Collections.java revision 4f549c0a2df05bf19a068fcd8a917ba332cf809a
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.  Oracle designates this
9 * particular file as subject to the "Classpath" exception as provided
10 * by Oracle in the LICENSE file that accompanied this code.
11 *
12 * This code is distributed in the hope that it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 * version 2 for more details (a copy is included in the LICENSE file that
16 * accompanied this code).
17 *
18 * You should have received a copy of the GNU General Public License version
19 * 2 along with this work; if not, write to the Free Software Foundation,
20 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
21 *
22 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
23 * or visit www.oracle.com if you need additional information or have any
24 * questions.
25 */
26
27package java.util;
28
29import java.io.IOException;
30import java.io.ObjectOutputStream;
31import java.io.Serializable;
32import java.lang.reflect.Array;
33import java.util.function.BiConsumer;
34import java.util.function.BiFunction;
35import java.util.function.Consumer;
36import java.util.function.Function;
37import java.util.function.Predicate;
38import java.util.stream.IntStream;
39import java.util.stream.Stream;
40import java.util.stream.StreamSupport;
41import java.util.function.UnaryOperator;
42
43
44/**
45 * This class consists exclusively of static methods that operate on or return
46 * collections.  It contains polymorphic algorithms that operate on
47 * collections, "wrappers", which return a new collection backed by a
48 * specified collection, and a few other odds and ends.
49 *
50 * <p>The methods of this class all throw a <tt>NullPointerException</tt>
51 * if the collections or class objects provided to them are null.
52 *
53 * <p>The documentation for the polymorphic algorithms contained in this class
54 * generally includes a brief description of the <i>implementation</i>.  Such
55 * descriptions should be regarded as <i>implementation notes</i>, rather than
56 * parts of the <i>specification</i>.  Implementors should feel free to
57 * substitute other algorithms, so long as the specification itself is adhered
58 * to.  (For example, the algorithm used by <tt>sort</tt> does not have to be
59 * a mergesort, but it does have to be <i>stable</i>.)
60 *
61 * <p>The "destructive" algorithms contained in this class, that is, the
62 * algorithms that modify the collection on which they operate, are specified
63 * to throw <tt>UnsupportedOperationException</tt> if the collection does not
64 * support the appropriate mutation primitive(s), such as the <tt>set</tt>
65 * method.  These algorithms may, but are not required to, throw this
66 * exception if an invocation would have no effect on the collection.  For
67 * example, invoking the <tt>sort</tt> method on an unmodifiable list that is
68 * already sorted may or may not throw <tt>UnsupportedOperationException</tt>.
69 *
70 * <p>This class is a member of the
71 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
72 * Java Collections Framework</a>.
73 *
74 * @author  Josh Bloch
75 * @author  Neal Gafter
76 * @see     Collection
77 * @see     Set
78 * @see     List
79 * @see     Map
80 * @since   1.2
81 */
82
83public class Collections {
84    // Suppresses default constructor, ensuring non-instantiability.
85    private Collections() {
86    }
87
88    // Algorithms
89
90    /*
91     * Tuning parameters for algorithms - Many of the List algorithms have
92     * two implementations, one of which is appropriate for RandomAccess
93     * lists, the other for "sequential."  Often, the random access variant
94     * yields better performance on small sequential access lists.  The
95     * tuning parameters below determine the cutoff point for what constitutes
96     * a "small" sequential access list for each algorithm.  The values below
97     * were empirically determined to work well for LinkedList. Hopefully
98     * they should be reasonable for other sequential access List
99     * implementations.  Those doing performance work on this code would
100     * do well to validate the values of these parameters from time to time.
101     * (The first word of each tuning parameter name is the algorithm to which
102     * it applies.)
103     */
104    private static final int BINARYSEARCH_THRESHOLD   = 5000;
105    private static final int REVERSE_THRESHOLD        =   18;
106    private static final int SHUFFLE_THRESHOLD        =    5;
107    private static final int FILL_THRESHOLD           =   25;
108    private static final int ROTATE_THRESHOLD         =  100;
109    private static final int COPY_THRESHOLD           =   10;
110    private static final int REPLACEALL_THRESHOLD     =   11;
111    private static final int INDEXOFSUBLIST_THRESHOLD =   35;
112
113    /**
114     * Sorts the specified list into ascending order, according to the
115     * {@linkplain Comparable natural ordering} of its elements.
