Collections.java revision 309f9df28350e15445b9135e8b710fa2b34b5dc1
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.  Oracle designates this
9 * particular file as subject to the "Classpath" exception as provided
10 * by Oracle in the LICENSE file that accompanied this code.
11 *
12 * This code is distributed in the hope that it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 * version 2 for more details (a copy is included in the LICENSE file that
16 * accompanied this code).
17 *
18 * You should have received a copy of the GNU General Public License version
19 * 2 along with this work; if not, write to the Free Software Foundation,
20 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
21 *
22 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
23 * or visit www.oracle.com if you need additional information or have any
24 * questions.
25 */
26
27package java.util;
28
29import java.io.IOException;
30import java.io.ObjectOutputStream;
31import java.io.Serializable;
32import java.lang.reflect.Array;
33import java.util.function.BiConsumer;
34import java.util.function.BiFunction;
35import java.util.function.Consumer;
36import java.util.function.Function;
37import java.util.function.Predicate;
38import java.util.stream.IntStream;
39import java.util.stream.Stream;
40import java.util.stream.StreamSupport;
41import java.util.function.UnaryOperator;
42
43
44/**
45 * This class consists exclusively of static methods that operate on or return
46 * collections.  It contains polymorphic algorithms that operate on
47 * collections, "wrappers", which return a new collection backed by a
48 * specified collection, and a few other odds and ends.
49 *
50 * <p>The methods of this class all throw a <tt>NullPointerException</tt>
51 * if the collections or class objects provided to them are null.
52 *
53 * <p>The documentation for the polymorphic algorithms contained in this class
54 * generally includes a brief description of the <i>implementation</i>.  Such
55 * descriptions should be regarded as <i>implementation notes</i>, rather than
56 * parts of the <i>specification</i>.  Implementors should feel free to
57 * substitute other algorithms, so long as the specification itself is adhered
58 * to.  (For example, the algorithm used by <tt>sort</tt> does not have to be
59 * a mergesort, but it does have to be <i>stable</i>.)
60 *
61 * <p>The "destructive" algorithms contained in this class, that is, the
62 * algorithms that modify the collection on which they operate, are specified
63 * to throw <tt>UnsupportedOperationException</tt> if the collection does not
64 * support the appropriate mutation primitive(s), such as the <tt>set</tt>
65 * method.  These algorithms may, but are not required to, throw this
66 * exception if an invocation would have no effect on the collection.  For
67 * example, invoking the <tt>sort</tt> method on an unmodifiable list that is
68 * already sorted may or may not throw <tt>UnsupportedOperationException</tt>.
69 *
70 * <p>This class is a member of the
71 * <a href="{@docRoot}openjdk-redirect.html?v=8&path=/technotes/guides/collections/index.html">
72 * Java Collections Framework</a>.
73 *
74 * @author  Josh Bloch
75 * @author  Neal Gafter
76 * @see     Collection
77 * @see     Set
78 * @see     List
79 * @see     Map
80 * @since   1.2
81 */
82
83public class Collections {
84    // Suppresses default constructor, ensuring non-instantiability.
85    private Collections() {
86    }
87
88    // Algorithms
89
90    /*
91     * Tuning parameters for algorithms - Many of the List algorithms have
92     * two implementations, one of which is appropriate for RandomAccess
93     * lists, the other for "sequential."  Often, the random access variant
94     * yields better performance on small sequential access lists.  The
95     * tuning parameters below determine the cutoff point for what constitutes
96     * a "small" sequential access list for each algorithm.  The values below
97     * were empirically determined to work well for LinkedList. Hopefully
98     * they should be reasonable for other sequential access List
99     * implementations.  Those doing performance work on this code would
100     * do well to validate the values of these parameters from time to time.
101     * (The first word of each tuning parameter name is the algorithm to which
102     * it applies.)
103     */
104    private static final int BINARYSEARCH_THRESHOLD   = 5000;
105    private static final int REVERSE_THRESHOLD        =   18;
106    private static final int SHUFFLE_THRESHOLD        =    5;
107    private static final int FILL_THRESHOLD           =   25;
108    private static final int ROTATE_THRESHOLD         =  100;
109    private static final int COPY_THRESHOLD           =   10;
110    private static final int REPLACEALL_THRESHOLD     =   11;
111    private static final int INDEXOFSUBLIST_THRESHOLD =   35;
112
113    /**
114     * Sorts the specified list into ascending order, according to the
115     * {@linkplain Comparable natural ordering} of its elements.
116     * All elements in the list must implement the {@link Comparable}
117     * interface.  Furthermore, all elements in the list must be
118     * <i>mutually comparable</i> (that is, {@code e1.compareTo(e2)}
119     * must not throw a {@code ClassCastException} for any elements
120     * {@code e1} and {@code e2} in the list).
121     *
122     * <p>This sort is guaranteed to be <i>stable</i>:  equal elements will
123     * not be reordered as a result of the sort.
124     *
125     * <p>The specified list must be modifiable, but need not be resizable.
126     *
127     * <p>Implementation note: This implementation is a stable, adaptive,
128     * iterative mergesort that requires far fewer than n lg(n) comparisons
129     * when the input array is partially sorted, while offering the
130     * performance of a traditional mergesort when the input array is
131     * randomly ordered.  If the input array is nearly sorted, the
132     * implementation requires approximately n comparisons.  Temporary
133     * storage requirements vary from a small constant for nearly sorted
134     * input arrays to n/2 object references for randomly ordered input
135     * arrays.
136     *
137     * <p>The implementation takes equal advantage of ascending and
138     * descending order in its input array, and can take advantage of
139     * ascending and descending order in different parts of the same
140     * input array.  It is well-suited to merging two or more sorted arrays:
141     * simply concatenate the arrays and sort the resulting array.
142     *
143     * <p>The implementation was adapted from Tim Peters's list sort for Python
144     * (<a href="http://svn.python.org/projects/python/trunk/Objects/listsort.txt">
145     * TimSort</a>).  It uses techniques from Peter McIlroy's "Optimistic
146     * Sorting and Information Theoretic Complexity", in Proceedings of the
147     * Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 467-474,
148     * January 1993.
149     *
150     * <p>This implementation dumps the specified list into an array, sorts
151     * the array, and iterates over the list resetting each element
152     * from the corresponding position in the array.  This avoids the
153     * n<sup>2</sup> log(n) performance that would result from attempting
154     * to sort a linked list in place.
155     *
156     * @param  <T> the class of the objects in the list
157     * @param  list the list to be sorted.
158     * @throws ClassCastException if the list contains elements that are not
159     *         <i>mutually comparable</i> (for example, strings and integers).
160     * @throws UnsupportedOperationException if the specified list's
161     *         list-iterator does not support the {@code set} operation.
162     * @throws IllegalArgumentException (optional) if the implementation
163     *         detects that the natural ordering of the list elements is
164     *         found to violate the {@link Comparable} contract
165     */
166    @SuppressWarnings("unchecked")
167    public static <T extends Comparable<? super T>> void sort(List<T> list) {
168        if (list.getClass() == ArrayList.class) {
169            Arrays.sort(((ArrayList) list).elementData, 0, list.size());
170            return;
171        }
172
173        Object[] a = list.toArray();
174        Arrays.sort(a);
175        ListIterator<T> i = list.listIterator();
176        for (int j=0; j<a.length; j++) {
177            i.next();
178            i.set((T)a[j]);
179        }
180    }
181
182    /**
183     * Sorts the specified list according to the order induced by the
184     * specified comparator.  All elements in the list must be <i>mutually
185     * comparable</i> using the specified comparator (that is,
186     * {@code c.compare(e1, e2)} must not throw a {@code ClassCastException}
187     * for any elements {@code e1} and {@code e2} in the list).
188     *
189     * <p>This sort is guaranteed to be <i>stable</i>:  equal elements will
190     * not be reordered as a result of the sort.
191     *
192     * <p>The specified list must be modifiable, but need not be resizable.
193     *
194     * <p>Implementation note: This implementation is a stable, adaptive,
195     * iterative mergesort that requires far fewer than n lg(n) comparisons
196     * when the input array is partially sorted, while offering the
197     * performance of a traditional mergesort when the input array is
198     * randomly ordered.  If the input array is nearly sorted, the
199     * implementation requires approximately n comparisons.  Temporary
200     * storage requirements vary from a small constant for nearly sorted
201     * input arrays to n/2 object references for randomly ordered input
202     * arrays.
203     *
204     * <p>The implementation takes equal advantage of ascending and
205     * descending order in its input array, and can take advantage of
206     * ascending and descending order in different parts of the same
207     * input array.  It is well-suited to merging two or more sorted arrays:
208     * simply concatenate the arrays and sort the resulting array.
209     *
210     * <p>The implementation was adapted from Tim Peters's list sort for Python
211     * (<a href="http://svn.python.org/projects/python/trunk/Objects/listsort.txt">
212     * TimSort</a>).  It uses techniques from Peter McIlroy's "Optimistic
213     * Sorting and Information Theoretic Complexity", in Proceedings of the
214     * Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 467-474,
215     * January 1993.
216     *
217     * <p>This implementation dumps the specified list into an array, sorts
218     * the array, and iterates over the list resetting each element
219     * from the corresponding position in the array.  This avoids the
220     * n<sup>2</sup> log(n) performance that would result from attempting
221     * to sort a linked list in place.
222     *
223     * @param  <T> the class of the objects in the list
224     * @param  list the list to be sorted.
225     * @param  c the comparator to determine the order of the list.  A
226     *        {@code null} value indicates that the elements' <i>natural
227     *        ordering</i> should be used.
228     * @throws ClassCastException if the list contains elements that are not
229     *         <i>mutually comparable</i> using the specified comparator.
230     * @throws UnsupportedOperationException if the specified list's
231     *         list-iterator does not support the {@code set} operation.
232     * @throws IllegalArgumentException (optional) if the comparator is
233     *         found to violate the {@link Comparator} contract
234     */
235    @SuppressWarnings({"unchecked", "rawtypes"})
236    public static <T> void sort(List<T> list, Comparator<? super T> c) {
237        if (list.getClass() == ArrayList.class) {
238            Arrays.sort(((ArrayList) list).elementData, 0, list.size(), (Comparator) c);
239            return;
240        }
241
242        Object[] a = list.toArray();
243        Arrays.sort(a, (Comparator)c);
244        ListIterator<T> i = list.listIterator();
245        for (int j=0; j<a.length; j++) {
246            i.next();
247            i.set((T)a[j]);
248        }
249    }
250
251
252    /**
253     * Searches the specified list for the specified object using the binary
254     * search algorithm.  The list must be sorted into ascending order
255     * according to the {@linkplain Comparable natural ordering} of its
256     * elements (as by the {@link #sort(List)} method) prior to making this
257     * call.  If it is not sorted, the results are undefined.  If the list
258     * contains multiple elements equal to the specified object, there is no
259     * guarantee which one will be found.
260     *
261     * <p>This method runs in log(n) time for a "random access" list (which
262     * provides near-constant-time positional access).  If the specified list
263     * does not implement the {@link RandomAccess} interface and is large,
264     * this method will do an iterator-based binary search that performs
265     * O(n) link traversals and O(log n) element comparisons.
266     *
267     * @param  <T> the class of the objects in the list
268     * @param  list the list to be searched.
269     * @param  key the key to be searched for.
270     * @return the index of the search key, if it is contained in the list;
271     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
272     *         <i>insertion point</i> is defined as the point at which the
273     *         key would be inserted into the list: the index of the first
274     *         element greater than the key, or <tt>list.size()</tt> if all
275     *         elements in the list are less than the specified key.  Note
276     *         that this guarantees that the return value will be &gt;= 0 if
277     *         and only if the key is found.
278     * @throws ClassCastException if the list contains elements that are not
279     *         <i>mutually comparable</i> (for example, strings and
280     *         integers), or the search key is not mutually comparable
281     *         with the elements of the list.
282     */
283    public static <T>
284    int binarySearch(List<? extends Comparable<? super T>> list, T key) {
285        if (list instanceof RandomAccess || list.size()<BINARYSEARCH_THRESHOLD)
286            return Collections.indexedBinarySearch(list, key);
287        else
288            return Collections.iteratorBinarySearch(list, key);
289    }
290
291    private static <T>
292    int indexedBinarySearch(List<? extends Comparable<? super T>> list, T key) {
293        int low = 0;
294        int high = list.size()-1;
295
296        while (low <= high) {
297            int mid = (low + high) >>> 1;
298            Comparable<? super T> midVal = list.get(mid);
299            int cmp = midVal.compareTo(key);
300
301            if (cmp < 0)
302                low = mid + 1;
303            else if (cmp > 0)
304                high = mid - 1;
305            else
306                return mid; // key found
307        }
308        return -(low + 1);  // key not found
309    }
310
311    private static <T>
312    int iteratorBinarySearch(List<? extends Comparable<? super T>> list, T key)
313    {
314        int low = 0;
315        int high = list.size()-1;
316        ListIterator<? extends Comparable<? super T>> i = list.listIterator();
317
318        while (low <= high) {
319            int mid = (low + high) >>> 1;
320            Comparable<? super T> midVal = get(i, mid);
321            int cmp = midVal.compareTo(key);
322
323            if (cmp < 0)
324                low = mid + 1;
325            else if (cmp > 0)
326                high = mid - 1;
327            else
328                return mid; // key found
329        }
330        return -(low + 1);  // key not found
331    }
332
333    /**
334     * Gets the ith element from the given list by repositioning the specified
335     * list listIterator.
336     */
337    private static <T> T get(ListIterator<? extends T> i, int index) {
338        T obj = null;
339        int pos = i.nextIndex();
340        if (pos <= index) {
341            do {
342                obj = i.next();
343            } while (pos++ < index);
344        } else {
345            do {
346                obj = i.previous();
347            } while (--pos > index);
348        }
349        return obj;
350    }
351
352    /**
353     * Searches the specified list for the specified object using the binary
354     * search algorithm.  The list must be sorted into ascending order
355     * according to the specified comparator (as by the
356     * {@link #sort(List, Comparator) sort(List, Comparator)}
357     * method), prior to making this call.  If it is
358     * not sorted, the results are undefined.  If the list contains multiple
359     * elements equal to the specified object, there is no guarantee which one
360     * will be found.
361     *
362     * <p>This method runs in log(n) time for a "random access" list (which
363     * provides near-constant-time positional access).  If the specified list
364     * does not implement the {@link RandomAccess} interface and is large,
365     * this method will do an iterator-based binary search that performs
366     * O(n) link traversals and O(log n) element comparisons.
367     *
368     * @param  <T> the class of the objects in the list
369     * @param  list the list to be searched.
370     * @param  key the key to be searched for.
371     * @param  c the comparator by which the list is ordered.
372     *         A <tt>null</tt> value indicates that the elements'
373     *         {@linkplain Comparable natural ordering} should be used.
374     * @return the index of the search key, if it is contained in the list;
375     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
376     *         <i>insertion point</i> is defined as the point at which the
377     *         key would be inserted into the list: the index of the first
378     *         element greater than the key, or <tt>list.size()</tt> if all
379     *         elements in the list are less than the specified key.  Note
380     *         that this guarantees that the return value will be &gt;= 0 if
381     *         and only if the key is found.
382     * @throws ClassCastException if the list contains elements that are not
383     *         <i>mutually comparable</i> using the specified comparator,
384     *         or the search key is not mutually comparable with the
385     *         elements of the list using this comparator.
386     */
387    @SuppressWarnings("unchecked")
388    public static <T> int binarySearch(List<? extends T> list, T key, Comparator<? super T> c) {
389        if (c==null)
390            return binarySearch((List<? extends Comparable<? super T>>) list, key);
391
392        if (list instanceof RandomAccess || list.size()<BINARYSEARCH_THRESHOLD)
393            return Collections.indexedBinarySearch(list, key, c);
394        else
395            return Collections.iteratorBinarySearch(list, key, c);
396    }
397
398    private static <T> int indexedBinarySearch(List<? extends T> l, T key, Comparator<? super T> c) {
399        int low = 0;
400        int high = l.size()-1;
401
402        while (low <= high) {
403            int mid = (low + high) >>> 1;
404            T midVal = l.get(mid);
405            int cmp = c.compare(midVal, key);
406
407            if (cmp < 0)
408                low = mid + 1;
409            else if (cmp > 0)
410                high = mid - 1;
411            else
412                return mid; // key found
413        }
414        return -(low + 1);  // key not found
415    }
416
417    private static <T> int iteratorBinarySearch(List<? extends T> l, T key, Comparator<? super T> c) {
418        int low = 0;
419        int high = l.size()-1;
420        ListIterator<? extends T> i = l.listIterator();
421
422        while (low <= high) {
423            int mid = (low + high) >>> 1;
424            T midVal = get(i, mid);
425            int cmp = c.compare(midVal, key);
426
427            if (cmp < 0)
428                low = mid + 1;
429            else if (cmp > 0)
430                high = mid - 1;
431            else
432                return mid; // key found
433        }
434        return -(low + 1);  // key not found
435    }
436
437    /**
438     * Reverses the order of the elements in the specified list.<p>
439     *
440     * This method runs in linear time.
441     *
442     * @param  list the list whose elements are to be reversed.
443     * @throws UnsupportedOperationException if the specified list or
444     *         its list-iterator does not support the <tt>set</tt> operation.
445     */
446    @SuppressWarnings({"rawtypes", "unchecked"})
447    public static void reverse(List<?> list) {
448        int size = list.size();
449        if (size < REVERSE_THRESHOLD || list instanceof RandomAccess) {
450            for (int i=0, mid=size>>1, j=size-1; i<mid; i++, j--)
451                swap(list, i, j);
452        } else {
453            // instead of using a raw type here, it's possible to capture
454            // the wildcard but it will require a call to a supplementary
455            // private method
456            ListIterator fwd = list.listIterator();
457            ListIterator rev = list.listIterator(size);
458            for (int i=0, mid=list.size()>>1; i<mid; i++) {
459                Object tmp = fwd.next();
460                fwd.set(rev.previous());
461                rev.set(tmp);
462            }
463        }
464    }
465
466    /**
467     * Randomly permutes the specified list using a default source of
468     * randomness.  All permutations occur with approximately equal
469     * likelihood.
470     *
471     * <p>The hedge "approximately" is used in the foregoing description because
472     * default source of randomness is only approximately an unbiased source
473     * of independently chosen bits. If it were a perfect source of randomly
474     * chosen bits, then the algorithm would choose permutations with perfect
475     * uniformity.
476     *
477     * <p>This implementation traverses the list backwards, from the last
478     * element up to the second, repeatedly swapping a randomly selected element
479     * into the "current position".  Elements are randomly selected from the
480     * portion of the list that runs from the first element to the current
481     * position, inclusive.
482     *
483     * <p>This method runs in linear time.  If the specified list does not
484     * implement the {@link RandomAccess} interface and is large, this
485     * implementation dumps the specified list into an array before shuffling
486     * it, and dumps the shuffled array back into the list.  This avoids the
487     * quadratic behavior that would result from shuffling a "sequential
488     * access" list in place.
489     *
490     * @param  list the list to be shuffled.
491     * @throws UnsupportedOperationException if the specified list or
492     *         its list-iterator does not support the <tt>set</tt> operation.
493     */
494    public static void shuffle(List<?> list) {
495        Random rnd = r;
496        if (rnd == null)
497            r = rnd = new Random(); // harmless race.
498        shuffle(list, rnd);
499    }
500
501    private static Random r;
502
503    /**
504     * Randomly permute the specified list using the specified source of
505     * randomness.  All permutations occur with equal likelihood
506     * assuming that the source of randomness is fair.<p>
507     *
508     * This implementation traverses the list backwards, from the last element
509     * up to the second, repeatedly swapping a randomly selected element into
510     * the "current position".  Elements are randomly selected from the
511     * portion of the list that runs from the first element to the current
512     * position, inclusive.<p>
513     *
514     * This method runs in linear time.  If the specified list does not
515     * implement the {@link RandomAccess} interface and is large, this
516     * implementation dumps the specified list into an array before shuffling
517     * it, and dumps the shuffled array back into the list.  This avoids the
518     * quadratic behavior that would result from shuffling a "sequential
519     * access" list in place.
520     *
521     * @param  list the list to be shuffled.
522     * @param  rnd the source of randomness to use to shuffle the list.
523     * @throws UnsupportedOperationException if the specified list or its
524     *         list-iterator does not support the <tt>set</tt> operation.
525     */
526    @SuppressWarnings({"rawtypes", "unchecked"})
527    public static void shuffle(List<?> list, Random rnd) {
528        int size = list.size();
529        if (size < SHUFFLE_THRESHOLD || list instanceof RandomAccess) {
530            for (int i=size; i>1; i--)
531                swap(list, i-1, rnd.nextInt(i));
532        } else {
533            Object arr[] = list.toArray();
534
535            // Shuffle array
536            for (int i=size; i>1; i--)
537                swap(arr, i-1, rnd.nextInt(i));
538
539            // Dump array back into list
540            // instead of using a raw type here, it's possible to capture
541            // the wildcard but it will require a call to a supplementary
542            // private method
543            ListIterator it = list.listIterator();
544            for (int i=0; i<arr.length; i++) {
545                it.next();
546                it.set(arr[i]);
547            }
548        }
549    }
550
551    /**
552     * Swaps the elements at the specified positions in the specified list.
553     * (If the specified positions are equal, invoking this method leaves
554     * the list unchanged.)
555     *
556     * @param list The list in which to swap elements.
557     * @param i the index of one element to be swapped.
558     * @param j the index of the other element to be swapped.
559     * @throws IndexOutOfBoundsException if either <tt>i</tt> or <tt>j</tt>
560     *         is out of range (i &lt; 0 || i &gt;= list.size()
561     *         || j &lt; 0 || j &gt;= list.size()).
