Collections.java revision 44aed07672d7775f168a49dbb5b8a13682c02600
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.  Oracle designates this
9 * particular file as subject to the "Classpath" exception as provided
10 * by Oracle in the LICENSE file that accompanied this code.
11 *
12 * This code is distributed in the hope that it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 * version 2 for more details (a copy is included in the LICENSE file that
16 * accompanied this code).
17 *
18 * You should have received a copy of the GNU General Public License version
19 * 2 along with this work; if not, write to the Free Software Foundation,
20 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
21 *
22 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
23 * or visit www.oracle.com if you need additional information or have any
24 * questions.
25 */
26
27package java.util;
28
29import java.io.IOException;
30import java.io.ObjectOutputStream;
31import java.io.Serializable;
32import java.lang.reflect.Array;
33import java.util.function.BiConsumer;
34import java.util.function.BiFunction;
35import java.util.function.Consumer;
36import java.util.function.Function;
37import java.util.function.Predicate;
38import java.util.stream.IntStream;
39import java.util.stream.Stream;
40import java.util.stream.StreamSupport;
41
42
43/**
44 * This class consists exclusively of static methods that operate on or return
45 * collections.  It contains polymorphic algorithms that operate on
46 * collections, "wrappers", which return a new collection backed by a
47 * specified collection, and a few other odds and ends.
48 *
49 * <p>The methods of this class all throw a <tt>NullPointerException</tt>
50 * if the collections or class objects provided to them are null.
51 *
52 * <p>The documentation for the polymorphic algorithms contained in this class
53 * generally includes a brief description of the <i>implementation</i>.  Such
54 * descriptions should be regarded as <i>implementation notes</i>, rather than
55 * parts of the <i>specification</i>.  Implementors should feel free to
56 * substitute other algorithms, so long as the specification itself is adhered
57 * to.  (For example, the algorithm used by <tt>sort</tt> does not have to be
58 * a mergesort, but it does have to be <i>stable</i>.)
59 *
60 * <p>The "destructive" algorithms contained in this class, that is, the
61 * algorithms that modify the collection on which they operate, are specified
62 * to throw <tt>UnsupportedOperationException</tt> if the collection does not
63 * support the appropriate mutation primitive(s), such as the <tt>set</tt>
64 * method.  These algorithms may, but are not required to, throw this
65 * exception if an invocation would have no effect on the collection.  For
66 * example, invoking the <tt>sort</tt> method on an unmodifiable list that is
67 * already sorted may or may not throw <tt>UnsupportedOperationException</tt>.
68 *
69 * <p>This class is a member of the
70 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
71 * Java Collections Framework</a>.
72 *
73 * @author  Josh Bloch
74 * @author  Neal Gafter
75 * @see     Collection
76 * @see     Set
77 * @see     List
78 * @see     Map
79 * @since   1.2
80 */
81
82public class Collections {
83    // Suppresses default constructor, ensuring non-instantiability.
84    private Collections() {
85    }
86
87    // Algorithms
88
89    /*
90     * Tuning parameters for algorithms - Many of the List algorithms have
91     * two implementations, one of which is appropriate for RandomAccess
92     * lists, the other for "sequential."  Often, the random access variant
93     * yields better performance on small sequential access lists.  The
94     * tuning parameters below determine the cutoff point for what constitutes
95     * a "small" sequential access list for each algorithm.  The values below
96     * were empirically determined to work well for LinkedList. Hopefully
97     * they should be reasonable for other sequential access List
98     * implementations.  Those doing performance work on this code would
99     * do well to validate the values of these parameters from time to time.
100     * (The first word of each tuning parameter name is the algorithm to which
101     * it applies.)
102     */
103    private static final int BINARYSEARCH_THRESHOLD   = 5000;
104    private static final int REVERSE_THRESHOLD        =   18;
105    private static final int SHUFFLE_THRESHOLD        =    5;
106    private static final int FILL_THRESHOLD           =   25;
107    private static final int ROTATE_THRESHOLD         =  100;
108    private static final int COPY_THRESHOLD           =   10;
109    private static final int REPLACEALL_THRESHOLD     =   11;
110    private static final int INDEXOFSUBLIST_THRESHOLD =   35;
111
112    /**
113     * Sorts the specified list into ascending order, according to the
114     * {@linkplain Comparable natural ordering} of its elements.
115     * All elements in the list must implement the {@link Comparable}
116     * interface.  Furthermore, all elements in the list must be
117     * <i>mutually comparable</i> (that is, {@code e1.compareTo(e2)}
118     * must not throw a {@code ClassCastException} for any elements
119     * {@code e1} and {@code e2} in the list).
120     *
121     * <p>This sort is guaranteed to be <i>stable</i>:  equal elements will
122     * not be reordered as a result of the sort.
123     *
124     * <p>The specified list must be modifiable, but need not be resizable.
125     *
126     * <p>Implementation note: This implementation is a stable, adaptive,
127     * iterative mergesort that requires far fewer than n lg(n) comparisons
128     * when the input array is partially sorted, while offering the
129     * performance of a traditional mergesort when the input array is
130     * randomly ordered.  If the input array is nearly sorted, the
131     * implementation requires approximately n comparisons.  Temporary
132     * storage requirements vary from a small constant for nearly sorted
133     * input arrays to n/2 object references for randomly ordered input
134     * arrays.
135     *
136     * <p>The implementation takes equal advantage of ascending and
137     * descending order in its input array, and can take advantage of
138     * ascending and descending order in different parts of the same
139     * input array.  It is well-suited to merging two or more sorted arrays:
140     * simply concatenate the arrays and sort the resulting array.
141     *
142     * <p>The implementation was adapted from Tim Peters's list sort for Python
143     * (<a href="http://svn.python.org/projects/python/trunk/Objects/listsort.txt">
144     * TimSort</a>).  It uses techniques from Peter McIlroy's "Optimistic
145     * Sorting and Information Theoretic Complexity", in Proceedings of the
146     * Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 467-474,
147     * January 1993.
148     *
149     * <p>This implementation dumps the specified list into an array, sorts
150     * the array, and iterates over the list resetting each element
151     * from the corresponding position in the array.  This avoids the
152     * n<sup>2</sup> log(n) performance that would result from attempting
153     * to sort a linked list in place.
154     *
155     * @param  <T> the class of the objects in the list
156     * @param  list the list to be sorted.
157     * @throws ClassCastException if the list contains elements that are not
158     *         <i>mutually comparable</i> (for example, strings and integers).
159     * @throws UnsupportedOperationException if the specified list's
160     *         list-iterator does not support the {@code set} operation.
161     * @throws IllegalArgumentException (optional) if the implementation
162     *         detects that the natural ordering of the list elements is
163     *         found to violate the {@link Comparable} contract
164     */
165    @SuppressWarnings("unchecked")
166    public static <T extends Comparable<? super T>> void sort(List<T> list) {
167        if (list.getClass() == ArrayList.class) {
168            Arrays.sort(((ArrayList) list).elementData, 0, list.size());
169            return;
170        }
171
172        Object[] a = list.toArray();
173        Arrays.sort(a);
174        ListIterator<T> i = list.listIterator();
175        for (int j=0; j<a.length; j++) {
176            i.next();
177            i.set((T)a[j]);
178        }
179    }
180
181    /**
182     * Sorts the specified list according to the order induced by the
183     * specified comparator.  All elements in the list must be <i>mutually
184     * comparable</i> using the specified comparator (that is,
185     * {@code c.compare(e1, e2)} must not throw a {@code ClassCastException}
186     * for any elements {@code e1} and {@code e2} in the list).
187     *
188     * <p>This sort is guaranteed to be <i>stable</i>:  equal elements will
189     * not be reordered as a result of the sort.
190     *
191     * <p>The specified list must be modifiable, but need not be resizable.
192     *
193     * <p>Implementation note: This implementation is a stable, adaptive,
194     * iterative mergesort that requires far fewer than n lg(n) comparisons
195     * when the input array is partially sorted, while offering the
196     * performance of a traditional mergesort when the input array is
197     * randomly ordered.  If the input array is nearly sorted, the
198     * implementation requires approximately n comparisons.  Temporary
199     * storage requirements vary from a small constant for nearly sorted
200     * input arrays to n/2 object references for randomly ordered input
201     * arrays.
202     *
203     * <p>The implementation takes equal advantage of ascending and
204     * descending order in its input array, and can take advantage of
205     * ascending and descending order in different parts of the same
206     * input array.  It is well-suited to merging two or more sorted arrays:
207     * simply concatenate the arrays and sort the resulting array.
208     *
209     * <p>The implementation was adapted from Tim Peters's list sort for Python
210     * (<a href="http://svn.python.org/projects/python/trunk/Objects/listsort.txt">
211     * TimSort</a>).  It uses techniques from Peter McIlroy's "Optimistic
212     * Sorting and Information Theoretic Complexity", in Proceedings of the
213     * Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 467-474,
214     * January 1993.
215     *
216     * <p>This implementation dumps the specified list into an array, sorts
217     * the array, and iterates over the list resetting each element
218     * from the corresponding position in the array.  This avoids the
219     * n<sup>2</sup> log(n) performance that would result from attempting
220     * to sort a linked list in place.
221     *
222     * @param  <T> the class of the objects in the list
223     * @param  list the list to be sorted.
224     * @param  c the comparator to determine the order of the list.  A
225     *        {@code null} value indicates that the elements' <i>natural
226     *        ordering</i> should be used.
227     * @throws ClassCastException if the list contains elements that are not
228     *         <i>mutually comparable</i> using the specified comparator.
229     * @throws UnsupportedOperationException if the specified list's
230     *         list-iterator does not support the {@code set} operation.
231     * @throws IllegalArgumentException (optional) if the comparator is
232     *         found to violate the {@link Comparator} contract
233     */
234    @SuppressWarnings({"unchecked", "rawtypes"})
235    public static <T> void sort(List<T> list, Comparator<? super T> c) {
236        if (list.getClass() == ArrayList.class) {
237            Arrays.sort(((ArrayList) list).elementData, 0, list.size(), (Comparator) c);
238            return;
239        }
240
241        Object[] a = list.toArray();
242        Arrays.sort(a, (Comparator)c);
243        ListIterator<T> i = list.listIterator();
244        for (int j=0; j<a.length; j++) {
245            i.next();
246            i.set((T)a[j]);
247        }
248    }
249
250
251    /**
252     * Searches the specified list for the specified object using the binary
253     * search algorithm.  The list must be sorted into ascending order
254     * according to the {@linkplain Comparable natural ordering} of its
255     * elements (as by the {@link #sort(List)} method) prior to making this
256     * call.  If it is not sorted, the results are undefined.  If the list
257     * contains multiple elements equal to the specified object, there is no
258     * guarantee which one will be found.
259     *
260     * <p>This method runs in log(n) time for a "random access" list (which
261     * provides near-constant-time positional access).  If the specified list
262     * does not implement the {@link RandomAccess} interface and is large,
263     * this method will do an iterator-based binary search that performs
264     * O(n) link traversals and O(log n) element comparisons.
265     *
266     * @param  <T> the class of the objects in the list
267     * @param  list the list to be searched.
268     * @param  key the key to be searched for.
269     * @return the index of the search key, if it is contained in the list;
270     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
271     *         <i>insertion point</i> is defined as the point at which the
272     *         key would be inserted into the list: the index of the first
273     *         element greater than the key, or <tt>list.size()</tt> if all
274     *         elements in the list are less than the specified key.  Note
275     *         that this guarantees that the return value will be &gt;= 0 if
276     *         and only if the key is found.
277     * @throws ClassCastException if the list contains elements that are not
278     *         <i>mutually comparable</i> (for example, strings and
279     *         integers), or the search key is not mutually comparable
280     *         with the elements of the list.
281     */
282    public static <T>
283    int binarySearch(List<? extends Comparable<? super T>> list, T key) {
284        if (list instanceof RandomAccess || list.size()<BINARYSEARCH_THRESHOLD)
285            return Collections.indexedBinarySearch(list, key);
286        else
287            return Collections.iteratorBinarySearch(list, key);
288    }
289
290    private static <T>
291    int indexedBinarySearch(List<? extends Comparable<? super T>> list, T key) {
292        int low = 0;
293        int high = list.size()-1;
294
295        while (low <= high) {
296            int mid = (low + high) >>> 1;
297            Comparable<? super T> midVal = list.get(mid);
298            int cmp = midVal.compareTo(key);
299
300            if (cmp < 0)
301                low = mid + 1;
302            else if (cmp > 0)
303                high = mid - 1;
304            else
305                return mid; // key found
306        }
307        return -(low + 1);  // key not found
308    }
309
310    private static <T>
311    int iteratorBinarySearch(List<? extends Comparable<? super T>> list, T key)
312    {
313        int low = 0;
314        int high = list.size()-1;
315        ListIterator<? extends Comparable<? super T>> i = list.listIterator();
316
317        while (low <= high) {
318            int mid = (low + high) >>> 1;
319            Comparable<? super T> midVal = get(i, mid);
320            int cmp = midVal.compareTo(key);
321
322            if (cmp < 0)
323                low = mid + 1;
324            else if (cmp > 0)
325                high = mid - 1;
326            else
327                return mid; // key found
328        }
329        return -(low + 1);  // key not found
330    }
331
332    /**
333     * Gets the ith element from the given list by repositioning the specified
334     * list listIterator.
335     */
336    private static <T> T get(ListIterator<? extends T> i, int index) {
337        T obj = null;
338        int pos = i.nextIndex();
339        if (pos <= index) {
340            do {
341                obj = i.next();
342            } while (pos++ < index);
343        } else {
344            do {
345                obj = i.previous();
346            } while (--pos > index);
347        }
348        return obj;
349    }
350
351    /**
352     * Searches the specified list for the specified object using the binary
353     * search algorithm.  The list must be sorted into ascending order
354     * according to the specified comparator (as by the
355     * {@link #sort(List, Comparator) sort(List, Comparator)}
356     * method), prior to making this call.  If it is
357     * not sorted, the results are undefined.  If the list contains multiple
358     * elements equal to the specified object, there is no guarantee which one
359     * will be found.
360     *
361     * <p>This method runs in log(n) time for a "random access" list (which
362     * provides near-constant-time positional access).  If the specified list
363     * does not implement the {@link RandomAccess} interface and is large,
364     * this method will do an iterator-based binary search that performs
365     * O(n) link traversals and O(log n) element comparisons.
366     *
367     * @param  <T> the class of the objects in the list
368     * @param  list the list to be searched.
369     * @param  key the key to be searched for.
370     * @param  c the comparator by which the list is ordered.
371     *         A <tt>null</tt> value indicates that the elements'
372     *         {@linkplain Comparable natural ordering} should be used.
373     * @return the index of the search key, if it is contained in the list;
374     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
375     *         <i>insertion point</i> is defined as the point at which the
376     *         key would be inserted into the list: the index of the first
377     *         element greater than the key, or <tt>list.size()</tt> if all
378     *         elements in the list are less than the specified key.  Note
379     *         that this guarantees that the return value will be &gt;= 0 if
380     *         and only if the key is found.
381     * @throws ClassCastException if the list contains elements that are not
382     *         <i>mutually comparable</i> using the specified comparator,
383     *         or the search key is not mutually comparable with the
384     *         elements of the list using this comparator.
385     */
386    @SuppressWarnings("unchecked")
387    public static <T> int binarySearch(List<? extends T> list, T key, Comparator<? super T> c) {
388        if (c==null)
389            return binarySearch((List<? extends Comparable<? super T>>) list, key);
390
391        if (list instanceof RandomAccess || list.size()<BINARYSEARCH_THRESHOLD)
392            return Collections.indexedBinarySearch(list, key, c);
393        else
394            return Collections.iteratorBinarySearch(list, key, c);
395    }
396
397    private static <T> int indexedBinarySearch(List<? extends T> l, T key, Comparator<? super T> c) {
398        int low = 0;
399        int high = l.size()-1;
400
401        while (low <= high) {
402            int mid = (low + high) >>> 1;
403            T midVal = l.get(mid);
404            int cmp = c.compare(midVal, key);
405
406            if (cmp < 0)
407                low = mid + 1;
408            else if (cmp > 0)
409                high = mid - 1;
410            else
411                return mid; // key found
412        }
413        return -(low + 1);  // key not found
414    }
415
416    private static <T> int iteratorBinarySearch(List<? extends T> l, T key, Comparator<? super T> c) {
417        int low = 0;
418        int high = l.size()-1;
419        ListIterator<? extends T> i = l.listIterator();
420
421        while (low <= high) {
422            int mid = (low + high) >>> 1;
423            T midVal = get(i, mid);
424            int cmp = c.compare(midVal, key);
425
426            if (cmp < 0)
427                low = mid + 1;
428            else if (cmp > 0)
429                high = mid - 1;
430            else
431                return mid; // key found
432        }
433        return -(low + 1);  // key not found
434    }
435
436    /**
437     * Reverses the order of the elements in the specified list.<p>
438     *
439     * This method runs in linear time.
440     *
441     * @param  list the list whose elements are to be reversed.
442     * @throws UnsupportedOperationException if the specified list or
443     *         its list-iterator does not support the <tt>set</tt> operation.
444     */
445    @SuppressWarnings({"rawtypes", "unchecked"})
446    public static void reverse(List<?> list) {
447        int size = list.size();
448        if (size < REVERSE_THRESHOLD || list instanceof RandomAccess) {
449            for (int i=0, mid=size>>1, j=size-1; i<mid; i++, j--)
450                swap(list, i, j);
451        } else {
452            // instead of using a raw type here, it's possible to capture
453            // the wildcard but it will require a call to a supplementary
454            // private method
455            ListIterator fwd = list.listIterator();
456            ListIterator rev = list.listIterator(size);
457            for (int i=0, mid=list.size()>>1; i<mid; i++) {
458                Object tmp = fwd.next();
459                fwd.set(rev.previous());
460                rev.set(tmp);
461            }
462        }
463    }
464
465    /**
466     * Randomly permutes the specified list using a default source of
467     * randomness.  All permutations occur with approximately equal
468     * likelihood.
469     *
470     * <p>The hedge "approximately" is used in the foregoing description because
471     * default source of randomness is only approximately an unbiased source
472     * of independently chosen bits. If it were a perfect source of randomly
473     * chosen bits, then the algorithm would choose permutations with perfect
474     * uniformity.
475     *
476     * <p>This implementation traverses the list backwards, from the last
477     * element up to the second, repeatedly swapping a randomly selected element
478     * into the "current position".  Elements are randomly selected from the
479     * portion of the list that runs from the first element to the current
480     * position, inclusive.
481     *
482     * <p>This method runs in linear time.  If the specified list does not
483     * implement the {@link RandomAccess} interface and is large, this
484     * implementation dumps the specified list into an array before shuffling
485     * it, and dumps the shuffled array back into the list.  This avoids the
486     * quadratic behavior that would result from shuffling a "sequential
487     * access" list in place.
488     *
489     * @param  list the list to be shuffled.
490     * @throws UnsupportedOperationException if the specified list or
491     *         its list-iterator does not support the <tt>set</tt> operation.
492     */
493    public static void shuffle(List<?> list) {
494        Random rnd = r;
495        if (rnd == null)
496            r = rnd = new Random(); // harmless race.
497        shuffle(list, rnd);
498    }
499
500    private static Random r;
501
502    /**
503     * Randomly permute the specified list using the specified source of
504     * randomness.  All permutations occur with equal likelihood
505     * assuming that the source of randomness is fair.<p>
506     *
507     * This implementation traverses the list backwards, from the last element
508     * up to the second, repeatedly swapping a randomly selected element into
509     * the "current position".  Elements are randomly selected from the
510     * portion of the list that runs from the first element to the current
511     * position, inclusive.<p>
512     *
513     * This method runs in linear time.  If the specified list does not
514     * implement the {@link RandomAccess} interface and is large, this
515     * implementation dumps the specified list into an array before shuffling
516     * it, and dumps the shuffled array back into the list.  This avoids the
517     * quadratic behavior that would result from shuffling a "sequential
518     * access" list in place.
519     *
520     * @param  list the list to be shuffled.
521     * @param  rnd the source of randomness to use to shuffle the list.
522     * @throws UnsupportedOperationException if the specified list or its
523     *         list-iterator does not support the <tt>set</tt> operation.
524     */
525    @SuppressWarnings({"rawtypes", "unchecked"})
526    public static void shuffle(List<?> list, Random rnd) {
527        int size = list.size();
528        if (size < SHUFFLE_THRESHOLD || list instanceof RandomAccess) {
529            for (int i=size; i>1; i--)
530                swap(list, i-1, rnd.nextInt(i));
531        } else {
532            Object arr[] = list.toArray();
533
534            // Shuffle array
535            for (int i=size; i>1; i--)
536                swap(arr, i-1, rnd.nextInt(i));
537
538            // Dump array back into list
539            // instead of using a raw type here, it's possible to capture
540            // the wildcard but it will require a call to a supplementary
541            // private method
542            ListIterator it = list.listIterator();
543            for (int i=0; i<arr.length; i++) {
544                it.next();
545                it.set(arr[i]);
546            }
547        }
548    }
549
550    /**
551     * Swaps the elements at the specified positions in the specified list.
552     * (If the specified positions are equal, invoking this method leaves
553     * the list unchanged.)
554     *
555     * @param list The list in which to swap elements.