116     * All elements in the list must implement the {@link Comparable}
117     * interface.  Furthermore, all elements in the list must be
118     * <i>mutually comparable</i> (that is, {@code e1.compareTo(e2)}
119     * must not throw a {@code ClassCastException} for any elements
120     * {@code e1} and {@code e2} in the list).
121     *
122     * <p>This sort is guaranteed to be <i>stable</i>:  equal elements will
123     * not be reordered as a result of the sort.
124     *
125     * <p>The specified list must be modifiable, but need not be resizable.
126     *
127     * <p>Implementation note: This implementation is a stable, adaptive,
128     * iterative mergesort that requires far fewer than n lg(n) comparisons
129     * when the input array is partially sorted, while offering the
130     * performance of a traditional mergesort when the input array is
131     * randomly ordered.  If the input array is nearly sorted, the
132     * implementation requires approximately n comparisons.  Temporary
133     * storage requirements vary from a small constant for nearly sorted
134     * input arrays to n/2 object references for randomly ordered input
135     * arrays.
136     *
137     * <p>The implementation takes equal advantage of ascending and
138     * descending order in its input array, and can take advantage of
139     * ascending and descending order in different parts of the same
140     * input array.  It is well-suited to merging two or more sorted arrays:
141     * simply concatenate the arrays and sort the resulting array.
142     *
143     * <p>The implementation was adapted from Tim Peters's list sort for Python
144     * (<a href="http://svn.python.org/projects/python/trunk/Objects/listsort.txt">
145     * TimSort</a>).  It uses techniques from Peter McIlroy's "Optimistic
146     * Sorting and Information Theoretic Complexity", in Proceedings of the
147     * Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 467-474,
148     * January 1993.
149     *
150     * <p>This implementation dumps the specified list into an array, sorts
151     * the array, and iterates over the list resetting each element
152     * from the corresponding position in the array.  This avoids the
153     * n<sup>2</sup> log(n) performance that would result from attempting
154     * to sort a linked list in place.
155     *
156     * @param  <T> the class of the objects in the list
157     * @param  list the list to be sorted.
158     * @throws ClassCastException if the list contains elements that are not
159     *         <i>mutually comparable</i> (for example, strings and integers).
160     * @throws UnsupportedOperationException if the specified list's
161     *         list-iterator does not support the {@code set} operation.
162     * @throws IllegalArgumentException (optional) if the implementation
163     *         detects that the natural ordering of the list elements is
164     *         found to violate the {@link Comparable} contract
165     */
166    @SuppressWarnings("unchecked")
167    public static <T extends Comparable<? super T>> void sort(List<T> list) {
168        if (list.getClass() == ArrayList.class) {
169            Arrays.sort(((ArrayList) list).elementData, 0, list.size());
170            return;
171        }
172
173        Object[] a = list.toArray();
174        Arrays.sort(a);
175        ListIterator<T> i = list.listIterator();
176        for (int j=0; j<a.length; j++) {
177            i.next();
178            i.set((T)a[j]);
179        }
180    }
181
182    /**
183     * Sorts the specified list according to the order induced by the
184     * specified comparator.  All elements in the list must be <i>mutually
185     * comparable</i> using the specified comparator (that is,
186     * {@code c.compare(e1, e2)} must not throw a {@code ClassCastException}
187     * for any elements {@code e1} and {@code e2} in the list).
188     *
189     * <p>This sort is guaranteed to be <i>stable</i>:  equal elements will
190     * not be reordered as a result of the sort.
191     *
192     * <p>The specified list must be modifiable, but need not be resizable.
193     *
194     * <p>Implementation note: This implementation is a stable, adaptive,
195     * iterative mergesort that requires far fewer than n lg(n) comparisons
196     * when the input array is partially sorted, while offering the
197     * performance of a traditional mergesort when the input array is
198     * randomly ordered.  If the input array is nearly sorted, the
199     * implementation requires approximately n comparisons.  Temporary
200     * storage requirements vary from a small constant for nearly sorted
201     * input arrays to n/2 object references for randomly ordered input
202     * arrays.
203     *
204     * <p>The implementation takes equal advantage of ascending and
205     * descending order in its input array, and can take advantage of
206     * ascending and descending order in different parts of the same
207     * input array.  It is well-suited to merging two or more sorted arrays:
208     * simply concatenate the arrays and sort the resulting array.