562     * @since 1.4
563     */
564    @SuppressWarnings({"rawtypes", "unchecked"})
565    public static void swap(List<?> list, int i, int j) {
566        // instead of using a raw type here, it's possible to capture
567        // the wildcard but it will require a call to a supplementary
568        // private method
569        final List l = list;
570        l.set(i, l.set(j, l.get(i)));
571    }
572
573    /**
574     * Swaps the two specified elements in the specified array.
575     */
576    private static void swap(Object[] arr, int i, int j) {
577        Object tmp = arr[i];
578        arr[i] = arr[j];
579        arr[j] = tmp;
580    }
581
582    /**
583     * Replaces all of the elements of the specified list with the specified
584     * element. <p>
585     *
586     * This method runs in linear time.
587     *
588     * @param  <T> the class of the objects in the list
589     * @param  list the list to be filled with the specified element.
590     * @param  obj The element with which to fill the specified list.
591     * @throws UnsupportedOperationException if the specified list or its
592     *         list-iterator does not support the <tt>set</tt> operation.
593     */
594    public static <T> void fill(List<? super T> list, T obj) {
595        int size = list.size();
596
597        if (size < FILL_THRESHOLD || list instanceof RandomAccess) {
598            for (int i=0; i<size; i++)
599                list.set(i, obj);
600        } else {
601            ListIterator<? super T> itr = list.listIterator();
602            for (int i=0; i<size; i++) {
603                itr.next();
604                itr.set(obj);
605            }
606        }
607    }
608
609    /**
610     * Copies all of the elements from one list into another.  After the
611     * operation, the index of each copied element in the destination list
612     * will be identical to its index in the source list.  The destination
613     * list must be at least as long as the source list.  If it is longer, the
614     * remaining elements in the destination list are unaffected. <p>
615     *
616     * This method runs in linear time.
617     *
618     * @param  <T> the class of the objects in the lists
619     * @param  dest The destination list.
620     * @param  src The source list.
621     * @throws IndexOutOfBoundsException if the destination list is too small
622     *         to contain the entire source List.
623     * @throws UnsupportedOperationException if the destination list's
624     *         list-iterator does not support the <tt>set</tt> operation.
625     */
626    public static <T> void copy(List<? super T> dest, List<? extends T> src) {
627        int srcSize = src.size();
628        if (srcSize > dest.size())
629            throw new IndexOutOfBoundsException("Source does not fit in dest");
630
631        if (srcSize < COPY_THRESHOLD ||
632            (src instanceof RandomAccess && dest instanceof RandomAccess)) {
633            for (int i=0; i<srcSize; i++)
634                dest.set(i, src.get(i));
635        } else {
636            ListIterator<? super T> di=dest.listIterator();
637            ListIterator<? extends T> si=src.listIterator();
638            for (int i=0; i<srcSize; i++) {
639                di.next();
640                di.set(si.next());
641            }
642        }
643    }
644
645    /**
646     * Returns the minimum element of the given collection, according to the
647     * <i>natural ordering</i> of its elements.  All elements in the
648     * collection must implement the <tt>Comparable</tt> interface.
649     * Furthermore, all elements in the collection must be <i>mutually
650     * comparable</i> (that is, <tt>e1.compareTo(e2)</tt> must not throw a
651     * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
652     * <tt>e2</tt> in the collection).<p>
653     *
654     * This method iterates over the entire collection, hence it requires
655     * time proportional to the size of the collection.
656     *
657     * @param  <T> the class of the objects in the collection
658     * @param  coll the collection whose minimum element is to be determined.
659     * @return the minimum element of the given collection, according
660     *         to the <i>natural ordering</i> of its elements.
661     * @throws ClassCastException if the collection contains elements that are
662     *         not <i>mutually comparable</i> (for example, strings and
663     *         integers).
664     * @throws NoSuchElementException if the collection is empty.
665     * @see Comparable
666     */
667    public static <T extends Object & Comparable<? super T>> T min(Collection<? extends T> coll) {
668        Iterator<? extends T> i = coll.iterator();
669        T candidate = i.next();
670
671        while (i.hasNext()) {
672            T next = i.next();
673            if (next.compareTo(candidate) < 0)
674                candidate = next;
675        }
676        return candidate;
677    }
678
679    /**
680     * Returns the minimum element of the given collection, according to the
681     * order induced by the specified comparator.  All elements in the
682     * collection must be <i>mutually comparable</i> by the specified
683     * comparator (that is, <tt>comp.compare(e1, e2)</tt> must not throw a
684     * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
685     * <tt>e2</tt> in the collection).<p>
686     *
687     * This method iterates over the entire collection, hence it requires
688     * time proportional to the size of the collection.
689     *
690     * @param  <T> the class of the objects in the collection
691     * @param  coll the collection whose minimum element is to be determined.
692     * @param  comp the comparator with which to determine the minimum element.
693     *         A <tt>null</tt> value indicates that the elements' <i>natural
694     *         ordering</i> should be used.
695     * @return the minimum element of the given collection, according
696     *         to the specified comparator.
697     * @throws ClassCastException if the collection contains elements that are
698     *         not <i>mutually comparable</i> using the specified comparator.
699     * @throws NoSuchElementException if the collection is empty.
700     * @see Comparable
701     */
702    @SuppressWarnings({"unchecked", "rawtypes"})
703    public static <T> T min(Collection<? extends T> coll, Comparator<? super T> comp) {
704        if (comp==null)
705            return (T)min((Collection) coll);
706
707        Iterator<? extends T> i = coll.iterator();
708        T candidate = i.next();
709
710        while (i.hasNext()) {
711            T next = i.next();
712            if (comp.compare(next, candidate) < 0)
713                candidate = next;
714        }
715        return candidate;
716    }
717
718    /**
719     * Returns the maximum element of the given collection, according to the
720     * <i>natural ordering</i> of its elements.  All elements in the
721     * collection must implement the <tt>Comparable</tt> interface.
722     * Furthermore, all elements in the collection must be <i>mutually
723     * comparable</i> (that is, <tt>e1.compareTo(e2)</tt> must not throw a
724     * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
725     * <tt>e2</tt> in the collection).<p>
726     *
727     * This method iterates over the entire collection, hence it requires
728     * time proportional to the size of the collection.
729     *
730     * @param  <T> the class of the objects in the collection
731     * @param  coll the collection whose maximum element is to be determined.
732     * @return the maximum element of the given collection, according
733     *         to the <i>natural ordering</i> of its elements.
734     * @throws ClassCastException if the collection contains elements that are
735     *         not <i>mutually comparable</i> (for example, strings and
736     *         integers).
737     * @throws NoSuchElementException if the collection is empty.
738     * @see Comparable
739     */
740    public static <T extends Object & Comparable<? super T>> T max(Collection<? extends T> coll) {
741        Iterator<? extends T> i = coll.iterator();
742        T candidate = i.next();
743
744        while (i.hasNext()) {
745            T next = i.next();
746            if (next.compareTo(candidate) > 0)
747                candidate = next;
748        }
749        return candidate;
750    }
751
752    /**
753     * Returns the maximum element of the given collection, according to the
754     * order induced by the specified comparator.  All elements in the
755     * collection must be <i>mutually comparable</i> by the specified
756     * comparator (that is, <tt>comp.compare(e1, e2)</tt> must not throw a
757     * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
758     * <tt>e2</tt> in the collection).<p>
759     *
760     * This method iterates over the entire collection, hence it requires
761     * time proportional to the size of the collection.
762     *
763     * @param  <T> the class of the objects in the collection
764     * @param  coll the collection whose maximum element is to be determined.
765     * @param  comp the comparator with which to determine the maximum element.
766     *         A <tt>null</tt> value indicates that the elements' <i>natural
767     *        ordering</i> should be used.
768     * @return the maximum element of the given collection, according
769     *         to the specified comparator.
770     * @throws ClassCastException if the collection contains elements that are
771     *         not <i>mutually comparable</i> using the specified comparator.
772     * @throws NoSuchElementException if the collection is empty.
773     * @see Comparable
774     */
775    @SuppressWarnings({"unchecked", "rawtypes"})
776    public static <T> T max(Collection<? extends T> coll, Comparator<? super T> comp) {
777        if (comp==null)
778            return (T)max((Collection) coll);
779
780        Iterator<? extends T> i = coll.iterator();
781        T candidate = i.next();
782
783        while (i.hasNext()) {
784            T next = i.next();
785            if (comp.compare(next, candidate) > 0)
786                candidate = next;
787        }
788        return candidate;
789    }
790
791    /**
792     * Rotates the elements in the specified list by the specified distance.
793     * After calling this method, the element at index <tt>i</tt> will be
794     * the element previously at index <tt>(i - distance)</tt> mod
795     * <tt>list.size()</tt>, for all values of <tt>i</tt> between <tt>0</tt>
796     * and <tt>list.size()-1</tt>, inclusive.  (This method has no effect on
797     * the size of the list.)
798     *
799     * <p>For example, suppose <tt>list</tt> comprises<tt> [t, a, n, k, s]</tt>.
800     * After invoking <tt>Collections.rotate(list, 1)</tt> (or
801     * <tt>Collections.rotate(list, -4)</tt>), <tt>list</tt> will comprise
802     * <tt>[s, t, a, n, k]</tt>.
803     *
804     * <p>Note that this method can usefully be applied to sublists to
805     * move one or more elements within a list while preserving the
806     * order of the remaining elements.  For example, the following idiom
807     * moves the element at index <tt>j</tt> forward to position
808     * <tt>k</tt> (which must be greater than or equal to <tt>j</tt>):
809     * <pre>
810     *     Collections.rotate(list.subList(j, k+1), -1);
811     * </pre>
812     * To make this concrete, suppose <tt>list</tt> comprises
813     * <tt>[a, b, c, d, e]</tt>.  To move the element at index <tt>1</tt>
814     * (<tt>b</tt>) forward two positions, perform the following invocation:
815     * <pre>
816     *     Collections.rotate(l.subList(1, 4), -1);
817     * </pre>
818     * The resulting list is <tt>[a, c, d, b, e]</tt>.
819     *
820     * <p>To move more than one element forward, increase the absolute value
821     * of the rotation distance.  To move elements backward, use a positive
822     * shift distance.
823     *
824     * <p>If the specified list is small or implements the {@link
825     * RandomAccess} interface, this implementation exchanges the first
826     * element into the location it should go, and then repeatedly exchanges
827     * the displaced element into the location it should go until a displaced
828     * element is swapped into the first element.  If necessary, the process
829     * is repeated on the second and successive elements, until the rotation
830     * is complete.  If the specified list is large and doesn't implement the
831     * <tt>RandomAccess</tt> interface, this implementation breaks the
832     * list into two sublist views around index <tt>-distance mod size</tt>.
833     * Then the {@link #reverse(List)} method is invoked on each sublist view,
834     * and finally it is invoked on the entire list.  For a more complete
835     * description of both algorithms, see Section 2.3 of Jon Bentley's
836     * <i>Programming Pearls</i> (Addison-Wesley, 1986).
837     *
838     * @param list the list to be rotated.
839     * @param distance the distance to rotate the list.  There are no
840     *        constraints on this value; it may be zero, negative, or
841     *        greater than <tt>list.size()</tt>.
842     * @throws UnsupportedOperationException if the specified list or
843     *         its list-iterator does not support the <tt>set</tt> operation.
844     * @since 1.4
845     */
846    public static void rotate(List<?> list, int distance) {
847        if (list instanceof RandomAccess || list.size() < ROTATE_THRESHOLD)
848            rotate1(list, distance);
849        else
850            rotate2(list, distance);
851    }
852
853    private static <T> void rotate1(List<T> list, int distance) {
854        int size = list.size();
855        if (size == 0)
856            return;
857        distance = distance % size;
858        if (distance < 0)
859            distance += size;
860        if (distance == 0)
861            return;
862
863        for (int cycleStart = 0, nMoved = 0; nMoved != size; cycleStart++) {
864            T displaced = list.get(cycleStart);
865            int i = cycleStart;
866            do {
867                i += distance;
868                if (i >= size)
869                    i -= size;
870                displaced = list.set(i, displaced);
871                nMoved ++;
872            } while (i != cycleStart);
873        }
874    }
875
876    private static void rotate2(List<?> list, int distance) {
877        int size = list.size();
878        if (size == 0)
879            return;
880        int mid =  -distance % size;
881        if (mid < 0)
882            mid += size;
883        if (mid == 0)
884            return;
885
886        reverse(list.subList(0, mid));
887        reverse(list.subList(mid, size));
888        reverse(list);
889    }
890
891    /**
892     * Replaces all occurrences of one specified value in a list with another.
893     * More formally, replaces with <tt>newVal</tt> each element <tt>e</tt>
894     * in <tt>list</tt> such that
895     * <tt>(oldVal==null ? e==null : oldVal.equals(e))</tt>.
896     * (This method has no effect on the size of the list.)
897     *
898     * @param  <T> the class of the objects in the list
899     * @param list the list in which replacement is to occur.
900     * @param oldVal the old value to be replaced.
901     * @param newVal the new value with which <tt>oldVal</tt> is to be
902     *        replaced.
903     * @return <tt>true</tt> if <tt>list</tt> contained one or more elements
904     *         <tt>e</tt> such that
905     *         <tt>(oldVal==null ?  e==null : oldVal.equals(e))</tt>.
906     * @throws UnsupportedOperationException if the specified list or
907     *         its list-iterator does not support the <tt>set</tt> operation.
908     * @since  1.4
909     */
910    public static <T> boolean replaceAll(List<T> list, T oldVal, T newVal) {
911        boolean result = false;
912        int size = list.size();
913        if (size < REPLACEALL_THRESHOLD || list instanceof RandomAccess) {
914            if (oldVal==null) {
915                for (int i=0; i<size; i++) {
916                    if (list.get(i)==null) {
917                        list.set(i, newVal);
918                        result = true;
919                    }
920                }
921            } else {
922                for (int i=0; i<size; i++) {
923                    if (oldVal.equals(list.get(i))) {
924                        list.set(i, newVal);
925                        result = true;
926                    }
927                }
928            }
929        } else {
930            ListIterator<T> itr=list.listIterator();
931            if (oldVal==null) {
932                for (int i=0; i<size; i++) {
933                    if (itr.next()==null) {
934                        itr.set(newVal);
935                        result = true;
936                    }
937                }
938            } else {
939                for (int i=0; i<size; i++) {
940                    if (oldVal.equals(itr.next())) {
941                        itr.set(newVal);
942                        result = true;
943                    }
944                }
945            }
946        }
947        return result;
948    }
949
950    /**
951     * Returns the starting position of the first occurrence of the specified
952     * target list within the specified source list, or -1 if there is no
953     * such occurrence.  More formally, returns the lowest index <tt>i</tt>
954     * such that {@code source.subList(i, i+target.size()).equals(target)},
955     * or -1 if there is no such index.  (Returns -1 if
956     * {@code target.size() > source.size()})
957     *
958     * <p>This implementation uses the "brute force" technique of scanning
959     * over the source list, looking for a match with the target at each
960     * location in turn.
961     *
962     * @param source the list in which to search for the first occurrence
963     *        of <tt>target</tt>.
964     * @param target the list to search for as a subList of <tt>source</tt>.
965     * @return the starting position of the first occurrence of the specified
966     *         target list within the specified source list, or -1 if there
967     *         is no such occurrence.
968     * @since  1.4
969     */
970    public static int indexOfSubList(List<?> source, List<?> target) {
971        int sourceSize = source.size();
972        int targetSize = target.size();
973        int maxCandidate = sourceSize - targetSize;
974
975        if (sourceSize < INDEXOFSUBLIST_THRESHOLD ||
976            (source instanceof RandomAccess&&target instanceof RandomAccess)) {
977        nextCand:
978            for (int candidate = 0; candidate <= maxCandidate; candidate++) {
979                for (int i=0, j=candidate; i<targetSize; i++, j++)
980                    if (!eq(target.get(i), source.get(j)))
981                        continue nextCand;  // Element mismatch, try next cand
982                return candidate;  // All elements of candidate matched target
983            }
984        } else {  // Iterator version of above algorithm
985            ListIterator<?> si = source.listIterator();
986        nextCand:
987            for (int candidate = 0; candidate <= maxCandidate; candidate++) {
988                ListIterator<?> ti = target.listIterator();
989                for (int i=0; i<targetSize; i++) {
990                    if (!eq(ti.next(), si.next())) {
991                        // Back up source iterator to next candidate
992                        for (int j=0; j<i; j++)
993                            si.previous();
994                        continue nextCand;
995                    }
996                }
997                return candidate;
998            }
999        }
1000        return -1;  // No candidate matched the target
1001    }
1002
1003    /**
1004     * Returns the starting position of the last occurrence of the specified
1005     * target list within the specified source list, or -1 if there is no such
1006     * occurrence.  More formally, returns the highest index <tt>i</tt>
1007     * such that {@code source.subList(i, i+target.size()).equals(target)},
1008     * or -1 if there is no such index.  (Returns -1 if
1009     * {@code target.size() > source.size()})
1010     *
1011     * <p>This implementation uses the "brute force" technique of iterating
1012     * over the source list, looking for a match with the target at each
1013     * location in turn.
1014     *
1015     * @param source the list in which to search for the last occurrence
1016     *        of <tt>target</tt>.
1017     * @param target the list to search for as a subList of <tt>source</tt>.
1018     * @return the starting position of the last occurrence of the specified
1019     *         target list within the specified source list, or -1 if there
1020     *         is no such occurrence.
1021     * @since  1.4
1022     */
1023    public static int lastIndexOfSubList(List<?> source, List<?> target) {
1024        int sourceSize = source.size();
1025        int targetSize = target.size();
1026        int maxCandidate = sourceSize - targetSize;
1027
1028        if (sourceSize < INDEXOFSUBLIST_THRESHOLD ||
1029            source instanceof RandomAccess) {   // Index access version
1030        nextCand:
1031            for (int candidate = maxCandidate; candidate >= 0; candidate--) {
1032                for (int i=0, j=candidate; i<targetSize; i++, j++)
1033                    if (!eq(target.get(i), source.get(j)))
1034                        continue nextCand;  // Element mismatch, try next cand
1035                return candidate;  // All elements of candidate matched target
1036            }
1037        } else {  // Iterator version of above algorithm
1038            if (maxCandidate < 0)
1039                return -1;
1040            ListIterator<?> si = source.listIterator(maxCandidate);
1041        nextCand:
1042            for (int candidate = maxCandidate; candidate >= 0; candidate--) {
1043                ListIterator<?> ti = target.listIterator();
1044                for (int i=0; i<targetSize; i++) {
1045                    if (!eq(ti.next(), si.next())) {
1046                        if (candidate != 0) {
1047                            // Back up source iterator to next candidate
1048                            for (int j=0; j<=i+1; j++)
1049                                si.previous();
1050                        }
1051                        continue nextCand;
1052                    }
1053                }
1054                return candidate;
1055            }
1056        }
1057        return -1;  // No candidate matched the target
1058    }
1059
1060
1061    // Unmodifiable Wrappers
1062
1063    /**
1064     * Returns an unmodifiable view of the specified collection.  This method
1065     * allows modules to provide users with "read-only" access to internal
1066     * collections.  Query operations on the returned collection "read through"
1067     * to the specified collection, and attempts to modify the returned
1068     * collection, whether direct or via its iterator, result in an
1069     * <tt>UnsupportedOperationException</tt>.<p>
1070     *
1071     * The returned collection does <i>not</i> pass the hashCode and equals
1072     * operations through to the backing collection, but relies on
1073     * <tt>Object</tt>'s <tt>equals</tt> and <tt>hashCode</tt> methods.  This
1074     * is necessary to preserve the contracts of these operations in the case
1075     * that the backing collection is a set or a list.<p>
1076     *
1077     * The returned collection will be serializable if the specified collection
1078     * is serializable.
1079     *
1080     * @param  <T> the class of the objects in the collection
1081     * @param  c the collection for which an unmodifiable view is to be
1082     *         returned.
1083     * @return an unmodifiable view of the specified collection.
1084     */
1085    public static <T> Collection<T> unmodifiableCollection(Collection<? extends T> c) {
1086        return new UnmodifiableCollection<>(c);
1087    }
1088
1089    /**
1090     * @serial include
1091     */
1092    static class UnmodifiableCollection<E> implements Collection<E>, Serializable {
1093        private static final long serialVersionUID = 1820017752578914078L;
1094
1095        final Collection<? extends E> c;
1096
1097        UnmodifiableCollection(Collection<? extends E> c) {
1098            if (c==null)
1099                throw new NullPointerException();
1100            this.c = c;
1101        }
1102
1103        public int size()                   {return c.size();}
1104        public boolean isEmpty()            {return c.isEmpty();}
1105        public boolean contains(Object o)   {return c.contains(o);}
1106        public Object[] toArray()           {return c.toArray();}
1107        public <T> T[] toArray(T[] a)       {return c.toArray(a);}
1108        public String toString()            {return c.toString();}
1109
1110        public Iterator<E> iterator() {
1111            return new Iterator<E>() {
1112                private final Iterator<? extends E> i = c.iterator();
1113
1114                public boolean hasNext() {return i.hasNext();}
1115                public E next()          {return i.next();}
1116                public void remove() {
1117                    throw new UnsupportedOperationException();
1118                }
1119                @Override
1120                public void forEachRemaining(Consumer<? super E> action) {
1121                    // Use backing collection version
1122                    i.forEachRemaining(action);
1123                }
1124            };
1125        }
1126
1127        public boolean add(E e) {
1128            throw new UnsupportedOperationException();
1129        }
1130        public boolean remove(Object o) {
1131            throw new UnsupportedOperationException();
1132        }
1133
1134        public boolean containsAll(Collection<?> coll) {
1135            return c.containsAll(coll);
1136        }
1137        public boolean addAll(Collection<? extends E> coll) {
1138            throw new UnsupportedOperationException();
1139        }
1140        public boolean removeAll(Collection<?> coll) {
1141            throw new UnsupportedOperationException();
1142        }
1143        public boolean retainAll(Collection<?> coll) {
1144            throw new UnsupportedOperationException();
1145        }
1146        public void clear() {
1147            throw new UnsupportedOperationException();
1148        }
1149
1150        // Override default methods in Collection
1151        @Override
1152        public void forEach(Consumer<? super E> action) {
1153            c.forEach(action);
1154        }
1155
1156        @Override
1157        public boolean removeIf(Predicate<? super E> filter) {
1158            throw new UnsupportedOperationException();
1159        }
1160
1161        @SuppressWarnings("unchecked")
1162        @Override
1163        public Spliterator<E> spliterator() {
1164            return (Spliterator<E>)c.spliterator();
1165        }
1166        @SuppressWarnings("unchecked")
1167        @Override
1168        public Stream<E> stream() {
1169            return (Stream<E>)c.stream();
1170        }
1171        @SuppressWarnings("unchecked")
1172        @Override
1173        public Stream<E> parallelStream() {
1174            return (Stream<E>)c.parallelStream();
1175        }
1176    }
1177
1178    /**
1179     * Returns an unmodifiable view of the specified set.  This method allows
1180     * modules to provide users with "read-only" access to internal sets.