556     * @param i the index of one element to be swapped.
557     * @param j the index of the other element to be swapped.
558     * @throws IndexOutOfBoundsException if either <tt>i</tt> or <tt>j</tt>
559     *         is out of range (i &lt; 0 || i &gt;= list.size()
560     *         || j &lt; 0 || j &gt;= list.size()).
561     * @since 1.4
562     */
563    @SuppressWarnings({"rawtypes", "unchecked"})
564    public static void swap(List<?> list, int i, int j) {
565        // instead of using a raw type here, it's possible to capture
566        // the wildcard but it will require a call to a supplementary
567        // private method
568        final List l = list;
569        l.set(i, l.set(j, l.get(i)));
570    }
571
572    /**
573     * Swaps the two specified elements in the specified array.
574     */
575    private static void swap(Object[] arr, int i, int j) {
576        Object tmp = arr[i];
577        arr[i] = arr[j];
578        arr[j] = tmp;
579    }
580
581    /**
582     * Replaces all of the elements of the specified list with the specified
583     * element. <p>
584     *
585     * This method runs in linear time.
586     *
587     * @param  <T> the class of the objects in the list
588     * @param  list the list to be filled with the specified element.
589     * @param  obj The element with which to fill the specified list.
590     * @throws UnsupportedOperationException if the specified list or its
591     *         list-iterator does not support the <tt>set</tt> operation.
592     */
593    public static <T> void fill(List<? super T> list, T obj) {
594        int size = list.size();
595
596        if (size < FILL_THRESHOLD || list instanceof RandomAccess) {
597            for (int i=0; i<size; i++)
598                list.set(i, obj);
599        } else {
600            ListIterator<? super T> itr = list.listIterator();
601            for (int i=0; i<size; i++) {
602                itr.next();
603                itr.set(obj);
604            }
605        }
606    }
607
608    /**
609     * Copies all of the elements from one list into another.  After the
610     * operation, the index of each copied element in the destination list
611     * will be identical to its index in the source list.  The destination
612     * list must be at least as long as the source list.  If it is longer, the
613     * remaining elements in the destination list are unaffected. <p>
614     *
615     * This method runs in linear time.
616     *
617     * @param  <T> the class of the objects in the lists
618     * @param  dest The destination list.
619     * @param  src The source list.
620     * @throws IndexOutOfBoundsException if the destination list is too small
621     *         to contain the entire source List.
622     * @throws UnsupportedOperationException if the destination list's
623     *         list-iterator does not support the <tt>set</tt> operation.
624     */
625    public static <T> void copy(List<? super T> dest, List<? extends T> src) {
626        int srcSize = src.size();
627        if (srcSize > dest.size())
628            throw new IndexOutOfBoundsException("Source does not fit in dest");
629
630        if (srcSize < COPY_THRESHOLD ||
631            (src instanceof RandomAccess && dest instanceof RandomAccess)) {
632            for (int i=0; i<srcSize; i++)
633                dest.set(i, src.get(i));
634        } else {
635            ListIterator<? super T> di=dest.listIterator();
636            ListIterator<? extends T> si=src.listIterator();
637            for (int i=0; i<srcSize; i++) {
638                di.next();
639                di.set(si.next());
640            }
641        }
642    }
643
644    /**
645     * Returns the minimum element of the given collection, according to the
646     * <i>natural ordering</i> of its elements.  All elements in the
647     * collection must implement the <tt>Comparable</tt> interface.
648     * Furthermore, all elements in the collection must be <i>mutually
649     * comparable</i> (that is, <tt>e1.compareTo(e2)</tt> must not throw a
650     * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
651     * <tt>e2</tt> in the collection).<p>
652     *
653     * This method iterates over the entire collection, hence it requires
654     * time proportional to the size of the collection.
655     *
656     * @param  <T> the class of the objects in the collection
657     * @param  coll the collection whose minimum element is to be determined.
658     * @return the minimum element of the given collection, according
659     *         to the <i>natural ordering</i> of its elements.
660     * @throws ClassCastException if the collection contains elements that are
661     *         not <i>mutually comparable</i> (for example, strings and
662     *         integers).
663     * @throws NoSuchElementException if the collection is empty.
664     * @see Comparable
665     */
666    public static <T extends Object & Comparable<? super T>> T min(Collection<? extends T> coll) {
667        Iterator<? extends T> i = coll.iterator();
668        T candidate = i.next();
669
670        while (i.hasNext()) {
671            T next = i.next();
672            if (next.compareTo(candidate) < 0)
673                candidate = next;
674        }
675        return candidate;
676    }
677
678    /**
679     * Returns the minimum element of the given collection, according to the
680     * order induced by the specified comparator.  All elements in the
681     * collection must be <i>mutually comparable</i> by the specified
682     * comparator (that is, <tt>comp.compare(e1, e2)</tt> must not throw a
683     * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
684     * <tt>e2</tt> in the collection).<p>
685     *
686     * This method iterates over the entire collection, hence it requires
687     * time proportional to the size of the collection.
688     *
689     * @param  <T> the class of the objects in the collection
690     * @param  coll the collection whose minimum element is to be determined.
691     * @param  comp the comparator with which to determine the minimum element.
692     *         A <tt>null</tt> value indicates that the elements' <i>natural
693     *         ordering</i> should be used.
694     * @return the minimum element of the given collection, according
695     *         to the specified comparator.
696     * @throws ClassCastException if the collection contains elements that are
697     *         not <i>mutually comparable</i> using the specified comparator.
698     * @throws NoSuchElementException if the collection is empty.
699     * @see Comparable
700     */
701    @SuppressWarnings({"unchecked", "rawtypes"})
702    public static <T> T min(Collection<? extends T> coll, Comparator<? super T> comp) {
703        if (comp==null)
704            return (T)min((Collection) coll);
705
706        Iterator<? extends T> i = coll.iterator();
707        T candidate = i.next();
708
709        while (i.hasNext()) {
710            T next = i.next();
711            if (comp.compare(next, candidate) < 0)
712                candidate = next;
713        }
714        return candidate;
715    }
716
717    /**
718     * Returns the maximum element of the given collection, according to the
719     * <i>natural ordering</i> of its elements.  All elements in the
720     * collection must implement the <tt>Comparable</tt> interface.
721     * Furthermore, all elements in the collection must be <i>mutually
722     * comparable</i> (that is, <tt>e1.compareTo(e2)</tt> must not throw a
723     * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
724     * <tt>e2</tt> in the collection).<p>
725     *
726     * This method iterates over the entire collection, hence it requires
727     * time proportional to the size of the collection.
728     *
729     * @param  <T> the class of the objects in the collection
730     * @param  coll the collection whose maximum element is to be determined.
731     * @return the maximum element of the given collection, according
732     *         to the <i>natural ordering</i> of its elements.
733     * @throws ClassCastException if the collection contains elements that are
734     *         not <i>mutually comparable</i> (for example, strings and
735     *         integers).
736     * @throws NoSuchElementException if the collection is empty.
737     * @see Comparable
738     */
739    public static <T extends Object & Comparable<? super T>> T max(Collection<? extends T> coll) {
740        Iterator<? extends T> i = coll.iterator();
741        T candidate = i.next();
742
743        while (i.hasNext()) {
744            T next = i.next();
745            if (next.compareTo(candidate) > 0)
746                candidate = next;
747        }
748        return candidate;
749    }
750
751    /**
752     * Returns the maximum element of the given collection, according to the
753     * order induced by the specified comparator.  All elements in the
754     * collection must be <i>mutually comparable</i> by the specified
755     * comparator (that is, <tt>comp.compare(e1, e2)</tt> must not throw a
756     * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
757     * <tt>e2</tt> in the collection).<p>
758     *
759     * This method iterates over the entire collection, hence it requires
760     * time proportional to the size of the collection.
761     *
762     * @param  <T> the class of the objects in the collection
763     * @param  coll the collection whose maximum element is to be determined.
764     * @param  comp the comparator with which to determine the maximum element.
765     *         A <tt>null</tt> value indicates that the elements' <i>natural
766     *        ordering</i> should be used.
767     * @return the maximum element of the given collection, according
768     *         to the specified comparator.
769     * @throws ClassCastException if the collection contains elements that are
770     *         not <i>mutually comparable</i> using the specified comparator.
771     * @throws NoSuchElementException if the collection is empty.
772     * @see Comparable
773     */
774    @SuppressWarnings({"unchecked", "rawtypes"})
775    public static <T> T max(Collection<? extends T> coll, Comparator<? super T> comp) {
776        if (comp==null)
777            return (T)max((Collection) coll);
778
779        Iterator<? extends T> i = coll.iterator();
780        T candidate = i.next();
781
782        while (i.hasNext()) {
783            T next = i.next();
784            if (comp.compare(next, candidate) > 0)
785                candidate = next;
786        }
787        return candidate;
788    }
789
790    /**
791     * Rotates the elements in the specified list by the specified distance.
792     * After calling this method, the element at index <tt>i</tt> will be
793     * the element previously at index <tt>(i - distance)</tt> mod
794     * <tt>list.size()</tt>, for all values of <tt>i</tt> between <tt>0</tt>
795     * and <tt>list.size()-1</tt>, inclusive.  (This method has no effect on
796     * the size of the list.)
797     *
798     * <p>For example, suppose <tt>list</tt> comprises<tt> [t, a, n, k, s]</tt>.
799     * After invoking <tt>Collections.rotate(list, 1)</tt> (or
800     * <tt>Collections.rotate(list, -4)</tt>), <tt>list</tt> will comprise
801     * <tt>[s, t, a, n, k]</tt>.
802     *
803     * <p>Note that this method can usefully be applied to sublists to
804     * move one or more elements within a list while preserving the
805     * order of the remaining elements.  For example, the following idiom
806     * moves the element at index <tt>j</tt> forward to position
807     * <tt>k</tt> (which must be greater than or equal to <tt>j</tt>):
808     * <pre>
809     *     Collections.rotate(list.subList(j, k+1), -1);
810     * </pre>
811     * To make this concrete, suppose <tt>list</tt> comprises
812     * <tt>[a, b, c, d, e]</tt>.  To move the element at index <tt>1</tt>
813     * (<tt>b</tt>) forward two positions, perform the following invocation:
814     * <pre>
815     *     Collections.rotate(l.subList(1, 4), -1);
816     * </pre>
817     * The resulting list is <tt>[a, c, d, b, e]</tt>.
818     *
819     * <p>To move more than one element forward, increase the absolute value
820     * of the rotation distance.  To move elements backward, use a positive
821     * shift distance.
822     *
823     * <p>If the specified list is small or implements the {@link
824     * RandomAccess} interface, this implementation exchanges the first
825     * element into the location it should go, and then repeatedly exchanges
826     * the displaced element into the location it should go until a displaced
827     * element is swapped into the first element.  If necessary, the process
828     * is repeated on the second and successive elements, until the rotation
829     * is complete.  If the specified list is large and doesn't implement the
830     * <tt>RandomAccess</tt> interface, this implementation breaks the
831     * list into two sublist views around index <tt>-distance mod size</tt>.
832     * Then the {@link #reverse(List)} method is invoked on each sublist view,
833     * and finally it is invoked on the entire list.  For a more complete
834     * description of both algorithms, see Section 2.3 of Jon Bentley's
835     * <i>Programming Pearls</i> (Addison-Wesley, 1986).
836     *
837     * @param list the list to be rotated.
838     * @param distance the distance to rotate the list.  There are no
839     *        constraints on this value; it may be zero, negative, or
840     *        greater than <tt>list.size()</tt>.
841     * @throws UnsupportedOperationException if the specified list or
842     *         its list-iterator does not support the <tt>set</tt> operation.
843     * @since 1.4
844     */
845    public static void rotate(List<?> list, int distance) {
846        if (list instanceof RandomAccess || list.size() < ROTATE_THRESHOLD)
847            rotate1(list, distance);
848        else
849            rotate2(list, distance);
850    }
851
852    private static <T> void rotate1(List<T> list, int distance) {
853        int size = list.size();
854        if (size == 0)
855            return;
856        distance = distance % size;
857        if (distance < 0)
858            distance += size;
859        if (distance == 0)
860            return;
861
862        for (int cycleStart = 0, nMoved = 0; nMoved != size; cycleStart++) {
863            T displaced = list.get(cycleStart);
864            int i = cycleStart;
865            do {
866                i += distance;
867                if (i >= size)
868                    i -= size;
869                displaced = list.set(i, displaced);
870                nMoved ++;
871            } while (i != cycleStart);
872        }
873    }
874
875    private static void rotate2(List<?> list, int distance) {
876        int size = list.size();
877        if (size == 0)
878            return;
879        int mid =  -distance % size;
880        if (mid < 0)
881            mid += size;
882        if (mid == 0)
883            return;
884
885        reverse(list.subList(0, mid));
886        reverse(list.subList(mid, size));
887        reverse(list);
888    }
889
890    /**
891     * Replaces all occurrences of one specified value in a list with another.
892     * More formally, replaces with <tt>newVal</tt> each element <tt>e</tt>
893     * in <tt>list</tt> such that
894     * <tt>(oldVal==null ? e==null : oldVal.equals(e))</tt>.
895     * (This method has no effect on the size of the list.)
896     *
897     * @param  <T> the class of the objects in the list
898     * @param list the list in which replacement is to occur.
899     * @param oldVal the old value to be replaced.
900     * @param newVal the new value with which <tt>oldVal</tt> is to be
901     *        replaced.
902     * @return <tt>true</tt> if <tt>list</tt> contained one or more elements
903     *         <tt>e</tt> such that
904     *         <tt>(oldVal==null ?  e==null : oldVal.equals(e))</tt>.
905     * @throws UnsupportedOperationException if the specified list or
906     *         its list-iterator does not support the <tt>set</tt> operation.
907     * @since  1.4
908     */
909    public static <T> boolean replaceAll(List<T> list, T oldVal, T newVal) {
910        boolean result = false;
911        int size = list.size();
912        if (size < REPLACEALL_THRESHOLD || list instanceof RandomAccess) {
913            if (oldVal==null) {
914                for (int i=0; i<size; i++) {
915                    if (list.get(i)==null) {
916                        list.set(i, newVal);
917                        result = true;
918                    }
919                }
920            } else {
921                for (int i=0; i<size; i++) {
922                    if (oldVal.equals(list.get(i))) {
923                        list.set(i, newVal);
924                        result = true;
925                    }
926                }
927            }
928        } else {
929            ListIterator<T> itr=list.listIterator();
930            if (oldVal==null) {
931                for (int i=0; i<size; i++) {
932                    if (itr.next()==null) {
933                        itr.set(newVal);
934                        result = true;
935                    }
936                }
937            } else {
938                for (int i=0; i<size; i++) {
939                    if (oldVal.equals(itr.next())) {
940                        itr.set(newVal);
941                        result = true;
942                    }
943                }
944            }
945        }
946        return result;
947    }
948
949    /**
950     * Returns the starting position of the first occurrence of the specified
951     * target list within the specified source list, or -1 if there is no
952     * such occurrence.  More formally, returns the lowest index <tt>i</tt>
953     * such that {@code source.subList(i, i+target.size()).equals(target)},
954     * or -1 if there is no such index.  (Returns -1 if
955     * {@code target.size() > source.size()})
956     *
957     * <p>This implementation uses the "brute force" technique of scanning
958     * over the source list, looking for a match with the target at each
959     * location in turn.
960     *
961     * @param source the list in which to search for the first occurrence
962     *        of <tt>target</tt>.
963     * @param target the list to search for as a subList of <tt>source</tt>.
964     * @return the starting position of the first occurrence of the specified
965     *         target list within the specified source list, or -1 if there
966     *         is no such occurrence.
967     * @since  1.4
968     */
969    public static int indexOfSubList(List<?> source, List<?> target) {
970        int sourceSize = source.size();
971        int targetSize = target.size();
972        int maxCandidate = sourceSize - targetSize;
973
974        if (sourceSize < INDEXOFSUBLIST_THRESHOLD ||
975            (source instanceof RandomAccess&&target instanceof RandomAccess)) {
976        nextCand:
977            for (int candidate = 0; candidate <= maxCandidate; candidate++) {
978                for (int i=0, j=candidate; i<targetSize; i++, j++)
979                    if (!eq(target.get(i), source.get(j)))
980                        continue nextCand;  // Element mismatch, try next cand
981                return candidate;  // All elements of candidate matched target
982            }
983        } else {  // Iterator version of above algorithm
984            ListIterator<?> si = source.listIterator();
985        nextCand:
986            for (int candidate = 0; candidate <= maxCandidate; candidate++) {
987                ListIterator<?> ti = target.listIterator();
988                for (int i=0; i<targetSize; i++) {
989                    if (!eq(ti.next(), si.next())) {
990                        // Back up source iterator to next candidate
991                        for (int j=0; j<i; j++)
992                            si.previous();
993                        continue nextCand;
994                    }
995                }
996                return candidate;
997            }
998        }
999        return -1;  // No candidate matched the target
1000    }
1001
1002    /**
1003     * Returns the starting position of the last occurrence of the specified
1004     * target list within the specified source list, or -1 if there is no such
1005     * occurrence.  More formally, returns the highest index <tt>i</tt>
1006     * such that {@code source.subList(i, i+target.size()).equals(target)},
1007     * or -1 if there is no such index.  (Returns -1 if
1008     * {@code target.size() > source.size()})
1009     *
1010     * <p>This implementation uses the "brute force" technique of iterating
1011     * over the source list, looking for a match with the target at each
1012     * location in turn.
1013     *
1014     * @param source the list in which to search for the last occurrence
1015     *        of <tt>target</tt>.
1016     * @param target the list to search for as a subList of <tt>source</tt>.
1017     * @return the starting position of the last occurrence of the specified
1018     *         target list within the specified source list, or -1 if there
1019     *         is no such occurrence.
1020     * @since  1.4
1021     */
1022    public static int lastIndexOfSubList(List<?> source, List<?> target) {
1023        int sourceSize = source.size();
1024        int targetSize = target.size();
1025        int maxCandidate = sourceSize - targetSize;
1026
1027        if (sourceSize < INDEXOFSUBLIST_THRESHOLD ||
1028            source instanceof RandomAccess) {   // Index access version
1029        nextCand:
1030            for (int candidate = maxCandidate; candidate >= 0; candidate--) {
1031                for (int i=0, j=candidate; i<targetSize; i++, j++)
1032                    if (!eq(target.get(i), source.get(j)))
1033                        continue nextCand;  // Element mismatch, try next cand
1034                return candidate;  // All elements of candidate matched target
1035            }
1036        } else {  // Iterator version of above algorithm
1037            if (maxCandidate < 0)
1038                return -1;
1039            ListIterator<?> si = source.listIterator(maxCandidate);
1040        nextCand:
1041            for (int candidate = maxCandidate; candidate >= 0; candidate--) {
1042                ListIterator<?> ti = target.listIterator();
1043                for (int i=0; i<targetSize; i++) {
1044                    if (!eq(ti.next(), si.next())) {
1045                        if (candidate != 0) {
1046                            // Back up source iterator to next candidate
1047                            for (int j=0; j<=i+1; j++)
1048                                si.previous();
1049                        }
1050                        continue nextCand;
1051                    }
1052                }
1053                return candidate;
1054            }
1055        }
1056        return -1;  // No candidate matched the target
1057    }
1058
1059
1060    // Unmodifiable Wrappers
1061
1062    /**
1063     * Returns an unmodifiable view of the specified collection.  This method
1064     * allows modules to provide users with "read-only" access to internal
1065     * collections.  Query operations on the returned collection "read through"
1066     * to the specified collection, and attempts to modify the returned
1067     * collection, whether direct or via its iterator, result in an
1068     * <tt>UnsupportedOperationException</tt>.<p>
1069     *
1070     * The returned collection does <i>not</i> pass the hashCode and equals
1071     * operations through to the backing collection, but relies on
1072     * <tt>Object</tt>'s <tt>equals</tt> and <tt>hashCode</tt> methods.  This
1073     * is necessary to preserve the contracts of these operations in the case
1074     * that the backing collection is a set or a list.<p>
1075     *
1076     * The returned collection will be serializable if the specified collection
1077     * is serializable.
1078     *
1079     * @param  <T> the class of the objects in the collection
1080     * @param  c the collection for which an unmodifiable view is to be
1081     *         returned.
1082     * @return an unmodifiable view of the specified collection.