209     *
210     * <p>The implementation was adapted from Tim Peters's list sort for Python
211     * (<a href="http://svn.python.org/projects/python/trunk/Objects/listsort.txt">
212     * TimSort</a>).  It uses techniques from Peter McIlroy's "Optimistic
213     * Sorting and Information Theoretic Complexity", in Proceedings of the
214     * Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 467-474,
215     * January 1993.
216     *
217     * <p>This implementation dumps the specified list into an array, sorts
218     * the array, and iterates over the list resetting each element
219     * from the corresponding position in the array.  This avoids the
220     * n<sup>2</sup> log(n) performance that would result from attempting
221     * to sort a linked list in place.
222     *
223     * @param  <T> the class of the objects in the list
224     * @param  list the list to be sorted.
225     * @param  c the comparator to determine the order of the list.  A
226     *        {@code null} value indicates that the elements' <i>natural
227     *        ordering</i> should be used.
228     * @throws ClassCastException if the list contains elements that are not
229     *         <i>mutually comparable</i> using the specified comparator.
230     * @throws UnsupportedOperationException if the specified list's
231     *         list-iterator does not support the {@code set} operation.
232     * @throws IllegalArgumentException (optional) if the comparator is
233     *         found to violate the {@link Comparator} contract
234     */
235    @SuppressWarnings({"unchecked", "rawtypes"})
236    public static <T> void sort(List<T> list, Comparator<? super T> c) {
237        if (list.getClass() == ArrayList.class) {
238            Arrays.sort(((ArrayList) list).elementData, 0, list.size(), (Comparator) c);
239            return;
240        }
241
242        Object[] a = list.toArray();
243        Arrays.sort(a, (Comparator)c);
244        ListIterator<T> i = list.listIterator();
245        for (int j=0; j<a.length; j++) {
246            i.next();
247            i.set((T)a[j]);
248        }
249    }
250
251
252    /**
253     * Searches the specified list for the specified object using the binary
254     * search algorithm.  The list must be sorted into ascending order
255     * according to the {@linkplain Comparable natural ordering} of its
256     * elements (as by the {@link #sort(List)} method) prior to making this
257     * call.  If it is not sorted, the results are undefined.  If the list
258     * contains multiple elements equal to the specified object, there is no
259     * guarantee which one will be found.
260     *
261     * <p>This method runs in log(n) time for a "random access" list (which
262     * provides near-constant-time positional access).  If the specified list
263     * does not implement the {@link RandomAccess} interface and is large,
264     * this method will do an iterator-based binary search that performs
265     * O(n) link traversals and O(log n) element comparisons.
266     *
267     * @param  <T> the class of the objects in the list
268     * @param  list the list to be searched.
269     * @param  key the key to be searched for.
270     * @return the index of the search key, if it is contained in the list;
271     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
272     *         <i>insertion point</i> is defined as the point at which the
273     *         key would be inserted into the list: the index of the first
274     *         element greater than the key, or <tt>list.size()</tt> if all
275     *         elements in the list are less than the specified key.  Note
276     *         that this guarantees that the return value will be &gt;= 0 if
277     *         and only if the key is found.
278     * @throws ClassCastException if the list contains elements that are not
279     *         <i>mutually comparable</i> (for example, strings and
280     *         integers), or the search key is not mutually comparable
281     *         with the elements of the list.
282     */
283    public static <T>
284    int binarySearch(List<? extends Comparable<? super T>> list, T key) {
285        if (list instanceof RandomAccess || list.size()<BINARYSEARCH_THRESHOLD)
286            return Collections.indexedBinarySearch(list, key);
287        else
288            return Collections.iteratorBinarySearch(list, key);
289    }
290
291    private static <T>
292    int indexedBinarySearch(List<? extends Comparable<? super T>> list, T key) {
293        int low = 0;
294        int high = list.size()-1;
295
296        while (low <= high) {
297            int mid = (low + high) >>> 1;
298            Comparable<? super T> midVal = list.get(mid);
299            int cmp = midVal.compareTo(key);
300
301            if (cmp < 0)
302                low = mid + 1;
303            else if (cmp > 0)
304                high = mid - 1;
305            else
306                return mid; // key found
307        }
308        return -(low + 1);  // key not found
309    }
310
311    private static <T>
312    int iteratorBinarySearch(List<? extends Comparable<? super T>> list, T key)
313    {
314        int low = 0;
315        int high = list.size()-1;
316        ListIterator<? extends Comparable<? super T>> i = list.listIterator();
317
318        while (low <= high) {
319            int mid = (low + high) >>> 1;
320            Comparable<? super T> midVal = get(i, mid);
321            int cmp = midVal.compareTo(key);
322
323            if (cmp < 0)
324                low = mid + 1;
325            else if (cmp > 0)
326                high = mid - 1;
327            else
328                return mid; // key found
329        }
330        return -(low + 1);  // key not found
331    }
332
333    /**
334     * Gets the ith element from the given list by repositioning the specified
335     * list listIterator.