1181     * Query operations on the returned set "read through" to the specified
1182     * set, and attempts to modify the returned set, whether direct or via its
1183     * iterator, result in an <tt>UnsupportedOperationException</tt>.<p>
1184     *
1185     * The returned set will be serializable if the specified set
1186     * is serializable.
1187     *
1188     * @param  <T> the class of the objects in the set
1189     * @param  s the set for which an unmodifiable view is to be returned.
1190     * @return an unmodifiable view of the specified set.
1191     */
1192    public static <T> Set<T> unmodifiableSet(Set<? extends T> s) {
1193        return new UnmodifiableSet<>(s);
1194    }
1195
1196    /**
1197     * @serial include
1198     */
1199    static class UnmodifiableSet<E> extends UnmodifiableCollection<E>
1200                                 implements Set<E>, Serializable {
1201        private static final long serialVersionUID = -9215047833775013803L;
1202
1203        UnmodifiableSet(Set<? extends E> s)     {super(s);}
1204        public boolean equals(Object o) {return o == this || c.equals(o);}
1205        public int hashCode()           {return c.hashCode();}
1206    }
1207
1208    /**
1209     * Returns an unmodifiable view of the specified sorted set.  This method
1210     * allows modules to provide users with "read-only" access to internal
1211     * sorted sets.  Query operations on the returned sorted set "read
1212     * through" to the specified sorted set.  Attempts to modify the returned
1213     * sorted set, whether direct, via its iterator, or via its
1214     * <tt>subSet</tt>, <tt>headSet</tt>, or <tt>tailSet</tt> views, result in
1215     * an <tt>UnsupportedOperationException</tt>.<p>
1216     *
1217     * The returned sorted set will be serializable if the specified sorted set
1218     * is serializable.
1219     *
1220     * @param  <T> the class of the objects in the set
1221     * @param s the sorted set for which an unmodifiable view is to be
1222     *        returned.
1223     * @return an unmodifiable view of the specified sorted set.
1224     */
1225    public static <T> SortedSet<T> unmodifiableSortedSet(SortedSet<T> s) {
1226        return new UnmodifiableSortedSet<>(s);
1227    }
1228
1229    /**
1230     * @serial include
1231     */
1232    static class UnmodifiableSortedSet<E>
1233                             extends UnmodifiableSet<E>
1234                             implements SortedSet<E>, Serializable {
1235        private static final long serialVersionUID = -4929149591599911165L;
1236        private final SortedSet<E> ss;
1237
1238        UnmodifiableSortedSet(SortedSet<E> s) {super(s); ss = s;}
1239
1240        public Comparator<? super E> comparator() {return ss.comparator();}
1241
1242        public SortedSet<E> subSet(E fromElement, E toElement) {
1243            return new UnmodifiableSortedSet<>(ss.subSet(fromElement,toElement));
1244        }
1245        public SortedSet<E> headSet(E toElement) {
1246            return new UnmodifiableSortedSet<>(ss.headSet(toElement));
1247        }
1248        public SortedSet<E> tailSet(E fromElement) {
1249            return new UnmodifiableSortedSet<>(ss.tailSet(fromElement));
1250        }
1251
1252        public E first()                   {return ss.first();}
1253        public E last()                    {return ss.last();}
1254    }
1255
1256    /**
1257     * Returns an unmodifiable view of the specified list.  This method allows
1258     * modules to provide users with "read-only" access to internal
1259     * lists.  Query operations on the returned list "read through" to the
1260     * specified list, and attempts to modify the returned list, whether
1261     * direct or via its iterator, result in an
1262     * <tt>UnsupportedOperationException</tt>.<p>
1263     *
1264     * The returned list will be serializable if the specified list
1265     * is serializable. Similarly, the returned list will implement
1266     * {@link RandomAccess} if the specified list does.
1267     *
1268     * @param  <T> the class of the objects in the list
1269     * @param  list the list for which an unmodifiable view is to be returned.
1270     * @return an unmodifiable view of the specified list.
1271     */
1272    public static <T> List<T> unmodifiableList(List<? extends T> list) {
1273        return (list instanceof RandomAccess ?
1274                new UnmodifiableRandomAccessList<>(list) :
1275                new UnmodifiableList<>(list));
1276    }
1277
1278    /**
1279     * @serial include
1280     */
1281    static class UnmodifiableList<E> extends UnmodifiableCollection<E>
1282                                  implements List<E> {
1283        private static final long serialVersionUID = -283967356065247728L;
1284
1285        final List<? extends E> list;
1286
1287        UnmodifiableList(List<? extends E> list) {
1288            super(list);
1289            this.list = list;
1290        }
1291
1292        public boolean equals(Object o) {return o == this || list.equals(o);}
1293        public int hashCode()           {return list.hashCode();}
1294
1295        public E get(int index) {return list.get(index);}
1296        public E set(int index, E element) {
1297            throw new UnsupportedOperationException();
1298        }
1299        public void add(int index, E element) {
1300            throw new UnsupportedOperationException();
1301        }
1302        public E remove(int index) {
1303            throw new UnsupportedOperationException();
1304        }
1305        public int indexOf(Object o)            {return list.indexOf(o);}
1306        public int lastIndexOf(Object o)        {return list.lastIndexOf(o);}
1307        public boolean addAll(int index, Collection<? extends E> c) {
1308            throw new UnsupportedOperationException();
1309        }
1310        @Override
1311        public void replaceAll(UnaryOperator<E> operator) {
1312            throw new UnsupportedOperationException();
1313        }
1314        @Override
1315        public void sort(Comparator<? super E> c) {
1316            throw new UnsupportedOperationException();
1317        }
1318        public ListIterator<E> listIterator()   {return listIterator(0);}
1319
1320        public ListIterator<E> listIterator(final int index) {
1321            return new ListIterator<E>() {
1322                private final ListIterator<? extends E> i
1323                    = list.listIterator(index);
1324
1325                public boolean hasNext()     {return i.hasNext();}
1326                public E next()              {return i.next();}
1327                public boolean hasPrevious() {return i.hasPrevious();}
1328                public E previous()          {return i.previous();}
1329                public int nextIndex()       {return i.nextIndex();}
1330                public int previousIndex()   {return i.previousIndex();}
1331
1332                public void remove() {
1333                    throw new UnsupportedOperationException();
1334                }
1335                public void set(E e) {
1336                    throw new UnsupportedOperationException();
1337                }
1338                public void add(E e) {
1339                    throw new UnsupportedOperationException();
1340                }
1341
1342                @Override
1343                public void forEachRemaining(Consumer<? super E> action) {
1344                    i.forEachRemaining(action);
1345                }
1346            };
1347        }
1348
1349        public List<E> subList(int fromIndex, int toIndex) {
1350            return new UnmodifiableList<>(list.subList(fromIndex, toIndex));
1351        }
1352
1353        /**
1354         * UnmodifiableRandomAccessList instances are serialized as
1355         * UnmodifiableList instances to allow them to be deserialized
1356         * in pre-1.4 JREs (which do not have UnmodifiableRandomAccessList).
1357         * This method inverts the transformation.  As a beneficial
1358         * side-effect, it also grafts the RandomAccess marker onto
1359         * UnmodifiableList instances that were serialized in pre-1.4 JREs.
1360         *
1361         * Note: Unfortunately, UnmodifiableRandomAccessList instances
1362         * serialized in 1.4.1 and deserialized in 1.4 will become
1363         * UnmodifiableList instances, as this method was missing in 1.4.
1364         */
1365        private Object readResolve() {
1366            return (list instanceof RandomAccess
1367                    ? new UnmodifiableRandomAccessList<>(list)
1368                    : this);
1369        }
1370    }
1371
1372    /**
1373     * @serial include
1374     */
1375    static class UnmodifiableRandomAccessList<E> extends UnmodifiableList<E>
1376                                              implements RandomAccess
1377    {
1378        UnmodifiableRandomAccessList(List<? extends E> list) {
1379            super(list);
1380        }
1381
1382        public List<E> subList(int fromIndex, int toIndex) {
1383            return new UnmodifiableRandomAccessList<>(
1384                list.subList(fromIndex, toIndex));
1385        }
1386
1387        private static final long serialVersionUID = -2542308836966382001L;
1388
1389        /**
1390         * Allows instances to be deserialized in pre-1.4 JREs (which do
1391         * not have UnmodifiableRandomAccessList).  UnmodifiableList has
1392         * a readResolve method that inverts this transformation upon
1393         * deserialization.
1394         */
1395        private Object writeReplace() {
1396            return new UnmodifiableList<>(list);
1397        }
1398    }
1399
1400    /**
1401     * Returns an unmodifiable view of the specified map.  This method
1402     * allows modules to provide users with "read-only" access to internal
1403     * maps.  Query operations on the returned map "read through"
1404     * to the specified map, and attempts to modify the returned
1405     * map, whether direct or via its collection views, result in an
1406     * <tt>UnsupportedOperationException</tt>.<p>
1407     *
1408     * The returned map will be serializable if the specified map
1409     * is serializable.
1410     *
1411     * @param <K> the class of the map keys
1412     * @param <V> the class of the map values
1413     * @param  m the map for which an unmodifiable view is to be returned.
1414     * @return an unmodifiable view of the specified map.
1415     */
1416    public static <K,V> Map<K,V> unmodifiableMap(Map<? extends K, ? extends V> m) {
1417        return new UnmodifiableMap<>(m);
1418    }
1419
1420    /**
1421     * @serial include
1422     */
1423    private static class UnmodifiableMap<K,V> implements Map<K,V>, Serializable {
1424        private static final long serialVersionUID = -1034234728574286014L;
1425
1426        private final Map<? extends K, ? extends V> m;
1427
1428        UnmodifiableMap(Map<? extends K, ? extends V> m) {
1429            if (m==null)
1430                throw new NullPointerException();
1431            this.m = m;
1432        }
1433
1434        public int size()                        {return m.size();}
1435        public boolean isEmpty()                 {return m.isEmpty();}
1436        public boolean containsKey(Object key)   {return m.containsKey(key);}
1437        public boolean containsValue(Object val) {return m.containsValue(val);}
1438        public V get(Object key)                 {return m.get(key);}
1439
1440        public V put(K key, V value) {
1441            throw new UnsupportedOperationException();
1442        }
1443        public V remove(Object key) {
1444            throw new UnsupportedOperationException();
1445        }
1446        public void putAll(Map<? extends K, ? extends V> m) {
1447            throw new UnsupportedOperationException();
1448        }
1449        public void clear() {
1450            throw new UnsupportedOperationException();
1451        }
1452
1453        private transient Set<K> keySet = null;
1454        private transient Set<Map.Entry<K,V>> entrySet = null;
1455        private transient Collection<V> values = null;
1456
1457        public Set<K> keySet() {
1458            if (keySet==null)
1459                keySet = unmodifiableSet(m.keySet());
1460            return keySet;
1461        }
1462
1463        public Set<Map.Entry<K,V>> entrySet() {
1464            if (entrySet==null)
1465                entrySet = new UnmodifiableEntrySet<>(m.entrySet());
1466            return entrySet;
1467        }
1468
1469        public Collection<V> values() {
1470            if (values==null)
1471                values = unmodifiableCollection(m.values());
1472            return values;
1473        }
1474
1475        public boolean equals(Object o) {return o == this || m.equals(o);}
1476        public int hashCode()           {return m.hashCode();}
1477        public String toString()        {return m.toString();}
1478
1479        // Override default methods in Map
1480        @Override
1481        @SuppressWarnings("unchecked")
1482        public V getOrDefault(Object k, V defaultValue) {
1483            // Safe cast as we don't change the value
1484            return ((Map<K, V>)m).getOrDefault(k, defaultValue);
1485        }
1486
1487        @Override
1488        public void forEach(BiConsumer<? super K, ? super V> action) {
1489            m.forEach(action);
1490        }
1491
1492        @Override
1493        public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1494            throw new UnsupportedOperationException();
1495        }
1496
1497        @Override
1498        public V putIfAbsent(K key, V value) {
1499            throw new UnsupportedOperationException();
1500        }
1501
1502        @Override
1503        public boolean remove(Object key, Object value) {
1504            throw new UnsupportedOperationException();
1505        }
1506
1507        @Override
1508        public boolean replace(K key, V oldValue, V newValue) {
1509            throw new UnsupportedOperationException();
1510        }
1511
1512        @Override
1513        public V replace(K key, V value) {
1514            throw new UnsupportedOperationException();
1515        }
1516
1517        @Override
1518        public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
1519            throw new UnsupportedOperationException();
1520        }
1521
1522        @Override
1523        public V computeIfPresent(K key,
1524                                  BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1525            throw new UnsupportedOperationException();
1526        }
1527
1528        @Override
1529        public V compute(K key,
1530                         BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1531            throw new UnsupportedOperationException();
1532        }
1533
1534        @Override
1535        public V merge(K key, V value,
1536                       BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1537            throw new UnsupportedOperationException();
1538        }
1539
1540        /**
1541         * We need this class in addition to UnmodifiableSet as
1542         * Map.Entries themselves permit modification of the backing Map
1543         * via their setValue operation.  This class is subtle: there are
1544         * many possible attacks that must be thwarted.
1545         *
1546         * @serial include
1547         */
1548        static class UnmodifiableEntrySet<K,V>
1549            extends UnmodifiableSet<Map.Entry<K,V>> {
1550            private static final long serialVersionUID = 7854390611657943733L;
1551
1552            @SuppressWarnings({"unchecked", "rawtypes"})
1553            UnmodifiableEntrySet(Set<? extends Map.Entry<? extends K, ? extends V>> s) {
1554                // Need to cast to raw in order to work around a limitation in the type system
1555                super((Set)s);
1556            }
1557
1558            static <K, V> Consumer<Map.Entry<K, V>> entryConsumer(Consumer<? super Entry<K, V>> action) {
1559                return e -> action.accept(new UnmodifiableEntry<>(e));
1560            }
1561
1562            // Override default methods in Collection
1563            public void forEach(Consumer<? super Entry<K, V>> action) {
1564                Objects.requireNonNull(action);
1565                c.forEach(entryConsumer(action));
1566            }
1567
1568            static final class UnmodifiableEntrySetSpliterator<K, V>
1569                    implements Spliterator<Entry<K,V>> {
1570                final Spliterator<Map.Entry<K, V>> s;
1571
1572                UnmodifiableEntrySetSpliterator(Spliterator<Entry<K, V>> s) {
1573                    this.s = s;
1574                }
1575
1576                @Override
1577                public boolean tryAdvance(Consumer<? super Entry<K, V>> action) {
1578                    Objects.requireNonNull(action);
1579                    return s.tryAdvance(entryConsumer(action));
1580                }
1581
1582                @Override
1583                public void forEachRemaining(Consumer<? super Entry<K, V>> action) {
1584                    Objects.requireNonNull(action);
1585                    s.forEachRemaining(entryConsumer(action));
1586                }
1587
1588                @Override
1589                public Spliterator<Entry<K, V>> trySplit() {
1590                    Spliterator<Entry<K, V>> split = s.trySplit();
1591                    return split == null
1592                           ? null
1593                           : new UnmodifiableEntrySetSpliterator<>(split);
1594                }
1595
1596                @Override
1597                public long estimateSize() {
1598                    return s.estimateSize();
1599                }
1600
1601                @Override
1602                public long getExactSizeIfKnown() {
1603                    return s.getExactSizeIfKnown();
1604                }
1605
1606                @Override
1607                public int characteristics() {
1608                    return s.characteristics();
1609                }
1610
1611                @Override
1612                public boolean hasCharacteristics(int characteristics) {
1613                    return s.hasCharacteristics(characteristics);
1614                }
1615
1616                @Override
1617                public Comparator<? super Entry<K, V>> getComparator() {
1618                    return s.getComparator();
1619                }
1620            }
1621
1622            @SuppressWarnings("unchecked")
1623            public Spliterator<Entry<K,V>> spliterator() {
1624                return new UnmodifiableEntrySetSpliterator<>(
1625                        (Spliterator<Map.Entry<K, V>>) c.spliterator());
1626            }
1627
1628            @Override
1629            public Stream<Entry<K,V>> stream() {
1630                return StreamSupport.stream(spliterator(), false);
1631            }
1632
1633            @Override
1634            public Stream<Entry<K,V>> parallelStream() {
1635                return StreamSupport.stream(spliterator(), true);
1636            }
1637
1638            public Iterator<Map.Entry<K,V>> iterator() {
1639                return new Iterator<Map.Entry<K,V>>() {
1640                    private final Iterator<? extends Map.Entry<? extends K, ? extends V>> i = c.iterator();
1641
1642                    public boolean hasNext() {
1643                        return i.hasNext();
1644                    }
1645                    public Map.Entry<K,V> next() {
1646                        return new UnmodifiableEntry<>(i.next());
1647                    }
1648                    public void remove() {
1649                        throw new UnsupportedOperationException();
1650                    }
1651                    // Android-note: This seems pretty inconsistent. Unlike other subclasses, we aren't
1652                    // delegating to the subclass iterator here. Seems like an oversight.
1653                };
1654            }
1655
1656            @SuppressWarnings("unchecked")
1657            public Object[] toArray() {
1658                Object[] a = c.toArray();
1659                for (int i=0; i<a.length; i++)
1660                    a[i] = new UnmodifiableEntry<>((Map.Entry<? extends K, ? extends V>)a[i]);
1661                return a;
1662            }
1663
1664            @SuppressWarnings("unchecked")
1665            public <T> T[] toArray(T[] a) {
1666                // We don't pass a to c.toArray, to avoid window of
1667                // vulnerability wherein an unscrupulous multithreaded client
1668                // could get his hands on raw (unwrapped) Entries from c.
1669                Object[] arr = c.toArray(a.length==0 ? a : Arrays.copyOf(a, 0));
1670
1671                for (int i=0; i<arr.length; i++)
1672                    arr[i] = new UnmodifiableEntry<>((Map.Entry<? extends K, ? extends V>)arr[i]);
1673
1674                if (arr.length > a.length)
1675                    return (T[])arr;
1676
1677                System.arraycopy(arr, 0, a, 0, arr.length);
1678                if (a.length > arr.length)
1679                    a[arr.length] = null;
1680                return a;
1681            }
1682
1683            /**
1684             * This method is overridden to protect the backing set against
1685             * an object with a nefarious equals function that senses
1686             * that the equality-candidate is Map.Entry and calls its
1687             * setValue method.
1688             */
1689            public boolean contains(Object o) {
1690                if (!(o instanceof Map.Entry))
1691                    return false;
1692                return c.contains(
1693                    new UnmodifiableEntry<>((Map.Entry<?,?>) o));
1694            }
1695
1696            /**
1697             * The next two methods are overridden to protect against
1698             * an unscrupulous List whose contains(Object o) method senses
1699             * when o is a Map.Entry, and calls o.setValue.
1700             */
1701            public boolean containsAll(Collection<?> coll) {
1702                for (Object e : coll) {
1703                    if (!contains(e)) // Invokes safe contains() above
1704                        return false;
1705                }
1706                return true;
1707            }
1708            public boolean equals(Object o) {
1709                if (o == this)
1710                    return true;
1711
1712                if (!(o instanceof Set))
1713                    return false;
1714                Set<?> s = (Set<?>) o;
1715                if (s.size() != c.size())
1716                    return false;
1717                return containsAll(s); // Invokes safe containsAll() above
1718            }
1719
1720            /**
1721             * This "wrapper class" serves two purposes: it prevents
1722             * the client from modifying the backing Map, by short-circuiting
1723             * the setValue method, and it protects the backing Map against
1724             * an ill-behaved Map.Entry that attempts to modify another
1725             * Map Entry when asked to perform an equality check.