1083     */
1084    public static <T> Collection<T> unmodifiableCollection(Collection<? extends T> c) {
1085        return new UnmodifiableCollection<>(c);
1086    }
1087
1088    /**
1089     * @serial include
1090     */
1091    static class UnmodifiableCollection<E> implements Collection<E>, Serializable {
1092        private static final long serialVersionUID = 1820017752578914078L;
1093
1094        final Collection<? extends E> c;
1095
1096        UnmodifiableCollection(Collection<? extends E> c) {
1097            if (c==null)
1098                throw new NullPointerException();
1099            this.c = c;
1100        }
1101
1102        public int size()                   {return c.size();}
1103        public boolean isEmpty()            {return c.isEmpty();}
1104        public boolean contains(Object o)   {return c.contains(o);}
1105        public Object[] toArray()           {return c.toArray();}
1106        public <T> T[] toArray(T[] a)       {return c.toArray(a);}
1107        public String toString()            {return c.toString();}
1108
1109        public Iterator<E> iterator() {
1110            return new Iterator<E>() {
1111                private final Iterator<? extends E> i = c.iterator();
1112
1113                public boolean hasNext() {return i.hasNext();}
1114                public E next()          {return i.next();}
1115                public void remove() {
1116                    throw new UnsupportedOperationException();
1117                }
1118                @Override
1119                public void forEachRemaining(Consumer<? super E> action) {
1120                    // Use backing collection version
1121                    i.forEachRemaining(action);
1122                }
1123            };
1124        }
1125
1126        public boolean add(E e) {
1127            throw new UnsupportedOperationException();
1128        }
1129        public boolean remove(Object o) {
1130            throw new UnsupportedOperationException();
1131        }
1132
1133        public boolean containsAll(Collection<?> coll) {
1134            return c.containsAll(coll);
1135        }
1136        public boolean addAll(Collection<? extends E> coll) {
1137            throw new UnsupportedOperationException();
1138        }
1139        public boolean removeAll(Collection<?> coll) {
1140            throw new UnsupportedOperationException();
1141        }
1142        public boolean retainAll(Collection<?> coll) {
1143            throw new UnsupportedOperationException();
1144        }
1145        public void clear() {
1146            throw new UnsupportedOperationException();
1147        }
1148
1149        // Override default methods in Collection
1150        @Override
1151        public void forEach(Consumer<? super E> action) {
1152            c.forEach(action);
1153        }
1154
1155        @Override
1156        public boolean removeIf(Predicate<? super E> filter) {
1157            throw new UnsupportedOperationException();
1158        }
1159
1160        @SuppressWarnings("unchecked")
1161        @Override
1162        public Spliterator<E> spliterator() {
1163            return (Spliterator<E>)c.spliterator();
1164        }
1165        @SuppressWarnings("unchecked")
1166        @Override
1167        public Stream<E> stream() {
1168            return (Stream<E>)c.stream();
1169        }
1170        @SuppressWarnings("unchecked")
1171        @Override
1172        public Stream<E> parallelStream() {
1173            return (Stream<E>)c.parallelStream();
1174        }
1175    }
1176
1177    /**
1178     * Returns an unmodifiable view of the specified set.  This method allows
1179     * modules to provide users with "read-only" access to internal sets.
1180     * Query operations on the returned set "read through" to the specified
1181     * set, and attempts to modify the returned set, whether direct or via its
1182     * iterator, result in an <tt>UnsupportedOperationException</tt>.<p>
1183     *
1184     * The returned set will be serializable if the specified set
1185     * is serializable.
1186     *
1187     * @param  <T> the class of the objects in the set
1188     * @param  s the set for which an unmodifiable view is to be returned.
1189     * @return an unmodifiable view of the specified set.
1190     */
1191    public static <T> Set<T> unmodifiableSet(Set<? extends T> s) {
1192        return new UnmodifiableSet<>(s);
1193    }
1194
1195    /**
1196     * @serial include
1197     */
1198    static class UnmodifiableSet<E> extends UnmodifiableCollection<E>
1199                                 implements Set<E>, Serializable {
1200        private static final long serialVersionUID = -9215047833775013803L;
1201
1202        UnmodifiableSet(Set<? extends E> s)     {super(s);}
1203        public boolean equals(Object o) {return o == this || c.equals(o);}
1204        public int hashCode()           {return c.hashCode();}
1205    }
1206
1207    /**
1208     * Returns an unmodifiable view of the specified sorted set.  This method
1209     * allows modules to provide users with "read-only" access to internal
1210     * sorted sets.  Query operations on the returned sorted set "read
1211     * through" to the specified sorted set.  Attempts to modify the returned
1212     * sorted set, whether direct, via its iterator, or via its
1213     * <tt>subSet</tt>, <tt>headSet</tt>, or <tt>tailSet</tt> views, result in
1214     * an <tt>UnsupportedOperationException</tt>.<p>
1215     *
1216     * The returned sorted set will be serializable if the specified sorted set
1217     * is serializable.
1218     *
1219     * @param  <T> the class of the objects in the set
1220     * @param s the sorted set for which an unmodifiable view is to be
1221     *        returned.
1222     * @return an unmodifiable view of the specified sorted set.
1223     */
1224    public static <T> SortedSet<T> unmodifiableSortedSet(SortedSet<T> s) {
1225        return new UnmodifiableSortedSet<>(s);
1226    }
1227
1228    /**
1229     * @serial include
1230     */
1231    static class UnmodifiableSortedSet<E>
1232                             extends UnmodifiableSet<E>
1233                             implements SortedSet<E>, Serializable {
1234        private static final long serialVersionUID = -4929149591599911165L;
1235        private final SortedSet<E> ss;
1236
1237        UnmodifiableSortedSet(SortedSet<E> s) {super(s); ss = s;}
1238
1239        public Comparator<? super E> comparator() {return ss.comparator();}
1240
1241        public SortedSet<E> subSet(E fromElement, E toElement) {
1242            return new UnmodifiableSortedSet<>(ss.subSet(fromElement,toElement));
1243        }
1244        public SortedSet<E> headSet(E toElement) {
1245            return new UnmodifiableSortedSet<>(ss.headSet(toElement));
1246        }
1247        public SortedSet<E> tailSet(E fromElement) {
1248            return new UnmodifiableSortedSet<>(ss.tailSet(fromElement));
1249        }
1250
1251        public E first()                   {return ss.first();}
1252        public E last()                    {return ss.last();}
1253    }
1254
1255    /**
1256     * Returns an unmodifiable view of the specified list.  This method allows
1257     * modules to provide users with "read-only" access to internal
1258     * lists.  Query operations on the returned list "read through" to the
1259     * specified list, and attempts to modify the returned list, whether
1260     * direct or via its iterator, result in an
1261     * <tt>UnsupportedOperationException</tt>.<p>
1262     *
1263     * The returned list will be serializable if the specified list
1264     * is serializable. Similarly, the returned list will implement
1265     * {@link RandomAccess} if the specified list does.
1266     *
1267     * @param  <T> the class of the objects in the list
1268     * @param  list the list for which an unmodifiable view is to be returned.
1269     * @return an unmodifiable view of the specified list.
1270     */
1271    public static <T> List<T> unmodifiableList(List<? extends T> list) {
1272        return (list instanceof RandomAccess ?
1273                new UnmodifiableRandomAccessList<>(list) :
1274                new UnmodifiableList<>(list));
1275    }
1276
1277    /**
1278     * @serial include
1279     */
1280    static class UnmodifiableList<E> extends UnmodifiableCollection<E>
1281                                  implements List<E> {
1282        private static final long serialVersionUID = -283967356065247728L;
1283
1284        final List<? extends E> list;
1285
1286        UnmodifiableList(List<? extends E> list) {
1287            super(list);
1288            this.list = list;
1289        }
1290
1291        public boolean equals(Object o) {return o == this || list.equals(o);}
1292        public int hashCode()           {return list.hashCode();}
1293
1294        public E get(int index) {return list.get(index);}
1295        public E set(int index, E element) {
1296            throw new UnsupportedOperationException();
1297        }
1298        public void add(int index, E element) {
1299            throw new UnsupportedOperationException();
1300        }
1301        public E remove(int index) {
1302            throw new UnsupportedOperationException();
1303        }
1304        public int indexOf(Object o)            {return list.indexOf(o);}
1305        public int lastIndexOf(Object o)        {return list.lastIndexOf(o);}
1306        public boolean addAll(int index, Collection<? extends E> c) {
1307            throw new UnsupportedOperationException();
1308        }
1309        public ListIterator<E> listIterator()   {return listIterator(0);}
1310
1311        public ListIterator<E> listIterator(final int index) {
1312            return new ListIterator<E>() {
1313                private final ListIterator<? extends E> i
1314                    = list.listIterator(index);
1315
1316                public boolean hasNext()     {return i.hasNext();}
1317                public E next()              {return i.next();}
1318                public boolean hasPrevious() {return i.hasPrevious();}
1319                public E previous()          {return i.previous();}
1320                public int nextIndex()       {return i.nextIndex();}
1321                public int previousIndex()   {return i.previousIndex();}
1322
1323                public void remove() {
1324                    throw new UnsupportedOperationException();
1325                }
1326                public void set(E e) {
1327                    throw new UnsupportedOperationException();
1328                }
1329                public void add(E e) {
1330                    throw new UnsupportedOperationException();
1331                }
1332
1333                @Override
1334                public void forEachRemaining(Consumer<? super E> action) {
1335                    i.forEachRemaining(action);
1336                }
1337            };
1338        }
1339
1340        public List<E> subList(int fromIndex, int toIndex) {
1341            return new UnmodifiableList<>(list.subList(fromIndex, toIndex));
1342        }
1343
1344        /**
1345         * UnmodifiableRandomAccessList instances are serialized as
1346         * UnmodifiableList instances to allow them to be deserialized
1347         * in pre-1.4 JREs (which do not have UnmodifiableRandomAccessList).
1348         * This method inverts the transformation.  As a beneficial
1349         * side-effect, it also grafts the RandomAccess marker onto
1350         * UnmodifiableList instances that were serialized in pre-1.4 JREs.
1351         *
1352         * Note: Unfortunately, UnmodifiableRandomAccessList instances
1353         * serialized in 1.4.1 and deserialized in 1.4 will become
1354         * UnmodifiableList instances, as this method was missing in 1.4.
1355         */
1356        private Object readResolve() {
1357            return (list instanceof RandomAccess
1358                    ? new UnmodifiableRandomAccessList<>(list)
1359                    : this);
1360        }
1361    }
1362
1363    /**
1364     * @serial include
1365     */
1366    static class UnmodifiableRandomAccessList<E> extends UnmodifiableList<E>
1367                                              implements RandomAccess
1368    {
1369        UnmodifiableRandomAccessList(List<? extends E> list) {
1370            super(list);
1371        }
1372
1373        public List<E> subList(int fromIndex, int toIndex) {
1374            return new UnmodifiableRandomAccessList<>(
1375                list.subList(fromIndex, toIndex));
1376        }
1377
1378        private static final long serialVersionUID = -2542308836966382001L;
1379
1380        /**
1381         * Allows instances to be deserialized in pre-1.4 JREs (which do
1382         * not have UnmodifiableRandomAccessList).  UnmodifiableList has
1383         * a readResolve method that inverts this transformation upon
1384         * deserialization.
1385         */
1386        private Object writeReplace() {
1387            return new UnmodifiableList<>(list);
1388        }
1389    }
1390
1391    /**
1392     * Returns an unmodifiable view of the specified map.  This method
1393     * allows modules to provide users with "read-only" access to internal
1394     * maps.  Query operations on the returned map "read through"
1395     * to the specified map, and attempts to modify the returned
1396     * map, whether direct or via its collection views, result in an
1397     * <tt>UnsupportedOperationException</tt>.<p>
1398     *
1399     * The returned map will be serializable if the specified map
1400     * is serializable.
1401     *
1402     * @param <K> the class of the map keys
1403     * @param <V> the class of the map values
1404     * @param  m the map for which an unmodifiable view is to be returned.
1405     * @return an unmodifiable view of the specified map.
1406     */
1407    public static <K,V> Map<K,V> unmodifiableMap(Map<? extends K, ? extends V> m) {
1408        return new UnmodifiableMap<>(m);
1409    }
1410
1411    /**
1412     * @serial include
1413     */
1414    private static class UnmodifiableMap<K,V> implements Map<K,V>, Serializable {
1415        private static final long serialVersionUID = -1034234728574286014L;
1416
1417        private final Map<? extends K, ? extends V> m;
1418
1419        UnmodifiableMap(Map<? extends K, ? extends V> m) {
1420            if (m==null)
1421                throw new NullPointerException();
1422            this.m = m;
1423        }
1424
1425        public int size()                        {return m.size();}
1426        public boolean isEmpty()                 {return m.isEmpty();}
1427        public boolean containsKey(Object key)   {return m.containsKey(key);}
1428        public boolean containsValue(Object val) {return m.containsValue(val);}
1429        public V get(Object key)                 {return m.get(key);}
1430
1431        public V put(K key, V value) {
1432            throw new UnsupportedOperationException();
1433        }
1434        public V remove(Object key) {
1435            throw new UnsupportedOperationException();
1436        }
1437        public void putAll(Map<? extends K, ? extends V> m) {
1438            throw new UnsupportedOperationException();
1439        }
1440        public void clear() {
1441            throw new UnsupportedOperationException();
1442        }
1443
1444        private transient Set<K> keySet = null;
1445        private transient Set<Map.Entry<K,V>> entrySet = null;
1446        private transient Collection<V> values = null;
1447
1448        public Set<K> keySet() {
1449            if (keySet==null)
1450                keySet = unmodifiableSet(m.keySet());
1451            return keySet;
1452        }
1453
1454        public Set<Map.Entry<K,V>> entrySet() {
1455            if (entrySet==null)
1456                entrySet = new UnmodifiableEntrySet<>(m.entrySet());
1457            return entrySet;
1458        }
1459
1460        public Collection<V> values() {
1461            if (values==null)
1462                values = unmodifiableCollection(m.values());
1463            return values;
1464        }
1465
1466        public boolean equals(Object o) {return o == this || m.equals(o);}
1467        public int hashCode()           {return m.hashCode();}
1468        public String toString()        {return m.toString();}
1469
1470        // Override default methods in Map
1471        @Override
1472        @SuppressWarnings("unchecked")
1473        public V getOrDefault(Object k, V defaultValue) {
1474            // Safe cast as we don't change the value
1475            return ((Map<K, V>)m).getOrDefault(k, defaultValue);
1476        }
1477
1478        @Override
1479        public void forEach(BiConsumer<? super K, ? super V> action) {
1480            m.forEach(action);
1481        }
1482
1483        @Override
1484        public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1485            throw new UnsupportedOperationException();
1486        }
1487
1488        @Override
1489        public V putIfAbsent(K key, V value) {
1490            throw new UnsupportedOperationException();
1491        }
1492
1493        @Override
1494        public boolean remove(Object key, Object value) {
1495            throw new UnsupportedOperationException();
1496        }
1497
1498        @Override
1499        public boolean replace(K key, V oldValue, V newValue) {
1500            throw new UnsupportedOperationException();
1501        }
1502
1503        @Override
1504        public V replace(K key, V value) {
1505            throw new UnsupportedOperationException();
1506        }
1507
1508        @Override
1509        public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
1510            throw new UnsupportedOperationException();
1511        }
1512
1513        @Override
1514        public V computeIfPresent(K key,
1515                                  BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1516            throw new UnsupportedOperationException();
1517        }
1518
1519        @Override
1520        public V compute(K key,
1521                         BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1522            throw new UnsupportedOperationException();
1523        }
1524
1525        @Override
1526        public V merge(K key, V value,
1527                       BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1528            throw new UnsupportedOperationException();
1529        }
1530
1531        /**
1532         * We need this class in addition to UnmodifiableSet as
1533         * Map.Entries themselves permit modification of the backing Map
1534         * via their setValue operation.  This class is subtle: there are
1535         * many possible attacks that must be thwarted.
1536         *
1537         * @serial include
1538         */
1539        static class UnmodifiableEntrySet<K,V>
1540            extends UnmodifiableSet<Map.Entry<K,V>> {
1541            private static final long serialVersionUID = 7854390611657943733L;
1542
1543            @SuppressWarnings({"unchecked", "rawtypes"})
1544            UnmodifiableEntrySet(Set<? extends Map.Entry<? extends K, ? extends V>> s) {
1545                // Need to cast to raw in order to work around a limitation in the type system
1546                super((Set)s);
1547            }
1548
1549            static <K, V> Consumer<Map.Entry<K, V>> entryConsumer(Consumer<? super Entry<K, V>> action) {
1550                return e -> action.accept(new UnmodifiableEntry<>(e));
1551            }
1552
1553            // Override default methods in Collection
1554            public void forEach(Consumer<? super Entry<K, V>> action) {
1555                Objects.requireNonNull(action);
1556                c.forEach(entryConsumer(action));
1557            }
1558
1559            static final class UnmodifiableEntrySetSpliterator<K, V>
1560                    implements Spliterator<Entry<K,V>> {
1561                final Spliterator<Map.Entry<K, V>> s;
1562
1563                UnmodifiableEntrySetSpliterator(Spliterator<Entry<K, V>> s) {
1564                    this.s = s;
1565                }
1566
1567                @Override
1568                public boolean tryAdvance(Consumer<? super Entry<K, V>> action) {
1569                    Objects.requireNonNull(action);
1570                    return s.tryAdvance(entryConsumer(action));
1571                }
1572
1573                @Override
1574                public void forEachRemaining(Consumer<? super Entry<K, V>> action) {
1575                    Objects.requireNonNull(action);
1576                    s.forEachRemaining(entryConsumer(action));
1577                }
1578
1579                @Override
1580                public Spliterator<Entry<K, V>> trySplit() {
1581                    Spliterator<Entry<K, V>> split = s.trySplit();
1582                    return split == null
1583                           ? null
1584                           : new UnmodifiableEntrySetSpliterator<>(split);
1585                }
1586
1587                @Override
1588                public long estimateSize() {
1589                    return s.estimateSize();
1590                }
1591
1592                @Override
1593                public long getExactSizeIfKnown() {
1594                    return s.getExactSizeIfKnown();
1595                }
1596
1597                @Override
1598                public int characteristics() {
1599                    return s.characteristics();
1600                }
1601
1602                @Override
1603                public boolean hasCharacteristics(int characteristics) {
1604                    return s.hasCharacteristics(characteristics);
1605                }
1606
1607                @Override
1608                public Comparator<? super Entry<K, V>> getComparator() {
1609                    return s.getComparator();
1610                }
1611            }
1612
1613            @SuppressWarnings("unchecked")
1614            public Spliterator<Entry<K,V>> spliterator() {
1615                return new UnmodifiableEntrySetSpliterator<>(
1616                        (Spliterator<Map.Entry<K, V>>) c.spliterator());
1617            }
1618
1619            @Override
1620            public Stream<Entry<K,V>> stream() {
1621                return StreamSupport.stream(spliterator(), false);
1622            }
1623
1624            @Override
1625            public Stream<Entry<K,V>> parallelStream() {
1626                return StreamSupport.stream(spliterator(), true);
1627            }
1628
1629            public Iterator<Map.Entry<K,V>> iterator() {
1630                return new Iterator<Map.Entry<K,V>>() {
1631                    private final Iterator<? extends Map.Entry<? extends K, ? extends V>> i = c.iterator();
1632
1633                    public boolean hasNext() {
1634                        return i.hasNext();
1635                    }
1636                    public Map.Entry<K,V> next() {
1637                        return new UnmodifiableEntry<>(i.next());
1638                    }
1639                    public void remove() {
1640                        throw new UnsupportedOperationException();
1641                    }
1642                    // Android-note: This seems pretty inconsistent. Unlike other subclasses, we aren't
1643                    // delegating to the subclass iterator here. Seems like an oversight.
1644                };
1645            }
1646
1647            @SuppressWarnings("unchecked")
1648            public Object[] toArray() {
1649                Object[] a = c.toArray();
1650                for (int i=0; i<a.length; i++)
1651                    a[i] = new UnmodifiableEntry<>((Map.Entry<? extends K, ? extends V>)a[i]);
1652                return a;
1653            }
1654
1655            @SuppressWarnings("unchecked")
1656            public <T> T[] toArray(T[] a) {
1657                // We don't pass a to c.toArray, to avoid window of
1658                // vulnerability wherein an unscrupulous multithreaded client
1659                // could get his hands on raw (unwrapped) Entries from c.
1660                Object[] arr = c.toArray(a.length==0 ? a : Arrays.copyOf(a, 0));
1661
1662                for (int i=0; i<arr.length; i++)
1663                    arr[i] = new UnmodifiableEntry<>((Map.Entry<? extends K, ? extends V>)arr[i]);
1664
1665                if (arr.length > a.length)
1666                    return (T[])arr;
1667
1668                System.arraycopy(arr, 0, a, 0, arr.length);
1669                if (a.length > arr.length)
1670                    a[arr.length] = null;
1671                return a;
1672            }
1673
1674            /**
1675             * This method is overridden to protect the backing set against
1676             * an object with a nefarious equals function that senses
1677             * that the equality-candidate is Map.Entry and calls its
1678             * setValue method.
1679             */
1680            public boolean contains(Object o) {
1681                if (!(o instanceof Map.Entry))
1682                    return false;
1683                return c.contains(
1684                    new UnmodifiableEntry<>((Map.Entry<?,?>) o));
1685            }
1686
1687            /**
1688             * The next two methods are overridden to protect against
1689             * an unscrupulous List whose contains(Object o) method senses
1690             * when o is a Map.Entry, and calls o.setValue.
1691             */
1692            public boolean containsAll(Collection<?> coll) {
1693                for (Object e : coll) {
1694                    if (!contains(e)) // Invokes safe contains() above
1695                        return false;
1696                }
1697                return true;
1698            }
1699            public boolean equals(Object o) {
1700                if (o == this)
1701                    return true;
1702
1703                if (!(o instanceof Set))
1704                    return false;
1705                Set<?> s = (Set<?>) o;
1706                if (s.size() != c.size())
1707                    return false;
1708                return containsAll(s); // Invokes safe containsAll() above
1709            }
1710
1711            /**
1712             * This "wrapper class" serves two purposes: it prevents
1713             * the client from modifying the backing Map, by short-circuiting
1714             * the setValue method, and it protects the backing Map against
1715             * an ill-behaved Map.Entry that attempts to modify another
1716             * Map Entry when asked to perform an equality check.
