    ", Size: "+n);
3517            return element;
3518        }
3519
3520        public Object[] toArray() {
3521            final Object[] a = new Object[n];
3522            if (element != null)
3523                Arrays.fill(a, 0, n, element);
3524            return a;
3525        }
3526
3527        public <T> T[] toArray(T[] a) {
3528            final int n = this.n;
3529            if (a.length < n) {
3530                a = (T[])java.lang.reflect.Array
3531                    .newInstance(a.getClass().getComponentType(), n);
3532                if (element != null)
3533                    Arrays.fill(a, 0, n, element);
3534            } else {
3535                Arrays.fill(a, 0, n, element);
3536                if (a.length > n)
3537                    a[n] = null;
3538            }
3539            return a;
3540        }
3541
3542        public List<E> subList(int fromIndex, int toIndex) {
3543            if (fromIndex < 0)
3544                throw new IndexOutOfBoundsException("fromIndex = " + fromIndex);
3545            if (toIndex > n)
3546                throw new IndexOutOfBoundsException("toIndex = " + toIndex);
3547            if (fromIndex > toIndex)
3548                throw new IllegalArgumentException("fromIndex(" + fromIndex +
3549                                                   ") > toIndex(" + toIndex + ")");
3550            return new CopiesList<>(toIndex - fromIndex, element);
3551        }
3552    }
3553
3554    /**
3555     * Returns a comparator that imposes the reverse of the <em>natural
3556     * ordering</em> on a collection of objects that implement the
3557     * {@code Comparable} interface.  (The natural ordering is the ordering
3558     * imposed by the objects' own {@code compareTo} method.)  This enables a
3559     * simple idiom for sorting (or maintaining) collections (or arrays) of
3560     * objects that implement the {@code Comparable} interface in
3561     * reverse-natural-order.  For example, suppose {@code a} is an array of
3562     * strings. Then: <pre>
3563     *          Arrays.sort(a, Collections.reverseOrder());
3564     * </pre> sorts the array in reverse-lexicographic (alphabetical) order.<p>
3565     *
3566     * The returned comparator is serializable.
3567     *
3568     * @return A comparator that imposes the reverse of the <i>natural
3569     *         ordering</i> on a collection of objects that implement
3570     *         the <tt>Comparable</tt> interface.
3571     * @see Comparable
3572     */
3573    public static <T> Comparator<T> reverseOrder() {
3574        return (Comparator<T>) ReverseComparator.REVERSE_ORDER;
3575    }
3576
3577    /**
3578     * @serial include
3579     */
3580    private static class ReverseComparator
3581        implements Comparator<Comparable<Object>>, Serializable {
3582
3583        private static final long serialVersionUID = 7207038068494060240L;
3584
3585        static final ReverseComparator REVERSE_ORDER
3586            = new ReverseComparator();
3587
3588        public int compare(Comparable<Object> c1, Comparable<Object> c2) {
3589            return c2.compareTo(c1);
3590        }
3591
3592        private Object readResolve() { return reverseOrder(); }
3593    }
3594
3595    /**
3596     * Returns a comparator that imposes the reverse ordering of the specified
3597     * comparator.  If the specified comparator is {@code null}, this method is
3598     * equivalent to {@link #reverseOrder()} (in other words, it returns a
3599     * comparator that imposes the reverse of the <em>natural ordering</em> on
3600     * a collection of objects that implement the Comparable interface).
3601     *
3602     * <p>The returned comparator is serializable (assuming the specified
3603     * comparator is also serializable or {@code null}).
3604     *
3605     * @param cmp a comparator who's ordering is to be reversed by the returned
3606     * comparator or {@code null}
3607     * @return A comparator that imposes the reverse ordering of the
3608     *         specified comparator.