336     */
337    private static <T> T get(ListIterator<? extends T> i, int index) {
338        T obj = null;
339        int pos = i.nextIndex();
340        if (pos <= index) {
341            do {
342                obj = i.next();
343            } while (pos++ < index);
344        } else {
345            do {
346                obj = i.previous();
347            } while (--pos > index);
348        }
349        return obj;
350    }
351
352    /**
353     * Searches the specified list for the specified object using the binary
354     * search algorithm.  The list must be sorted into ascending order
355     * according to the specified comparator (as by the
356     * {@link #sort(List, Comparator) sort(List, Comparator)}
357     * method), prior to making this call.  If it is
358     * not sorted, the results are undefined.  If the list contains multiple
359     * elements equal to the specified object, there is no guarantee which one
360     * will be found.
361     *
362     * <p>This method runs in log(n) time for a "random access" list (which
363     * provides near-constant-time positional access).  If the specified list
364     * does not implement the {@link RandomAccess} interface and is large,
365     * this method will do an iterator-based binary search that performs
366     * O(n) link traversals and O(log n) element comparisons.
367     *
368     * @param  <T> the class of the objects in the list
369     * @param  list the list to be searched.
370     * @param  key the key to be searched for.
371     * @param  c the comparator by which the list is ordered.
372     *         A <tt>null</tt> value indicates that the elements'
373     *         {@linkplain Comparable natural ordering} should be used.
374     * @return the index of the search key, if it is contained in the list;
375     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
376     *         <i>insertion point</i> is defined as the point at which the
377     *         key would be inserted into the list: the index of the first
378     *         element greater than the key, or <tt>list.size()</tt> if all
379     *         elements in the list are less than the specified key.  Note
380     *         that this guarantees that the return value will be &gt;= 0 if
381     *         and only if the key is found.
382     * @throws ClassCastException if the list contains elements that are not
383     *         <i>mutually comparable</i> using the specified comparator,
384     *         or the search key is not mutually comparable with the
385     *         elements of the list using this comparator.
386     */
387    @SuppressWarnings("unchecked")
388    public static <T> int binarySearch(List<? extends T> list, T key, Comparator<? super T> c) {
389        if (c==null)
390            return binarySearch((List<? extends Comparable<? super T>>) list, key);
391
392        if (list instanceof RandomAccess || list.size()<BINARYSEARCH_THRESHOLD)
393            return Collections.indexedBinarySearch(list, key, c);
394        else
395            return Collections.iteratorBinarySearch(list, key, c);
396    }
397
398    private static <T> int indexedBinarySearch(List<? extends T> l, T key, Comparator<? super T> c) {
399        int low = 0;
400        int high = l.size()-1;
401
402        while (low <= high) {
403            int mid = (low + high) >>> 1;
404            T midVal = l.get(mid);
405            int cmp = c.compare(midVal, key);
406
407            if (cmp < 0)
408                low = mid + 1;
409            else if (cmp > 0)
410                high = mid - 1;
411            else
412                return mid; // key found
413        }
414        return -(low + 1);  // key not found
415    }
416
417    private static <T> int iteratorBinarySearch(List<? extends T> l, T key, Comparator<? super T> c) {
418        int low = 0;
419        int high = l.size()-1;
420        ListIterator<? extends T> i = l.listIterator();
421
422        while (low <= high) {
423            int mid = (low + high) >>> 1;
424            T midVal = get(i, mid);
425            int cmp = c.compare(midVal, key);
426
427            if (cmp < 0)
428                low = mid + 1;
429            else if (cmp > 0)
430                high = mid - 1;
431            else
432                return mid; // key found
433        }
434        return -(low + 1);  // key not found
435    }
436
437    /**
438     * Reverses the order of the elements in the specified list.<p>
439     *
440     * This method runs in linear time.