1717             */
1718            private static class UnmodifiableEntry<K,V> implements Map.Entry<K,V> {
1719                private Map.Entry<? extends K, ? extends V> e;
1720
1721                UnmodifiableEntry(Map.Entry<? extends K, ? extends V> e)
1722                        {this.e = Objects.requireNonNull(e);}
1723
1724                public K getKey()        {return e.getKey();}
1725                public V getValue()      {return e.getValue();}
1726                public V setValue(V value) {
1727                    throw new UnsupportedOperationException();
1728                }
1729                public int hashCode()    {return e.hashCode();}
1730                public boolean equals(Object o) {
1731                    if (this == o)
1732                        return true;
1733                    if (!(o instanceof Map.Entry))
1734                        return false;
1735                    Map.Entry<?,?> t = (Map.Entry<?,?>)o;
1736                    return eq(e.getKey(),   t.getKey()) &&
1737                           eq(e.getValue(), t.getValue());
1738                }
1739                public String toString() {return e.toString();}
1740            }
1741        }
1742    }
1743
1744    /**
1745     * Returns an unmodifiable view of the specified sorted map.  This method
1746     * allows modules to provide users with "read-only" access to internal
1747     * sorted maps.  Query operations on the returned sorted map "read through"
1748     * to the specified sorted map.  Attempts to modify the returned
1749     * sorted map, whether direct, via its collection views, or via its
1750     * <tt>subMap</tt>, <tt>headMap</tt>, or <tt>tailMap</tt> views, result in
1751     * an <tt>UnsupportedOperationException</tt>.<p>
1752     *
1753     * The returned sorted map will be serializable if the specified sorted map
1754     * is serializable.
1755     *
1756     * @param <K> the class of the map keys
1757     * @param <V> the class of the map values
1758     * @param m the sorted map for which an unmodifiable view is to be
1759     *        returned.
1760     * @return an unmodifiable view of the specified sorted map.
1761     */
1762    public static <K,V> SortedMap<K,V> unmodifiableSortedMap(SortedMap<K, ? extends V> m) {
1763        return new UnmodifiableSortedMap<>(m);
1764    }
1765
1766    /**
1767     * @serial include
1768     */
1769    static class UnmodifiableSortedMap<K,V>
1770          extends UnmodifiableMap<K,V>
1771          implements SortedMap<K,V>, Serializable {
1772        private static final long serialVersionUID = -8806743815996713206L;
1773
1774        private final SortedMap<K, ? extends V> sm;
1775
1776        UnmodifiableSortedMap(SortedMap<K, ? extends V> m) {super(m); sm = m; }
1777        public Comparator<? super K> comparator()   { return sm.comparator(); }
1778        public SortedMap<K,V> subMap(K fromKey, K toKey)
1779             { return new UnmodifiableSortedMap<>(sm.subMap(fromKey, toKey)); }
1780        public SortedMap<K,V> headMap(K toKey)
1781                     { return new UnmodifiableSortedMap<>(sm.headMap(toKey)); }
1782        public SortedMap<K,V> tailMap(K fromKey)
1783                   { return new UnmodifiableSortedMap<>(sm.tailMap(fromKey)); }
1784        public K firstKey()                           { return sm.firstKey(); }
1785        public K lastKey()                             { return sm.lastKey(); }
1786    }
1787
1788    // Synch Wrappers
1789
1790    // TODO: Replace {@code stream} with {@link Stream} once we have them.
1791    /**
1792     * Returns a synchronized (thread-safe) collection backed by the specified
1793     * collection.  In order to guarantee serial access, it is critical that
1794     * <strong>all</strong> access to the backing collection is accomplished
1795     * through the returned collection.<p>
1796     *
1797     * It is imperative that the user manually synchronize on the returned
1798     * collection when traversing it via {@link Iterator}, {@link Spliterator}
1799     * or {@code Stream}:
1800     * <pre>
1801     *  Collection c = Collections.synchronizedCollection(myCollection);
1802     *     ...
1803     *  synchronized (c) {
1804     *      Iterator i = c.iterator(); // Must be in the synchronized block
1805     *      while (i.hasNext())
1806     *         foo(i.next());
1807     *  }
1808     * </pre>
1809     * Failure to follow this advice may result in non-deterministic behavior.
1810     *
1811     * <p>The returned collection does <i>not</i> pass the {@code hashCode}
1812     * and {@code equals} operations through to the backing collection, but
1813     * relies on {@code Object}'s equals and hashCode methods.  This is
1814     * necessary to preserve the contracts of these operations in the case
1815     * that the backing collection is a set or a list.<p>
1816     *
1817     * The returned collection will be serializable if the specified collection
1818     * is serializable.
1819     *
1820     * @param  <T> the class of the objects in the collection
1821     * @param  c the collection to be "wrapped" in a synchronized collection.
1822     * @return a synchronized view of the specified collection.
1823     */
1824    public static <T> Collection<T> synchronizedCollection(Collection<T> c) {
1825        return new SynchronizedCollection<>(c);
1826    }
1827
1828    static <T> Collection<T> synchronizedCollection(Collection<T> c, Object mutex) {
1829        return new SynchronizedCollection<>(c, mutex);
1830    }
1831
1832    /**
1833     * @serial include
1834     */
1835    static class SynchronizedCollection<E> implements Collection<E>, Serializable {
1836        private static final long serialVersionUID = 3053995032091335093L;
1837
1838        final Collection<E> c;  // Backing Collection
1839        final Object mutex;     // Object on which to synchronize
1840
1841        SynchronizedCollection(Collection<E> c) {
1842            this.c = Objects.requireNonNull(c);
1843            mutex = this;
1844        }
1845
1846        SynchronizedCollection(Collection<E> c, Object mutex) {
1847            this.c = Objects.requireNonNull(c);
1848            this.mutex = Objects.requireNonNull(mutex);
1849        }
1850
1851        public int size() {
1852            synchronized (mutex) {return c.size();}
1853        }
1854        public boolean isEmpty() {
1855            synchronized (mutex) {return c.isEmpty();}
1856        }
1857        public boolean contains(Object o) {
1858            synchronized (mutex) {return c.contains(o);}
1859        }
1860        public Object[] toArray() {
1861            synchronized (mutex) {return c.toArray();}
1862        }
1863        public <T> T[] toArray(T[] a) {
1864            synchronized (mutex) {return c.toArray(a);}
1865        }
1866
1867        public Iterator<E> iterator() {
1868            return c.iterator(); // Must be manually synched by user!
1869        }
1870
1871        public boolean add(E e) {
1872            synchronized (mutex) {return c.add(e);}
1873        }
1874        public boolean remove(Object o) {
1875            synchronized (mutex) {return c.remove(o);}
1876        }
1877
1878        public boolean containsAll(Collection<?> coll) {
1879            synchronized (mutex) {return c.containsAll(coll);}
1880        }
1881        public boolean addAll(Collection<? extends E> coll) {
1882            synchronized (mutex) {return c.addAll(coll);}
1883        }
1884        public boolean removeAll(Collection<?> coll) {
1885            synchronized (mutex) {return c.removeAll(coll);}
1886        }
1887        public boolean retainAll(Collection<?> coll) {
1888            synchronized (mutex) {return c.retainAll(coll);}
1889        }
1890        public void clear() {
1891            synchronized (mutex) {c.clear();}
1892        }
1893        public String toString() {
1894            synchronized (mutex) {return c.toString();}
1895        }
1896        // Override default methods in Collection
1897        @Override
1898        public void forEach(Consumer<? super E> consumer) {
1899            synchronized (mutex) {c.forEach(consumer);}
1900        }
1901        @Override
1902        public boolean removeIf(Predicate<? super E> filter) {
1903            synchronized (mutex) {return c.removeIf(filter);}
1904        }
1905        @Override
1906        public Spliterator<E> spliterator() {
1907            return c.spliterator(); // Must be manually synched by user!
1908        }
1909        @Override
1910        public Stream<E> stream() {
1911            return c.stream(); // Must be manually synched by user!
1912        }
1913        @Override
1914        public Stream<E> parallelStream() {
1915            return c.parallelStream(); // Must be manually synched by user!
1916        }
1917        private void writeObject(ObjectOutputStream s) throws IOException {
1918            synchronized (mutex) {s.defaultWriteObject();}
1919        }
1920    }
1921
1922    /**
1923     * Returns a synchronized (thread-safe) set backed by the specified
1924     * set.  In order to guarantee serial access, it is critical that
1925     * <strong>all</strong> access to the backing set is accomplished
1926     * through the returned set.<p>
1927     *
1928     * It is imperative that the user manually synchronize on the returned
1929     * set when iterating over it:
1930     * <pre>
1931     *  Set s = Collections.synchronizedSet(new HashSet());
1932     *      ...
1933     *  synchronized (s) {
1934     *      Iterator i = s.iterator(); // Must be in the synchronized block
1935     *      while (i.hasNext())
1936     *          foo(i.next());
1937     *  }
1938     * </pre>
1939     * Failure to follow this advice may result in non-deterministic behavior.
1940     *
1941     * <p>The returned set will be serializable if the specified set is
1942     * serializable.
1943     *
1944     * @param  <T> the class of the objects in the set
1945     * @param  s the set to be "wrapped" in a synchronized set.
1946     * @return a synchronized view of the specified set.
1947     */
1948    public static <T> Set<T> synchronizedSet(Set<T> s) {
1949        return new SynchronizedSet<>(s);
1950    }
1951
1952    static <T> Set<T> synchronizedSet(Set<T> s, Object mutex) {
1953        return new SynchronizedSet<>(s, mutex);
1954    }
1955
1956    /**
1957     * @serial include
1958     */
1959    static class SynchronizedSet<E>
1960          extends SynchronizedCollection<E>
1961          implements Set<E> {
1962        private static final long serialVersionUID = 487447009682186044L;
1963
1964        SynchronizedSet(Set<E> s) {
1965            super(s);
1966        }
1967        SynchronizedSet(Set<E> s, Object mutex) {
1968            super(s, mutex);
1969        }
1970
1971        public boolean equals(Object o) {
1972            if (this == o)
1973                return true;
1974            synchronized (mutex) {return c.equals(o);}
1975        }
1976        public int hashCode() {
1977            synchronized (mutex) {return c.hashCode();}
1978        }
1979    }
1980
1981    /**
1982     * Returns a synchronized (thread-safe) sorted set backed by the specified
1983     * sorted set.  In order to guarantee serial access, it is critical that
1984     * <strong>all</strong> access to the backing sorted set is accomplished
1985     * through the returned sorted set (or its views).<p>
1986     *
1987     * It is imperative that the user manually synchronize on the returned
1988     * sorted set when iterating over it or any of its <tt>subSet</tt>,
1989     * <tt>headSet</tt>, or <tt>tailSet</tt> views.
1990     * <pre>
1991     *  SortedSet s = Collections.synchronizedSortedSet(new TreeSet());
1992     *      ...
1993     *  synchronized (s) {
1994     *      Iterator i = s.iterator(); // Must be in the synchronized block
1995     *      while (i.hasNext())
1996     *          foo(i.next());
1997     *  }
1998     * </pre>
1999     * or:
2000     * <pre>
2001     *  SortedSet s = Collections.synchronizedSortedSet(new TreeSet());
2002     *  SortedSet s2 = s.headSet(foo);
2003     *      ...
2004     *  synchronized (s) {  // Note: s, not s2!!!
2005     *      Iterator i = s2.iterator(); // Must be in the synchronized block
2006     *      while (i.hasNext())
2007     *          foo(i.next());
2008     *  }
2009     * </pre>
2010     * Failure to follow this advice may result in non-deterministic behavior.
2011     *
2012     * <p>The returned sorted set will be serializable if the specified
2013     * sorted set is serializable.
2014     *
2015     * @param  <T> the class of the objects in the set
2016     * @param  s the sorted set to be "wrapped" in a synchronized sorted set.
2017     * @return a synchronized view of the specified sorted set.
2018     */
2019    public static <T> SortedSet<T> synchronizedSortedSet(SortedSet<T> s) {
2020        return new SynchronizedSortedSet<>(s);
2021    }
2022
2023    /**
2024     * @serial include
2025     */
2026    static class SynchronizedSortedSet<E>
2027        extends SynchronizedSet<E>
2028        implements SortedSet<E>
2029    {
2030        private static final long serialVersionUID = 8695801310862127406L;
2031
2032        private final SortedSet<E> ss;
2033
2034        SynchronizedSortedSet(SortedSet<E> s) {
2035            super(s);
2036            ss = s;
2037        }
2038        SynchronizedSortedSet(SortedSet<E> s, Object mutex) {
2039            super(s, mutex);
2040            ss = s;
2041        }
2042
2043        public Comparator<? super E> comparator() {
2044            synchronized (mutex) {return ss.comparator();}
2045        }
2046
2047        public SortedSet<E> subSet(E fromElement, E toElement) {
2048            synchronized (mutex) {
2049                return new SynchronizedSortedSet<>(
2050                    ss.subSet(fromElement, toElement), mutex);
2051            }
2052        }
2053        public SortedSet<E> headSet(E toElement) {
2054            synchronized (mutex) {
2055                return new SynchronizedSortedSet<>(ss.headSet(toElement), mutex);
2056            }
2057        }
2058        public SortedSet<E> tailSet(E fromElement) {
2059            synchronized (mutex) {
2060               return new SynchronizedSortedSet<>(ss.tailSet(fromElement),mutex);
2061            }
2062        }
2063
2064        public E first() {
2065            synchronized (mutex) {return ss.first();}
2066        }
2067        public E last() {
2068            synchronized (mutex) {return ss.last();}
2069        }
2070    }
2071
2072    /**
2073     * Returns a synchronized (thread-safe) list backed by the specified
2074     * list.  In order to guarantee serial access, it is critical that
2075     * <strong>all</strong> access to the backing list is accomplished
2076     * through the returned list.<p>
2077     *
2078     * It is imperative that the user manually synchronize on the returned
2079     * list when iterating over it:
2080     * <pre>
2081     *  List list = Collections.synchronizedList(new ArrayList());
2082     *      ...
2083     *  synchronized (list) {
2084     *      Iterator i = list.iterator(); // Must be in synchronized block
2085     *      while (i.hasNext())
2086     *          foo(i.next());
2087     *  }
2088     * </pre>
2089     * Failure to follow this advice may result in non-deterministic behavior.
2090     *
2091     * <p>The returned list will be serializable if the specified list is
2092     * serializable.
2093     *
2094     * @param  <T> the class of the objects in the list
2095     * @param  list the list to be "wrapped" in a synchronized list.
2096     * @return a synchronized view of the specified list.
2097     */
2098    public static <T> List<T> synchronizedList(List<T> list) {
2099        return (list instanceof RandomAccess ?
2100                new SynchronizedRandomAccessList<>(list) :
2101                new SynchronizedList<>(list));
2102    }
2103
2104    static <T> List<T> synchronizedList(List<T> list, Object mutex) {
2105        return (list instanceof RandomAccess ?
2106                new SynchronizedRandomAccessList<>(list, mutex) :
2107                new SynchronizedList<>(list, mutex));
2108    }
2109
2110    /**
2111     * @serial include
2112     */
2113    static class SynchronizedList<E>
2114        extends SynchronizedCollection<E>
2115        implements List<E> {
2116        private static final long serialVersionUID = -7754090372962971524L;
2117
2118        final List<E> list;
2119
2120        SynchronizedList(List<E> list) {
2121            super(list);
2122            this.list = list;
2123        }
2124        SynchronizedList(List<E> list, Object mutex) {
2125            super(list, mutex);
2126            this.list = list;
2127        }
2128
2129        public boolean equals(Object o) {
2130            if (this == o)
2131                return true;
2132            synchronized (mutex) {return list.equals(o);}
2133        }
2134        public int hashCode() {
2135            synchronized (mutex) {return list.hashCode();}
2136        }
2137
2138        public E get(int index) {
2139            synchronized (mutex) {return list.get(index);}
2140        }
2141        public E set(int index, E element) {
2142            synchronized (mutex) {return list.set(index, element);}
2143        }
2144        public void add(int index, E element) {
2145            synchronized (mutex) {list.add(index, element);}
2146        }
2147        public E remove(int index) {
2148            synchronized (mutex) {return list.remove(index);}
2149        }
2150
2151        public int indexOf(Object o) {
2152            synchronized (mutex) {return list.indexOf(o);}
2153        }
2154        public int lastIndexOf(Object o) {
2155            synchronized (mutex) {return list.lastIndexOf(o);}
2156        }
2157
2158        public boolean addAll(int index, Collection<? extends E> c) {
2159            synchronized (mutex) {return list.addAll(index, c);}
2160        }
2161
2162        public ListIterator<E> listIterator() {
2163            return list.listIterator(); // Must be manually synched by user
2164        }
2165
2166        public ListIterator<E> listIterator(int index) {
2167            return list.listIterator(index); // Must be manually synched by user
2168        }
2169
2170        public List<E> subList(int fromIndex, int toIndex) {
2171            synchronized (mutex) {
2172                return new SynchronizedList<>(list.subList(fromIndex, toIndex),
2173                                            mutex);
2174            }
2175        }
2176
2177        /**
2178         * SynchronizedRandomAccessList instances are serialized as
2179         * SynchronizedList instances to allow them to be deserialized
2180         * in pre-1.4 JREs (which do not have SynchronizedRandomAccessList).
2181         * This method inverts the transformation.  As a beneficial
2182         * side-effect, it also grafts the RandomAccess marker onto
2183         * SynchronizedList instances that were serialized in pre-1.4 JREs.
2184         *
2185         * Note: Unfortunately, SynchronizedRandomAccessList instances
2186         * serialized in 1.4.1 and deserialized in 1.4 will become
2187         * SynchronizedList instances, as this method was missing in 1.4.
2188         */
2189        private Object readResolve() {
2190            return (list instanceof RandomAccess
2191                    ? new SynchronizedRandomAccessList<>(list)
2192                    : this);
2193        }
2194    }
2195
2196    /**
2197     * @serial include
2198     */
2199    static class SynchronizedRandomAccessList<E>
2200        extends SynchronizedList<E>
2201        implements RandomAccess {
2202
2203        SynchronizedRandomAccessList(List<E> list) {
2204            super(list);
2205        }
2206
2207        SynchronizedRandomAccessList(List<E> list, Object mutex) {
2208            super(list, mutex);
2209        }
2210
2211        public List<E> subList(int fromIndex, int toIndex) {
2212            synchronized (mutex) {
2213                return new SynchronizedRandomAccessList<>(
2214                    list.subList(fromIndex, toIndex), mutex);
2215            }
2216        }
2217
2218        private static final long serialVersionUID = 1530674583602358482L;
2219
2220        /**
2221         * Allows instances to be deserialized in pre-1.4 JREs (which do
2222         * not have SynchronizedRandomAccessList).  SynchronizedList has
2223         * a readResolve method that inverts this transformation upon
2224         * deserialization.
2225         */
2226        private Object writeReplace() {
2227            return new SynchronizedList<>(list);
2228        }
2229    }
2230
2231    /**
2232     * Returns a synchronized (thread-safe) map backed by the specified
2233     * map.  In order to guarantee serial access, it is critical that
2234     * <strong>all</strong> access to the backing map is accomplished
2235     * through the returned map.<p>
2236     *
2237     * It is imperative that the user manually synchronize on the returned
2238     * map when iterating over any of its collection views:
2239     * <pre>
2240     *  Map m = Collections.synchronizedMap(new HashMap());
2241     *      ...
2242     *  Set s = m.keySet();  // Needn't be in synchronized block
2243     *      ...
2244     *  synchronized (m) {  // Synchronizing on m, not s!
2245     *      Iterator i = s.iterator(); // Must be in synchronized block
2246     *      while (i.hasNext())
2247     *          foo(i.next());
2248     *  }
2249     * </pre>
2250     * Failure to follow this advice may result in non-deterministic behavior.
2251     *
2252     * <p>The returned map will be serializable if the specified map is
2253     * serializable.
2254     *
2255     * @param <K> the class of the map keys
2256     * @param <V> the class of the map values
2257     * @param  m the map to be "wrapped" in a synchronized map.
2258     * @return a synchronized view of the specified map.