3609     * @since 1.5
3610     */
3611    public static <T> Comparator<T> reverseOrder(Comparator<T> cmp) {
3612        if (cmp == null)
3613            return reverseOrder();
3614
3615        if (cmp instanceof ReverseComparator2)
3616            return ((ReverseComparator2<T>)cmp).cmp;
3617
3618        return new ReverseComparator2<>(cmp);
3619    }
3620
3621    /**
3622     * @serial include
3623     */
3624    private static class ReverseComparator2<T> implements Comparator<T>,
3625        Serializable
3626    {
3627        private static final long serialVersionUID = 4374092139857L;
3628
3629        /**
3630         * The comparator specified in the static factory.  This will never
3631         * be null, as the static factory returns a ReverseComparator
3632         * instance if its argument is null.
3633         *
3634         * @serial
3635         */
3636        final Comparator<T> cmp;
3637
3638        ReverseComparator2(Comparator<T> cmp) {
3639            assert cmp != null;
3640            this.cmp = cmp;
3641        }
3642
3643        public int compare(T t1, T t2) {
3644            return cmp.compare(t2, t1);
3645        }
3646
3647        public boolean equals(Object o) {
3648            return (o == this) ||
3649                (o instanceof ReverseComparator2 &&
3650                 cmp.equals(((ReverseComparator2)o).cmp));
3651        }
3652
3653        public int hashCode() {
3654            return cmp.hashCode() ^ Integer.MIN_VALUE;
3655        }
3656    }
3657
3658    /**
3659     * Returns an enumeration over the specified collection.  This provides
3660     * interoperability with legacy APIs that require an enumeration
3661     * as input.
3662     *
3663     * @param c the collection for which an enumeration is to be returned.
3664     * @return an enumeration over the specified collection.
3665     * @see Enumeration
3666     */
3667    public static <T> Enumeration<T> enumeration(final Collection<T> c) {
3668        return new Enumeration<T>() {
3669            private final Iterator<T> i = c.iterator();
3670
3671            public boolean hasMoreElements() {
3672                return i.hasNext();
3673            }
3674
3675            public T nextElement() {
3676                return i.next();
3677            }
3678        };
3679    }
3680
3681    /**
3682     * Returns an array list containing the elements returned by the
3683     * specified enumeration in the order they are returned by the
3684     * enumeration.  This method provides interoperability between
3685     * legacy APIs that return enumerations and new APIs that require
3686     * collections.
3687     *
3688     * @param e enumeration providing elements for the returned
3689     *          array list
3690     * @return an array list containing the elements returned
3691     *         by the specified enumeration.
3692     * @since 1.4
3693     * @see Enumeration
3694     * @see ArrayList
3695     */
3696    public static <T> ArrayList<T> list(Enumeration<T> e) {
3697        ArrayList<T> l = new ArrayList<>();
3698        while (e.hasMoreElements())
3699            l.add(e.nextElement());
3700        return l;
3701    }
3702
3703    /**
3704     * Returns true if the specified arguments are equal, or both null.
3705     */
3706    static boolean eq(Object o1, Object o2) {
3707        return o1==null ? o2==null : o1.equals(o2);
3708    }
3709
3710    /**
3711     * Returns the number of elements in the specified collection equal to the
3712     * specified object.  More formally, returns the number of elements
3713     * <tt>e</tt> in the collection such that
3714     * <tt>(o == null ? e == null : o.equals(e))</tt>.
3715     *
3716     * @param c the collection in which to determine the frequency
3717     *     of <tt>o</tt>
3718     * @param o the object whose frequency is to be determined
3719     * @throws NullPointerException if <tt>c</tt> is null
3720     * @since 1.5
3721     */
3722    public static int frequency(Collection<?> c, Object o) {
3723        int result = 0;
3724        if (o == null) {
3725            for (Object e : c)
3726                if (e == null)
3727                    result++;
3728        } else {
3729            for (Object e : c)
3730                if (o.equals(e))
3731                    result++;
3732        }
3733        return result;
3734    }
3735
3736    /**
3737     * Returns {@code true} if the two specified collections have no
3738     * elements in common.