441     *
442     * @param  list the list whose elements are to be reversed.
443     * @throws UnsupportedOperationException if the specified list or
444     *         its list-iterator does not support the <tt>set</tt> operation.
445     */
446    @SuppressWarnings({"rawtypes", "unchecked"})
447    public static void reverse(List<?> list) {
448        int size = list.size();
449        if (size < REVERSE_THRESHOLD || list instanceof RandomAccess) {
450            for (int i=0, mid=size>>1, j=size-1; i<mid; i++, j--)
451                swap(list, i, j);
452        } else {
453            // instead of using a raw type here, it's possible to capture
454            // the wildcard but it will require a call to a supplementary
455            // private method
456            ListIterator fwd = list.listIterator();
457            ListIterator rev = list.listIterator(size);
458            for (int i=0, mid=list.size()>>1; i<mid; i++) {
459                Object tmp = fwd.next();
460                fwd.set(rev.previous());
461                rev.set(tmp);
462            }
463        }
464    }
465
466    /**
467     * Randomly permutes the specified list using a default source of
468     * randomness.  All permutations occur with approximately equal
469     * likelihood.
470     *
471     * <p>The hedge "approximately" is used in the foregoing description because
472     * default source of randomness is only approximately an unbiased source
473     * of independently chosen bits. If it were a perfect source of randomly
474     * chosen bits, then the algorithm would choose permutations with perfect
475     * uniformity.
476     *
477     * <p>This implementation traverses the list backwards, from the last
478     * element up to the second, repeatedly swapping a randomly selected element
479     * into the "current position".  Elements are randomly selected from the
480     * portion of the list that runs from the first element to the current
481     * position, inclusive.
482     *
483     * <p>This method runs in linear time.  If the specified list does not
484     * implement the {@link RandomAccess} interface and is large, this
485     * implementation dumps the specified list into an array before shuffling
486     * it, and dumps the shuffled array back into the list.  This avoids the
487     * quadratic behavior that would result from shuffling a "sequential
488     * access" list in place.
489     *
490     * @param  list the list to be shuffled.
491     * @throws UnsupportedOperationException if the specified list or
492     *         its list-iterator does not support the <tt>set</tt> operation.
493     */
494    public static void shuffle(List<?> list) {
495        Random rnd = r;
496        if (rnd == null)
497            r = rnd = new Random(); // harmless race.
498        shuffle(list, rnd);
499    }
500
501    private static Random r;
502
503    /**
504     * Randomly permute the specified list using the specified source of
505     * randomness.  All permutations occur with equal likelihood
506     * assuming that the source of randomness is fair.<p>
507     *
508     * This implementation traverses the list backwards, from the last element
509     * up to the second, repeatedly swapping a randomly selected element into
510     * the "current position".  Elements are randomly selected from the
511     * portion of the list that runs from the first element to the current
512     * position, inclusive.<p>
513     *
514     * This method runs in linear time.  If the specified list does not
515     * implement the {@link RandomAccess} interface and is large, this
516     * implementation dumps the specified list into an array before shuffling
517     * it, and dumps the shuffled array back into the list.  This avoids the
518     * quadratic behavior that would result from shuffling a "sequential
519     * access" list in place.
520     *
521     * @param  list the list to be shuffled.
522     * @param  rnd the source of randomness to use to shuffle the list.
523     * @throws UnsupportedOperationException if the specified list or its
524     *         list-iterator does not support the <tt>set</tt> operation.
525     */
526    @SuppressWarnings({"rawtypes", "unchecked"})
527    public static void shuffle(List<?> list, Random rnd) {
528        int size = list.size();
529        if (size < SHUFFLE_THRESHOLD || list instanceof RandomAccess) {
530            for (int i=size; i>1; i--)
531                swap(list, i-1, rnd.nextInt(i));
532        } else {
533            Object arr[] = list.toArray();
534
535            // Shuffle array
536            for (int i=size; i>1; i--)
537                swap(arr, i-1, rnd.nextInt(i));
538
539            // Dump array back into list
540            // instead of using a raw type here, it's possible to capture
541            // the wildcard but it will require a call to a supplementary
542            // private method
543            ListIterator it = list.listIterator();
544            for (int i=0; i<arr.length; i++) {
545                it.next();
546                it.set(arr[i]);
547            }
548        }
549    }
550
551    /**
552     * Swaps the elements at the specified positions in the specified list.