2259     */
2260    public static <K,V> Map<K,V> synchronizedMap(Map<K,V> m) {
2261        return new SynchronizedMap<>(m);
2262    }
2263
2264    /**
2265     * @serial include
2266     */
2267    private static class SynchronizedMap<K,V>
2268        implements Map<K,V>, Serializable {
2269        private static final long serialVersionUID = 1978198479659022715L;
2270
2271        private final Map<K,V> m;     // Backing Map
2272        final Object      mutex;        // Object on which to synchronize
2273
2274        SynchronizedMap(Map<K,V> m) {
2275            this.m = Objects.requireNonNull(m);
2276            mutex = this;
2277        }
2278
2279        SynchronizedMap(Map<K,V> m, Object mutex) {
2280            this.m = m;
2281            this.mutex = mutex;
2282        }
2283
2284        public int size() {
2285            synchronized (mutex) {return m.size();}
2286        }
2287        public boolean isEmpty() {
2288            synchronized (mutex) {return m.isEmpty();}
2289        }
2290        public boolean containsKey(Object key) {
2291            synchronized (mutex) {return m.containsKey(key);}
2292        }
2293        public boolean containsValue(Object value) {
2294            synchronized (mutex) {return m.containsValue(value);}
2295        }
2296        public V get(Object key) {
2297            synchronized (mutex) {return m.get(key);}
2298        }
2299
2300        public V put(K key, V value) {
2301            synchronized (mutex) {return m.put(key, value);}
2302        }
2303        public V remove(Object key) {
2304            synchronized (mutex) {return m.remove(key);}
2305        }
2306        public void putAll(Map<? extends K, ? extends V> map) {
2307            synchronized (mutex) {m.putAll(map);}
2308        }
2309        public void clear() {
2310            synchronized (mutex) {m.clear();}
2311        }
2312
2313        private transient Set<K> keySet = null;
2314        private transient Set<Map.Entry<K,V>> entrySet = null;
2315        private transient Collection<V> values = null;
2316
2317        public Set<K> keySet() {
2318            synchronized (mutex) {
2319                if (keySet==null)
2320                    keySet = new SynchronizedSet<>(m.keySet(), mutex);
2321                return keySet;
2322            }
2323        }
2324
2325        public Set<Map.Entry<K,V>> entrySet() {
2326            synchronized (mutex) {
2327                if (entrySet==null)
2328                    entrySet = new SynchronizedSet<>(m.entrySet(), mutex);
2329                return entrySet;
2330            }
2331        }
2332
2333        public Collection<V> values() {
2334            synchronized (mutex) {
2335                if (values==null)
2336                    values = new SynchronizedCollection<>(m.values(), mutex);
2337                return values;
2338            }
2339        }
2340
2341        public boolean equals(Object o) {
2342            if (this == o)
2343                return true;
2344            synchronized (mutex) {return m.equals(o);}
2345        }
2346        public int hashCode() {
2347            synchronized (mutex) {return m.hashCode();}
2348        }
2349        public String toString() {
2350            synchronized (mutex) {return m.toString();}
2351        }
2352
2353        // Override default methods in Map
2354        @Override
2355        public V getOrDefault(Object k, V defaultValue) {
2356            synchronized (mutex) {return m.getOrDefault(k, defaultValue);}
2357        }
2358        @Override
2359        public void forEach(BiConsumer<? super K, ? super V> action) {
2360            synchronized (mutex) {m.forEach(action);}
2361        }
2362        @Override
2363        public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
2364            synchronized (mutex) {m.replaceAll(function);}
2365        }
2366        @Override
2367        public V putIfAbsent(K key, V value) {
2368            synchronized (mutex) {return m.putIfAbsent(key, value);}
2369        }
2370        @Override
2371        public boolean remove(Object key, Object value) {
2372            synchronized (mutex) {return m.remove(key, value);}
2373        }
2374        @Override
2375        public boolean replace(K key, V oldValue, V newValue) {
2376            synchronized (mutex) {return m.replace(key, oldValue, newValue);}
2377        }
2378        @Override
2379        public V replace(K key, V value) {
2380            synchronized (mutex) {return m.replace(key, value);}
2381        }
2382        @Override
2383        public V computeIfAbsent(K key,
2384                                 Function<? super K, ? extends V> mappingFunction) {
2385            synchronized (mutex) {return m.computeIfAbsent(key, mappingFunction);}
2386        }
2387        @Override
2388        public V computeIfPresent(K key,
2389                                  BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2390            synchronized (mutex) {return m.computeIfPresent(key, remappingFunction);}
2391        }
2392        @Override
2393        public V compute(K key,
2394                         BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2395            synchronized (mutex) {return m.compute(key, remappingFunction);}
2396        }
2397        @Override
2398        public V merge(K key, V value,
2399                       BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
2400            synchronized (mutex) {return m.merge(key, value, remappingFunction);}
2401        }
2402
2403        private void writeObject(ObjectOutputStream s) throws IOException {
2404            synchronized (mutex) {s.defaultWriteObject();}
2405        }
2406    }
2407
2408    /**
2409     * Returns a synchronized (thread-safe) sorted map backed by the specified
2410     * sorted map.  In order to guarantee serial access, it is critical that
2411     * <strong>all</strong> access to the backing sorted map is accomplished
2412     * through the returned sorted map (or its views).<p>
2413     *
2414     * It is imperative that the user manually synchronize on the returned
2415     * sorted map when iterating over any of its collection views, or the
2416     * collections views of any of its <tt>subMap</tt>, <tt>headMap</tt> or
2417     * <tt>tailMap</tt> views.
2418     * <pre>
2419     *  SortedMap m = Collections.synchronizedSortedMap(new TreeMap());
2420     *      ...
2421     *  Set s = m.keySet();  // Needn't be in synchronized block
2422     *      ...
2423     *  synchronized (m) {  // Synchronizing on m, not s!
2424     *      Iterator i = s.iterator(); // Must be in synchronized block
2425     *      while (i.hasNext())
2426     *          foo(i.next());
2427     *  }
2428     * </pre>
2429     * or:
2430     * <pre>
2431     *  SortedMap m = Collections.synchronizedSortedMap(new TreeMap());
2432     *  SortedMap m2 = m.subMap(foo, bar);
2433     *      ...
2434     *  Set s2 = m2.keySet();  // Needn't be in synchronized block
2435     *      ...
2436     *  synchronized (m) {  // Synchronizing on m, not m2 or s2!
2437     *      Iterator i = s.iterator(); // Must be in synchronized block
2438     *      while (i.hasNext())
2439     *          foo(i.next());
2440     *  }
2441     * </pre>
2442     * Failure to follow this advice may result in non-deterministic behavior.
2443     *
2444     * <p>The returned sorted map will be serializable if the specified
2445     * sorted map is serializable.
2446     *
2447     * @param <K> the class of the map keys
2448     * @param <V> the class of the map values
2449     * @param  m the sorted map to be "wrapped" in a synchronized sorted map.
2450     * @return a synchronized view of the specified sorted map.
2451     */
2452    public static <K,V> SortedMap<K,V> synchronizedSortedMap(SortedMap<K,V> m) {
2453        return new SynchronizedSortedMap<>(m);
2454    }
2455
2456    /**
2457     * @serial include
2458     */
2459    static class SynchronizedSortedMap<K,V>
2460        extends SynchronizedMap<K,V>
2461        implements SortedMap<K,V>
2462    {
2463        private static final long serialVersionUID = -8798146769416483793L;
2464
2465        private final SortedMap<K,V> sm;
2466
2467        SynchronizedSortedMap(SortedMap<K,V> m) {
2468            super(m);
2469            sm = m;
2470        }
2471        SynchronizedSortedMap(SortedMap<K,V> m, Object mutex) {
2472            super(m, mutex);
2473            sm = m;
2474        }
2475
2476        public Comparator<? super K> comparator() {
2477            synchronized (mutex) {return sm.comparator();}
2478        }
2479
2480        public SortedMap<K,V> subMap(K fromKey, K toKey) {
2481            synchronized (mutex) {
2482                return new SynchronizedSortedMap<>(
2483                    sm.subMap(fromKey, toKey), mutex);
2484            }
2485        }
2486        public SortedMap<K,V> headMap(K toKey) {
2487            synchronized (mutex) {
2488                return new SynchronizedSortedMap<>(sm.headMap(toKey), mutex);
2489            }
2490        }
2491        public SortedMap<K,V> tailMap(K fromKey) {
2492            synchronized (mutex) {
2493               return new SynchronizedSortedMap<>(sm.tailMap(fromKey),mutex);
2494            }
2495        }
2496
2497        public K firstKey() {
2498            synchronized (mutex) {return sm.firstKey();}
2499        }
2500        public K lastKey() {
2501            synchronized (mutex) {return sm.lastKey();}
2502        }
2503    }
2504
2505    // Dynamically typesafe collection wrappers
2506
2507    /**
2508     * Returns a dynamically typesafe view of the specified collection.
2509     * Any attempt to insert an element of the wrong type will result in an
2510     * immediate {@link ClassCastException}.  Assuming a collection
2511     * contains no incorrectly typed elements prior to the time a
2512     * dynamically typesafe view is generated, and that all subsequent
2513     * access to the collection takes place through the view, it is
2514     * <i>guaranteed</i> that the collection cannot contain an incorrectly
2515     * typed element.
2516     *
2517     * <p>The generics mechanism in the language provides compile-time
2518     * (static) type checking, but it is possible to defeat this mechanism
2519     * with unchecked casts.  Usually this is not a problem, as the compiler
2520     * issues warnings on all such unchecked operations.  There are, however,
2521     * times when static type checking alone is not sufficient.  For example,
2522     * suppose a collection is passed to a third-party library and it is
2523     * imperative that the library code not corrupt the collection by
2524     * inserting an element of the wrong type.
2525     *
2526     * <p>Another use of dynamically typesafe views is debugging.  Suppose a
2527     * program fails with a {@code ClassCastException}, indicating that an
2528     * incorrectly typed element was put into a parameterized collection.
2529     * Unfortunately, the exception can occur at any time after the erroneous
2530     * element is inserted, so it typically provides little or no information
2531     * as to the real source of the problem.  If the problem is reproducible,
2532     * one can quickly determine its source by temporarily modifying the
2533     * program to wrap the collection with a dynamically typesafe view.
2534     * For example, this declaration:
2535     *  <pre> {@code
2536     *     Collection<String> c = new HashSet<>();
2537     * }</pre>
2538     * may be replaced temporarily by this one:
2539     *  <pre> {@code
2540     *     Collection<String> c = Collections.checkedCollection(
2541     *         new HashSet<>(), String.class);
2542     * }</pre>
2543     * Running the program again will cause it to fail at the point where
2544     * an incorrectly typed element is inserted into the collection, clearly
2545     * identifying the source of the problem.  Once the problem is fixed, the
2546     * modified declaration may be reverted back to the original.
2547     *
2548     * <p>The returned collection does <i>not</i> pass the hashCode and equals
2549     * operations through to the backing collection, but relies on
2550     * {@code Object}'s {@code equals} and {@code hashCode} methods.  This
2551     * is necessary to preserve the contracts of these operations in the case
2552     * that the backing collection is a set or a list.
2553     *
2554     * <p>The returned collection will be serializable if the specified
2555     * collection is serializable.
2556     *
2557     * <p>Since {@code null} is considered to be a value of any reference
2558     * type, the returned collection permits insertion of null elements
2559     * whenever the backing collection does.
2560     *
2561     * @param <E> the class of the objects in the collection
2562     * @param c the collection for which a dynamically typesafe view is to be
2563     *          returned
2564     * @param type the type of element that {@code c} is permitted to hold
2565     * @return a dynamically typesafe view of the specified collection
2566     * @since 1.5
2567     */
2568    public static <E> Collection<E> checkedCollection(Collection<E> c,
2569                                                      Class<E> type) {
2570        return new CheckedCollection<>(c, type);
2571    }
2572
2573    @SuppressWarnings("unchecked")
2574    static <T> T[] zeroLengthArray(Class<T> type) {
2575        return (T[]) Array.newInstance(type, 0);
2576    }
2577
2578    /**
2579     * @serial include
2580     */
2581    static class CheckedCollection<E> implements Collection<E>, Serializable {
2582        private static final long serialVersionUID = 1578914078182001775L;
2583
2584        final Collection<E> c;
2585        final Class<E> type;
2586
2587        void typeCheck(Object o) {
2588            if (o != null && !type.isInstance(o))
2589                throw new ClassCastException(badElementMsg(o));
2590        }
2591
2592        private String badElementMsg(Object o) {
2593            return "Attempt to insert " + o.getClass() +
2594                " element into collection with element type " + type;
2595        }
2596
2597        CheckedCollection(Collection<E> c, Class<E> type) {
2598            if (c==null || type == null)
2599                throw new NullPointerException();
2600            this.c = c;
2601            this.type = type;
2602        }
2603
2604        public int size()                 { return c.size(); }
2605        public boolean isEmpty()          { return c.isEmpty(); }
2606        public boolean contains(Object o) { return c.contains(o); }
2607        public Object[] toArray()         { return c.toArray(); }
2608        public <T> T[] toArray(T[] a)     { return c.toArray(a); }
2609        public String toString()          { return c.toString(); }
2610        public boolean remove(Object o)   { return c.remove(o); }
2611        public void clear()               {        c.clear(); }
2612
2613        public boolean containsAll(Collection<?> coll) {
2614            return c.containsAll(coll);
2615        }
2616        public boolean removeAll(Collection<?> coll) {
2617            return c.removeAll(coll);
2618        }
2619        public boolean retainAll(Collection<?> coll) {
2620            return c.retainAll(coll);
2621        }
2622
2623        public Iterator<E> iterator() {
2624            // JDK-6363904 - unwrapped iterator could be typecast to
2625            // ListIterator with unsafe set()
2626            final Iterator<E> it = c.iterator();
2627            return new Iterator<E>() {
2628                public boolean hasNext() { return it.hasNext(); }
2629                public E next()          { return it.next(); }
2630                public void remove()     {        it.remove(); }};
2631            // Android-note: Should we delegate to it for forEachRemaining ?
2632        }
2633
2634        public boolean add(E e) {
2635            typeCheck(e);
2636            return c.add(e);
2637        }
2638
2639        private E[] zeroLengthElementArray = null; // Lazily initialized
2640
2641        private E[] zeroLengthElementArray() {
2642            return zeroLengthElementArray != null ? zeroLengthElementArray :
2643                (zeroLengthElementArray = zeroLengthArray(type));
2644        }
2645
2646        @SuppressWarnings("unchecked")
2647        Collection<E> checkedCopyOf(Collection<? extends E> coll) {
2648            Object[] a = null;
2649            try {
2650                E[] z = zeroLengthElementArray();
2651                a = coll.toArray(z);
2652                // Defend against coll violating the toArray contract
2653                if (a.getClass() != z.getClass())
2654                    a = Arrays.copyOf(a, a.length, z.getClass());
2655            } catch (ArrayStoreException ignore) {
2656                // To get better and consistent diagnostics,
2657                // we call typeCheck explicitly on each element.
2658                // We call clone() to defend against coll retaining a
2659                // reference to the returned array and storing a bad
2660                // element into it after it has been type checked.
2661                a = coll.toArray().clone();
2662                for (Object o : a)
2663                    typeCheck(o);
2664            }
2665            // A slight abuse of the type system, but safe here.
2666            return (Collection<E>) Arrays.asList(a);
2667        }
2668
2669        public boolean addAll(Collection<? extends E> coll) {
2670            // Doing things this way insulates us from concurrent changes
2671            // in the contents of coll and provides all-or-nothing
2672            // semantics (which we wouldn't get if we type-checked each
2673            // element as we added it)
2674            return c.addAll(checkedCopyOf(coll));
2675        }
2676
2677        // Override default methods in Collection
2678        @Override
2679        public void forEach(Consumer<? super E> action) {c.forEach(action);}
2680        @Override
2681        public boolean removeIf(Predicate<? super E> filter) {
2682            return c.removeIf(filter);
2683        }
2684        @Override
2685        public Spliterator<E> spliterator() {return c.spliterator();}
2686        @Override
2687        public Stream<E> stream()           {return c.stream();}
2688        @Override
2689        public Stream<E> parallelStream()   {return c.parallelStream();}
2690
2691    }
2692
2693    /**
2694     * Returns a dynamically typesafe view of the specified set.
2695     * Any attempt to insert an element of the wrong type will result in
2696     * an immediate {@link ClassCastException}.  Assuming a set contains
2697     * no incorrectly typed elements prior to the time a dynamically typesafe
2698     * view is generated, and that all subsequent access to the set
2699     * takes place through the view, it is <i>guaranteed</i> that the
2700     * set cannot contain an incorrectly typed element.
2701     *
2702     * <p>A discussion of the use of dynamically typesafe views may be
2703     * found in the documentation for the {@link #checkedCollection
2704     * checkedCollection} method.
2705     *
2706     * <p>The returned set will be serializable if the specified set is
2707     * serializable.
2708     *
2709     * <p>Since {@code null} is considered to be a value of any reference
2710     * type, the returned set permits insertion of null elements whenever
2711     * the backing set does.
2712     *
2713     * @param <E> the class of the objects in the set
2714     * @param s the set for which a dynamically typesafe view is to be
2715     *          returned
2716     * @param type the type of element that {@code s} is permitted to hold
2717     * @return a dynamically typesafe view of the specified set
2718     * @since 1.5
2719     */
2720    public static <E> Set<E> checkedSet(Set<E> s, Class<E> type) {
2721        return new CheckedSet<>(s, type);
2722    }
2723
2724    /**
2725     * @serial include
2726     */
2727    static class CheckedSet<E> extends CheckedCollection<E>
2728                                 implements Set<E>, Serializable
2729    {
2730        private static final long serialVersionUID = 4694047833775013803L;
2731
2732        CheckedSet(Set<E> s, Class<E> elementType) { super(s, elementType); }
2733
2734        public boolean equals(Object o) { return o == this || c.equals(o); }
2735        public int hashCode()           { return c.hashCode(); }
2736    }
2737
2738    /**
2739     * Returns a dynamically typesafe view of the specified sorted set.
2740     * Any attempt to insert an element of the wrong type will result in an
2741     * immediate {@link ClassCastException}.  Assuming a sorted set
2742     * contains no incorrectly typed elements prior to the time a
2743     * dynamically typesafe view is generated, and that all subsequent
2744     * access to the sorted set takes place through the view, it is
2745     * <i>guaranteed</i> that the sorted set cannot contain an incorrectly
2746     * typed element.
2747     *
2748     * <p>A discussion of the use of dynamically typesafe views may be
2749     * found in the documentation for the {@link #checkedCollection
2750     * checkedCollection} method.
2751     *
2752     * <p>The returned sorted set will be serializable if the specified sorted
2753     * set is serializable.
2754     *
2755     * <p>Since {@code null} is considered to be a value of any reference
2756     * type, the returned sorted set permits insertion of null elements
2757     * whenever the backing sorted set does.
2758     *
2759     * @param <E> the class of the objects in the set
2760     * @param s the sorted set for which a dynamically typesafe view is to be
2761     *          returned
2762     * @param type the type of element that {@code s} is permitted to hold
2763     * @return a dynamically typesafe view of the specified sorted set
2764     * @since 1.5
2765     */
2766    public static <E> SortedSet<E> checkedSortedSet(SortedSet<E> s,
2767                                                    Class<E> type) {
2768        return new CheckedSortedSet<>(s, type);
2769    }
2770
2771    /**
2772     * @serial include
2773     */
2774    static class CheckedSortedSet<E> extends CheckedSet<E>
2775        implements SortedSet<E>, Serializable
2776    {
2777        private static final long serialVersionUID = 1599911165492914959L;
2778
2779        private final SortedSet<E> ss;
2780
2781        CheckedSortedSet(SortedSet<E> s, Class<E> type) {
2782            super(s, type);
2783            ss = s;
2784        }
2785
2786        public Comparator<? super E> comparator() { return ss.comparator(); }
2787        public E first()                   { return ss.first(); }
2788        public E last()                    { return ss.last(); }
2789
2790        public SortedSet<E> subSet(E fromElement, E toElement) {
2791            return checkedSortedSet(ss.subSet(fromElement,toElement), type);
2792        }
2793        public SortedSet<E> headSet(E toElement) {
2794            return checkedSortedSet(ss.headSet(toElement), type);
2795        }
2796        public SortedSet<E> tailSet(E fromElement) {
2797            return checkedSortedSet(ss.tailSet(fromElement), type);
2798        }
2799    }
2800
2801    /**
2802     * Returns a dynamically typesafe view of the specified list.
2803     * Any attempt to insert an element of the wrong type will result in
2804     * an immediate {@link ClassCastException}.  Assuming a list contains
2805     * no incorrectly typed elements prior to the time a dynamically typesafe
2806     * view is generated, and that all subsequent access to the list
2807     * takes place through the view, it is <i>guaranteed</i> that the
2808     * list cannot contain an incorrectly typed element.
2809     *
2810     * <p>A discussion of the use of dynamically typesafe views may be
2811     * found in the documentation for the {@link #checkedCollection
2812     * checkedCollection} method.
2813     *
2814     * <p>The returned list will be serializable if the specified list
2815     * is serializable.
2816     *
2817     * <p>Since {@code null} is considered to be a value of any reference
2818     * type, the returned list permits insertion of null elements whenever
2819     * the backing list does.
2820     *
2821     * @param <E> the class of the objects in the list
2822     * @param list the list for which a dynamically typesafe view is to be
2823     *             returned
2824     * @param type the type of element that {@code list} is permitted to hold
2825     * @return a dynamically typesafe view of the specified list
2826     * @since 1.5
2827     */
2828    public static <E> List<E> checkedList(List<E> list, Class<E> type) {
2829        return (list instanceof RandomAccess ?