1726             */
1727            private static class UnmodifiableEntry<K,V> implements Map.Entry<K,V> {
1728                private Map.Entry<? extends K, ? extends V> e;
1729
1730                UnmodifiableEntry(Map.Entry<? extends K, ? extends V> e)
1731                        {this.e = Objects.requireNonNull(e);}
1732
1733                public K getKey()        {return e.getKey();}
1734                public V getValue()      {return e.getValue();}
1735                public V setValue(V value) {
1736                    throw new UnsupportedOperationException();
1737                }
1738                public int hashCode()    {return e.hashCode();}
1739                public boolean equals(Object o) {
1740                    if (this == o)
1741                        return true;
1742                    if (!(o instanceof Map.Entry))
1743                        return false;
1744                    Map.Entry<?,?> t = (Map.Entry<?,?>)o;
1745                    return eq(e.getKey(),   t.getKey()) &&
1746                           eq(e.getValue(), t.getValue());
1747                }
1748                public String toString() {return e.toString();}
1749            }
1750        }
1751    }
1752
1753    /**
1754     * Returns an unmodifiable view of the specified sorted map.  This method
1755     * allows modules to provide users with "read-only" access to internal
1756     * sorted maps.  Query operations on the returned sorted map "read through"
1757     * to the specified sorted map.  Attempts to modify the returned
1758     * sorted map, whether direct, via its collection views, or via its
1759     * <tt>subMap</tt>, <tt>headMap</tt>, or <tt>tailMap</tt> views, result in
1760     * an <tt>UnsupportedOperationException</tt>.<p>
1761     *
1762     * The returned sorted map will be serializable if the specified sorted map
1763     * is serializable.
1764     *
1765     * @param <K> the class of the map keys
1766     * @param <V> the class of the map values
1767     * @param m the sorted map for which an unmodifiable view is to be
1768     *        returned.
1769     * @return an unmodifiable view of the specified sorted map.
1770     */
1771    public static <K,V> SortedMap<K,V> unmodifiableSortedMap(SortedMap<K, ? extends V> m) {
1772        return new UnmodifiableSortedMap<>(m);
1773    }
1774
1775    /**
1776     * @serial include
1777     */
1778    static class UnmodifiableSortedMap<K,V>
1779          extends UnmodifiableMap<K,V>
1780          implements SortedMap<K,V>, Serializable {
1781        private static final long serialVersionUID = -8806743815996713206L;
1782
1783        private final SortedMap<K, ? extends V> sm;
1784
1785        UnmodifiableSortedMap(SortedMap<K, ? extends V> m) {super(m); sm = m; }
1786        public Comparator<? super K> comparator()   { return sm.comparator(); }
1787        public SortedMap<K,V> subMap(K fromKey, K toKey)
1788             { return new UnmodifiableSortedMap<>(sm.subMap(fromKey, toKey)); }
1789        public SortedMap<K,V> headMap(K toKey)
1790                     { return new UnmodifiableSortedMap<>(sm.headMap(toKey)); }
1791        public SortedMap<K,V> tailMap(K fromKey)
1792                   { return new UnmodifiableSortedMap<>(sm.tailMap(fromKey)); }
1793        public K firstKey()                           { return sm.firstKey(); }
1794        public K lastKey()                             { return sm.lastKey(); }
1795    }
1796
1797    // Synch Wrappers
1798
1799    /**
1800     * Returns a synchronized (thread-safe) collection backed by the specified
1801     * collection.  In order to guarantee serial access, it is critical that
1802     * <strong>all</strong> access to the backing collection is accomplished
1803     * through the returned collection.<p>
1804     *
1805     * It is imperative that the user manually synchronize on the returned
1806     * collection when traversing it via {@link Iterator}, {@link Spliterator}
1807     * or {@link Stream}:
1808     * <pre>
1809     *  Collection c = Collections.synchronizedCollection(myCollection);
1810     *     ...
1811     *  synchronized (c) {
1812     *      Iterator i = c.iterator(); // Must be in the synchronized block
1813     *      while (i.hasNext())
1814     *         foo(i.next());
1815     *  }
1816     * </pre>
1817     * Failure to follow this advice may result in non-deterministic behavior.
1818     *
1819     * <p>The returned collection does <i>not</i> pass the {@code hashCode}
1820     * and {@code equals} operations through to the backing collection, but
1821     * relies on {@code Object}'s equals and hashCode methods.  This is
1822     * necessary to preserve the contracts of these operations in the case
1823     * that the backing collection is a set or a list.<p>
1824     *
1825     * The returned collection will be serializable if the specified collection
1826     * is serializable.
1827     *
1828     * @param  <T> the class of the objects in the collection
1829     * @param  c the collection to be "wrapped" in a synchronized collection.
1830     * @return a synchronized view of the specified collection.
1831     */
1832    public static <T> Collection<T> synchronizedCollection(Collection<T> c) {
1833        return new SynchronizedCollection<>(c);
1834    }
1835
1836    static <T> Collection<T> synchronizedCollection(Collection<T> c, Object mutex) {
1837        return new SynchronizedCollection<>(c, mutex);
1838    }
1839
1840    /**
1841     * @serial include
1842     */
1843    static class SynchronizedCollection<E> implements Collection<E>, Serializable {
1844        private static final long serialVersionUID = 3053995032091335093L;
1845
1846        final Collection<E> c;  // Backing Collection
1847        final Object mutex;     // Object on which to synchronize
1848
1849        SynchronizedCollection(Collection<E> c) {
1850            this.c = Objects.requireNonNull(c);
1851            mutex = this;
1852        }
1853
1854        SynchronizedCollection(Collection<E> c, Object mutex) {
1855            this.c = Objects.requireNonNull(c);
1856            this.mutex = Objects.requireNonNull(mutex);
1857        }
1858
1859        public int size() {
1860            synchronized (mutex) {return c.size();}
1861        }
1862        public boolean isEmpty() {
1863            synchronized (mutex) {return c.isEmpty();}
1864        }
1865        public boolean contains(Object o) {
1866            synchronized (mutex) {return c.contains(o);}
1867        }
1868        public Object[] toArray() {
1869            synchronized (mutex) {return c.toArray();}
1870        }
1871        public <T> T[] toArray(T[] a) {
1872            synchronized (mutex) {return c.toArray(a);}
1873        }
1874
1875        public Iterator<E> iterator() {
1876            return c.iterator(); // Must be manually synched by user!
1877        }
1878
1879        public boolean add(E e) {
1880            synchronized (mutex) {return c.add(e);}
1881        }
1882        public boolean remove(Object o) {
1883            synchronized (mutex) {return c.remove(o);}
1884        }
1885
1886        public boolean containsAll(Collection<?> coll) {
1887            synchronized (mutex) {return c.containsAll(coll);}
1888        }
1889        public boolean addAll(Collection<? extends E> coll) {
1890            synchronized (mutex) {return c.addAll(coll);}
1891        }
1892        public boolean removeAll(Collection<?> coll) {
1893            synchronized (mutex) {return c.removeAll(coll);}
1894        }
1895        public boolean retainAll(Collection<?> coll) {
1896            synchronized (mutex) {return c.retainAll(coll);}
1897        }
1898        public void clear() {
1899            synchronized (mutex) {c.clear();}
1900        }
1901        public String toString() {
1902            synchronized (mutex) {return c.toString();}
1903        }
1904        // Override default methods in Collection
1905        @Override
1906        public void forEach(Consumer<? super E> consumer) {
1907            synchronized (mutex) {c.forEach(consumer);}
1908        }
1909        @Override
1910        public boolean removeIf(Predicate<? super E> filter) {
1911            synchronized (mutex) {return c.removeIf(filter);}
1912        }
1913        @Override
1914        public Spliterator<E> spliterator() {
1915            return c.spliterator(); // Must be manually synched by user!
1916        }
1917        @Override
1918        public Stream<E> stream() {
1919            return c.stream(); // Must be manually synched by user!
1920        }
1921        @Override
1922        public Stream<E> parallelStream() {
1923            return c.parallelStream(); // Must be manually synched by user!
1924        }
1925        private void writeObject(ObjectOutputStream s) throws IOException {
1926            synchronized (mutex) {s.defaultWriteObject();}
1927        }
1928    }
1929
1930    /**
1931     * Returns a synchronized (thread-safe) set backed by the specified
1932     * set.  In order to guarantee serial access, it is critical that
1933     * <strong>all</strong> access to the backing set is accomplished
1934     * through the returned set.<p>
1935     *
1936     * It is imperative that the user manually synchronize on the returned
1937     * set when iterating over it:
1938     * <pre>
1939     *  Set s = Collections.synchronizedSet(new HashSet());
1940     *      ...
1941     *  synchronized (s) {
1942     *      Iterator i = s.iterator(); // Must be in the synchronized block
1943     *      while (i.hasNext())
1944     *          foo(i.next());
1945     *  }
1946     * </pre>
1947     * Failure to follow this advice may result in non-deterministic behavior.
1948     *
1949     * <p>The returned set will be serializable if the specified set is
1950     * serializable.
1951     *
1952     * @param  <T> the class of the objects in the set
1953     * @param  s the set to be "wrapped" in a synchronized set.
1954     * @return a synchronized view of the specified set.
1955     */
1956    public static <T> Set<T> synchronizedSet(Set<T> s) {
1957        return new SynchronizedSet<>(s);
1958    }
1959
1960    static <T> Set<T> synchronizedSet(Set<T> s, Object mutex) {
1961        return new SynchronizedSet<>(s, mutex);
1962    }
1963
1964    /**
1965     * @serial include
1966     */
1967    static class SynchronizedSet<E>
1968          extends SynchronizedCollection<E>
1969          implements Set<E> {
1970        private static final long serialVersionUID = 487447009682186044L;
1971
1972        SynchronizedSet(Set<E> s) {
1973            super(s);
1974        }
1975        SynchronizedSet(Set<E> s, Object mutex) {
1976            super(s, mutex);
1977        }
1978
1979        public boolean equals(Object o) {
1980            if (this == o)
1981                return true;
1982            synchronized (mutex) {return c.equals(o);}
1983        }
1984        public int hashCode() {
1985            synchronized (mutex) {return c.hashCode();}
1986        }
1987    }
1988
1989    /**
1990     * Returns a synchronized (thread-safe) sorted set backed by the specified
1991     * sorted set.  In order to guarantee serial access, it is critical that
1992     * <strong>all</strong> access to the backing sorted set is accomplished
1993     * through the returned sorted set (or its views).<p>
1994     *
1995     * It is imperative that the user manually synchronize on the returned
1996     * sorted set when iterating over it or any of its <tt>subSet</tt>,
1997     * <tt>headSet</tt>, or <tt>tailSet</tt> views.
1998     * <pre>
1999     *  SortedSet s = Collections.synchronizedSortedSet(new TreeSet());
2000     *      ...
2001     *  synchronized (s) {
2002     *      Iterator i = s.iterator(); // Must be in the synchronized block
2003     *      while (i.hasNext())
2004     *          foo(i.next());
2005     *  }
2006     * </pre>
2007     * or:
2008     * <pre>
2009     *  SortedSet s = Collections.synchronizedSortedSet(new TreeSet());
2010     *  SortedSet s2 = s.headSet(foo);
2011     *      ...
2012     *  synchronized (s) {  // Note: s, not s2!!!
2013     *      Iterator i = s2.iterator(); // Must be in the synchronized block
2014     *      while (i.hasNext())
2015     *          foo(i.next());
2016     *  }
2017     * </pre>
2018     * Failure to follow this advice may result in non-deterministic behavior.
2019     *
2020     * <p>The returned sorted set will be serializable if the specified
2021     * sorted set is serializable.
2022     *
2023     * @param  <T> the class of the objects in the set
2024     * @param  s the sorted set to be "wrapped" in a synchronized sorted set.
2025     * @return a synchronized view of the specified sorted set.
2026     */
2027    public static <T> SortedSet<T> synchronizedSortedSet(SortedSet<T> s) {
2028        return new SynchronizedSortedSet<>(s);
2029    }
2030
2031    /**
2032     * @serial include
2033     */
2034    static class SynchronizedSortedSet<E>
2035        extends SynchronizedSet<E>
2036        implements SortedSet<E>
2037    {
2038        private static final long serialVersionUID = 8695801310862127406L;
2039
2040        private final SortedSet<E> ss;
2041
2042        SynchronizedSortedSet(SortedSet<E> s) {
2043            super(s);
2044            ss = s;
2045        }
2046        SynchronizedSortedSet(SortedSet<E> s, Object mutex) {
2047            super(s, mutex);
2048            ss = s;
2049        }
2050
2051        public Comparator<? super E> comparator() {
2052            synchronized (mutex) {return ss.comparator();}
2053        }
2054
2055        public SortedSet<E> subSet(E fromElement, E toElement) {
2056            synchronized (mutex) {
2057                return new SynchronizedSortedSet<>(
2058                    ss.subSet(fromElement, toElement), mutex);
2059            }
2060        }
2061        public SortedSet<E> headSet(E toElement) {
2062            synchronized (mutex) {
2063                return new SynchronizedSortedSet<>(ss.headSet(toElement), mutex);
2064            }
2065        }
2066        public SortedSet<E> tailSet(E fromElement) {
2067            synchronized (mutex) {
2068               return new SynchronizedSortedSet<>(ss.tailSet(fromElement),mutex);
2069            }
2070        }
2071
2072        public E first() {
2073            synchronized (mutex) {return ss.first();}
2074        }
2075        public E last() {
2076            synchronized (mutex) {return ss.last();}
2077        }
2078    }
2079
2080    /**
2081     * Returns a synchronized (thread-safe) list backed by the specified
2082     * list.  In order to guarantee serial access, it is critical that
2083     * <strong>all</strong> access to the backing list is accomplished
2084     * through the returned list.<p>
2085     *
2086     * It is imperative that the user manually synchronize on the returned
2087     * list when iterating over it:
2088     * <pre>
2089     *  List list = Collections.synchronizedList(new ArrayList());
2090     *      ...
2091     *  synchronized (list) {
2092     *      Iterator i = list.iterator(); // Must be in synchronized block
2093     *      while (i.hasNext())
2094     *          foo(i.next());
2095     *  }
2096     * </pre>
2097     * Failure to follow this advice may result in non-deterministic behavior.
2098     *
2099     * <p>The returned list will be serializable if the specified list is
2100     * serializable.
2101     *
2102     * @param  <T> the class of the objects in the list
2103     * @param  list the list to be "wrapped" in a synchronized list.
2104     * @return a synchronized view of the specified list.
2105     */
2106    public static <T> List<T> synchronizedList(List<T> list) {
2107        return (list instanceof RandomAccess ?
2108                new SynchronizedRandomAccessList<>(list) :
2109                new SynchronizedList<>(list));
2110    }
2111
2112    static <T> List<T> synchronizedList(List<T> list, Object mutex) {
2113        return (list instanceof RandomAccess ?
2114                new SynchronizedRandomAccessList<>(list, mutex) :
2115                new SynchronizedList<>(list, mutex));
2116    }
2117
2118    /**
2119     * @serial include
2120     */
2121    static class SynchronizedList<E>
2122        extends SynchronizedCollection<E>
2123        implements List<E> {
2124        private static final long serialVersionUID = -7754090372962971524L;
2125
2126        final List<E> list;
2127
2128        SynchronizedList(List<E> list) {
2129            super(list);
2130            this.list = list;
2131        }
2132        SynchronizedList(List<E> list, Object mutex) {
2133            super(list, mutex);
2134            this.list = list;
2135        }
2136
2137        public boolean equals(Object o) {
2138            if (this == o)
2139                return true;
2140            synchronized (mutex) {return list.equals(o);}
2141        }
2142        public int hashCode() {
2143            synchronized (mutex) {return list.hashCode();}
2144        }
2145
2146        public E get(int index) {
2147            synchronized (mutex) {return list.get(index);}
2148        }
2149        public E set(int index, E element) {
2150            synchronized (mutex) {return list.set(index, element);}
2151        }
2152        public void add(int index, E element) {
2153            synchronized (mutex) {list.add(index, element);}
2154        }
2155        public E remove(int index) {
2156            synchronized (mutex) {return list.remove(index);}
2157        }
2158
2159        public int indexOf(Object o) {
2160            synchronized (mutex) {return list.indexOf(o);}
2161        }
2162        public int lastIndexOf(Object o) {
2163            synchronized (mutex) {return list.lastIndexOf(o);}
2164        }
2165
2166        public boolean addAll(int index, Collection<? extends E> c) {
2167            synchronized (mutex) {return list.addAll(index, c);}
2168        }
2169
2170        public ListIterator<E> listIterator() {
2171            return list.listIterator(); // Must be manually synched by user
2172        }
2173
2174        public ListIterator<E> listIterator(int index) {
2175            return list.listIterator(index); // Must be manually synched by user
2176        }
2177
2178        public List<E> subList(int fromIndex, int toIndex) {
2179            synchronized (mutex) {
2180                return new SynchronizedList<>(list.subList(fromIndex, toIndex),
2181                                            mutex);
2182            }
2183        }
2184
2185        @Override
2186        public void replaceAll(UnaryOperator<E> operator) {
2187            synchronized (mutex) {list.replaceAll(operator);}
2188        }
2189        @Override
2190        public void sort(Comparator<? super E> c) {
2191            synchronized (mutex) {list.sort(c);}
2192        }
2193
2194        /**
2195         * SynchronizedRandomAccessList instances are serialized as
2196         * SynchronizedList instances to allow them to be deserialized
2197         * in pre-1.4 JREs (which do not have SynchronizedRandomAccessList).
2198         * This method inverts the transformation.  As a beneficial
2199         * side-effect, it also grafts the RandomAccess marker onto
2200         * SynchronizedList instances that were serialized in pre-1.4 JREs.
2201         *
2202         * Note: Unfortunately, SynchronizedRandomAccessList instances
2203         * serialized in 1.4.1 and deserialized in 1.4 will become
2204         * SynchronizedList instances, as this method was missing in 1.4.
2205         */
2206        private Object readResolve() {
2207            return (list instanceof RandomAccess
2208                    ? new SynchronizedRandomAccessList<>(list)
2209                    : this);
2210        }
2211    }
2212
2213    /**
2214     * @serial include
2215     */
2216    static class SynchronizedRandomAccessList<E>
2217        extends SynchronizedList<E>
2218        implements RandomAccess {
2219
2220        SynchronizedRandomAccessList(List<E> list) {
2221            super(list);
2222        }
2223
2224        SynchronizedRandomAccessList(List<E> list, Object mutex) {
2225            super(list, mutex);
2226        }
2227
2228        public List<E> subList(int fromIndex, int toIndex) {
2229            synchronized (mutex) {
2230                return new SynchronizedRandomAccessList<>(
2231                    list.subList(fromIndex, toIndex), mutex);
2232            }
2233        }
2234
2235        private static final long serialVersionUID = 1530674583602358482L;
2236
2237        /**
2238         * Allows instances to be deserialized in pre-1.4 JREs (which do
2239         * not have SynchronizedRandomAccessList).  SynchronizedList has
2240         * a readResolve method that inverts this transformation upon
2241         * deserialization.
2242         */
2243        private Object writeReplace() {
2244            return new SynchronizedList<>(list);
2245        }
2246    }
2247
2248    /**
2249     * Returns a synchronized (thread-safe) map backed by the specified
2250     * map.  In order to guarantee serial access, it is critical that
2251     * <strong>all</strong> access to the backing map is accomplished
2252     * through the returned map.<p>
2253     *
2254     * It is imperative that the user manually synchronize on the returned
2255     * map when iterating over any of its collection views:
2256     * <pre>
2257     *  Map m = Collections.synchronizedMap(new HashMap());
2258     *      ...
2259     *  Set s = m.keySet();  // Needn't be in synchronized block
2260     *      ...
2261     *  synchronized (m) {  // Synchronizing on m, not s!
2262     *      Iterator i = s.iterator(); // Must be in synchronized block
2263     *      while (i.hasNext())
2264     *          foo(i.next());
2265     *  }
2266     * </pre>
2267     * Failure to follow this advice may result in non-deterministic behavior.
2268     *
2269     * <p>The returned map will be serializable if the specified map is
2270     * serializable.
2271     *
2272     * @param <K> the class of the map keys
2273     * @param <V> the class of the map values
2274     * @param  m the map to be "wrapped" in a synchronized map.
2275     * @return a synchronized view of the specified map.