3739     *
3740     * <p>Care must be exercised if this method is used on collections that
3741     * do not comply with the general contract for {@code Collection}.
3742     * Implementations may elect to iterate over either collection and test
3743     * for containment in the other collection (or to perform any equivalent
3744     * computation).  If either collection uses a nonstandard equality test
3745     * (as does a {@link SortedSet} whose ordering is not <em>compatible with
3746     * equals</em>, or the key set of an {@link IdentityHashMap}), both
3747     * collections must use the same nonstandard equality test, or the
3748     * result of this method is undefined.
3749     *
3750     * <p>Care must also be exercised when using collections that have
3751     * restrictions on the elements that they may contain. Collection
3752     * implementations are allowed to throw exceptions for any operation
3753     * involving elements they deem ineligible. For absolute safety the
3754     * specified collections should contain only elements which are
3755     * eligible elements for both collections.
3756     *
3757     * <p>Note that it is permissible to pass the same collection in both
3758     * parameters, in which case the method will return {@code true} if and
3759     * only if the collection is empty.
3760     *
3761     * @param c1 a collection
3762     * @param c2 a collection
3763     * @return {@code true} if the two specified collections have no
3764     * elements in common.
3765     * @throws NullPointerException if either collection is {@code null}.
3766     * @throws NullPointerException if one collection contains a {@code null}
3767     * element and {@code null} is not an eligible element for the other collection.
3768     * (<a href="Collection.html#optional-restrictions">optional</a>)
3769     * @throws ClassCastException if one collection contains an element that is
3770     * of a type which is ineligible for the other collection.
3771     * (<a href="Collection.html#optional-restrictions">optional</a>)
3772     * @since 1.5
3773     */
3774    public static boolean disjoint(Collection<?> c1, Collection<?> c2) {
3775        // The collection to be used for contains(). Preference is given to
3776        // the collection who's contains() has lower O() complexity.
3777        Collection<?> contains = c2;
3778        // The collection to be iterated. If the collections' contains() impl
3779        // are of different O() complexity, the collection with slower
3780        // contains() will be used for iteration. For collections who's
3781        // contains() are of the same complexity then best performance is
3782        // achieved by iterating the smaller collection.
3783        Collection<?> iterate = c1;
3784
3785        // Performance optimization cases. The heuristics:
3786        //   1. Generally iterate over c1.
3787        //   2. If c1 is a Set then iterate over c2.
3788        //   3. If either collection is empty then result is always true.
3789        //   4. Iterate over the smaller Collection.
3790        if (c1 instanceof Set) {
3791            // Use c1 for contains as a Set's contains() is expected to perform
3792            // better than O(N/2)
3793            iterate = c2;
3794            contains = c1;
3795        } else if (!(c2 instanceof Set)) {
3796            // Both are mere Collections. Iterate over smaller collection.
3797            // Example: If c1 contains 3 elements and c2 contains 50 elements and
3798            // assuming contains() requires ceiling(N/2) comparisons then
3799            // checking for all c1 elements in c2 would require 75 comparisons
3800            // (3 * ceiling(50/2)) vs. checking all c2 elements in c1 requiring
3801            // 100 comparisons (50 * ceiling(3/2)).
3802            int c1size = c1.size();
3803            int c2size = c2.size();
3804            if (c1size == 0 || c2size == 0) {
3805                // At least one collection is empty. Nothing will match.
3806                return true;
3807            }
3808
3809            if (c1size > c2size) {
3810                iterate = c2;
3811                contains = c1;
3812            }
3813        }
3814
3815        for (Object e : iterate) {
3816            if (contains.contains(e)) {
3817               // Found a common element. Collections are not disjoint.
3818                return false;
3819            }
3820        }
3821
3822        // No common elements were found.