2830                new CheckedRandomAccessList<>(list, type) :
2831                new CheckedList<>(list, type));
2832    }
2833
2834    /**
2835     * @serial include
2836     */
2837    static class CheckedList<E>
2838        extends CheckedCollection<E>
2839        implements List<E>
2840    {
2841        private static final long serialVersionUID = 65247728283967356L;
2842        final List<E> list;
2843
2844        CheckedList(List<E> list, Class<E> type) {
2845            super(list, type);
2846            this.list = list;
2847        }
2848
2849        public boolean equals(Object o)  { return o == this || list.equals(o); }
2850        public int hashCode()            { return list.hashCode(); }
2851        public E get(int index)          { return list.get(index); }
2852        public E remove(int index)       { return list.remove(index); }
2853        public int indexOf(Object o)     { return list.indexOf(o); }
2854        public int lastIndexOf(Object o) { return list.lastIndexOf(o); }
2855
2856        public E set(int index, E element) {
2857            typeCheck(element);
2858            return list.set(index, element);
2859        }
2860
2861        public void add(int index, E element) {
2862            typeCheck(element);
2863            list.add(index, element);
2864        }
2865
2866        public boolean addAll(int index, Collection<? extends E> c) {
2867            return list.addAll(index, checkedCopyOf(c));
2868        }
2869        public ListIterator<E> listIterator()   { return listIterator(0); }
2870
2871        public ListIterator<E> listIterator(final int index) {
2872            final ListIterator<E> i = list.listIterator(index);
2873
2874            return new ListIterator<E>() {
2875                public boolean hasNext()     { return i.hasNext(); }
2876                public E next()              { return i.next(); }
2877                public boolean hasPrevious() { return i.hasPrevious(); }
2878                public E previous()          { return i.previous(); }
2879                public int nextIndex()       { return i.nextIndex(); }
2880                public int previousIndex()   { return i.previousIndex(); }
2881                public void remove()         {        i.remove(); }
2882
2883                public void set(E e) {
2884                    typeCheck(e);
2885                    i.set(e);
2886                }
2887
2888                public void add(E e) {
2889                    typeCheck(e);
2890                    i.add(e);
2891                }
2892
2893                @Override
2894                public void forEachRemaining(Consumer<? super E> action) {
2895                    i.forEachRemaining(action);
2896                }
2897            };
2898        }
2899
2900        public List<E> subList(int fromIndex, int toIndex) {
2901            return new CheckedList<>(list.subList(fromIndex, toIndex), type);
2902        }
2903    }
2904
2905    /**
2906     * @serial include
2907     */
2908    static class CheckedRandomAccessList<E> extends CheckedList<E>
2909                                            implements RandomAccess
2910    {
2911        private static final long serialVersionUID = 1638200125423088369L;
2912
2913        CheckedRandomAccessList(List<E> list, Class<E> type) {
2914            super(list, type);
2915        }
2916
2917        public List<E> subList(int fromIndex, int toIndex) {
2918            return new CheckedRandomAccessList<>(
2919                    list.subList(fromIndex, toIndex), type);
2920        }
2921    }
2922
2923    /**
2924     * Returns a dynamically typesafe view of the specified map.
2925     * Any attempt to insert a mapping whose key or value have the wrong
2926     * type will result in an immediate {@link ClassCastException}.
2927     * Similarly, any attempt to modify the value currently associated with
2928     * a key will result in an immediate {@link ClassCastException},
2929     * whether the modification is attempted directly through the map
2930     * itself, or through a {@link Map.Entry} instance obtained from the
2931     * map's {@link Map#entrySet() entry set} view.
2932     *
2933     * <p>Assuming a map contains no incorrectly typed keys or values
2934     * prior to the time a dynamically typesafe view is generated, and
2935     * that all subsequent access to the map takes place through the view
2936     * (or one of its collection views), it is <i>guaranteed</i> that the
2937     * map cannot contain an incorrectly typed key or value.
2938     *
2939     * <p>A discussion of the use of dynamically typesafe views may be
2940     * found in the documentation for the {@link #checkedCollection
2941     * checkedCollection} method.
2942     *
2943     * <p>The returned map will be serializable if the specified map is
2944     * serializable.
2945     *
2946     * <p>Since {@code null} is considered to be a value of any reference
2947     * type, the returned map permits insertion of null keys or values
2948     * whenever the backing map does.
2949     *
2950     * @param <K> the class of the map keys
2951     * @param <V> the class of the map values
2952     * @param m the map for which a dynamically typesafe view is to be
2953     *          returned
2954     * @param keyType the type of key that {@code m} is permitted to hold
2955     * @param valueType the type of value that {@code m} is permitted to hold
2956     * @return a dynamically typesafe view of the specified map
2957     * @since 1.5
2958     */
2959    public static <K, V> Map<K, V> checkedMap(Map<K, V> m,
2960                                              Class<K> keyType,
2961                                              Class<V> valueType) {
2962        return new CheckedMap<>(m, keyType, valueType);
2963    }
2964
2965
2966    /**
2967     * @serial include
2968     */
2969    private static class CheckedMap<K,V>
2970        implements Map<K,V>, Serializable
2971    {
2972        private static final long serialVersionUID = 5742860141034234728L;
2973
2974        private final Map<K, V> m;
2975        final Class<K> keyType;
2976        final Class<V> valueType;
2977
2978        private void typeCheck(Object key, Object value) {
2979            if (key != null && !keyType.isInstance(key))
2980                throw new ClassCastException(badKeyMsg(key));
2981
2982            if (value != null && !valueType.isInstance(value))
2983                throw new ClassCastException(badValueMsg(value));
2984        }
2985
2986        private BiFunction<? super K, ? super V, ? extends V> typeCheck(
2987                BiFunction<? super K, ? super V, ? extends V> func) {
2988            Objects.requireNonNull(func);
2989            return (k, v) -> {
2990                V newValue = func.apply(k, v);
2991                typeCheck(k, newValue);
2992                return newValue;
2993            };
2994        }
2995
2996        private String badKeyMsg(Object key) {
2997            return "Attempt to insert " + key.getClass() +
2998                " key into map with key type " + keyType;
2999        }
3000
3001        private String badValueMsg(Object value) {
3002            return "Attempt to insert " + value.getClass() +
3003                " value into map with value type " + valueType;
3004        }
3005
3006        CheckedMap(Map<K, V> m, Class<K> keyType, Class<V> valueType) {
3007            this.m = Objects.requireNonNull(m);
3008            this.keyType = Objects.requireNonNull(keyType);
3009            this.valueType = Objects.requireNonNull(valueType);
3010        }
3011
3012        public int size()                      { return m.size(); }
3013        public boolean isEmpty()               { return m.isEmpty(); }
3014        public boolean containsKey(Object key) { return m.containsKey(key); }
3015        public boolean containsValue(Object v) { return m.containsValue(v); }
3016        public V get(Object key)               { return m.get(key); }
3017        public V remove(Object key)            { return m.remove(key); }
3018        public void clear()                    { m.clear(); }
3019        public Set<K> keySet()                 { return m.keySet(); }
3020        public Collection<V> values()          { return m.values(); }
3021        public boolean equals(Object o)        { return o == this || m.equals(o); }
3022        public int hashCode()                  { return m.hashCode(); }
3023        public String toString()               { return m.toString(); }
3024
3025        public V put(K key, V value) {
3026            typeCheck(key, value);
3027            return m.put(key, value);
3028        }
3029
3030        @SuppressWarnings("unchecked")
3031        public void putAll(Map<? extends K, ? extends V> t) {
3032            // Satisfy the following goals:
3033            // - good diagnostics in case of type mismatch
3034            // - all-or-nothing semantics
3035            // - protection from malicious t
3036            // - correct behavior if t is a concurrent map
3037            Object[] entries = t.entrySet().toArray();
3038            List<Map.Entry<K,V>> checked = new ArrayList<>(entries.length);
3039            for (Object o : entries) {
3040                Map.Entry<?,?> e = (Map.Entry<?,?>) o;
3041                Object k = e.getKey();
3042                Object v = e.getValue();
3043                typeCheck(k, v);
3044                checked.add(
3045                        new AbstractMap.SimpleImmutableEntry<>((K)k, (V)v));
3046            }
3047            for (Map.Entry<K,V> e : checked)
3048                m.put(e.getKey(), e.getValue());
3049        }
3050
3051        private transient Set<Map.Entry<K,V>> entrySet = null;
3052
3053        public Set<Map.Entry<K,V>> entrySet() {
3054            if (entrySet==null)
3055                entrySet = new CheckedEntrySet<>(m.entrySet(), valueType);
3056            return entrySet;
3057        }
3058
3059        // Override default methods in Map
3060        @Override
3061        public void forEach(BiConsumer<? super K, ? super V> action) {
3062            m.forEach(action);
3063        }
3064
3065        /**
3066         * We need this class in addition to CheckedSet as Map.Entry permits
3067         * modification of the backing Map via the setValue operation.  This
3068         * class is subtle: there are many possible attacks that must be
3069         * thwarted.
3070         *
3071         * @serial exclude
3072         */
3073        static class CheckedEntrySet<K,V> implements Set<Map.Entry<K,V>> {
3074            private final Set<Map.Entry<K,V>> s;
3075            private final Class<V> valueType;
3076
3077            CheckedEntrySet(Set<Map.Entry<K, V>> s, Class<V> valueType) {
3078                this.s = s;
3079                this.valueType = valueType;
3080            }
3081
3082            public int size()        { return s.size(); }
3083            public boolean isEmpty() { return s.isEmpty(); }
3084            public String toString() { return s.toString(); }
3085            public int hashCode()    { return s.hashCode(); }
3086            public void clear()      {        s.clear(); }
3087
3088            public boolean add(Map.Entry<K, V> e) {
3089                throw new UnsupportedOperationException();
3090            }
3091            public boolean addAll(Collection<? extends Map.Entry<K, V>> coll) {
3092                throw new UnsupportedOperationException();
3093            }
3094
3095            public Iterator<Map.Entry<K,V>> iterator() {
3096                final Iterator<Map.Entry<K, V>> i = s.iterator();
3097                final Class<V> valueType = this.valueType;
3098
3099                return new Iterator<Map.Entry<K,V>>() {
3100                    public boolean hasNext() { return i.hasNext(); }
3101                    public void remove()     { i.remove(); }
3102
3103                    public Map.Entry<K,V> next() {
3104                        return checkedEntry(i.next(), valueType);
3105                    }
3106                    // Android-note: forEachRemaining is missing checks.
3107                };
3108            }
3109
3110            @SuppressWarnings("unchecked")
3111            public Object[] toArray() {
3112                Object[] source = s.toArray();
3113
3114                /*
3115                 * Ensure that we don't get an ArrayStoreException even if
3116                 * s.toArray returns an array of something other than Object
3117                 */
3118                Object[] dest = (CheckedEntry.class.isInstance(
3119                    source.getClass().getComponentType()) ? source :
3120                                 new Object[source.length]);
3121
3122                for (int i = 0; i < source.length; i++)
3123                    dest[i] = checkedEntry((Map.Entry<K,V>)source[i],
3124                                           valueType);
3125                return dest;
3126            }
3127
3128            @SuppressWarnings("unchecked")
3129            public <T> T[] toArray(T[] a) {
3130                // We don't pass a to s.toArray, to avoid window of
3131                // vulnerability wherein an unscrupulous multithreaded client
3132                // could get his hands on raw (unwrapped) Entries from s.
3133                T[] arr = s.toArray(a.length==0 ? a : Arrays.copyOf(a, 0));
3134
3135                for (int i=0; i<arr.length; i++)
3136                    arr[i] = (T) checkedEntry((Map.Entry<K,V>)arr[i],
3137                                              valueType);
3138                if (arr.length > a.length)
3139                    return arr;
3140
3141                System.arraycopy(arr, 0, a, 0, arr.length);
3142                if (a.length > arr.length)
3143                    a[arr.length] = null;
3144                return a;
3145            }
3146
3147            /**
3148             * This method is overridden to protect the backing set against
3149             * an object with a nefarious equals function that senses
3150             * that the equality-candidate is Map.Entry and calls its
3151             * setValue method.
3152             */
3153            public boolean contains(Object o) {
3154                if (!(o instanceof Map.Entry))
3155                    return false;
3156                Map.Entry<?,?> e = (Map.Entry<?,?>) o;
3157                return s.contains(
3158                    (e instanceof CheckedEntry) ? e : checkedEntry(e, valueType));
3159            }
3160
3161            /**
3162             * The bulk collection methods are overridden to protect
3163             * against an unscrupulous collection whose contains(Object o)
3164             * method senses when o is a Map.Entry, and calls o.setValue.
3165             */
3166            public boolean containsAll(Collection<?> c) {
3167                for (Object o : c)
3168                    if (!contains(o)) // Invokes safe contains() above
3169                        return false;
3170                return true;
3171            }
3172
3173            public boolean remove(Object o) {
3174                if (!(o instanceof Map.Entry))
3175                    return false;
3176                return s.remove(new AbstractMap.SimpleImmutableEntry
3177                                <>((Map.Entry<?,?>)o));
3178            }
3179
3180            public boolean removeAll(Collection<?> c) {
3181                return batchRemove(c, false);
3182            }
3183            public boolean retainAll(Collection<?> c) {
3184                return batchRemove(c, true);
3185            }
3186            private boolean batchRemove(Collection<?> c, boolean complement) {
3187                Objects.requireNonNull(c);
3188                boolean modified = false;
3189                Iterator<Map.Entry<K,V>> it = iterator();
3190                while (it.hasNext()) {
3191                    if (c.contains(it.next()) != complement) {
3192                        it.remove();
3193                        modified = true;
3194                    }
3195                }
3196                return modified;
3197            }
3198
3199            public boolean equals(Object o) {
3200                if (o == this)
3201                    return true;
3202                if (!(o instanceof Set))
3203                    return false;
3204                Set<?> that = (Set<?>) o;
3205                return that.size() == s.size()
3206                    && containsAll(that); // Invokes safe containsAll() above
3207            }
3208
3209            static <K,V,T> CheckedEntry<K,V,T> checkedEntry(Map.Entry<K,V> e,
3210                                                            Class<T> valueType) {
3211                return new CheckedEntry<>(e, valueType);
3212            }
3213
3214            /**
3215             * This "wrapper class" serves two purposes: it prevents
3216             * the client from modifying the backing Map, by short-circuiting
3217             * the setValue method, and it protects the backing Map against
3218             * an ill-behaved Map.Entry that attempts to modify another
3219             * Map.Entry when asked to perform an equality check.
3220             */
3221            private static class CheckedEntry<K,V,T> implements Map.Entry<K,V> {
3222                private final Map.Entry<K, V> e;
3223                private final Class<T> valueType;
3224
3225                CheckedEntry(Map.Entry<K, V> e, Class<T> valueType) {
3226                    this.e = Objects.requireNonNull(e);
3227                    this.valueType = Objects.requireNonNull(valueType);
3228                }
3229
3230                public K getKey()        { return e.getKey(); }
3231                public V getValue()      { return e.getValue(); }
3232                public int hashCode()    { return e.hashCode(); }
3233                public String toString() { return e.toString(); }
3234
3235                public V setValue(V value) {
3236                    if (value != null && !valueType.isInstance(value))
3237                        throw new ClassCastException(badValueMsg(value));
3238                    return e.setValue(value);
3239                }
3240
3241                private String badValueMsg(Object value) {
3242                    return "Attempt to insert " + value.getClass() +
3243                        " value into map with value type " + valueType;
3244                }
3245
3246                public boolean equals(Object o) {
3247                    if (o == this)
3248                        return true;
3249                    if (!(o instanceof Map.Entry))
3250                        return false;
3251                    return e.equals(new AbstractMap.SimpleImmutableEntry
3252                                    <>((Map.Entry<?,?>)o));
3253                }
3254            }
3255        }
3256    }
3257
3258    /**
3259     * Returns a dynamically typesafe view of the specified sorted map.
3260     * Any attempt to insert a mapping whose key or value have the wrong
3261     * type will result in an immediate {@link ClassCastException}.
3262     * Similarly, any attempt to modify the value currently associated with
3263     * a key will result in an immediate {@link ClassCastException},
3264     * whether the modification is attempted directly through the map
3265     * itself, or through a {@link Map.Entry} instance obtained from the
3266     * map's {@link Map#entrySet() entry set} view.
3267     *
3268     * <p>Assuming a map contains no incorrectly typed keys or values
3269     * prior to the time a dynamically typesafe view is generated, and
3270     * that all subsequent access to the map takes place through the view
3271     * (or one of its collection views), it is <i>guaranteed</i> that the
3272     * map cannot contain an incorrectly typed key or value.
3273     *
3274     * <p>A discussion of the use of dynamically typesafe views may be
3275     * found in the documentation for the {@link #checkedCollection
3276     * checkedCollection} method.
3277     *
3278     * <p>The returned map will be serializable if the specified map is
3279     * serializable.
3280     *
3281     * <p>Since {@code null} is considered to be a value of any reference
3282     * type, the returned map permits insertion of null keys or values
3283     * whenever the backing map does.
3284     *
3285     * @param <K> the class of the map keys
3286     * @param <V> the class of the map values
3287     * @param m the map for which a dynamically typesafe view is to be
3288     *          returned
3289     * @param keyType the type of key that {@code m} is permitted to hold
3290     * @param valueType the type of value that {@code m} is permitted to hold
3291     * @return a dynamically typesafe view of the specified map
3292     * @since 1.5
3293     */
3294    public static <K,V> SortedMap<K,V> checkedSortedMap(SortedMap<K, V> m,
3295                                                        Class<K> keyType,
3296                                                        Class<V> valueType) {
3297        return new CheckedSortedMap<>(m, keyType, valueType);
3298    }
3299
3300    /**
3301     * @serial include
3302     */
3303    static class CheckedSortedMap<K,V> extends CheckedMap<K,V>
3304        implements SortedMap<K,V>, Serializable
3305    {
3306        private static final long serialVersionUID = 1599671320688067438L;
3307
3308        private final SortedMap<K, V> sm;
3309
3310        CheckedSortedMap(SortedMap<K, V> m,
3311                         Class<K> keyType, Class<V> valueType) {
3312            super(m, keyType, valueType);
3313            sm = m;
3314        }
3315
3316        public Comparator<? super K> comparator() { return sm.comparator(); }
3317        public K firstKey()                       { return sm.firstKey(); }
3318        public K lastKey()                        { return sm.lastKey(); }
3319
3320        public SortedMap<K,V> subMap(K fromKey, K toKey) {
3321            return checkedSortedMap(sm.subMap(fromKey, toKey),
3322                                    keyType, valueType);
3323        }
3324        public SortedMap<K,V> headMap(K toKey) {
3325            return checkedSortedMap(sm.headMap(toKey), keyType, valueType);
3326        }
3327        public SortedMap<K,V> tailMap(K fromKey) {
3328            return checkedSortedMap(sm.tailMap(fromKey), keyType, valueType);
3329        }
3330    }
3331
3332    // Empty collections
3333
3334    /**
3335     * Returns an iterator that has no elements.  More precisely,
3336     *
3337     * <ul>
3338     * <li>{@link Iterator#hasNext hasNext} always returns {@code
3339     * false}.</li>
3340     * <li>{@link Iterator#next next} always throws {@link
3341     * NoSuchElementException}.</li>
3342     * <li>{@link Iterator#remove remove} always throws {@link
3343     * IllegalStateException}.</li>
3344     * </ul>
3345     *
3346     * <p>Implementations of this method are permitted, but not
3347     * required, to return the same object from multiple invocations.
3348     *
3349     * @param <T> type of elements, if there were any, in the iterator
3350     * @return an empty iterator
3351     * @since 1.7
3352     */
3353    @SuppressWarnings("unchecked")
3354    public static <T> Iterator<T> emptyIterator() {
3355        return (Iterator<T>) EmptyIterator.EMPTY_ITERATOR;
3356    }
3357
3358    private static class EmptyIterator<E> implements Iterator<E> {
3359        static final EmptyIterator<Object> EMPTY_ITERATOR
3360            = new EmptyIterator<>();
3361
3362        public boolean hasNext() { return false; }
3363        public E next() { throw new NoSuchElementException(); }
3364        public void remove() { throw new IllegalStateException(); }
3365        @Override
3366        public void forEachRemaining(Consumer<? super E> action) {
3367            Objects.requireNonNull(action);
3368        }
3369    }
3370
3371    /**
3372     * Returns a list iterator that has no elements.  More precisely,
3373     *
3374     * <ul>
3375     * <li>{@link Iterator#hasNext hasNext} and {@link
3376     * ListIterator#hasPrevious hasPrevious} always return {@code
3377     * false}.</li>
3378     * <li>{@link Iterator#next next} and {@link ListIterator#previous
3379     * previous} always throw {@link NoSuchElementException}.</li>
3380     * <li>{@link Iterator#remove remove} and {@link ListIterator#set
3381     * set} always throw {@link IllegalStateException}.</li>
3382     * <li>{@link ListIterator#add add} always throws {@link
3383     * UnsupportedOperationException}.</li>
3384     * <li>{@link ListIterator#nextIndex nextIndex} always returns
3385     * {@code 0}.</li>
3386     * <li>{@link ListIterator#previousIndex previousIndex} always
3387     * returns {@code -1}.</li>
3388     * </ul>
3389     *
3390     * <p>Implementations of this method are permitted, but not
3391     * required, to return the same object from multiple invocations.