2276     */
2277    public static <K,V> Map<K,V> synchronizedMap(Map<K,V> m) {
2278        return new SynchronizedMap<>(m);
2279    }
2280
2281    /**
2282     * @serial include
2283     */
2284    private static class SynchronizedMap<K,V>
2285        implements Map<K,V>, Serializable {
2286        private static final long serialVersionUID = 1978198479659022715L;
2287
2288        private final Map<K,V> m;     // Backing Map
2289        final Object      mutex;        // Object on which to synchronize
2290
2291        SynchronizedMap(Map<K,V> m) {
2292            this.m = Objects.requireNonNull(m);
2293            mutex = this;
2294        }
2295
2296        SynchronizedMap(Map<K,V> m, Object mutex) {
2297            this.m = m;
2298            this.mutex = mutex;
2299        }
2300
2301        public int size() {
2302            synchronized (mutex) {return m.size();}
2303        }
2304        public boolean isEmpty() {
2305            synchronized (mutex) {return m.isEmpty();}
2306        }
2307        public boolean containsKey(Object key) {
2308            synchronized (mutex) {return m.containsKey(key);}
2309        }
2310        public boolean containsValue(Object value) {
2311            synchronized (mutex) {return m.containsValue(value);}
2312        }
2313        public V get(Object key) {
2314            synchronized (mutex) {return m.get(key);}
2315        }
2316
2317        public V put(K key, V value) {
2318            synchronized (mutex) {return m.put(key, value);}
2319        }
2320        public V remove(Object key) {
2321            synchronized (mutex) {return m.remove(key);}
2322        }
2323        public void putAll(Map<? extends K, ? extends V> map) {
2324            synchronized (mutex) {m.putAll(map);}
2325        }
2326        public void clear() {
2327            synchronized (mutex) {m.clear();}
2328        }
2329
2330        private transient Set<K> keySet = null;
2331        private transient Set<Map.Entry<K,V>> entrySet = null;
2332        private transient Collection<V> values = null;
2333
2334        public Set<K> keySet() {
2335            synchronized (mutex) {
2336                if (keySet==null)
2337                    keySet = new SynchronizedSet<>(m.keySet(), mutex);
2338                return keySet;
2339            }
2340        }
2341
2342        public Set<Map.Entry<K,V>> entrySet() {
2343            synchronized (mutex) {
2344                if (entrySet==null)
2345                    entrySet = new SynchronizedSet<>(m.entrySet(), mutex);
2346                return entrySet;
2347            }
2348        }
2349
2350        public Collection<V> values() {
2351            synchronized (mutex) {
2352                if (values==null)
2353                    values = new SynchronizedCollection<>(m.values(), mutex);
2354                return values;
2355            }
2356        }
2357
2358        public boolean equals(Object o) {
2359            if (this == o)
2360                return true;
2361            synchronized (mutex) {return m.equals(o);}
2362        }
2363        public int hashCode() {
2364            synchronized (mutex) {return m.hashCode();}
2365        }
2366        public String toString() {
2367            synchronized (mutex) {return m.toString();}
2368        }
2369
2370        // Override default methods in Map
2371        @Override
2372        public V getOrDefault(Object k, V defaultValue) {
2373            synchronized (mutex) {return m.getOrDefault(k, defaultValue);}
2374        }
2375        @Override
2376        public void forEach(BiConsumer<? super K, ? super V> action) {
2377            synchronized (mutex) {m.forEach(action);}
2378        }
2379        @Override
2380        public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
2381            synchronized (mutex) {m.replaceAll(function);}
2382        }
2383        @Override
2384        public V putIfAbsent(K key, V value) {
2385            synchronized (mutex) {return m.putIfAbsent(key, value);}
2386        }
2387        @Override
2388        public boolean remove(Object key, Object value) {
2389            synchronized (mutex) {return m.remove(key, value);}
2390        }
2391        @Override
2392        public boolean replace(K key, V oldValue, V newValue) {
2393            synchronized (mutex) {return m.replace(key, oldValue, newValue);}
2394        }
2395        @Override
2396        public V replace(K key, V value) {
2397            synchronized (mutex) {return m.replace(key, value);}
2398        }
2399        @Override
2400        public V computeIfAbsent(K key,
2401                                 Function<? super K, ? extends V> mappingFunction) {
2402            synchronized (mutex) {return m.computeIfAbsent(key, mappingFunction);}
2403        }
2404        @Override
2405        public V computeIfPresent(K key,
2406                                  BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2407            synchronized (mutex) {return m.computeIfPresent(key, remappingFunction);}
2408        }
2409        @Override
2410        public V compute(K key,
2411                         BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2412            synchronized (mutex) {return m.compute(key, remappingFunction);}
2413        }
2414        @Override
2415        public V merge(K key, V value,
2416                       BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
2417            synchronized (mutex) {return m.merge(key, value, remappingFunction);}
2418        }
2419
2420        private void writeObject(ObjectOutputStream s) throws IOException {
2421            synchronized (mutex) {s.defaultWriteObject();}
2422        }
2423    }
2424
2425    /**
2426     * Returns a synchronized (thread-safe) sorted map backed by the specified
2427     * sorted map.  In order to guarantee serial access, it is critical that
2428     * <strong>all</strong> access to the backing sorted map is accomplished
2429     * through the returned sorted map (or its views).<p>
2430     *
2431     * It is imperative that the user manually synchronize on the returned
2432     * sorted map when iterating over any of its collection views, or the
2433     * collections views of any of its <tt>subMap</tt>, <tt>headMap</tt> or
2434     * <tt>tailMap</tt> views.
2435     * <pre>
2436     *  SortedMap m = Collections.synchronizedSortedMap(new TreeMap());
2437     *      ...
2438     *  Set s = m.keySet();  // Needn't be in synchronized block
2439     *      ...
2440     *  synchronized (m) {  // Synchronizing on m, not s!
2441     *      Iterator i = s.iterator(); // Must be in synchronized block
2442     *      while (i.hasNext())
2443     *          foo(i.next());
2444     *  }
2445     * </pre>
2446     * or:
2447     * <pre>
2448     *  SortedMap m = Collections.synchronizedSortedMap(new TreeMap());
2449     *  SortedMap m2 = m.subMap(foo, bar);
2450     *      ...
2451     *  Set s2 = m2.keySet();  // Needn't be in synchronized block
2452     *      ...
2453     *  synchronized (m) {  // Synchronizing on m, not m2 or s2!
2454     *      Iterator i = s.iterator(); // Must be in synchronized block
2455     *      while (i.hasNext())
2456     *          foo(i.next());
2457     *  }
2458     * </pre>
2459     * Failure to follow this advice may result in non-deterministic behavior.
2460     *
2461     * <p>The returned sorted map will be serializable if the specified
2462     * sorted map is serializable.
2463     *
2464     * @param <K> the class of the map keys
2465     * @param <V> the class of the map values
2466     * @param  m the sorted map to be "wrapped" in a synchronized sorted map.
2467     * @return a synchronized view of the specified sorted map.
2468     */
2469    public static <K,V> SortedMap<K,V> synchronizedSortedMap(SortedMap<K,V> m) {
2470        return new SynchronizedSortedMap<>(m);
2471    }
2472
2473    /**
2474     * @serial include
2475     */
2476    static class SynchronizedSortedMap<K,V>
2477        extends SynchronizedMap<K,V>
2478        implements SortedMap<K,V>
2479    {
2480        private static final long serialVersionUID = -8798146769416483793L;
2481
2482        private final SortedMap<K,V> sm;
2483
2484        SynchronizedSortedMap(SortedMap<K,V> m) {
2485            super(m);
2486            sm = m;
2487        }
2488        SynchronizedSortedMap(SortedMap<K,V> m, Object mutex) {
2489            super(m, mutex);
2490            sm = m;
2491        }
2492
2493        public Comparator<? super K> comparator() {
2494            synchronized (mutex) {return sm.comparator();}
2495        }
2496
2497        public SortedMap<K,V> subMap(K fromKey, K toKey) {
2498            synchronized (mutex) {
2499                return new SynchronizedSortedMap<>(
2500                    sm.subMap(fromKey, toKey), mutex);
2501            }
2502        }
2503        public SortedMap<K,V> headMap(K toKey) {
2504            synchronized (mutex) {
2505                return new SynchronizedSortedMap<>(sm.headMap(toKey), mutex);
2506            }
2507        }
2508        public SortedMap<K,V> tailMap(K fromKey) {
2509            synchronized (mutex) {
2510               return new SynchronizedSortedMap<>(sm.tailMap(fromKey),mutex);
2511            }
2512        }
2513
2514        public K firstKey() {
2515            synchronized (mutex) {return sm.firstKey();}
2516        }
2517        public K lastKey() {
2518            synchronized (mutex) {return sm.lastKey();}
2519        }
2520    }
2521
2522    // Dynamically typesafe collection wrappers
2523
2524    /**
2525     * Returns a dynamically typesafe view of the specified collection.
2526     * Any attempt to insert an element of the wrong type will result in an
2527     * immediate {@link ClassCastException}.  Assuming a collection
2528     * contains no incorrectly typed elements prior to the time a
2529     * dynamically typesafe view is generated, and that all subsequent
2530     * access to the collection takes place through the view, it is
2531     * <i>guaranteed</i> that the collection cannot contain an incorrectly
2532     * typed element.
2533     *
2534     * <p>The generics mechanism in the language provides compile-time
2535     * (static) type checking, but it is possible to defeat this mechanism
2536     * with unchecked casts.  Usually this is not a problem, as the compiler
2537     * issues warnings on all such unchecked operations.  There are, however,
2538     * times when static type checking alone is not sufficient.  For example,
2539     * suppose a collection is passed to a third-party library and it is
2540     * imperative that the library code not corrupt the collection by
2541     * inserting an element of the wrong type.
2542     *
2543     * <p>Another use of dynamically typesafe views is debugging.  Suppose a
2544     * program fails with a {@code ClassCastException}, indicating that an
2545     * incorrectly typed element was put into a parameterized collection.
2546     * Unfortunately, the exception can occur at any time after the erroneous
2547     * element is inserted, so it typically provides little or no information
2548     * as to the real source of the problem.  If the problem is reproducible,
2549     * one can quickly determine its source by temporarily modifying the
2550     * program to wrap the collection with a dynamically typesafe view.
2551     * For example, this declaration:
2552     *  <pre> {@code
2553     *     Collection<String> c = new HashSet<>();
2554     * }</pre>
2555     * may be replaced temporarily by this one:
2556     *  <pre> {@code
2557     *     Collection<String> c = Collections.checkedCollection(
2558     *         new HashSet<>(), String.class);
2559     * }</pre>
2560     * Running the program again will cause it to fail at the point where
2561     * an incorrectly typed element is inserted into the collection, clearly
2562     * identifying the source of the problem.  Once the problem is fixed, the
2563     * modified declaration may be reverted back to the original.
2564     *
2565     * <p>The returned collection does <i>not</i> pass the hashCode and equals
2566     * operations through to the backing collection, but relies on
2567     * {@code Object}'s {@code equals} and {@code hashCode} methods.  This
2568     * is necessary to preserve the contracts of these operations in the case
2569     * that the backing collection is a set or a list.
2570     *
2571     * <p>The returned collection will be serializable if the specified
2572     * collection is serializable.
2573     *
2574     * <p>Since {@code null} is considered to be a value of any reference
2575     * type, the returned collection permits insertion of null elements
2576     * whenever the backing collection does.
2577     *
2578     * @param <E> the class of the objects in the collection
2579     * @param c the collection for which a dynamically typesafe view is to be
2580     *          returned
2581     * @param type the type of element that {@code c} is permitted to hold
2582     * @return a dynamically typesafe view of the specified collection
2583     * @since 1.5
2584     */
2585    public static <E> Collection<E> checkedCollection(Collection<E> c,
2586                                                      Class<E> type) {
2587        return new CheckedCollection<>(c, type);
2588    }
2589
2590    @SuppressWarnings("unchecked")
2591    static <T> T[] zeroLengthArray(Class<T> type) {
2592        return (T[]) Array.newInstance(type, 0);
2593    }
2594
2595    /**
2596     * @serial include
2597     */
2598    static class CheckedCollection<E> implements Collection<E>, Serializable {
2599        private static final long serialVersionUID = 1578914078182001775L;
2600
2601        final Collection<E> c;
2602        final Class<E> type;
2603
2604        void typeCheck(Object o) {
2605            if (o != null && !type.isInstance(o))
2606                throw new ClassCastException(badElementMsg(o));
2607        }
2608
2609        private String badElementMsg(Object o) {
2610            return "Attempt to insert " + o.getClass() +
2611                " element into collection with element type " + type;
2612        }
2613
2614        CheckedCollection(Collection<E> c, Class<E> type) {
2615            if (c==null || type == null)
2616                throw new NullPointerException();
2617            this.c = c;
2618            this.type = type;
2619        }
2620
2621        public int size()                 { return c.size(); }
2622        public boolean isEmpty()          { return c.isEmpty(); }
2623        public boolean contains(Object o) { return c.contains(o); }
2624        public Object[] toArray()         { return c.toArray(); }
2625        public <T> T[] toArray(T[] a)     { return c.toArray(a); }
2626        public String toString()          { return c.toString(); }
2627        public boolean remove(Object o)   { return c.remove(o); }
2628        public void clear()               {        c.clear(); }
2629
2630        public boolean containsAll(Collection<?> coll) {
2631            return c.containsAll(coll);
2632        }
2633        public boolean removeAll(Collection<?> coll) {
2634            return c.removeAll(coll);
2635        }
2636        public boolean retainAll(Collection<?> coll) {
2637            return c.retainAll(coll);
2638        }
2639
2640        public Iterator<E> iterator() {
2641            // JDK-6363904 - unwrapped iterator could be typecast to
2642            // ListIterator with unsafe set()
2643            final Iterator<E> it = c.iterator();
2644            return new Iterator<E>() {
2645                public boolean hasNext() { return it.hasNext(); }
2646                public E next()          { return it.next(); }
2647                public void remove()     {        it.remove(); }};
2648            // Android-note: Should we delegate to it for forEachRemaining ?
2649        }
2650
2651        public boolean add(E e) {
2652            typeCheck(e);
2653            return c.add(e);
2654        }
2655
2656        private E[] zeroLengthElementArray = null; // Lazily initialized
2657
2658        private E[] zeroLengthElementArray() {
2659            return zeroLengthElementArray != null ? zeroLengthElementArray :
2660                (zeroLengthElementArray = zeroLengthArray(type));
2661        }
2662
2663        @SuppressWarnings("unchecked")
2664        Collection<E> checkedCopyOf(Collection<? extends E> coll) {
2665            Object[] a = null;
2666            try {
2667                E[] z = zeroLengthElementArray();
2668                a = coll.toArray(z);
2669                // Defend against coll violating the toArray contract
2670                if (a.getClass() != z.getClass())
2671                    a = Arrays.copyOf(a, a.length, z.getClass());
2672            } catch (ArrayStoreException ignore) {
2673                // To get better and consistent diagnostics,
2674                // we call typeCheck explicitly on each element.
2675                // We call clone() to defend against coll retaining a
2676                // reference to the returned array and storing a bad
2677                // element into it after it has been type checked.
2678                a = coll.toArray().clone();
2679                for (Object o : a)
2680                    typeCheck(o);
2681            }
2682            // A slight abuse of the type system, but safe here.
2683            return (Collection<E>) Arrays.asList(a);
2684        }
2685
2686        public boolean addAll(Collection<? extends E> coll) {
2687            // Doing things this way insulates us from concurrent changes
2688            // in the contents of coll and provides all-or-nothing
2689            // semantics (which we wouldn't get if we type-checked each
2690            // element as we added it)
2691            return c.addAll(checkedCopyOf(coll));
2692        }
2693
2694        // Override default methods in Collection
2695        @Override
2696        public void forEach(Consumer<? super E> action) {c.forEach(action);}
2697        @Override
2698        public boolean removeIf(Predicate<? super E> filter) {
2699            return c.removeIf(filter);
2700        }
2701        @Override
2702        public Spliterator<E> spliterator() {return c.spliterator();}
2703        @Override
2704        public Stream<E> stream()           {return c.stream();}
2705        @Override
2706        public Stream<E> parallelStream()   {return c.parallelStream();}
2707
2708    }
2709
2710    /**
2711     * Returns a dynamically typesafe view of the specified set.
2712     * Any attempt to insert an element of the wrong type will result in
2713     * an immediate {@link ClassCastException}.  Assuming a set contains
2714     * no incorrectly typed elements prior to the time a dynamically typesafe
2715     * view is generated, and that all subsequent access to the set
2716     * takes place through the view, it is <i>guaranteed</i> that the
2717     * set cannot contain an incorrectly typed element.
2718     *
2719     * <p>A discussion of the use of dynamically typesafe views may be
2720     * found in the documentation for the {@link #checkedCollection
2721     * checkedCollection} method.
2722     *
2723     * <p>The returned set will be serializable if the specified set is
2724     * serializable.
2725     *
2726     * <p>Since {@code null} is considered to be a value of any reference
2727     * type, the returned set permits insertion of null elements whenever
2728     * the backing set does.
2729     *
2730     * @param <E> the class of the objects in the set
2731     * @param s the set for which a dynamically typesafe view is to be
2732     *          returned
2733     * @param type the type of element that {@code s} is permitted to hold
2734     * @return a dynamically typesafe view of the specified set
2735     * @since 1.5
2736     */
2737    public static <E> Set<E> checkedSet(Set<E> s, Class<E> type) {
2738        return new CheckedSet<>(s, type);
2739    }
2740
2741    /**
2742     * @serial include
2743     */
2744    static class CheckedSet<E> extends CheckedCollection<E>
2745                                 implements Set<E>, Serializable
2746    {
2747        private static final long serialVersionUID = 4694047833775013803L;
2748
2749        CheckedSet(Set<E> s, Class<E> elementType) { super(s, elementType); }
2750
2751        public boolean equals(Object o) { return o == this || c.equals(o); }
2752        public int hashCode()           { return c.hashCode(); }
2753    }
2754
2755    /**
2756     * Returns a dynamically typesafe view of the specified sorted set.
2757     * Any attempt to insert an element of the wrong type will result in an
2758     * immediate {@link ClassCastException}.  Assuming a sorted set
2759     * contains no incorrectly typed elements prior to the time a
2760     * dynamically typesafe view is generated, and that all subsequent
2761     * access to the sorted set takes place through the view, it is
2762     * <i>guaranteed</i> that the sorted set cannot contain an incorrectly
2763     * typed element.
2764     *
2765     * <p>A discussion of the use of dynamically typesafe views may be
2766     * found in the documentation for the {@link #checkedCollection
2767     * checkedCollection} method.
2768     *
2769     * <p>The returned sorted set will be serializable if the specified sorted
2770     * set is serializable.
2771     *
2772     * <p>Since {@code null} is considered to be a value of any reference
2773     * type, the returned sorted set permits insertion of null elements
2774     * whenever the backing sorted set does.
2775     *
2776     * @param <E> the class of the objects in the set
2777     * @param s the sorted set for which a dynamically typesafe view is to be
2778     *          returned
2779     * @param type the type of element that {@code s} is permitted to hold
2780     * @return a dynamically typesafe view of the specified sorted set
2781     * @since 1.5
2782     */
2783    public static <E> SortedSet<E> checkedSortedSet(SortedSet<E> s,
2784                                                    Class<E> type) {
2785        return new CheckedSortedSet<>(s, type);
2786    }
2787
2788    /**
2789     * @serial include
2790     */
2791    static class CheckedSortedSet<E> extends CheckedSet<E>
2792        implements SortedSet<E>, Serializable
2793    {
2794        private static final long serialVersionUID = 1599911165492914959L;
2795
2796        private final SortedSet<E> ss;
2797
2798        CheckedSortedSet(SortedSet<E> s, Class<E> type) {
2799            super(s, type);
2800            ss = s;
2801        }
2802
2803        public Comparator<? super E> comparator() { return ss.comparator(); }
2804        public E first()                   { return ss.first(); }
2805        public E last()                    { return ss.last(); }
2806
2807        public SortedSet<E> subSet(E fromElement, E toElement) {
2808            return checkedSortedSet(ss.subSet(fromElement,toElement), type);
2809        }
2810        public SortedSet<E> headSet(E toElement) {
2811            return checkedSortedSet(ss.headSet(toElement), type);
2812        }
2813        public SortedSet<E> tailSet(E fromElement) {
2814            return checkedSortedSet(ss.tailSet(fromElement), type);
2815        }
2816    }
2817
2818    /**
2819     * Returns a dynamically typesafe view of the specified list.
2820     * Any attempt to insert an element of the wrong type will result in
2821     * an immediate {@link ClassCastException}.  Assuming a list contains
2822     * no incorrectly typed elements prior to the time a dynamically typesafe
2823     * view is generated, and that all subsequent access to the list
2824     * takes place through the view, it is <i>guaranteed</i> that the
2825     * list cannot contain an incorrectly typed element.
2826     *
2827     * <p>A discussion of the use of dynamically typesafe views may be
2828     * found in the documentation for the {@link #checkedCollection
2829     * checkedCollection} method.
2830     *
2831     * <p>The returned list will be serializable if the specified list
2832     * is serializable.
2833     *
2834     * <p>Since {@code null} is considered to be a value of any reference
2835     * type, the returned list permits insertion of null elements whenever
2836     * the backing list does.
2837     *
2838     * @param <E> the class of the objects in the list
2839     * @param list the list for which a dynamically typesafe view is to be
2840     *             returned
2841     * @param type the type of element that {@code list} is permitted to hold
2842     * @return a dynamically typesafe view of the specified list
2843     * @since 1.5
2844     */
2845    public static <E> List<E> checkedList(List<E> list, Class<E> type) {
2846        return (list instanceof RandomAccess ?
2847                new CheckedRandomAccessList<>(list, type) :
2848                new CheckedList<>(list, type));
2849    }
2850
2851    /**
2852     * @serial include
2853     */
2854    static class CheckedList<E>
2855        extends CheckedCollection<E>
2856        implements List<E>
2857    {
2858        private static final long serialVersionUID = 65247728283967356L;
2859        final List<E> list;
2860
2861        CheckedList(List<E> list, Class<E> type) {
2862            super(list, type);
2863            this.list = list;
2864        }
2865
2866        public boolean equals(Object o)  { return o == this || list.equals(o); }
2867        public int hashCode()            { return list.hashCode(); }
2868        public E get(int index)          { return list.get(index); }
2869        public E remove(int index)       { return list.remove(index); }
2870        public int indexOf(Object o)     { return list.indexOf(o); }
2871        public int lastIndexOf(Object o) { return list.lastIndexOf(o); }
2872
2873        public E set(int index, E element) {
2874            typeCheck(element);
2875            return list.set(index, element);
2876        }
2877
2878        public void add(int index, E element) {
2879            typeCheck(element);
2880            list.add(index, element);
2881        }
2882
2883        public boolean addAll(int index, Collection<? extends E> c) {
2884            return list.addAll(index, checkedCopyOf(c));
2885        }
2886        public ListIterator<E> listIterator()   { return listIterator(0); }
2887
2888        public ListIterator<E> listIterator(final int index) {
2889            final ListIterator<E> i = list.listIterator(index);
2890
2891            return new ListIterator<E>() {
2892                public boolean hasNext()     { return i.hasNext(); }
2893                public E next()              { return i.next(); }
2894                public boolean hasPrevious() { return i.hasPrevious(); }
2895                public E previous()          { return i.previous(); }
2896                public int nextIndex()       { return i.nextIndex(); }
2897                public int previousIndex()   { return i.previousIndex(); }
2898                public void remove()         {        i.remove(); }
2899
2900                public void set(E e) {
2901                    typeCheck(e);
2902                    i.set(e);
2903                }
2904
2905                public void add(E e) {
2906                    typeCheck(e);
2907                    i.add(e);
2908                }
2909
2910                @Override
2911                public void forEachRemaining(Consumer<? super E> action) {
2912                    i.forEachRemaining(action);
2913                }
2914            };
2915        }
2916
2917        public List<E> subList(int fromIndex, int toIndex) {
2918            return new CheckedList<>(list.subList(fromIndex, toIndex), type);
2919        }
2920
2921        /**
2922         * {@inheritDoc}
2923         *
2924         * @throws ClassCastException if the class of an element returned by the
2925         *         operator prevents it from being added to this collection. The
2926         *         exception may be thrown after some elements of the list have
2927         *         already been replaced.