3823        return true;
3824    }
3825
3826    /**
3827     * Adds all of the specified elements to the specified collection.
3828     * Elements to be added may be specified individually or as an array.
3829     * The behavior of this convenience method is identical to that of
3830     * <tt>c.addAll(Arrays.asList(elements))</tt>, but this method is likely
3831     * to run significantly faster under most implementations.
3832     *
3833     * <p>When elements are specified individually, this method provides a
3834     * convenient way to add a few elements to an existing collection:
3835     * <pre>
3836     *     Collections.addAll(flavors, "Peaches 'n Plutonium", "Rocky Racoon");
3837     * </pre>
3838     *
3839     * @param c the collection into which <tt>elements</tt> are to be inserted
3840     * @param elements the elements to insert into <tt>c</tt>
3841     * @return <tt>true</tt> if the collection changed as a result of the call
3842     * @throws UnsupportedOperationException if <tt>c</tt> does not support
3843     *         the <tt>add</tt> operation
3844     * @throws NullPointerException if <tt>elements</tt> contains one or more
3845     *         null values and <tt>c</tt> does not permit null elements, or
3846     *         if <tt>c</tt> or <tt>elements</tt> are <tt>null</tt>
3847     * @throws IllegalArgumentException if some property of a value in
3848     *         <tt>elements</tt> prevents it from being added to <tt>c</tt>
3849     * @see Collection#addAll(Collection)
3850     * @since 1.5
3851     */
3852    @SafeVarargs
3853    public static <T> boolean addAll(Collection<? super T> c, T... elements) {
3854        boolean result = false;
3855        for (T element : elements)
3856            result |= c.add(element);
3857        return result;
3858    }
3859
3860    /**
3861     * Returns a set backed by the specified map.  The resulting set displays
3862     * the same ordering, concurrency, and performance characteristics as the
3863     * backing map.  In essence, this factory method provides a {@link Set}
3864     * implementation corresponding to any {@link Map} implementation.  There
3865     * is no need to use this method on a {@link Map} implementation that
3866     * already has a corresponding {@link Set} implementation (such as {@link
3867     * HashMap} or {@link TreeMap}).
3868     *
3869     * <p>Each method invocation on the set returned by this method results in
3870     * exactly one method invocation on the backing map or its <tt>keySet</tt>
3871     * view, with one exception.  The <tt>addAll</tt> method is implemented
3872     * as a sequence of <tt>put</tt> invocations on the backing map.
3873     *
3874     * <p>The specified map must be empty at the time this method is invoked,
3875     * and should not be accessed directly after this method returns.  These
3876     * conditions are ensured if the map is created empty, passed directly
3877     * to this method, and no reference to the map is retained, as illustrated
3878     * in the following code fragment:
3879     * <pre>
3880     *    Set&lt;Object&gt; weakHashSet = Collections.newSetFromMap(
3881     *        new WeakHashMap&lt;Object, Boolean&gt;());
3882     * </pre>
3883     *
3884     * @param map the backing map
3885     * @return the set backed by the map
3886     * @throws IllegalArgumentException if <tt>map</tt> is not empty
3887     * @since 1.6
3888     */
3889    public static <E> Set<E> newSetFromMap(Map<E, Boolean> map) {
3890        return new SetFromMap<>(map);
3891    }
3892
3893    /**
3894     * @serial include
3895     */
3896    private static class SetFromMap<E> extends AbstractSet<E>
3897        implements Set<E>, Serializable
3898    {
3899        private final Map<E, Boolean> m;  // The backing map
3900        private transient Set<E> s;       // Its keySet
3901
3902        SetFromMap(Map<E, Boolean> map) {
3903            if (!map.isEmpty())
3904                throw new IllegalArgumentException("Map is non-empty");
3905            m = map;
3906            s = map.keySet();
3907        }
3908
3909        public void clear()               {        m.clear(); }