553     * (If the specified positions are equal, invoking this method leaves
554     * the list unchanged.)
555     *
556     * @param list The list in which to swap elements.
557     * @param i the index of one element to be swapped.
558     * @param j the index of the other element to be swapped.
559     * @throws IndexOutOfBoundsException if either <tt>i</tt> or <tt>j</tt>
560     *         is out of range (i &lt; 0 || i &gt;= list.size()
561     *         || j &lt; 0 || j &gt;= list.size()).
562     * @since 1.4
563     */
564    @SuppressWarnings({"rawtypes", "unchecked"})
565    public static void swap(List<?> list, int i, int j) {
566        // instead of using a raw type here, it's possible to capture
567        // the wildcard but it will require a call to a supplementary
568        // private method
569        final List l = list;
570        l.set(i, l.set(j, l.get(i)));
571    }
572
573    /**
574     * Swaps the two specified elements in the specified array.
575     */
576    private static void swap(Object[] arr, int i, int j) {
577        Object tmp = arr[i];
578        arr[i] = arr[j];
579        arr[j] = tmp;
580    }
581
582    /**
583     * Replaces all of the elements of the specified list with the specified
584     * element. <p>
585     *
586     * This method runs in linear time.
587     *
588     * @param  <T> the class of the objects in the list
589     * @param  list the list to be filled with the specified element.
590     * @param  obj The element with which to fill the specified list.
591     * @throws UnsupportedOperationException if the specified list or its
592     *         list-iterator does not support the <tt>set</tt> operation.
593     */
594    public static <T> void fill(List<? super T> list, T obj) {
595        int size = list.size();
596
597        if (size < FILL_THRESHOLD || list instanceof RandomAccess) {
598            for (int i=0; i<size; i++)
599                list.set(i, obj);
600        } else {
601            ListIterator<? super T> itr = list.listIterator();
602            for (int i=0; i<size; i++) {
603                itr.next();
604                itr.set(obj);
605            }
606        }
607    }
608
609    /**
610     * Copies all of the elements from one list into another.  After the
611     * operation, the index of each copied element in the destination list
612     * will be identical to its index in the source list.  The destination
613     * list must be at least as long as the source list.  If it is longer, the
614     * remaining elements in the destination list are unaffected. <p>
615     *
616     * This method runs in linear time.
617     *
618     * @param  <T> the class of the objects in the lists
619     * @param  dest The destination list.
620     * @param  src The source list.
621     * @throws IndexOutOfBoundsException if the destination list is too small
622     *         to contain the entire source List.
623     * @throws UnsupportedOperationException if the destination list's
624     *         list-iterator does not support the <tt>set</tt> operation.
625     */
626    public static <T> void copy(List<? super T> dest, List<? extends T> src) {
627        int srcSize = src.size();
628        if (srcSize > dest.size())
629            throw new IndexOutOfBoundsException("Source does not fit in dest");
630
631        if (srcSize < COPY_THRESHOLD ||
632            (src instanceof RandomAccess && dest instanceof RandomAccess)) {
633            for (int i=0; i<srcSize; i++)
634                dest.set(i, src.get(i));
635        } else {
636            ListIterator<? super T> di=dest.listIterator();
637            ListIterator<? extends T> si=src.listIterator();
638            for (int i=0; i<srcSize; i++) {
639                di.next();
640                di.set(si.next());
641            }
642        }
643    }
644
645    /**
646     * Returns the minimum element of the given collection, according to the
647     * <i>natural ordering</i> of its elements.  All elements in the
648     * collection must implement the <tt>Comparable</tt> interface.
649     * Furthermore, all elements in the collection must be <i>mutually
650     * comparable</i> (that is, <tt>e1.compareTo(e2)</tt> must not throw a
651     * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
652     * <tt>e2</tt> in the collection).<p>
653     *
654     * This method iterates over the entire collection, hence it requires
655     * time proportional to the size of the collection.
656     *
657     * @param  <T> the class of the objects in the collection
658     * @param  coll the collection whose minimum element is to be determined.
659     * @return the minimum element of the given collection, according
660     *         to the <i>natural ordering</i> of its elements.
661     * @throws ClassCastException if the collection contains elements that are
662     *         not <i>mutually comparable</i> (for example, strings and
663     *         integers).