2928         */
2929        @Override
2930        public void replaceAll(UnaryOperator<E> operator) {
2931            Objects.requireNonNull(operator);
2932
2933            // Android-changed: Modified from OpenJDK 8 code because typeCheck returns void in
2934            // OpenJDK 7.
2935            list.replaceAll(e -> {
2936                    E newValue = operator.apply(e);
2937                    typeCheck(newValue);
2938                    return newValue;
2939            });
2940        }
2941
2942        @Override
2943        public void sort(Comparator<? super E> c) {
2944            list.sort(c);
2945        }
2946    }
2947
2948    /**
2949     * @serial include
2950     */
2951    static class CheckedRandomAccessList<E> extends CheckedList<E>
2952                                            implements RandomAccess
2953    {
2954        private static final long serialVersionUID = 1638200125423088369L;
2955
2956        CheckedRandomAccessList(List<E> list, Class<E> type) {
2957            super(list, type);
2958        }
2959
2960        public List<E> subList(int fromIndex, int toIndex) {
2961            return new CheckedRandomAccessList<>(
2962                    list.subList(fromIndex, toIndex), type);
2963        }
2964    }
2965
2966    /**
2967     * Returns a dynamically typesafe view of the specified map.
2968     * Any attempt to insert a mapping whose key or value have the wrong
2969     * type will result in an immediate {@link ClassCastException}.
2970     * Similarly, any attempt to modify the value currently associated with
2971     * a key will result in an immediate {@link ClassCastException},
2972     * whether the modification is attempted directly through the map
2973     * itself, or through a {@link Map.Entry} instance obtained from the
2974     * map's {@link Map#entrySet() entry set} view.
2975     *
2976     * <p>Assuming a map contains no incorrectly typed keys or values
2977     * prior to the time a dynamically typesafe view is generated, and
2978     * that all subsequent access to the map takes place through the view
2979     * (or one of its collection views), it is <i>guaranteed</i> that the
2980     * map cannot contain an incorrectly typed key or value.
2981     *
2982     * <p>A discussion of the use of dynamically typesafe views may be
2983     * found in the documentation for the {@link #checkedCollection
2984     * checkedCollection} method.
2985     *
2986     * <p>The returned map will be serializable if the specified map is
2987     * serializable.
2988     *
2989     * <p>Since {@code null} is considered to be a value of any reference
2990     * type, the returned map permits insertion of null keys or values
2991     * whenever the backing map does.
2992     *
2993     * @param <K> the class of the map keys
2994     * @param <V> the class of the map values
2995     * @param m the map for which a dynamically typesafe view is to be
2996     *          returned
2997     * @param keyType the type of key that {@code m} is permitted to hold
2998     * @param valueType the type of value that {@code m} is permitted to hold
2999     * @return a dynamically typesafe view of the specified map
3000     * @since 1.5
3001     */
3002    public static <K, V> Map<K, V> checkedMap(Map<K, V> m,
3003                                              Class<K> keyType,
3004                                              Class<V> valueType) {
3005        return new CheckedMap<>(m, keyType, valueType);
3006    }
3007
3008
3009    /**
3010     * @serial include
3011     */
3012    private static class CheckedMap<K,V>
3013        implements Map<K,V>, Serializable
3014    {
3015        private static final long serialVersionUID = 5742860141034234728L;
3016
3017        private final Map<K, V> m;
3018        final Class<K> keyType;
3019        final Class<V> valueType;
3020
3021        private void typeCheck(Object key, Object value) {
3022            if (key != null && !keyType.isInstance(key))
3023                throw new ClassCastException(badKeyMsg(key));
3024
3025            if (value != null && !valueType.isInstance(value))
3026                throw new ClassCastException(badValueMsg(value));
3027        }
3028
3029        private BiFunction<? super K, ? super V, ? extends V> typeCheck(
3030                BiFunction<? super K, ? super V, ? extends V> func) {
3031            Objects.requireNonNull(func);
3032            return (k, v) -> {
3033                V newValue = func.apply(k, v);
3034                typeCheck(k, newValue);
3035                return newValue;
3036            };
3037        }
3038
3039        private String badKeyMsg(Object key) {
3040            return "Attempt to insert " + key.getClass() +
3041                " key into map with key type " + keyType;
3042        }
3043
3044        private String badValueMsg(Object value) {
3045            return "Attempt to insert " + value.getClass() +
3046                " value into map with value type " + valueType;
3047        }
3048
3049        CheckedMap(Map<K, V> m, Class<K> keyType, Class<V> valueType) {
3050            this.m = Objects.requireNonNull(m);
3051            this.keyType = Objects.requireNonNull(keyType);
3052            this.valueType = Objects.requireNonNull(valueType);
3053        }
3054
3055        public int size()                      { return m.size(); }
3056        public boolean isEmpty()               { return m.isEmpty(); }
3057        public boolean containsKey(Object key) { return m.containsKey(key); }
3058        public boolean containsValue(Object v) { return m.containsValue(v); }
3059        public V get(Object key)               { return m.get(key); }
3060        public V remove(Object key)            { return m.remove(key); }
3061        public void clear()                    { m.clear(); }
3062        public Set<K> keySet()                 { return m.keySet(); }
3063        public Collection<V> values()          { return m.values(); }
3064        public boolean equals(Object o)        { return o == this || m.equals(o); }
3065        public int hashCode()                  { return m.hashCode(); }
3066        public String toString()               { return m.toString(); }
3067
3068        public V put(K key, V value) {
3069            typeCheck(key, value);
3070            return m.put(key, value);
3071        }
3072
3073        @SuppressWarnings("unchecked")
3074        public void putAll(Map<? extends K, ? extends V> t) {
3075            // Satisfy the following goals:
3076            // - good diagnostics in case of type mismatch
3077            // - all-or-nothing semantics
3078            // - protection from malicious t
3079            // - correct behavior if t is a concurrent map
3080            Object[] entries = t.entrySet().toArray();
3081            List<Map.Entry<K,V>> checked = new ArrayList<>(entries.length);
3082            for (Object o : entries) {
3083                Map.Entry<?,?> e = (Map.Entry<?,?>) o;
3084                Object k = e.getKey();
3085                Object v = e.getValue();
3086                typeCheck(k, v);
3087                checked.add(
3088                        new AbstractMap.SimpleImmutableEntry<>((K)k, (V)v));
3089            }
3090            for (Map.Entry<K,V> e : checked)
3091                m.put(e.getKey(), e.getValue());
3092        }
3093
3094        private transient Set<Map.Entry<K,V>> entrySet = null;
3095
3096        public Set<Map.Entry<K,V>> entrySet() {
3097            if (entrySet==null)
3098                entrySet = new CheckedEntrySet<>(m.entrySet(), valueType);
3099            return entrySet;
3100        }
3101
3102        // Override default methods in Map
3103        @Override
3104        public void forEach(BiConsumer<? super K, ? super V> action) {
3105            m.forEach(action);
3106        }
3107
3108        @Override
3109        public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
3110            m.replaceAll(typeCheck(function));
3111        }
3112
3113        @Override
3114        public V putIfAbsent(K key, V value) {
3115            typeCheck(key, value);
3116            return m.putIfAbsent(key, value);
3117        }
3118
3119        @Override
3120        public boolean remove(Object key, Object value) {
3121            return m.remove(key, value);
3122        }
3123
3124        @Override
3125        public boolean replace(K key, V oldValue, V newValue) {
3126            typeCheck(key, newValue);
3127            return m.replace(key, oldValue, newValue);
3128        }
3129
3130        @Override
3131        public V replace(K key, V value) {
3132            typeCheck(key, value);
3133            return m.replace(key, value);
3134        }
3135
3136        @Override
3137        public V computeIfAbsent(K key,
3138                Function<? super K, ? extends V> mappingFunction) {
3139            Objects.requireNonNull(mappingFunction);
3140            return m.computeIfAbsent(key, k -> {
3141                V value = mappingFunction.apply(k);
3142                typeCheck(k, value);
3143                return value;
3144            });
3145        }
3146
3147        @Override
3148        public V computeIfPresent(K key,
3149                BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
3150            return m.computeIfPresent(key, typeCheck(remappingFunction));
3151        }
3152
3153        @Override
3154        public V compute(K key,
3155                BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
3156            return m.compute(key, typeCheck(remappingFunction));
3157        }
3158
3159        @Override
3160        public V merge(K key, V value,
3161                BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
3162            Objects.requireNonNull(remappingFunction);
3163            return m.merge(key, value, (v1, v2) -> {
3164                V newValue = remappingFunction.apply(v1, v2);
3165                typeCheck(null, newValue);
3166                return newValue;
3167            });
3168        }
3169
3170        /**
3171         * We need this class in addition to CheckedSet as Map.Entry permits
3172         * modification of the backing Map via the setValue operation.  This
3173         * class is subtle: there are many possible attacks that must be
3174         * thwarted.
3175         *
3176         * @serial exclude
3177         */
3178        static class CheckedEntrySet<K,V> implements Set<Map.Entry<K,V>> {
3179            private final Set<Map.Entry<K,V>> s;
3180            private final Class<V> valueType;
3181
3182            CheckedEntrySet(Set<Map.Entry<K, V>> s, Class<V> valueType) {
3183                this.s = s;
3184                this.valueType = valueType;
3185            }
3186
3187            public int size()        { return s.size(); }
3188            public boolean isEmpty() { return s.isEmpty(); }
3189            public String toString() { return s.toString(); }
3190            public int hashCode()    { return s.hashCode(); }
3191            public void clear()      {        s.clear(); }
3192
3193            public boolean add(Map.Entry<K, V> e) {
3194                throw new UnsupportedOperationException();
3195            }
3196            public boolean addAll(Collection<? extends Map.Entry<K, V>> coll) {
3197                throw new UnsupportedOperationException();
3198            }
3199
3200            public Iterator<Map.Entry<K,V>> iterator() {
3201                final Iterator<Map.Entry<K, V>> i = s.iterator();
3202                final Class<V> valueType = this.valueType;
3203
3204                return new Iterator<Map.Entry<K,V>>() {
3205                    public boolean hasNext() { return i.hasNext(); }
3206                    public void remove()     { i.remove(); }
3207
3208                    public Map.Entry<K,V> next() {
3209                        return checkedEntry(i.next(), valueType);
3210                    }
3211                    // Android-note: forEachRemaining is missing checks.
3212                };
3213            }
3214
3215            @SuppressWarnings("unchecked")
3216            public Object[] toArray() {
3217                Object[] source = s.toArray();
3218
3219                /*
3220                 * Ensure that we don't get an ArrayStoreException even if
3221                 * s.toArray returns an array of something other than Object
3222                 */
3223                Object[] dest = (CheckedEntry.class.isInstance(
3224                    source.getClass().getComponentType()) ? source :
3225                                 new Object[source.length]);
3226
3227                for (int i = 0; i < source.length; i++)
3228                    dest[i] = checkedEntry((Map.Entry<K,V>)source[i],
3229                                           valueType);
3230                return dest;
3231            }
3232
3233            @SuppressWarnings("unchecked")
3234            public <T> T[] toArray(T[] a) {
3235                // We don't pass a to s.toArray, to avoid window of
3236                // vulnerability wherein an unscrupulous multithreaded client
3237                // could get his hands on raw (unwrapped) Entries from s.
3238                T[] arr = s.toArray(a.length==0 ? a : Arrays.copyOf(a, 0));
3239
3240                for (int i=0; i<arr.length; i++)
3241                    arr[i] = (T) checkedEntry((Map.Entry<K,V>)arr[i],
3242                                              valueType);
3243                if (arr.length > a.length)
3244                    return arr;
3245
3246                System.arraycopy(arr, 0, a, 0, arr.length);
3247                if (a.length > arr.length)
3248                    a[arr.length] = null;
3249                return a;
3250            }
3251
3252            /**
3253             * This method is overridden to protect the backing set against
3254             * an object with a nefarious equals function that senses
3255             * that the equality-candidate is Map.Entry and calls its
3256             * setValue method.
3257             */
3258            public boolean contains(Object o) {
3259                if (!(o instanceof Map.Entry))
3260                    return false;
3261                Map.Entry<?,?> e = (Map.Entry<?,?>) o;
3262                return s.contains(
3263                    (e instanceof CheckedEntry) ? e : checkedEntry(e, valueType));
3264            }
3265
3266            /**
3267             * The bulk collection methods are overridden to protect
3268             * against an unscrupulous collection whose contains(Object o)
3269             * method senses when o is a Map.Entry, and calls o.setValue.
3270             */
3271            public boolean containsAll(Collection<?> c) {
3272                for (Object o : c)
3273                    if (!contains(o)) // Invokes safe contains() above
3274                        return false;
3275                return true;
3276            }
3277
3278            public boolean remove(Object o) {
3279                if (!(o instanceof Map.Entry))
3280                    return false;
3281                return s.remove(new AbstractMap.SimpleImmutableEntry
3282                                <>((Map.Entry<?,?>)o));
3283            }
3284
3285            public boolean removeAll(Collection<?> c) {
3286                return batchRemove(c, false);
3287            }
3288            public boolean retainAll(Collection<?> c) {
3289                return batchRemove(c, true);
3290            }
3291            private boolean batchRemove(Collection<?> c, boolean complement) {
3292                Objects.requireNonNull(c);
3293                boolean modified = false;
3294                Iterator<Map.Entry<K,V>> it = iterator();
3295                while (it.hasNext()) {
3296                    if (c.contains(it.next()) != complement) {
3297                        it.remove();
3298                        modified = true;
3299                    }
3300                }
3301                return modified;
3302            }
3303
3304            public boolean equals(Object o) {
3305                if (o == this)
3306                    return true;
3307                if (!(o instanceof Set))
3308                    return false;
3309                Set<?> that = (Set<?>) o;
3310                return that.size() == s.size()
3311                    && containsAll(that); // Invokes safe containsAll() above
3312            }
3313
3314            static <K,V,T> CheckedEntry<K,V,T> checkedEntry(Map.Entry<K,V> e,
3315                                                            Class<T> valueType) {
3316                return new CheckedEntry<>(e, valueType);
3317            }
3318
3319            /**
3320             * This "wrapper class" serves two purposes: it prevents
3321             * the client from modifying the backing Map, by short-circuiting
3322             * the setValue method, and it protects the backing Map against
3323             * an ill-behaved Map.Entry that attempts to modify another
3324             * Map.Entry when asked to perform an equality check.
3325             */
3326            private static class CheckedEntry<K,V,T> implements Map.Entry<K,V> {
3327                private final Map.Entry<K, V> e;
3328                private final Class<T> valueType;
3329
3330                CheckedEntry(Map.Entry<K, V> e, Class<T> valueType) {
3331                    this.e = Objects.requireNonNull(e);
3332                    this.valueType = Objects.requireNonNull(valueType);
3333                }
3334
3335                public K getKey()        { return e.getKey(); }
3336                public V getValue()      { return e.getValue(); }
3337                public int hashCode()    { return e.hashCode(); }
3338                public String toString() { return e.toString(); }
3339
3340                public V setValue(V value) {
3341                    if (value != null && !valueType.isInstance(value))
3342                        throw new ClassCastException(badValueMsg(value));
3343                    return e.setValue(value);
3344                }
3345
3346                private String badValueMsg(Object value) {
3347                    return "Attempt to insert " + value.getClass() +
3348                        " value into map with value type " + valueType;
3349                }
3350
3351                public boolean equals(Object o) {
3352                    if (o == this)
3353                        return true;
3354                    if (!(o instanceof Map.Entry))
3355                        return false;
3356                    return e.equals(new AbstractMap.SimpleImmutableEntry
3357                                    <>((Map.Entry<?,?>)o));
3358                }
3359            }
3360        }
3361    }
3362
3363    /**
3364     * Returns a dynamically typesafe view of the specified sorted map.
3365     * Any attempt to insert a mapping whose key or value have the wrong
3366     * type will result in an immediate {@link ClassCastException}.
3367     * Similarly, any attempt to modify the value currently associated with
3368     * a key will result in an immediate {@link ClassCastException},
3369     * whether the modification is attempted directly through the map
3370     * itself, or through a {@link Map.Entry} instance obtained from the
3371     * map's {@link Map#entrySet() entry set} view.
3372     *
3373     * <p>Assuming a map contains no incorrectly typed keys or values
3374     * prior to the time a dynamically typesafe view is generated, and
3375     * that all subsequent access to the map takes place through the view
3376     * (or one of its collection views), it is <i>guaranteed</i> that the
3377     * map cannot contain an incorrectly typed key or value.
3378     *
3379     * <p>A discussion of the use of dynamically typesafe views may be
3380     * found in the documentation for the {@link #checkedCollection
3381     * checkedCollection} method.
3382     *
3383     * <p>The returned map will be serializable if the specified map is
3384     * serializable.
3385     *
3386     * <p>Since {@code null} is considered to be a value of any reference
3387     * type, the returned map permits insertion of null keys or values
3388     * whenever the backing map does.
3389     *
3390     * @param <K> the class of the map keys
3391     * @param <V> the class of the map values
3392     * @param m the map for which a dynamically typesafe view is to be
3393     *          returned
3394     * @param keyType the type of key that {@code m} is permitted to hold
3395     * @param valueType the type of value that {@code m} is permitted to hold
3396     * @return a dynamically typesafe view of the specified map
3397     * @since 1.5
3398     */
3399    public static <K,V> SortedMap<K,V> checkedSortedMap(SortedMap<K, V> m,
3400                                                        Class<K> keyType,
3401                                                        Class<V> valueType) {
3402        return new CheckedSortedMap<>(m, keyType, valueType);
3403    }
3404
3405    /**
3406     * @serial include
3407     */
3408    static class CheckedSortedMap<K,V> extends CheckedMap<K,V>
3409        implements SortedMap<K,V>, Serializable
3410    {
3411        private static final long serialVersionUID = 1599671320688067438L;
3412
3413        private final SortedMap<K, V> sm;
3414
3415        CheckedSortedMap(SortedMap<K, V> m,
3416                         Class<K> keyType, Class<V> valueType) {
3417            super(m, keyType, valueType);
3418            sm = m;
3419        }
3420
3421        public Comparator<? super K> comparator() { return sm.comparator(); }
3422        public K firstKey()                       { return sm.firstKey(); }
3423        public K lastKey()                        { return sm.lastKey(); }
3424
3425        public SortedMap<K,V> subMap(K fromKey, K toKey) {
3426            return checkedSortedMap(sm.subMap(fromKey, toKey),
3427                                    keyType, valueType);
3428        }
3429        public SortedMap<K,V> headMap(K toKey) {
3430            return checkedSortedMap(sm.headMap(toKey), keyType, valueType);
3431        }
3432        public SortedMap<K,V> tailMap(K fromKey) {
3433            return checkedSortedMap(sm.tailMap(fromKey), keyType, valueType);
3434        }
3435    }
3436
3437    // Empty collections
3438
3439    /**
3440     * Returns an iterator that has no elements.  More precisely,
3441     *
3442     * <ul>
3443     * <li>{@link Iterator#hasNext hasNext} always returns {@code
3444     * false}.</li>
3445     * <li>{@link Iterator#next next} always throws {@link
3446     * NoSuchElementException}.</li>
3447     * <li>{@link Iterator#remove remove} always throws {@link
3448     * IllegalStateException}.</li>
3449     * </ul>
3450     *
3451     * <p>Implementations of this method are permitted, but not
3452     * required, to return the same object from multiple invocations.
3453     *
3454     * @param <T> type of elements, if there were any, in the iterator
3455     * @return an empty iterator
3456     * @since 1.7
3457     */
3458    @SuppressWarnings("unchecked")
3459    public static <T> Iterator<T> emptyIterator() {
3460        return (Iterator<T>) EmptyIterator.EMPTY_ITERATOR;
3461    }
3462
3463    private static class EmptyIterator<E> implements Iterator<E> {
3464        static final EmptyIterator<Object> EMPTY_ITERATOR
3465            = new EmptyIterator<>();
3466
3467        public boolean hasNext() { return false; }
3468        public E next() { throw new NoSuchElementException(); }
3469        public void remove() { throw new IllegalStateException(); }
3470        @Override
3471        public void forEachRemaining(Consumer<? super E> action) {
3472            Objects.requireNonNull(action);
3473        }
3474    }
3475
3476    /**
3477     * Returns a list iterator that has no elements.  More precisely,
3478     *
3479     * <ul>
3480     * <li>{@link Iterator#hasNext hasNext} and {@link
3481     * ListIterator#hasPrevious hasPrevious} always return {@code
3482     * false}.</li>
3483     * <li>{@link Iterator#next next} and {@link ListIterator#previous
3484     * previous} always throw {@link NoSuchElementException}.</li>
3485     * <li>{@link Iterator#remove remove} and {@link ListIterator#set
3486     * set} always throw {@link IllegalStateException}.</li>
3487     * <li>{@link ListIterator#add add} always throws {@link
3488     * UnsupportedOperationException}.</li>
3489     * <li>{@link ListIterator#nextIndex nextIndex} always returns
3490     * {@code 0}.</li>
3491     * <li>{@link ListIterator#previousIndex previousIndex} always
3492     * returns {@code -1}.</li>
3493     * </ul>
3494     *
3495     * <p>Implementations of this method are permitted, but not
3496     * required, to return the same object from multiple invocations.