3910        public int size()                 { return m.size(); }
3911        public boolean isEmpty()          { return m.isEmpty(); }
3912        public boolean contains(Object o) { return m.containsKey(o); }
3913        public boolean remove(Object o)   { return m.remove(o) != null; }
3914        public boolean add(E e) { return m.put(e, Boolean.TRUE) == null; }
3915        public Iterator<E> iterator()     { return s.iterator(); }
3916        public Object[] toArray()         { return s.toArray(); }
3917        public <T> T[] toArray(T[] a)     { return s.toArray(a); }
3918        public String toString()          { return s.toString(); }
3919        public int hashCode()             { return s.hashCode(); }
3920        public boolean equals(Object o)   { return o == this || s.equals(o); }
3921        public boolean containsAll(Collection<?> c) {return s.containsAll(c);}
3922        public boolean removeAll(Collection<?> c)   {return s.removeAll(c);}
3923        public boolean retainAll(Collection<?> c)   {return s.retainAll(c);}
3924        // addAll is the only inherited implementation
3925
3926        private static final long serialVersionUID = 2454657854757543876L;
3927
3928        private void readObject(java.io.ObjectInputStream stream)
3929            throws IOException, ClassNotFoundException
3930        {
3931            stream.defaultReadObject();
3932            s = m.keySet();
3933        }
3934    }
3935
3936    /**
3937     * Returns a view of a {@link Deque} as a Last-in-first-out (Lifo)
3938     * {@link Queue}. Method <tt>add</tt> is mapped to <tt>push</tt>,
3939     * <tt>remove</tt> is mapped to <tt>pop</tt> and so on. This
3940     * view can be useful when you would like to use a method
3941     * requiring a <tt>Queue</tt> but you need Lifo ordering.
3942     *
3943     * <p>Each method invocation on the queue returned by this method
3944     * results in exactly one method invocation on the backing deque, with
3945     * one exception.  The {@link Queue#addAll addAll} method is
3946     * implemented as a sequence of {@link Deque#addFirst addFirst}
3947     * invocations on the backing deque.
3948     *
3949     * @param deque the deque
3950     * @return the queue
3951     * @since  1.6
3952     */
3953    public static <T> Queue<T> asLifoQueue(Deque<T> deque) {
3954        return new AsLIFOQueue<>(deque);
3955    }
3956
3957    /**
3958     * @serial include
3959     */
3960    static class AsLIFOQueue<E> extends AbstractQueue<E>
3961        implements Queue<E>, Serializable {
3962        private static final long serialVersionUID = 1802017725587941708L;
3963        private final Deque<E> q;
3964        AsLIFOQueue(Deque<E> q)           { this.q = q; }
3965        public boolean add(E e)           { q.addFirst(e); return true; }
3966        public boolean offer(E e)         { return q.offerFirst(e); }
3967        public E poll()                   { return q.pollFirst(); }
3968        public E remove()                 { return q.removeFirst(); }
3969        public E peek()                   { return q.peekFirst(); }
3970        public E element()                { return q.getFirst(); }
3971        public void clear()               {        q.clear(); }
3972        public int size()                 { return q.size(); }
3973        public boolean isEmpty()          { return q.isEmpty(); }
3974        public boolean contains(Object o) { return q.contains(o); }
3975        public boolean remove(Object o)   { return q.remove(o); }
3976        public Iterator<E> iterator()     { return q.iterator(); }
3977        public Object[] toArray()         { return q.toArray(); }
3978        public <T> T[] toArray(T[] a)     { return q.toArray(a); }
3979        public String toString()          { return q.toString(); }
3980        public boolean containsAll(Collection<?> c) {return q.containsAll(c);}
3981        public boolean removeAll(Collection<?> c)   {return q.removeAll(c);}
3982        public boolean retainAll(Collection<?> c)   {return q.retainAll(c);}
3983        // We use inherited addAll; forwarding addAll would be wrong
3984    }
3985}
3986