3392     *
3393     * @param <T> type of elements, if there were any, in the iterator
3394     * @return an empty list iterator
3395     * @since 1.7
3396     */
3397    @SuppressWarnings("unchecked")
3398    public static <T> ListIterator<T> emptyListIterator() {
3399        return (ListIterator<T>) EmptyListIterator.EMPTY_ITERATOR;
3400    }
3401
3402    private static class EmptyListIterator<E>
3403        extends EmptyIterator<E>
3404        implements ListIterator<E>
3405    {
3406        static final EmptyListIterator<Object> EMPTY_ITERATOR
3407            = new EmptyListIterator<>();
3408
3409        public boolean hasPrevious() { return false; }
3410        public E previous() { throw new NoSuchElementException(); }
3411        public int nextIndex()     { return 0; }
3412        public int previousIndex() { return -1; }
3413        public void set(E e) { throw new IllegalStateException(); }
3414        public void add(E e) { throw new UnsupportedOperationException(); }
3415    }
3416
3417    /**
3418     * Returns an enumeration that has no elements.  More precisely,
3419     *
3420     * <ul>
3421     * <li>{@link Enumeration#hasMoreElements hasMoreElements} always
3422     * returns {@code false}.</li>
3423     * <li> {@link Enumeration#nextElement nextElement} always throws
3424     * {@link NoSuchElementException}.</li>
3425     * </ul>
3426     *
3427     * <p>Implementations of this method are permitted, but not
3428     * required, to return the same object from multiple invocations.
3429     *
3430     * @param  <T> the class of the objects in the enumeration
3431     * @return an empty enumeration
3432     * @since 1.7
3433     */
3434    @SuppressWarnings("unchecked")
3435    public static <T> Enumeration<T> emptyEnumeration() {
3436        return (Enumeration<T>) EmptyEnumeration.EMPTY_ENUMERATION;
3437    }
3438
3439    private static class EmptyEnumeration<E> implements Enumeration<E> {
3440        static final EmptyEnumeration<Object> EMPTY_ENUMERATION
3441            = new EmptyEnumeration<>();
3442
3443        public boolean hasMoreElements() { return false; }
3444        public E nextElement() { throw new NoSuchElementException(); }
3445    }
3446
3447    /**
3448     * The empty set (immutable).  This set is serializable.
3449     *
3450     * @see #emptySet()
3451     */
3452    @SuppressWarnings("rawtypes")
3453    public static final Set EMPTY_SET = new EmptySet<>();
3454
3455    /**
3456     * Returns an empty set (immutable).  This set is serializable.
3457     * Unlike the like-named field, this method is parameterized.
3458     *
3459     * <p>This example illustrates the type-safe way to obtain an empty set:
3460     * <pre>
3461     *     Set&lt;String&gt; s = Collections.emptySet();
3462     * </pre>
3463     * @implNote Implementations of this method need not create a separate
3464     * {@code Set} object for each call.  Using this method is likely to have
3465     * comparable cost to using the like-named field.  (Unlike this method, the
3466     * field does not provide type safety.)
3467     *
3468     * @param  <T> the class of the objects in the set
3469     * @return the empty set
3470     *
3471     * @see #EMPTY_SET
3472     * @since 1.5
3473     */
3474    @SuppressWarnings("unchecked")
3475    public static final <T> Set<T> emptySet() {
3476        return (Set<T>) EMPTY_SET;
3477    }
3478
3479    /**
3480     * @serial include
3481     */
3482    private static class EmptySet<E>
3483        extends AbstractSet<E>
3484        implements Serializable
3485    {
3486        private static final long serialVersionUID = 1582296315990362920L;
3487
3488        public Iterator<E> iterator() { return emptyIterator(); }
3489
3490        public int size() {return 0;}
3491        public boolean isEmpty() {return true;}
3492
3493        public boolean contains(Object obj) {return false;}
3494        public boolean containsAll(Collection<?> c) { return c.isEmpty(); }
3495
3496        public Object[] toArray() { return new Object[0]; }
3497
3498        public <T> T[] toArray(T[] a) {
3499            if (a.length > 0)
3500                a[0] = null;
3501            return a;
3502        }
3503
3504        // Override default methods in Collection
3505        @Override
3506        public void forEach(Consumer<? super E> action) {
3507            Objects.requireNonNull(action);
3508        }
3509        @Override
3510        public boolean removeIf(Predicate<? super E> filter) {
3511            Objects.requireNonNull(filter);
3512            return false;
3513        }
3514        @Override
3515        public Spliterator<E> spliterator() { return Spliterators.emptySpliterator(); }
3516
3517        // Preserves singleton property
3518        private Object readResolve() {
3519            return EMPTY_SET;
3520        }
3521
3522    }
3523
3524    /**
3525     * The empty list (immutable).  This list is serializable.
3526     *
3527     * @see #emptyList()
3528     */
3529    @SuppressWarnings("rawtypes")
3530    public static final List EMPTY_LIST = new EmptyList<>();
3531
3532    /**
3533     * Returns an empty list (immutable).  This list is serializable.
3534     *
3535     * <p>This example illustrates the type-safe way to obtain an empty list:
3536     * <pre>
3537     *     List&lt;String&gt; s = Collections.emptyList();
3538     * </pre>
3539     * Implementation note:  Implementations of this method need not
3540     * create a separate <tt>List</tt> object for each call.   Using this
3541     * method is likely to have comparable cost to using the like-named
3542     * field.  (Unlike this method, the field does not provide type safety.)
3543     *
3544     * @param <T> type of elements, if there were any, in the list
3545     * @return an empty immutable list
3546     *
3547     * @see #EMPTY_LIST
3548     * @since 1.5
3549     */
3550    @SuppressWarnings("unchecked")
3551    public static final <T> List<T> emptyList() {
3552        return (List<T>) EMPTY_LIST;
3553    }
3554
3555    /**
3556     * @serial include
3557     */
3558    private static class EmptyList<E>
3559        extends AbstractList<E>
3560        implements RandomAccess, Serializable {
3561        private static final long serialVersionUID = 8842843931221139166L;
3562
3563        public Iterator<E> iterator() {
3564            return emptyIterator();
3565        }
3566        public ListIterator<E> listIterator() {
3567            return emptyListIterator();
3568        }
3569
3570        public int size() {return 0;}
3571        public boolean isEmpty() {return true;}
3572
3573        public boolean contains(Object obj) {return false;}
3574        public boolean containsAll(Collection<?> c) { return c.isEmpty(); }
3575
3576        public Object[] toArray() { return new Object[0]; }
3577
3578        public <T> T[] toArray(T[] a) {
3579            if (a.length > 0)
3580                a[0] = null;
3581            return a;
3582        }
3583
3584        public E get(int index) {
3585            throw new IndexOutOfBoundsException("Index: "+index);
3586        }
3587
3588        public boolean equals(Object o) {
3589            return (o instanceof List) && ((List<?>)o).isEmpty();
3590        }
3591
3592        public int hashCode() { return 1; }
3593
3594        @Override
3595        public boolean removeIf(Predicate<? super E> filter) {
3596            Objects.requireNonNull(filter);
3597            return false;
3598        }
3599
3600        // Override default methods in Collection
3601        @Override
3602        public void forEach(Consumer<? super E> action) {
3603            Objects.requireNonNull(action);
3604        }
3605
3606        @Override
3607        public Spliterator<E> spliterator() { return Spliterators.emptySpliterator(); }
3608
3609        // Preserves singleton property
3610        private Object readResolve() {
3611            return EMPTY_LIST;
3612        }
3613    }
3614
3615    /**
3616     * The empty map (immutable).  This map is serializable.
3617     *
3618     * @see #emptyMap()
3619     * @since 1.3
3620     */
3621    @SuppressWarnings("rawtypes")
3622    public static final Map EMPTY_MAP = new EmptyMap<>();
3623
3624    /**
3625     * Returns an empty map (immutable).  This map is serializable.
3626     *
3627     * <p>This example illustrates the type-safe way to obtain an empty map:
3628     * <pre>
3629     *     Map&lt;String, Date&gt; s = Collections.emptyMap();
3630     * </pre>
3631     * @implNote Implementations of this method need not create a separate
3632     * {@code Map} object for each call.  Using this method is likely to have
3633     * comparable cost to using the like-named field.  (Unlike this method, the
3634     * field does not provide type safety.)
3635     *
3636     * @param <K> the class of the map keys
3637     * @param <V> the class of the map values
3638     * @return an empty map
3639     * @see #EMPTY_MAP
3640     * @since 1.5
3641     */
3642    @SuppressWarnings("unchecked")
3643    public static final <K,V> Map<K,V> emptyMap() {
3644        return (Map<K,V>) EMPTY_MAP;
3645    }
3646
3647    /**
3648     * @serial include
3649     */
3650    private static class EmptyMap<K,V>
3651        extends AbstractMap<K,V>
3652        implements Serializable
3653    {
3654        private static final long serialVersionUID = 6428348081105594320L;
3655
3656        public int size()                          {return 0;}
3657        public boolean isEmpty()                   {return true;}
3658        public boolean containsKey(Object key)     {return false;}
3659        public boolean containsValue(Object value) {return false;}
3660        public V get(Object key)                   {return null;}
3661        public Set<K> keySet()                     {return emptySet();}
3662        public Collection<V> values()              {return emptySet();}
3663        public Set<Map.Entry<K,V>> entrySet()      {return emptySet();}
3664
3665        public boolean equals(Object o) {
3666            return (o instanceof Map) && ((Map<?,?>)o).isEmpty();
3667        }
3668
3669        public int hashCode()                      {return 0;}
3670
3671        // Override default methods in Map
3672        @Override
3673        @SuppressWarnings("unchecked")
3674        public V getOrDefault(Object k, V defaultValue) {
3675            return defaultValue;
3676        }
3677
3678        @Override
3679        public void forEach(BiConsumer<? super K, ? super V> action) {
3680            Objects.requireNonNull(action);
3681        }
3682
3683        @Override
3684        public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
3685            Objects.requireNonNull(function);
3686        }
3687
3688        @Override
3689        public V putIfAbsent(K key, V value) {
3690            throw new UnsupportedOperationException();
3691        }
3692
3693        @Override
3694        public boolean remove(Object key, Object value) {
3695            throw new UnsupportedOperationException();
3696        }
3697
3698        @Override
3699        public boolean replace(K key, V oldValue, V newValue) {
3700            throw new UnsupportedOperationException();
3701        }
3702
3703        @Override
3704        public V replace(K key, V value) {
3705            throw new UnsupportedOperationException();
3706        }
3707
3708        @Override
3709        public V computeIfAbsent(K key,
3710                                 Function<? super K, ? extends V> mappingFunction) {
3711            throw new UnsupportedOperationException();
3712        }
3713
3714        @Override
3715        public V computeIfPresent(K key,
3716                                  BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
3717            throw new UnsupportedOperationException();
3718        }
3719
3720        @Override
3721        public V compute(K key,
3722                         BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
3723            throw new UnsupportedOperationException();
3724        }
3725
3726        @Override
3727        public V merge(K key, V value,
3728                       BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
3729            throw new UnsupportedOperationException();
3730        }
3731
3732        // Preserves singleton property
3733        private Object readResolve() {
3734            return EMPTY_MAP;
3735        }
3736    }
3737
3738    // Singleton collections
3739
3740    /**
3741     * Returns an immutable set containing only the specified object.
3742     * The returned set is serializable.
3743     *
3744     * @param  <E> the class of the objects in the set
3745     * @param o the sole object to be stored in the returned set.
3746     * @return an immutable set containing only the specified object.
3747     */
3748    public static <E> Set<E> singleton(E o) {
3749        return new SingletonSet<>(o);
3750    }
3751
3752    static <E> Iterator<E> singletonIterator(final E e) {
3753        return new Iterator<E>() {
3754            private boolean hasNext = true;
3755            public boolean hasNext() {
3756                return hasNext;
3757            }
3758            public E next() {
3759                if (hasNext) {
3760                    hasNext = false;
3761                    return e;
3762                }
3763                throw new NoSuchElementException();
3764            }
3765            public void remove() {
3766                throw new UnsupportedOperationException();
3767            }
3768            @Override
3769            public void forEachRemaining(Consumer<? super E> action) {
3770                Objects.requireNonNull(action);
3771                if (hasNext) {
3772                    action.accept(e);
3773                    hasNext = false;
3774                }
3775            }
3776        };
3777    }
3778
3779    /**
3780     * Creates a {@code Spliterator} with only the specified element
3781     *
3782     * @param <T> Type of elements
3783     * @return A singleton {@code Spliterator}
3784     */
3785    static <T> Spliterator<T> singletonSpliterator(final T element) {
3786        return new Spliterator<T>() {
3787            long est = 1;
3788
3789            @Override
3790            public Spliterator<T> trySplit() {
3791                return null;
3792            }
3793
3794            @Override
3795            public boolean tryAdvance(Consumer<? super T> consumer) {
3796                Objects.requireNonNull(consumer);
3797                if (est > 0) {
3798                    est--;
3799                    consumer.accept(element);
3800                    return true;
3801                }
3802                return false;
3803            }
3804
3805            @Override
3806            public void forEachRemaining(Consumer<? super T> consumer) {
3807                tryAdvance(consumer);
3808            }
3809
3810            @Override
3811            public long estimateSize() {
3812                return est;
3813            }
3814
3815            @Override
3816            public int characteristics() {
3817                int value = (element != null) ? Spliterator.NONNULL : 0;
3818
3819                return value | Spliterator.SIZED | Spliterator.SUBSIZED | Spliterator.IMMUTABLE |
3820                       Spliterator.DISTINCT | Spliterator.ORDERED;
3821            }
3822        };
3823    }
3824
3825    /**
3826     * @serial include
3827     */
3828    private static class SingletonSet<E>
3829        extends AbstractSet<E>
3830        implements Serializable
3831    {
3832        private static final long serialVersionUID = 3193687207550431679L;
3833
3834        private final E element;
3835
3836        SingletonSet(E e) {element = e;}
3837
3838        public Iterator<E> iterator() {
3839            return singletonIterator(element);
3840        }
3841
3842        public int size() {return 1;}
3843
3844        public boolean contains(Object o) {return eq(o, element);}
3845
3846        // Override default methods for Collection
3847        @Override
3848        public void forEach(Consumer<? super E> action) {
3849            action.accept(element);
3850        }
3851        @Override
3852        public Spliterator<E> spliterator() {
3853            return singletonSpliterator(element);
3854        }
3855        @Override
3856        public boolean removeIf(Predicate<? super E> filter) {
3857            throw new UnsupportedOperationException();
3858        }
3859    }
3860
3861    /**
3862     * Returns an immutable list containing only the specified object.
3863     * The returned list is serializable.
3864     *
3865     * @param  <E> the class of the objects in the list
3866     * @param o the sole object to be stored in the returned list.
3867     * @return an immutable list containing only the specified object.
3868     * @since 1.3
3869     */
3870    public static <E> List<E> singletonList(E o) {
3871        return new SingletonList<>(o);
3872    }
3873
3874    /**
3875     * @serial include
3876     */
3877    private static class SingletonList<E>
3878        extends AbstractList<E>
3879        implements RandomAccess, Serializable {
3880
3881        private static final long serialVersionUID = 3093736618740652951L;
3882
3883        private final E element;
3884
3885        SingletonList(E obj)                {element = obj;}
3886
3887        public Iterator<E> iterator() {
3888            return singletonIterator(element);
3889        }
3890
3891        public int size()                   {return 1;}
3892
3893        public boolean contains(Object obj) {return eq(obj, element);}
3894
3895        public E get(int index) {
3896            if (index != 0)
3897              throw new IndexOutOfBoundsException("Index: "+index+", Size: 1");
3898            return element;
3899        }
3900
3901        // Override default methods for Collection
3902        @Override
3903        public void forEach(Consumer<? super E> action) {
3904            action.accept(element);
3905        }
3906        @Override
3907        public boolean removeIf(Predicate<? super E> filter) {
3908            throw new UnsupportedOperationException();
3909        }
3910        @Override
3911        public Spliterator<E> spliterator() {
3912            return singletonSpliterator(element);
3913        }
3914    }
3915
3916    /**
3917     * Returns an immutable map, mapping only the specified key to the
3918     * specified value.  The returned map is serializable.
3919     *
3920     * @param <K> the class of the map keys
3921     * @param <V> the class of the map values
3922     * @param key the sole key to be stored in the returned map.
3923     * @param value the value to which the returned map maps <tt>key</tt>.
3924     * @return an immutable map containing only the specified key-value
3925     *         mapping.
3926     * @since 1.3
3927     */
3928    public static <K,V> Map<K,V> singletonMap(K key, V value) {
3929        return new SingletonMap<>(key, value);
3930    }
3931
3932    /**
3933     * @serial include
3934     */
3935    private static class SingletonMap<K,V>
3936          extends AbstractMap<K,V>
3937          implements Serializable {
3938        private static final long serialVersionUID = -6979724477215052911L;
3939
3940        private final K k;
3941        private final V v;
3942
3943        SingletonMap(K key, V value) {
3944            k = key;
3945            v = value;
3946        }
3947
3948        public int size()                          {return 1;}
3949
3950        public boolean isEmpty()                   {return false;}
3951
3952        public boolean containsKey(Object key)     {return eq(key, k);}
3953
3954        public boolean containsValue(Object value) {return eq(value, v);}
3955
3956        public V get(Object key)                   {return (eq(key, k) ? v : null);}
3957
3958        private transient Set<K> keySet = null;
3959        private transient Set<Map.Entry<K,V>> entrySet = null;
3960        private transient Collection<V> values = null;
3961
3962        public Set<K> keySet() {
3963            if (keySet==null)
3964                keySet = singleton(k);
3965            return keySet;
3966        }
3967
3968        public Set<Map.Entry<K,V>> entrySet() {
3969            if (entrySet==null)
3970                entrySet = Collections.<Map.Entry<K,V>>singleton(
3971                    new SimpleImmutableEntry<>(k, v));
3972            return entrySet;
3973        }
3974
3975        public Collection<V> values() {
3976            if (values==null)
3977                values = singleton(v);
3978            return values;
3979        }
3980
3981        // Override default methods in Map
3982        @Override
3983        public V getOrDefault(Object key, V defaultValue) {
3984            return eq(key, k) ? v : defaultValue;
3985        }
3986
3987        @Override
3988        public void forEach(BiConsumer<? super K, ? super V> action) {
3989            action.accept(k, v);
3990        }
3991
3992        @Override
3993        public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
3994            throw new UnsupportedOperationException();
3995        }
3996
3997        @Override
3998        public V putIfAbsent(K key, V value) {
3999            throw new UnsupportedOperationException();
4000        }
4001
4002        @Override
4003        public boolean remove(Object key, Object value) {
4004            throw new UnsupportedOperationException();
4005        }
4006
4007        @Override
4008        public boolean replace(K key, V oldValue, V newValue) {
4009            throw new UnsupportedOperationException();
4010        }
4011
4012        @Override
4013        public V replace(K key, V value) {
4014            throw new UnsupportedOperationException();
4015        }
4016
4017        @Override
4018        public V computeIfAbsent(K key,
4019                                 Function<? super K, ? extends V> mappingFunction) {
4020            throw new UnsupportedOperationException();
4021        }
4022
4023        @Override
4024        public V computeIfPresent(K key,
4025                                  BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
4026            throw new UnsupportedOperationException();
4027        }
4028
4029        @Override
4030        public V compute(K key,
4031                         BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
4032            throw new UnsupportedOperationException();
4033        }
4034
4035        @Override
4036        public V merge(K key, V value,
4037                       BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
4038            throw new UnsupportedOperationException();
4039        }
4040    }
4041
4042    // Miscellaneous
4043
4044    /**
4045     * Returns an immutable list consisting of <tt>n</tt> copies of the
4046     * specified object.  The newly allocated data object is tiny (it contains
4047     * a single reference to the data object).  This method is useful in
4048     * combination with the <tt>List.addAll</tt> method to grow lists.
4049     * The returned list is serializable.
4050     *
4051     * @param  <T> the class of the object to copy and of the objects
4052     *         in the returned list.
4053     * @param  n the number of elements in the returned list.
4054     * @param  o the element to appear repeatedly in the returned list.
4055     * @return an immutable list consisting of <tt>n</tt> copies of the
4056     *         specified object.