3497     *
3498     * @param <T> type of elements, if there were any, in the iterator
3499     * @return an empty list iterator
3500     * @since 1.7
3501     */
3502    @SuppressWarnings("unchecked")
3503    public static <T> ListIterator<T> emptyListIterator() {
3504        return (ListIterator<T>) EmptyListIterator.EMPTY_ITERATOR;
3505    }
3506
3507    private static class EmptyListIterator<E>
3508        extends EmptyIterator<E>
3509        implements ListIterator<E>
3510    {
3511        static final EmptyListIterator<Object> EMPTY_ITERATOR
3512            = new EmptyListIterator<>();
3513
3514        public boolean hasPrevious() { return false; }
3515        public E previous() { throw new NoSuchElementException(); }
3516        public int nextIndex()     { return 0; }
3517        public int previousIndex() { return -1; }
3518        public void set(E e) { throw new IllegalStateException(); }
3519        public void add(E e) { throw new UnsupportedOperationException(); }
3520    }
3521
3522    /**
3523     * Returns an enumeration that has no elements.  More precisely,
3524     *
3525     * <ul>
3526     * <li>{@link Enumeration#hasMoreElements hasMoreElements} always
3527     * returns {@code false}.</li>
3528     * <li> {@link Enumeration#nextElement nextElement} always throws
3529     * {@link NoSuchElementException}.</li>
3530     * </ul>
3531     *
3532     * <p>Implementations of this method are permitted, but not
3533     * required, to return the same object from multiple invocations.
3534     *
3535     * @param  <T> the class of the objects in the enumeration
3536     * @return an empty enumeration
3537     * @since 1.7
3538     */
3539    @SuppressWarnings("unchecked")
3540    public static <T> Enumeration<T> emptyEnumeration() {
3541        return (Enumeration<T>) EmptyEnumeration.EMPTY_ENUMERATION;
3542    }
3543
3544    private static class EmptyEnumeration<E> implements Enumeration<E> {
3545        static final EmptyEnumeration<Object> EMPTY_ENUMERATION
3546            = new EmptyEnumeration<>();
3547
3548        public boolean hasMoreElements() { return false; }
3549        public E nextElement() { throw new NoSuchElementException(); }
3550    }
3551
3552    /**
3553     * The empty set (immutable).  This set is serializable.
3554     *
3555     * @see #emptySet()
3556     */
3557    @SuppressWarnings("rawtypes")
3558    public static final Set EMPTY_SET = new EmptySet<>();
3559
3560    /**
3561     * Returns an empty set (immutable).  This set is serializable.
3562     * Unlike the like-named field, this method is parameterized.
3563     *
3564     * <p>This example illustrates the type-safe way to obtain an empty set:
3565     * <pre>
3566     *     Set&lt;String&gt; s = Collections.emptySet();
3567     * </pre>
3568     * @implNote Implementations of this method need not create a separate
3569     * {@code Set} object for each call.  Using this method is likely to have
3570     * comparable cost to using the like-named field.  (Unlike this method, the
3571     * field does not provide type safety.)
3572     *
3573     * @param  <T> the class of the objects in the set
3574     * @return the empty set
3575     *
3576     * @see #EMPTY_SET
3577     * @since 1.5
3578     */
3579    @SuppressWarnings("unchecked")
3580    public static final <T> Set<T> emptySet() {
3581        return (Set<T>) EMPTY_SET;
3582    }
3583
3584    /**
3585     * @serial include
3586     */
3587    private static class EmptySet<E>
3588        extends AbstractSet<E>
3589        implements Serializable
3590    {
3591        private static final long serialVersionUID = 1582296315990362920L;
3592
3593        public Iterator<E> iterator() { return emptyIterator(); }
3594
3595        public int size() {return 0;}
3596        public boolean isEmpty() {return true;}
3597
3598        public boolean contains(Object obj) {return false;}
3599        public boolean containsAll(Collection<?> c) { return c.isEmpty(); }
3600
3601        public Object[] toArray() { return new Object[0]; }
3602
3603        public <T> T[] toArray(T[] a) {
3604            if (a.length > 0)
3605                a[0] = null;
3606            return a;
3607        }
3608
3609        // Override default methods in Collection
3610        @Override
3611        public void forEach(Consumer<? super E> action) {
3612            Objects.requireNonNull(action);
3613        }
3614        @Override
3615        public boolean removeIf(Predicate<? super E> filter) {
3616            Objects.requireNonNull(filter);
3617            return false;
3618        }
3619        @Override
3620        public Spliterator<E> spliterator() { return Spliterators.emptySpliterator(); }
3621
3622        // Preserves singleton property
3623        private Object readResolve() {
3624            return EMPTY_SET;
3625        }
3626
3627    }
3628
3629    /**
3630     * The empty list (immutable).  This list is serializable.
3631     *
3632     * @see #emptyList()
3633     */
3634    @SuppressWarnings("rawtypes")
3635    public static final List EMPTY_LIST = new EmptyList<>();
3636
3637    /**
3638     * Returns an empty list (immutable).  This list is serializable.
3639     *
3640     * <p>This example illustrates the type-safe way to obtain an empty list:
3641     * <pre>
3642     *     List&lt;String&gt; s = Collections.emptyList();
3643     * </pre>
3644     * Implementation note:  Implementations of this method need not
3645     * create a separate <tt>List</tt> object for each call.   Using this
3646     * method is likely to have comparable cost to using the like-named
3647     * field.  (Unlike this method, the field does not provide type safety.)
3648     *
3649     * @param <T> type of elements, if there were any, in the list
3650     * @return an empty immutable list
3651     *
3652     * @see #EMPTY_LIST
3653     * @since 1.5
3654     */
3655    @SuppressWarnings("unchecked")
3656    public static final <T> List<T> emptyList() {
3657        return (List<T>) EMPTY_LIST;
3658    }
3659
3660    /**
3661     * @serial include
3662     */
3663    private static class EmptyList<E>
3664        extends AbstractList<E>
3665        implements RandomAccess, Serializable {
3666        private static final long serialVersionUID = 8842843931221139166L;
3667
3668        public Iterator<E> iterator() {
3669            return emptyIterator();
3670        }
3671        public ListIterator<E> listIterator() {
3672            return emptyListIterator();
3673        }
3674
3675        public int size() {return 0;}
3676        public boolean isEmpty() {return true;}
3677
3678        public boolean contains(Object obj) {return false;}
3679        public boolean containsAll(Collection<?> c) { return c.isEmpty(); }
3680
3681        public Object[] toArray() { return new Object[0]; }
3682
3683        public <T> T[] toArray(T[] a) {
3684            if (a.length > 0)
3685                a[0] = null;
3686            return a;
3687        }
3688
3689        public E get(int index) {
3690            throw new IndexOutOfBoundsException("Index: "+index);
3691        }
3692
3693        public boolean equals(Object o) {
3694            return (o instanceof List) && ((List<?>)o).isEmpty();
3695        }
3696
3697        public int hashCode() { return 1; }
3698
3699        @Override
3700        public boolean removeIf(Predicate<? super E> filter) {
3701            Objects.requireNonNull(filter);
3702            return false;
3703        }
3704
3705        // Override default methods in Collection
3706        @Override
3707        public void forEach(Consumer<? super E> action) {
3708            Objects.requireNonNull(action);
3709        }
3710
3711        @Override
3712        public Spliterator<E> spliterator() { return Spliterators.emptySpliterator(); }
3713
3714        @Override
3715        public void replaceAll(UnaryOperator<E> operator) {
3716            Objects.requireNonNull(operator);
3717        }
3718        @Override
3719        public void sort(Comparator<? super E> c) {
3720        }
3721
3722
3723        // Preserves singleton property
3724        private Object readResolve() {
3725            return EMPTY_LIST;
3726        }
3727    }
3728
3729    /**
3730     * The empty map (immutable).  This map is serializable.
3731     *
3732     * @see #emptyMap()
3733     * @since 1.3
3734     */
3735    @SuppressWarnings("rawtypes")
3736    public static final Map EMPTY_MAP = new EmptyMap<>();
3737
3738    /**
3739     * Returns an empty map (immutable).  This map is serializable.
3740     *
3741     * <p>This example illustrates the type-safe way to obtain an empty map:
3742     * <pre>
3743     *     Map&lt;String, Date&gt; s = Collections.emptyMap();
3744     * </pre>
3745     * @implNote Implementations of this method need not create a separate
3746     * {@code Map} object for each call.  Using this method is likely to have
3747     * comparable cost to using the like-named field.  (Unlike this method, the
3748     * field does not provide type safety.)
3749     *
3750     * @param <K> the class of the map keys
3751     * @param <V> the class of the map values
3752     * @return an empty map
3753     * @see #EMPTY_MAP
3754     * @since 1.5
3755     */
3756    @SuppressWarnings("unchecked")
3757    public static final <K,V> Map<K,V> emptyMap() {
3758        return (Map<K,V>) EMPTY_MAP;
3759    }
3760
3761    /**
3762     * @serial include
3763     */
3764    private static class EmptyMap<K,V>
3765        extends AbstractMap<K,V>
3766        implements Serializable
3767    {
3768        private static final long serialVersionUID = 6428348081105594320L;
3769
3770        public int size()                          {return 0;}
3771        public boolean isEmpty()                   {return true;}
3772        public boolean containsKey(Object key)     {return false;}
3773        public boolean containsValue(Object value) {return false;}
3774        public V get(Object key)                   {return null;}
3775        public Set<K> keySet()                     {return emptySet();}
3776        public Collection<V> values()              {return emptySet();}
3777        public Set<Map.Entry<K,V>> entrySet()      {return emptySet();}
3778
3779        public boolean equals(Object o) {
3780            return (o instanceof Map) && ((Map<?,?>)o).isEmpty();
3781        }
3782
3783        public int hashCode()                      {return 0;}
3784
3785        // Override default methods in Map
3786        @Override
3787        @SuppressWarnings("unchecked")
3788        public V getOrDefault(Object k, V defaultValue) {
3789            return defaultValue;
3790        }
3791
3792        @Override
3793        public void forEach(BiConsumer<? super K, ? super V> action) {
3794            Objects.requireNonNull(action);
3795        }
3796
3797        @Override
3798        public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
3799            Objects.requireNonNull(function);
3800        }
3801
3802        @Override
3803        public V putIfAbsent(K key, V value) {
3804            throw new UnsupportedOperationException();
3805        }
3806
3807        @Override
3808        public boolean remove(Object key, Object value) {
3809            throw new UnsupportedOperationException();
3810        }
3811
3812        @Override
3813        public boolean replace(K key, V oldValue, V newValue) {
3814            throw new UnsupportedOperationException();
3815        }
3816
3817        @Override
3818        public V replace(K key, V value) {
3819            throw new UnsupportedOperationException();
3820        }
3821
3822        @Override
3823        public V computeIfAbsent(K key,
3824                                 Function<? super K, ? extends V> mappingFunction) {
3825            throw new UnsupportedOperationException();
3826        }
3827
3828        @Override
3829        public V computeIfPresent(K key,
3830                                  BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
3831            throw new UnsupportedOperationException();
3832        }
3833
3834        @Override
3835        public V compute(K key,
3836                         BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
3837            throw new UnsupportedOperationException();
3838        }
3839
3840        @Override
3841        public V merge(K key, V value,
3842                       BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
3843            throw new UnsupportedOperationException();
3844        }
3845
3846        // Preserves singleton property
3847        private Object readResolve() {
3848            return EMPTY_MAP;
3849        }
3850    }
3851
3852    // Singleton collections
3853
3854    /**
3855     * Returns an immutable set containing only the specified object.
3856     * The returned set is serializable.
3857     *
3858     * @param  <E> the class of the objects in the set
3859     * @param o the sole object to be stored in the returned set.
3860     * @return an immutable set containing only the specified object.
3861     */
3862    public static <E> Set<E> singleton(E o) {
3863        return new SingletonSet<>(o);
3864    }
3865
3866    static <E> Iterator<E> singletonIterator(final E e) {
3867        return new Iterator<E>() {
3868            private boolean hasNext = true;
3869            public boolean hasNext() {
3870                return hasNext;
3871            }
3872            public E next() {
3873                if (hasNext) {
3874                    hasNext = false;
3875                    return e;
3876                }
3877                throw new NoSuchElementException();
3878            }
3879            public void remove() {
3880                throw new UnsupportedOperationException();
3881            }
3882            @Override
3883            public void forEachRemaining(Consumer<? super E> action) {
3884                Objects.requireNonNull(action);
3885                if (hasNext) {
3886                    action.accept(e);
3887                    hasNext = false;
3888                }
3889            }
3890        };
3891    }
3892
3893    /**
3894     * Creates a {@code Spliterator} with only the specified element
3895     *
3896     * @param <T> Type of elements
3897     * @return A singleton {@code Spliterator}
3898     */
3899    static <T> Spliterator<T> singletonSpliterator(final T element) {
3900        return new Spliterator<T>() {
3901            long est = 1;
3902
3903            @Override
3904            public Spliterator<T> trySplit() {
3905                return null;
3906            }
3907
3908            @Override
3909            public boolean tryAdvance(Consumer<? super T> consumer) {
3910                Objects.requireNonNull(consumer);
3911                if (est > 0) {
3912                    est--;
3913                    consumer.accept(element);
3914                    return true;
3915                }
3916                return false;
3917            }
3918
3919            @Override
3920            public void forEachRemaining(Consumer<? super T> consumer) {
3921                tryAdvance(consumer);
3922            }
3923
3924            @Override
3925            public long estimateSize() {
3926                return est;
3927            }
3928
3929            @Override
3930            public int characteristics() {
3931                int value = (element != null) ? Spliterator.NONNULL : 0;
3932
3933                return value | Spliterator.SIZED | Spliterator.SUBSIZED | Spliterator.IMMUTABLE |
3934                       Spliterator.DISTINCT | Spliterator.ORDERED;
3935            }
3936        };
3937    }
3938
3939    /**
3940     * @serial include
3941     */
3942    private static class SingletonSet<E>
3943        extends AbstractSet<E>
3944        implements Serializable
3945    {
3946        private static final long serialVersionUID = 3193687207550431679L;
3947
3948        private final E element;
3949
3950        SingletonSet(E e) {element = e;}
3951
3952        public Iterator<E> iterator() {
3953            return singletonIterator(element);
3954        }
3955
3956        public int size() {return 1;}
3957
3958        public boolean contains(Object o) {return eq(o, element);}
3959
3960        // Override default methods for Collection
3961        @Override
3962        public void forEach(Consumer<? super E> action) {
3963            action.accept(element);
3964        }
3965        @Override
3966        public Spliterator<E> spliterator() {
3967            return singletonSpliterator(element);
3968        }
3969        @Override
3970        public boolean removeIf(Predicate<? super E> filter) {
3971            throw new UnsupportedOperationException();
3972        }
3973    }
3974
3975    /**
3976     * Returns an immutable list containing only the specified object.
3977     * The returned list is serializable.
3978     *
3979     * @param  <E> the class of the objects in the list
3980     * @param o the sole object to be stored in the returned list.
3981     * @return an immutable list containing only the specified object.
3982     * @since 1.3
3983     */
3984    public static <E> List<E> singletonList(E o) {
3985        return new SingletonList<>(o);
3986    }
3987
3988    /**
3989     * @serial include
3990     */
3991    private static class SingletonList<E>
3992        extends AbstractList<E>
3993        implements RandomAccess, Serializable {
3994
3995        private static final long serialVersionUID = 3093736618740652951L;
3996
3997        private final E element;
3998
3999        SingletonList(E obj)                {element = obj;}
4000
4001        public Iterator<E> iterator() {
4002            return singletonIterator(element);
4003        }
4004
4005        public int size()                   {return 1;}
4006
4007        public boolean contains(Object obj) {return eq(obj, element);}
4008
4009        public E get(int index) {
4010            if (index != 0)
4011              throw new IndexOutOfBoundsException("Index: "+index+", Size: 1");
4012            return element;
4013        }
4014
4015        // Override default methods for Collection
4016        @Override
4017        public void forEach(Consumer<? super E> action) {
4018            action.accept(element);
4019        }
4020        @Override
4021        public boolean removeIf(Predicate<? super E> filter) {
4022            throw new UnsupportedOperationException();
4023        }
4024        @Override
4025        public Spliterator<E> spliterator() {
4026            return singletonSpliterator(element);
4027        }
4028        public void replaceAll(UnaryOperator<E> operator) {
4029            throw new UnsupportedOperationException();
4030        }
4031        @Override
4032        public void sort(Comparator<? super E> c) {
4033        }
4034    }
4035
4036    /**
4037     * Returns an immutable map, mapping only the specified key to the
4038     * specified value.  The returned map is serializable.
4039     *
4040     * @param <K> the class of the map keys
4041     * @param <V> the class of the map values
4042     * @param key the sole key to be stored in the returned map.
4043     * @param value the value to which the returned map maps <tt>key</tt>.
4044     * @return an immutable map containing only the specified key-value
4045     *         mapping.
4046     * @since 1.3
4047     */
4048    public static <K,V> Map<K,V> singletonMap(K key, V value) {
4049        return new SingletonMap<>(key, value);
4050    }
4051
4052    /**
4053     * @serial include
4054     */
4055    private static class SingletonMap<K,V>
4056          extends AbstractMap<K,V>
4057          implements Serializable {
4058        private static final long serialVersionUID = -6979724477215052911L;
4059
4060        private final K k;
4061        private final V v;
4062
4063        SingletonMap(K key, V value) {
4064            k = key;
4065            v = value;
4066        }
4067
4068        public int size()                          {return 1;}
4069
4070        public boolean isEmpty()                   {return false;}
4071
4072        public boolean containsKey(Object key)     {return eq(key, k);}
4073
4074        public boolean containsValue(Object value) {return eq(value, v);}
4075
4076        public V get(Object key)                   {return (eq(key, k) ? v : null);}
4077
4078        private transient Set<K> keySet = null;
4079        private transient Set<Map.Entry<K,V>> entrySet = null;
4080        private transient Collection<V> values = null;
4081
4082        public Set<K> keySet() {
4083            if (keySet==null)
4084                keySet = singleton(k);
4085            return keySet;
4086        }
4087
4088        public Set<Map.Entry<K,V>> entrySet() {
4089            if (entrySet==null)
4090                entrySet = Collections.<Map.Entry<K,V>>singleton(
4091                    new SimpleImmutableEntry<>(k, v));
4092            return entrySet;
4093        }
4094
4095        public Collection<V> values() {
4096            if (values==null)
4097                values = singleton(v);
4098            return values;
4099        }
4100
4101        // Override default methods in Map
4102        @Override
4103        public V getOrDefault(Object key, V defaultValue) {
4104            return eq(key, k) ? v : defaultValue;
4105        }
4106
4107        @Override
4108        public void forEach(BiConsumer<? super K, ? super V> action) {
4109            action.accept(k, v);
4110        }
4111
4112        @Override
4113        public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
4114            throw new UnsupportedOperationException();
4115        }
4116
4117        @Override
4118        public V putIfAbsent(K key, V value) {
4119            throw new UnsupportedOperationException();
4120        }
4121
4122        @Override
4123        public boolean remove(Object key, Object value) {
4124            throw new UnsupportedOperationException();
4125        }
4126
4127        @Override
4128        public boolean replace(K key, V oldValue, V newValue) {
4129            throw new UnsupportedOperationException();
4130        }
4131
4132        @Override
4133        public V replace(K key, V value) {
4134            throw new UnsupportedOperationException();
4135        }
4136
4137        @Override
4138        public V computeIfAbsent(K key,
4139                                 Function<? super K, ? extends V> mappingFunction) {
4140            throw new UnsupportedOperationException();
4141        }
4142
4143        @Override
4144        public V computeIfPresent(K key,
4145                                  BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
4146            throw new UnsupportedOperationException();
4147        }
4148
4149        @Override
4150        public V compute(K key,
4151                         BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
4152            throw new UnsupportedOperationException();
4153        }
4154
4155        @Override
4156        public V merge(K key, V value,
4157                       BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
4158            throw new UnsupportedOperationException();
4159        }
4160    }
4161
4162    // Miscellaneous
4163
4164    /**
4165     * Returns an immutable list consisting of <tt>n</tt> copies of the
4166     * specified object.  The newly allocated data object is tiny (it contains
4167     * a single reference to the data object).  This method is useful in
4168     * combination with the <tt>List.addAll</tt> method to grow lists.
4169     * The returned list is serializable.
4170     *
4171     * @param  <T> the class of the object to copy and of the objects
4172     *         in the returned list.
4173     * @param  n the number of elements in the returned list.
4174     * @param  o the element to appear repeatedly in the returned list.
4175     * @return an immutable list consisting of <tt>n</tt> copies of the
4176     *         specified object.