4057     * @throws IllegalArgumentException if {@code n < 0}
4058     * @see    List#addAll(Collection)
4059     * @see    List#addAll(int, Collection)
4060     */
4061    public static <T> List<T> nCopies(int n, T o) {
4062        if (n < 0)
4063            throw new IllegalArgumentException("List length = " + n);
4064        return new CopiesList<>(n, o);
4065    }
4066
4067    /**
4068     * @serial include
4069     */
4070    private static class CopiesList<E>
4071        extends AbstractList<E>
4072        implements RandomAccess, Serializable
4073    {
4074        private static final long serialVersionUID = 2739099268398711800L;
4075
4076        final int n;
4077        final E element;
4078
4079        CopiesList(int n, E e) {
4080            assert n >= 0;
4081            this.n = n;
4082            element = e;
4083        }
4084
4085        public int size() {
4086            return n;
4087        }
4088
4089        public boolean contains(Object obj) {
4090            return n != 0 && eq(obj, element);
4091        }
4092
4093        public int indexOf(Object o) {
4094            return contains(o) ? 0 : -1;
4095        }
4096
4097        public int lastIndexOf(Object o) {
4098            return contains(o) ? n - 1 : -1;
4099        }
4100
4101        public E get(int index) {
4102            if (index < 0 || index >= n)
4103                throw new IndexOutOfBoundsException("Index: "+index+
4104                                                    ", Size: "+n);
4105            return element;
4106        }
4107
4108        public Object[] toArray() {
4109            final Object[] a = new Object[n];
4110            if (element != null)
4111                Arrays.fill(a, 0, n, element);
4112            return a;
4113        }
4114
4115        @SuppressWarnings("unchecked")
4116        public <T> T[] toArray(T[] a) {
4117            final int n = this.n;
4118            if (a.length < n) {
4119                a = (T[])java.lang.reflect.Array
4120                    .newInstance(a.getClass().getComponentType(), n);
4121                if (element != null)
4122                    Arrays.fill(a, 0, n, element);
4123            } else {
4124                Arrays.fill(a, 0, n, element);
4125                if (a.length > n)
4126                    a[n] = null;
4127            }
4128            return a;
4129        }
4130
4131        public List<E> subList(int fromIndex, int toIndex) {
4132            if (fromIndex < 0)
4133                throw new IndexOutOfBoundsException("fromIndex = " + fromIndex);
4134            if (toIndex > n)
4135                throw new IndexOutOfBoundsException("toIndex = " + toIndex);
4136            if (fromIndex > toIndex)
4137                throw new IllegalArgumentException("fromIndex(" + fromIndex +
4138                                                   ") > toIndex(" + toIndex + ")");
4139            return new CopiesList<>(toIndex - fromIndex, element);
4140        }
4141
4142        // Override default methods in Collection
4143        @Override
4144        public Stream<E> stream() {
4145            return IntStream.range(0, n).mapToObj(i -> element);
4146        }
4147
4148        @Override
4149        public Stream<E> parallelStream() {
4150            return IntStream.range(0, n).parallel().mapToObj(i -> element);
4151        }
4152
4153        @Override
4154        public Spliterator<E> spliterator() {
4155            return stream().spliterator();
4156        }
4157    }
4158
4159    /**
4160     * Returns a comparator that imposes the reverse of the <em>natural
4161     * ordering</em> on a collection of objects that implement the
4162     * {@code Comparable} interface.  (The natural ordering is the ordering
4163     * imposed by the objects' own {@code compareTo} method.)  This enables a
4164     * simple idiom for sorting (or maintaining) collections (or arrays) of
4165     * objects that implement the {@code Comparable} interface in
4166     * reverse-natural-order.  For example, suppose {@code a} is an array of
4167     * strings. Then: <pre>
4168     *          Arrays.sort(a, Collections.reverseOrder());
4169     * </pre> sorts the array in reverse-lexicographic (alphabetical) order.<p>
4170     *
4171     * The returned comparator is serializable.
4172     *
4173     * @param  <T> the class of the objects compared by the comparator
4174     * @return A comparator that imposes the reverse of the <i>natural
4175     *         ordering</i> on a collection of objects that implement
4176     *         the <tt>Comparable</tt> interface.
4177     * @see Comparable
4178     */
4179    @SuppressWarnings("unchecked")
4180    public static <T> Comparator<T> reverseOrder() {
4181        return (Comparator<T>) ReverseComparator.REVERSE_ORDER;
4182    }
4183
4184    /**
4185     * @serial include
4186     */
4187    private static class ReverseComparator
4188        implements Comparator<Comparable<Object>>, Serializable {
4189
4190        private static final long serialVersionUID = 7207038068494060240L;
4191
4192        static final ReverseComparator REVERSE_ORDER
4193            = new ReverseComparator();
4194
4195        public int compare(Comparable<Object> c1, Comparable<Object> c2) {
4196            return c2.compareTo(c1);
4197        }
4198
4199        private Object readResolve() { return Collections.reverseOrder(); }
4200
4201        @Override
4202        public Comparator<Comparable<Object>> reversed() {
4203            return Comparator.naturalOrder();
4204        }
4205    }
4206
4207    /**
4208     * Returns a comparator that imposes the reverse ordering of the specified
4209     * comparator.  If the specified comparator is {@code null}, this method is
4210     * equivalent to {@link #reverseOrder()} (in other words, it returns a
4211     * comparator that imposes the reverse of the <em>natural ordering</em> on
4212     * a collection of objects that implement the Comparable interface).
4213     *
4214     * <p>The returned comparator is serializable (assuming the specified
4215     * comparator is also serializable or {@code null}).
4216     *
4217     * @param <T> the class of the objects compared by the comparator
4218     * @param cmp a comparator who's ordering is to be reversed by the returned
4219     * comparator or {@code null}
4220     * @return A comparator that imposes the reverse ordering of the
4221     *         specified comparator.
4222     * @since 1.5
4223     */
4224    public static <T> Comparator<T> reverseOrder(Comparator<T> cmp) {
4225        if (cmp == null)
4226            return reverseOrder();
4227
4228        if (cmp instanceof ReverseComparator2)
4229            return ((ReverseComparator2<T>)cmp).cmp;
4230
4231        return new ReverseComparator2<>(cmp);
4232    }
4233
4234    /**
4235     * @serial include
4236     */
4237    private static class ReverseComparator2<T> implements Comparator<T>,
4238        Serializable
4239    {
4240        private static final long serialVersionUID = 4374092139857L;
4241
4242        /**
4243         * The comparator specified in the static factory.  This will never
4244         * be null, as the static factory returns a ReverseComparator
4245         * instance if its argument is null.
4246         *
4247         * @serial
4248         */
4249        final Comparator<T> cmp;
4250
4251        ReverseComparator2(Comparator<T> cmp) {
4252            assert cmp != null;
4253            this.cmp = cmp;
4254        }
4255
4256        public int compare(T t1, T t2) {
4257            return cmp.compare(t2, t1);
4258        }
4259
4260        public boolean equals(Object o) {
4261            return (o == this) ||
4262                (o instanceof ReverseComparator2 &&
4263                 cmp.equals(((ReverseComparator2)o).cmp));
4264        }
4265
4266        public int hashCode() {
4267            return cmp.hashCode() ^ Integer.MIN_VALUE;
4268        }
4269
4270        @Override
4271        public Comparator<T> reversed() {
4272            return cmp;
4273        }
4274    }
4275
4276    /**
4277     * Returns an enumeration over the specified collection.  This provides
4278     * interoperability with legacy APIs that require an enumeration
4279     * as input.
4280     *
4281     * @param  <T> the class of the objects in the collection
4282     * @param c the collection for which an enumeration is to be returned.
4283     * @return an enumeration over the specified collection.
4284     * @see Enumeration
4285     */
4286    public static <T> Enumeration<T> enumeration(final Collection<T> c) {
4287        return new Enumeration<T>() {
4288            private final Iterator<T> i = c.iterator();
4289
4290            public boolean hasMoreElements() {
4291                return i.hasNext();
4292            }
4293
4294            public T nextElement() {
4295                return i.next();
4296            }
4297        };
4298    }
4299
4300    /**
4301     * Returns an array list containing the elements returned by the
4302     * specified enumeration in the order they are returned by the
4303     * enumeration.  This method provides interoperability between
4304     * legacy APIs that return enumerations and new APIs that require
4305     * collections.
4306     *
4307     * @param <T> the class of the objects returned by the enumeration
4308     * @param e enumeration providing elements for the returned
4309     *          array list
4310     * @return an array list containing the elements returned
4311     *         by the specified enumeration.
4312     * @since 1.4
4313     * @see Enumeration
4314     * @see ArrayList
4315     */
4316    public static <T> ArrayList<T> list(Enumeration<T> e) {
4317        ArrayList<T> l = new ArrayList<>();
4318        while (e.hasMoreElements())
4319            l.add(e.nextElement());
4320        return l;
4321    }
4322
4323    /**
4324     * Returns true if the specified arguments are equal, or both null.
4325     *
4326     * NB: Do not replace with Object.equals until JDK-8015417 is resolved.
4327     */
4328    static boolean eq(Object o1, Object o2) {
4329        return o1==null ? o2==null : o1.equals(o2);
4330    }
4331
4332    /**
4333     * Returns the number of elements in the specified collection equal to the
4334     * specified object.  More formally, returns the number of elements
4335     * <tt>e</tt> in the collection such that
4336     * <tt>(o == null ? e == null : o.equals(e))</tt>.
4337     *
4338     * @param c the collection in which to determine the frequency
4339     *     of <tt>o</tt>
4340     * @param o the object whose frequency is to be determined
4341     * @return the number of elements in {@code c} equal to {@code o}
4342     * @throws NullPointerException if <tt>c</tt> is null
4343     * @since 1.5
4344     */
4345    public static int frequency(Collection<?> c, Object o) {
4346        int result = 0;
4347        if (o == null) {
4348            for (Object e : c)
4349                if (e == null)
4350                    result++;
4351        } else {
4352            for (Object e : c)
4353                if (o.equals(e))
4354                    result++;
4355        }
4356        return result;
4357    }
4358
4359    /**
4360     * Returns {@code true} if the two specified collections have no
4361     * elements in common.
4362     *
4363     * <p>Care must be exercised if this method is used on collections that
4364     * do not comply with the general contract for {@code Collection}.
4365     * Implementations may elect to iterate over either collection and test
4366     * for containment in the other collection (or to perform any equivalent
4367     * computation).  If either collection uses a nonstandard equality test
4368     * (as does a {@link SortedSet} whose ordering is not <em>compatible with
4369     * equals</em>, or the key set of an {@link IdentityHashMap}), both
4370     * collections must use the same nonstandard equality test, or the
4371     * result of this method is undefined.
4372     *
4373     * <p>Care must also be exercised when using collections that have
4374     * restrictions on the elements that they may contain. Collection
4375     * implementations are allowed to throw exceptions for any operation
4376     * involving elements they deem ineligible. For absolute safety the
4377     * specified collections should contain only elements which are
4378     * eligible elements for both collections.
4379     *
4380     * <p>Note that it is permissible to pass the same collection in both
4381     * parameters, in which case the method will return {@code true} if and
4382     * only if the collection is empty.
4383     *
4384     * @param c1 a collection
4385     * @param c2 a collection
4386     * @return {@code true} if the two specified collections have no
4387     * elements in common.
4388     * @throws NullPointerException if either collection is {@code null}.
4389     * @throws NullPointerException if one collection contains a {@code null}
4390     * element and {@code null} is not an eligible element for the other collection.
4391     * (<a href="Collection.html#optional-restrictions">optional</a>)
4392     * @throws ClassCastException if one collection contains an element that is
4393     * of a type which is ineligible for the other collection.
4394     * (<a href="Collection.html#optional-restrictions">optional</a>)
4395     * @since 1.5
4396     */
4397    public static boolean disjoint(Collection<?> c1, Collection<?> c2) {
4398        // The collection to be used for contains(). Preference is given to
4399        // the collection who's contains() has lower O() complexity.
4400        Collection<?> contains = c2;
4401        // The collection to be iterated. If the collections' contains() impl
4402        // are of different O() complexity, the collection with slower
4403        // contains() will be used for iteration. For collections who's
4404        // contains() are of the same complexity then best performance is
4405        // achieved by iterating the smaller collection.
4406        Collection<?> iterate = c1;
4407
4408        // Performance optimization cases. The heuristics:
4409        //   1. Generally iterate over c1.
4410        //   2. If c1 is a Set then iterate over c2.
4411        //   3. If either collection is empty then result is always true.
4412        //   4. Iterate over the smaller Collection.
4413        if (c1 instanceof Set) {
4414            // Use c1 for contains as a Set's contains() is expected to perform
4415            // better than O(N/2)
4416            iterate = c2;
4417            contains = c1;
4418        } else if (!(c2 instanceof Set)) {
4419            // Both are mere Collections. Iterate over smaller collection.
4420            // Example: If c1 contains 3 elements and c2 contains 50 elements and
4421            // assuming contains() requires ceiling(N/2) comparisons then
4422            // checking for all c1 elements in c2 would require 75 comparisons
4423            // (3 * ceiling(50/2)) vs. checking all c2 elements in c1 requiring
4424            // 100 comparisons (50 * ceiling(3/2)).
4425            int c1size = c1.size();
4426            int c2size = c2.size();
4427            if (c1size == 0 || c2size == 0) {
4428                // At least one collection is empty. Nothing will match.
4429                return true;
4430            }
4431
4432            if (c1size > c2size) {
4433                iterate = c2;
4434                contains = c1;
4435            }
4436        }
4437
4438        for (Object e : iterate) {
4439            if (contains.contains(e)) {
4440               // Found a common element. Collections are not disjoint.
4441                return false;
4442            }
4443        }
4444
4445        // No common elements were found.
4446        return true;
4447    }
4448
4449    /**
4450     * Adds all of the specified elements to the specified collection.
4451     * Elements to be added may be specified individually or as an array.
4452     * The behavior of this convenience method is identical to that of
4453     * <tt>c.addAll(Arrays.asList(elements))</tt>, but this method is likely
4454     * to run significantly faster under most implementations.
4455     *
4456     * <p>When elements are specified individually, this method provides a
4457     * convenient way to add a few elements to an existing collection:
4458     * <pre>
4459     *     Collections.addAll(flavors, "Peaches 'n Plutonium", "Rocky Racoon");
4460     * </pre>
4461     *
4462     * @param  <T> the class of the elements to add and of the collection
4463     * @param c the collection into which <tt>elements</tt> are to be inserted
4464     * @param elements the elements to insert into <tt>c</tt>
4465     * @return <tt>true</tt> if the collection changed as a result of the call
4466     * @throws UnsupportedOperationException if <tt>c</tt> does not support
4467     *         the <tt>add</tt> operation
4468     * @throws NullPointerException if <tt>elements</tt> contains one or more
4469     *         null values and <tt>c</tt> does not permit null elements, or
4470     *         if <tt>c</tt> or <tt>elements</tt> are <tt>null</tt>
4471     * @throws IllegalArgumentException if some property of a value in
4472     *         <tt>elements</tt> prevents it from being added to <tt>c</tt>
4473     * @see Collection#addAll(Collection)
4474     * @since 1.5
4475     */
4476    @SafeVarargs
4477    public static <T> boolean addAll(Collection<? super T> c, T... elements) {
4478        boolean result = false;
4479        for (T element : elements)
4480            result |= c.add(element);
4481        return result;
4482    }
4483
4484    /**
4485     * Returns a set backed by the specified map.  The resulting set displays
4486     * the same ordering, concurrency, and performance characteristics as the
4487     * backing map.  In essence, this factory method provides a {@link Set}
4488     * implementation corresponding to any {@link Map} implementation.  There
4489     * is no need to use this method on a {@link Map} implementation that
4490     * already has a corresponding {@link Set} implementation (such as {@link
4491     * HashMap} or {@link TreeMap}).
4492     *
4493     * <p>Each method invocation on the set returned by this method results in
4494     * exactly one method invocation on the backing map or its <tt>keySet</tt>
4495     * view, with one exception.  The <tt>addAll</tt> method is implemented
4496     * as a sequence of <tt>put</tt> invocations on the backing map.
4497     *
4498     * <p>The specified map must be empty at the time this method is invoked,
4499     * and should not be accessed directly after this method returns.  These
4500     * conditions are ensured if the map is created empty, passed directly
4501     * to this method, and no reference to the map is retained, as illustrated
4502     * in the following code fragment:
4503     * <pre>
4504     *    Set&lt;Object&gt; weakHashSet = Collections.newSetFromMap(
4505     *        new WeakHashMap&lt;Object, Boolean&gt;());
4506     * </pre>
4507     *
4508     * @param <E> the class of the map keys and of the objects in the
4509     *        returned set
4510     * @param map the backing map
4511     * @return the set backed by the map
4512     * @throws IllegalArgumentException if <tt>map</tt> is not empty
4513     * @since 1.6
4514     */
4515    public static <E> Set<E> newSetFromMap(Map<E, Boolean> map) {
4516        return new SetFromMap<>(map);
4517    }
4518
4519    /**
4520     * @serial include
4521     */
4522    private static class SetFromMap<E> extends AbstractSet<E>
4523        implements Set<E>, Serializable
4524    {
4525        private final Map<E, Boolean> m;  // The backing map
4526        private transient Set<E> s;       // Its keySet
4527
4528        SetFromMap(Map<E, Boolean> map) {
4529            if (!map.isEmpty())
4530                throw new IllegalArgumentException("Map is non-empty");
4531            m = map;
4532            s = map.keySet();
4533        }
4534
4535        public void clear()               {        m.clear(); }
4536        public int size()                 { return m.size(); }
4537        public boolean isEmpty()          { return m.isEmpty(); }
4538        public boolean contains(Object o) { return m.containsKey(o); }
4539        public boolean remove(Object o)   { return m.remove(o) != null; }
4540        public boolean add(E e) { return m.put(e, Boolean.TRUE) == null; }
4541        public Iterator<E> iterator()     { return s.iterator(); }
4542        public Object[] toArray()         { return s.toArray(); }
4543        public <T> T[] toArray(T[] a)     { return s.toArray(a); }
4544        public String toString()          { return s.toString(); }
4545        public int hashCode()             { return s.hashCode(); }
4546        public boolean equals(Object o)   { return o == this || s.equals(o); }
4547        public boolean containsAll(Collection<?> c) {return s.containsAll(c);}
4548        public boolean removeAll(Collection<?> c)   {return s.removeAll(c);}
4549        public boolean retainAll(Collection<?> c)   {return s.retainAll(c);}
4550        // addAll is the only inherited implementation
4551
4552        // Override default methods in Collection
4553        @Override
4554        public void forEach(Consumer<? super E> action) {
4555            s.forEach(action);
4556        }
4557        @Override
4558        public boolean removeIf(Predicate<? super E> filter) {
4559            return s.removeIf(filter);
4560        }
4561
4562        @Override
4563        public Spliterator<E> spliterator() {return s.spliterator();}
4564        @Override
4565        public Stream<E> stream()           {return s.stream();}
4566        @Override
4567        public Stream<E> parallelStream()   {return s.parallelStream();}
4568
4569        private static final long serialVersionUID = 2454657854757543876L;
4570
4571        private void readObject(java.io.ObjectInputStream stream)
4572            throws IOException, ClassNotFoundException
4573        {
4574            stream.defaultReadObject();
4575            s = m.keySet();
4576        }
4577    }
4578
4579    /**
4580     * Returns a view of a {@link Deque} as a Last-in-first-out (Lifo)
4581     * {@link Queue}. Method <tt>add</tt> is mapped to <tt>push</tt>,
4582     * <tt>remove</tt> is mapped to <tt>pop</tt> and so on. This
4583     * view can be useful when you would like to use a method
4584     * requiring a <tt>Queue</tt> but you need Lifo ordering.
4585     *
4586     * <p>Each method invocation on the queue returned by this method
4587     * results in exactly one method invocation on the backing deque, with
4588     * one exception.  The {@link Queue#addAll addAll} method is
4589     * implemented as a sequence of {@link Deque#addFirst addFirst}
4590     * invocations on the backing deque.
4591     *
4592     * @param  <T> the class of the objects in the deque
4593     * @param deque the deque
4594     * @return the queue
4595     * @since  1.6
4596     */
4597    public static <T> Queue<T> asLifoQueue(Deque<T> deque) {
4598        return new AsLIFOQueue<>(deque);
4599    }
4600
4601    /**
4602     * @serial include
4603     */
4604    static class AsLIFOQueue<E> extends AbstractQueue<E>
4605        implements Queue<E>, Serializable {
4606        private static final long serialVersionUID = 1802017725587941708L;
4607        private final Deque<E> q;
4608        AsLIFOQueue(Deque<E> q)           { this.q = q; }
4609        public boolean add(E e)           { q.addFirst(e); return true; }
4610        public boolean offer(E e)         { return q.offerFirst(e); }
4611        public E poll()                   { return q.pollFirst(); }
4612        public E remove()                 { return q.removeFirst(); }
4613        public E peek()                   { return q.peekFirst(); }
4614        public E element()                { return q.getFirst(); }
4615        public void clear()               {        q.clear(); }
4616        public int size()                 { return q.size(); }
4617        public boolean isEmpty()          { return q.isEmpty(); }
4618        public boolean contains(Object o) { return q.contains(o); }
4619        public boolean remove(Object o)   { return q.remove(o); }
4620        public Iterator<E> iterator()     { return q.iterator(); }
4621        public Object[] toArray()         { return q.toArray(); }
4622        public <T> T[] toArray(T[] a)     { return q.toArray(a); }
4623        public String toString()          { return q.toString(); }
4624        public boolean containsAll(Collection<?> c) {return q.containsAll(c);}
4625        public boolean removeAll(Collection<?> c)   {return q.removeAll(c);}
4626        public boolean retainAll(Collection<?> c)   {return q.retainAll(c);}
4627        // We use inherited addAll; forwarding addAll would be wrong
4628
4629        // Override default methods in Collection
4630        @Override
4631        public void forEach(Consumer<? super E> action) {q.forEach(action);}
4632        @Override
4633        public boolean removeIf(Predicate<? super E> filter) {
4634            return q.removeIf(filter);
4635        }
4636
4637        @Override
4638        public Spliterator<E> spliterator() {return q.spliterator();}
4639        @Override
4640        public Stream<E> stream()           {return q.stream();}
4641        @Override
4642        public Stream<E> parallelStream()   {return q.parallelStream();}
4643    }
4644}
4645