4177     * @throws IllegalArgumentException if {@code n < 0}
4178     * @see    List#addAll(Collection)
4179     * @see    List#addAll(int, Collection)
4180     */
4181    public static <T> List<T> nCopies(int n, T o) {
4182        if (n < 0)
4183            throw new IllegalArgumentException("List length = " + n);
4184        return new CopiesList<>(n, o);
4185    }
4186
4187    /**
4188     * @serial include
4189     */
4190    private static class CopiesList<E>
4191        extends AbstractList<E>
4192        implements RandomAccess, Serializable
4193    {
4194        private static final long serialVersionUID = 2739099268398711800L;
4195
4196        final int n;
4197        final E element;
4198
4199        CopiesList(int n, E e) {
4200            assert n >= 0;
4201            this.n = n;
4202            element = e;
4203        }
4204
4205        public int size() {
4206            return n;
4207        }
4208
4209        public boolean contains(Object obj) {
4210            return n != 0 && eq(obj, element);
4211        }
4212
4213        public int indexOf(Object o) {
4214            return contains(o) ? 0 : -1;
4215        }
4216
4217        public int lastIndexOf(Object o) {
4218            return contains(o) ? n - 1 : -1;
4219        }
4220
4221        public E get(int index) {
4222            if (index < 0 || index >= n)
4223                throw new IndexOutOfBoundsException("Index: "+index+
4224                                                    ", Size: "+n);
4225            return element;
4226        }
4227
4228        public Object[] toArray() {
4229            final Object[] a = new Object[n];
4230            if (element != null)
4231                Arrays.fill(a, 0, n, element);
4232            return a;
4233        }
4234
4235        @SuppressWarnings("unchecked")
4236        public <T> T[] toArray(T[] a) {
4237            final int n = this.n;
4238            if (a.length < n) {
4239                a = (T[])java.lang.reflect.Array
4240                    .newInstance(a.getClass().getComponentType(), n);
4241                if (element != null)
4242                    Arrays.fill(a, 0, n, element);
4243            } else {
4244                Arrays.fill(a, 0, n, element);
4245                if (a.length > n)
4246                    a[n] = null;
4247            }
4248            return a;
4249        }
4250
4251        public List<E> subList(int fromIndex, int toIndex) {
4252            if (fromIndex < 0)
4253                throw new IndexOutOfBoundsException("fromIndex = " + fromIndex);
4254            if (toIndex > n)
4255                throw new IndexOutOfBoundsException("toIndex = " + toIndex);
4256            if (fromIndex > toIndex)
4257                throw new IllegalArgumentException("fromIndex(" + fromIndex +
4258                                                   ") > toIndex(" + toIndex + ")");
4259            return new CopiesList<>(toIndex - fromIndex, element);
4260        }
4261
4262        // Override default methods in Collection
4263        @Override
4264        public Stream<E> stream() {
4265            return IntStream.range(0, n).mapToObj(i -> element);
4266        }
4267
4268        @Override
4269        public Stream<E> parallelStream() {
4270            return IntStream.range(0, n).parallel().mapToObj(i -> element);
4271        }
4272
4273        @Override
4274        public Spliterator<E> spliterator() {
4275            return stream().spliterator();
4276        }
4277    }
4278
4279    /**
4280     * Returns a comparator that imposes the reverse of the <em>natural
4281     * ordering</em> on a collection of objects that implement the
4282     * {@code Comparable} interface.  (The natural ordering is the ordering
4283     * imposed by the objects' own {@code compareTo} method.)  This enables a
4284     * simple idiom for sorting (or maintaining) collections (or arrays) of
4285     * objects that implement the {@code Comparable} interface in
4286     * reverse-natural-order.  For example, suppose {@code a} is an array of
4287     * strings. Then: <pre>
4288     *          Arrays.sort(a, Collections.reverseOrder());
4289     * </pre> sorts the array in reverse-lexicographic (alphabetical) order.<p>
4290     *
4291     * The returned comparator is serializable.
4292     *
4293     * @param  <T> the class of the objects compared by the comparator
4294     * @return A comparator that imposes the reverse of the <i>natural
4295     *         ordering</i> on a collection of objects that implement
4296     *         the <tt>Comparable</tt> interface.
4297     * @see Comparable
4298     */
4299    @SuppressWarnings("unchecked")
4300    public static <T> Comparator<T> reverseOrder() {
4301        return (Comparator<T>) ReverseComparator.REVERSE_ORDER;
4302    }
4303
4304    /**
4305     * @serial include
4306     */
4307    private static class ReverseComparator
4308        implements Comparator<Comparable<Object>>, Serializable {
4309
4310        private static final long serialVersionUID = 7207038068494060240L;
4311
4312        static final ReverseComparator REVERSE_ORDER
4313            = new ReverseComparator();
4314
4315        public int compare(Comparable<Object> c1, Comparable<Object> c2) {
4316            return c2.compareTo(c1);
4317        }
4318
4319        private Object readResolve() { return Collections.reverseOrder(); }
4320
4321        @Override
4322        public Comparator<Comparable<Object>> reversed() {
4323            return Comparator.naturalOrder();
4324        }
4325    }
4326
4327    /**
4328     * Returns a comparator that imposes the reverse ordering of the specified
4329     * comparator.  If the specified comparator is {@code null}, this method is
4330     * equivalent to {@link #reverseOrder()} (in other words, it returns a
4331     * comparator that imposes the reverse of the <em>natural ordering</em> on
4332     * a collection of objects that implement the Comparable interface).
4333     *
4334     * <p>The returned comparator is serializable (assuming the specified
4335     * comparator is also serializable or {@code null}).
4336     *
4337     * @param <T> the class of the objects compared by the comparator
4338     * @param cmp a comparator who's ordering is to be reversed by the returned
4339     * comparator or {@code null}
4340     * @return A comparator that imposes the reverse ordering of the
4341     *         specified comparator.
4342     * @since 1.5
4343     */
4344    public static <T> Comparator<T> reverseOrder(Comparator<T> cmp) {
4345        if (cmp == null)
4346            return reverseOrder();
4347
4348        if (cmp instanceof ReverseComparator2)
4349            return ((ReverseComparator2<T>)cmp).cmp;
4350
4351        return new ReverseComparator2<>(cmp);
4352    }
4353
4354    /**
4355     * @serial include
4356     */
4357    private static class ReverseComparator2<T> implements Comparator<T>,
4358        Serializable
4359    {
4360        private static final long serialVersionUID = 4374092139857L;
4361
4362        /**
4363         * The comparator specified in the static factory.  This will never
4364         * be null, as the static factory returns a ReverseComparator
4365         * instance if its argument is null.
4366         *
4367         * @serial
4368         */
4369        final Comparator<T> cmp;
4370
4371        ReverseComparator2(Comparator<T> cmp) {
4372            assert cmp != null;
4373            this.cmp = cmp;
4374        }
4375
4376        public int compare(T t1, T t2) {
4377            return cmp.compare(t2, t1);
4378        }
4379
4380        public boolean equals(Object o) {
4381            return (o == this) ||
4382                (o instanceof ReverseComparator2 &&
4383                 cmp.equals(((ReverseComparator2)o).cmp));
4384        }
4385
4386        public int hashCode() {
4387            return cmp.hashCode() ^ Integer.MIN_VALUE;
4388        }
4389
4390        @Override
4391        public Comparator<T> reversed() {
4392            return cmp;
4393        }
4394    }
4395
4396    /**
4397     * Returns an enumeration over the specified collection.  This provides
4398     * interoperability with legacy APIs that require an enumeration
4399     * as input.
4400     *
4401     * @param  <T> the class of the objects in the collection
4402     * @param c the collection for which an enumeration is to be returned.
4403     * @return an enumeration over the specified collection.
4404     * @see Enumeration
4405     */
4406    public static <T> Enumeration<T> enumeration(final Collection<T> c) {
4407        return new Enumeration<T>() {
4408            private final Iterator<T> i = c.iterator();
4409
4410            public boolean hasMoreElements() {
4411                return i.hasNext();
4412            }
4413
4414            public T nextElement() {
4415                return i.next();
4416            }
4417        };
4418    }
4419
4420    /**
4421     * Returns an array list containing the elements returned by the
4422     * specified enumeration in the order they are returned by the
4423     * enumeration.  This method provides interoperability between
4424     * legacy APIs that return enumerations and new APIs that require
4425     * collections.
4426     *
4427     * @param <T> the class of the objects returned by the enumeration
4428     * @param e enumeration providing elements for the returned
4429     *          array list
4430     * @return an array list containing the elements returned
4431     *         by the specified enumeration.
4432     * @since 1.4
4433     * @see Enumeration
4434     * @see ArrayList
4435     */
4436    public static <T> ArrayList<T> list(Enumeration<T> e) {
4437        ArrayList<T> l = new ArrayList<>();
4438        while (e.hasMoreElements())
4439            l.add(e.nextElement());
4440        return l;
4441    }
4442
4443    /**
4444     * Returns true if the specified arguments are equal, or both null.
4445     *
4446     * NB: Do not replace with Object.equals until JDK-8015417 is resolved.
4447     */
4448    static boolean eq(Object o1, Object o2) {
4449        return o1==null ? o2==null : o1.equals(o2);
4450    }
4451
4452    /**
4453     * Returns the number of elements in the specified collection equal to the
4454     * specified object.  More formally, returns the number of elements
4455     * <tt>e</tt> in the collection such that
4456     * <tt>(o == null ? e == null : o.equals(e))</tt>.
4457     *
4458     * @param c the collection in which to determine the frequency
4459     *     of <tt>o</tt>
4460     * @param o the object whose frequency is to be determined
4461     * @return the number of elements in {@code c} equal to {@code o}
4462     * @throws NullPointerException if <tt>c</tt> is null
4463     * @since 1.5
4464     */
4465    public static int frequency(Collection<?> c, Object o) {
4466        int result = 0;
4467        if (o == null) {
4468            for (Object e : c)
4469                if (e == null)
4470                    result++;
4471        } else {
4472            for (Object e : c)
4473                if (o.equals(e))
4474                    result++;
4475        }
4476        return result;
4477    }
4478
4479    /**
4480     * Returns {@code true} if the two specified collections have no
4481     * elements in common.
4482     *
4483     * <p>Care must be exercised if this method is used on collections that
4484     * do not comply with the general contract for {@code Collection}.
4485     * Implementations may elect to iterate over either collection and test
4486     * for containment in the other collection (or to perform any equivalent
4487     * computation).  If either collection uses a nonstandard equality test
4488     * (as does a {@link SortedSet} whose ordering is not <em>compatible with
4489     * equals</em>, or the key set of an {@link IdentityHashMap}), both
4490     * collections must use the same nonstandard equality test, or the
4491     * result of this method is undefined.
4492     *
4493     * <p>Care must also be exercised when using collections that have
4494     * restrictions on the elements that they may contain. Collection
4495     * implementations are allowed to throw exceptions for any operation
4496     * involving elements they deem ineligible. For absolute safety the
4497     * specified collections should contain only elements which are
4498     * eligible elements for both collections.
4499     *
4500     * <p>Note that it is permissible to pass the same collection in both
4501     * parameters, in which case the method will return {@code true} if and
4502     * only if the collection is empty.
4503     *
4504     * @param c1 a collection
4505     * @param c2 a collection
4506     * @return {@code true} if the two specified collections have no
4507     * elements in common.
4508     * @throws NullPointerException if either collection is {@code null}.
4509     * @throws NullPointerException if one collection contains a {@code null}
4510     * element and {@code null} is not an eligible element for the other collection.
4511     * (<a href="Collection.html#optional-restrictions">optional</a>)
4512     * @throws ClassCastException if one collection contains an element that is
4513     * of a type which is ineligible for the other collection.
4514     * (<a href="Collection.html#optional-restrictions">optional</a>)
4515     * @since 1.5
4516     */
4517    public static boolean disjoint(Collection<?> c1, Collection<?> c2) {
4518        // The collection to be used for contains(). Preference is given to
4519        // the collection who's contains() has lower O() complexity.
4520        Collection<?> contains = c2;
4521        // The collection to be iterated. If the collections' contains() impl
4522        // are of different O() complexity, the collection with slower
4523        // contains() will be used for iteration. For collections who's
4524        // contains() are of the same complexity then best performance is
4525        // achieved by iterating the smaller collection.
4526        Collection<?> iterate = c1;
4527
4528        // Performance optimization cases. The heuristics:
4529        //   1. Generally iterate over c1.
4530        //   2. If c1 is a Set then iterate over c2.
4531        //   3. If either collection is empty then result is always true.
4532        //   4. Iterate over the smaller Collection.
4533        if (c1 instanceof Set) {
4534            // Use c1 for contains as a Set's contains() is expected to perform
4535            // better than O(N/2)
4536            iterate = c2;
4537            contains = c1;
4538        } else if (!(c2 instanceof Set)) {
4539            // Both are mere Collections. Iterate over smaller collection.
4540            // Example: If c1 contains 3 elements and c2 contains 50 elements and
4541            // assuming contains() requires ceiling(N/2) comparisons then
4542            // checking for all c1 elements in c2 would require 75 comparisons
4543            // (3 * ceiling(50/2)) vs. checking all c2 elements in c1 requiring
4544            // 100 comparisons (50 * ceiling(3/2)).
4545            int c1size = c1.size();
4546            int c2size = c2.size();
4547            if (c1size == 0 || c2size == 0) {
4548                // At least one collection is empty. Nothing will match.
4549                return true;
4550            }
4551
4552            if (c1size > c2size) {
4553                iterate = c2;
4554                contains = c1;
4555            }
4556        }
4557
4558        for (Object e : iterate) {
4559            if (contains.contains(e)) {
4560               // Found a common element. Collections are not disjoint.
4561                return false;
4562            }
4563        }
4564
4565        // No common elements were found.
4566        return true;
4567    }
4568
4569    /**
4570     * Adds all of the specified elements to the specified collection.
4571     * Elements to be added may be specified individually or as an array.
4572     * The behavior of this convenience method is identical to that of
4573     * <tt>c.addAll(Arrays.asList(elements))</tt>, but this method is likely
4574     * to run significantly faster under most implementations.
4575     *
4576     * <p>When elements are specified individually, this method provides a
4577     * convenient way to add a few elements to an existing collection:
4578     * <pre>
4579     *     Collections.addAll(flavors, "Peaches 'n Plutonium", "Rocky Racoon");
4580     * </pre>
4581     *
4582     * @param  <T> the class of the elements to add and of the collection
4583     * @param c the collection into which <tt>elements</tt> are to be inserted
4584     * @param elements the elements to insert into <tt>c</tt>
4585     * @return <tt>true</tt> if the collection changed as a result of the call
4586     * @throws UnsupportedOperationException if <tt>c</tt> does not support
4587     *         the <tt>add</tt> operation
4588     * @throws NullPointerException if <tt>elements</tt> contains one or more
4589     *         null values and <tt>c</tt> does not permit null elements, or
4590     *         if <tt>c</tt> or <tt>elements</tt> are <tt>null</tt>
4591     * @throws IllegalArgumentException if some property of a value in
4592     *         <tt>elements</tt> prevents it from being added to <tt>c</tt>
4593     * @see Collection#addAll(Collection)
4594     * @since 1.5
4595     */
4596    @SafeVarargs
4597    public static <T> boolean addAll(Collection<? super T> c, T... elements) {
4598        boolean result = false;
4599        for (T element : elements)
4600            result |= c.add(element);
4601        return result;
4602    }
4603
4604    /**
4605     * Returns a set backed by the specified map.  The resulting set displays
4606     * the same ordering, concurrency, and performance characteristics as the
4607     * backing map.  In essence, this factory method provides a {@link Set}
4608     * implementation corresponding to any {@link Map} implementation.  There
4609     * is no need to use this method on a {@link Map} implementation that
4610     * already has a corresponding {@link Set} implementation (such as {@link
4611     * HashMap} or {@link TreeMap}).
4612     *
4613     * <p>Each method invocation on the set returned by this method results in
4614     * exactly one method invocation on the backing map or its <tt>keySet</tt>
4615     * view, with one exception.  The <tt>addAll</tt> method is implemented
4616     * as a sequence of <tt>put</tt> invocations on the backing map.
4617     *
4618     * <p>The specified map must be empty at the time this method is invoked,
4619     * and should not be accessed directly after this method returns.  These
4620     * conditions are ensured if the map is created empty, passed directly
4621     * to this method, and no reference to the map is retained, as illustrated
4622     * in the following code fragment:
4623     * <pre>
4624     *    Set&lt;Object&gt; weakHashSet = Collections.newSetFromMap(
4625     *        new WeakHashMap&lt;Object, Boolean&gt;());
4626     * </pre>
4627     *
4628     * @param <E> the class of the map keys and of the objects in the
4629     *        returned set
4630     * @param map the backing map
4631     * @return the set backed by the map
4632     * @throws IllegalArgumentException if <tt>map</tt> is not empty
4633     * @since 1.6
4634     */
4635    public static <E> Set<E> newSetFromMap(Map<E, Boolean> map) {
4636        return new SetFromMap<>(map);
4637    }
4638
4639    /**
4640     * @serial include
4641     */
4642    private static class SetFromMap<E> extends AbstractSet<E>
4643        implements Set<E>, Serializable
4644    {
4645        private final Map<E, Boolean> m;  // The backing map
4646        private transient Set<E> s;       // Its keySet
4647
4648        SetFromMap(Map<E, Boolean> map) {
4649            if (!map.isEmpty())
4650                throw new IllegalArgumentException("Map is non-empty");
4651            m = map;
4652            s = map.keySet();
4653        }
4654
4655        public void clear()               {        m.clear(); }
4656        public int size()                 { return m.size(); }
4657        public boolean isEmpty()          { return m.isEmpty(); }
4658        public boolean contains(Object o) { return m.containsKey(o); }
4659        public boolean remove(Object o)   { return m.remove(o) != null; }
4660        public boolean add(E e) { return m.put(e, Boolean.TRUE) == null; }
4661        public Iterator<E> iterator()     { return s.iterator(); }
4662        public Object[] toArray()         { return s.toArray(); }
4663        public <T> T[] toArray(T[] a)     { return s.toArray(a); }
4664        public String toString()          { return s.toString(); }
4665        public int hashCode()             { return s.hashCode(); }
4666        public boolean equals(Object o)   { return o == this || s.equals(o); }
4667        public boolean containsAll(Collection<?> c) {return s.containsAll(c);}
4668        public boolean removeAll(Collection<?> c)   {return s.removeAll(c);}
4669        public boolean retainAll(Collection<?> c)   {return s.retainAll(c);}
4670        // addAll is the only inherited implementation
4671
4672        // Override default methods in Collection
4673        @Override
4674        public void forEach(Consumer<? super E> action) {
4675            s.forEach(action);
4676        }
4677        @Override
4678        public boolean removeIf(Predicate<? super E> filter) {
4679            return s.removeIf(filter);
4680        }
4681
4682        @Override
4683        public Spliterator<E> spliterator() {return s.spliterator();}
4684        @Override
4685        public Stream<E> stream()           {return s.stream();}
4686        @Override
4687        public Stream<E> parallelStream()   {return s.parallelStream();}
4688
4689        private static final long serialVersionUID = 2454657854757543876L;
4690
4691        private void readObject(java.io.ObjectInputStream stream)
4692            throws IOException, ClassNotFoundException
4693        {
4694            stream.defaultReadObject();
4695            s = m.keySet();
4696        }
4697    }
4698
4699    /**
4700     * Returns a view of a {@link Deque} as a Last-in-first-out (Lifo)
4701     * {@link Queue}. Method <tt>add</tt> is mapped to <tt>push</tt>,
4702     * <tt>remove</tt> is mapped to <tt>pop</tt> and so on. This
4703     * view can be useful when you would like to use a method
4704     * requiring a <tt>Queue</tt> but you need Lifo ordering.
4705     *
4706     * <p>Each method invocation on the queue returned by this method
4707     * results in exactly one method invocation on the backing deque, with
4708     * one exception.  The {@link Queue#addAll addAll} method is
4709     * implemented as a sequence of {@link Deque#addFirst addFirst}
4710     * invocations on the backing deque.
4711     *
4712     * @param  <T> the class of the objects in the deque
4713     * @param deque the deque
4714     * @return the queue
4715     * @since  1.6
4716     */
4717    public static <T> Queue<T> asLifoQueue(Deque<T> deque) {
4718        return new AsLIFOQueue<>(deque);
4719    }
4720
4721    /**
4722     * @serial include
4723     */
4724    static class AsLIFOQueue<E> extends AbstractQueue<E>
4725        implements Queue<E>, Serializable {
4726        private static final long serialVersionUID = 1802017725587941708L;
4727        private final Deque<E> q;
4728        AsLIFOQueue(Deque<E> q)           { this.q = q; }
4729        public boolean add(E e)           { q.addFirst(e); return true; }
4730        public boolean offer(E e)         { return q.offerFirst(e); }
4731        public E poll()                   { return q.pollFirst(); }
4732        public E remove()                 { return q.removeFirst(); }
4733        public E peek()                   { return q.peekFirst(); }
4734        public E element()                { return q.getFirst(); }
4735        public void clear()               {        q.clear(); }
4736        public int size()                 { return q.size(); }
4737        public boolean isEmpty()          { return q.isEmpty(); }
4738        public boolean contains(Object o) { return q.contains(o); }
4739        public boolean remove(Object o)   { return q.remove(o); }
4740        public Iterator<E> iterator()     { return q.iterator(); }
4741        public Object[] toArray()         { return q.toArray(); }
4742        public <T> T[] toArray(T[] a)     { return q.toArray(a); }
4743        public String toString()          { return q.toString(); }
4744        public boolean containsAll(Collection<?> c) {return q.containsAll(c);}
4745        public boolean removeAll(Collection<?> c)   {return q.removeAll(c);}
4746        public boolean retainAll(Collection<?> c)   {return q.retainAll(c);}
4747        // We use inherited addAll; forwarding addAll would be wrong
4748
4749        // Override default methods in Collection
4750        @Override
4751        public void forEach(Consumer<? super E> action) {q.forEach(action);}
4752        @Override
4753        public boolean removeIf(Predicate<? super E> filter) {
4754            return q.removeIf(filter);
4755        }
4756
4757        @Override
4758        public Spliterator<E> spliterator() {return q.spliterator();}
4759        @Override
4760        public Stream<E> stream()           {return q.stream();}
4761        @Override
4762        public Stream<E> parallelStream()   {return q.parallelStream();}
4763    }
4764}
4765