664     * @throws NoSuchElementException if the collection is empty.
665     * @see Comparable
666     */
667    public static <T extends Object & Comparable<? super T>> T min(Collection<? extends T> coll) {
668        Iterator<? extends T> i = coll.iterator();
669        T candidate = i.next();
670
671        while (i.hasNext()) {
672            T next = i.next();
673            if (next.compareTo(candidate) < 0)
674                candidate = next;
675        }
676        return candidate;
677    }
678
679    /**
680     * Returns the minimum element of the given collection, according to the
681     * order induced by the specified comparator.  All elements in the
682     * collection must be <i>mutually comparable</i> by the specified
683     * comparator (that is, <tt>comp.compare(e1, e2)</tt> must not throw a
684     * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
685     * <tt>e2</tt> in the collection).<p>
686     *
687     * This method iterates over the entire collection, hence it requires
688     * time proportional to the size of the collection.
689     *
690     * @param  <T> the class of the objects in the collection
691     * @param  coll the collection whose minimum element is to be determined.
692     * @param  comp the comparator with which to determine the minimum element.
693     *         A <tt>null</tt> value indicates that the elements' <i>natural
694     *         ordering</i> should be used.
695     * @return the minimum element of the given collection, according
696     *         to the specified comparator.
697     * @throws ClassCastException if the collection contains elements that are
698     *         not <i>mutually comparable</i> using the specified comparator.
699     * @throws NoSuchElementException if the collection is empty.
700     * @see Comparable
701     */
702    @SuppressWarnings({"unchecked", "rawtypes"})
703    public static <T> T min(Collection<? extends T> coll, Comparator<? super T> comp) {
704        if (comp==null)
705            return (T)min((Collection) coll);
706
707        Iterator<? extends T> i = coll.iterator();
708        T candidate = i.next();
709
710        while (i.hasNext()) {
711            T next = i.next();
712            if (comp.compare(next, candidate) < 0)
713                candidate = next;
714        }
715        return candidate;
716    }
717
718    /**
719     * Returns the maximum element of the given collection, according to the
720     * <i>natural ordering</i> of its elements.  All elements in the
721     * collection must implement the <tt>Comparable</tt> interface.
722     * Furthermore, all elements in the collection must be <i>mutually
723     * comparable</i> (that is, <tt>e1.compareTo(e2)</tt> must not throw a
724     * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
725     * <tt>e2</tt> in the collection).<p>
726     *
727     * This method iterates over the entire collection, hence it requires
728     * time proportional to the size of the collection.
729     *
730     * @param  <T> the class of the objects in the collection
731     * @param  coll the collection whose maximum element is to be determined.
732     * @return the maximum element of the given collection, according
733     *         to the <i>natural ordering</i> of its elements.
734     * @throws ClassCastException if the collection contains elements that are
735     *         not <i>mutually comparable</i> (for example, strings and
736     *         integers).
737     * @throws NoSuchElementException if the collection is empty.
738     * @see Comparable
739     */
740    public static <T extends Object & Comparable<? super T>> T max(Collection<? extends T> coll) {
741        Iterator<? extends T> i = coll.iterator();
742        T candidate = i.next();
743
744        while (i.hasNext()) {
745            T next = i.next();
746            if (next.compareTo(candidate) > 0)
747                candidate = next;
748        }
749        return candidate;
750    }
751
752    /**
753     * Returns the maximum element of the given collection, according to the
754     * order induced by the specified comparator.  All elements in the
755     * collection must be <i>mutually comparable</i> by the specified
756     * comparator (that is, <tt>comp.compare(e1, e2)</tt> must not throw a
757     * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
758     * <tt>e2</tt> in the collection).<p>
759     *
760     * This method iterates over the entire collection, hence it requires
761     * time proportional to the size of the collection.
762     *
763     * @param  <T> the class of the objects in the collection
764     * @param  coll the collection whose maximum element is to be determined.
765     * @param  comp the comparator with which to determine the maximum element.
766     *         A <tt>null</tt> value indicates that the elements' <i>natural
767     *        ordering</i> should be used.
768     * @return the maximum element of the given collection, according
769     *         to the specified comparator.
770     * @throws ClassCastException if the collection contains elements that are
771     *         not <i>mutually comparable</i> using the specified comparator.
772     * @throws NoSuchElementException if the collection is empty.
773     * @see Comparable
774     */
775    @SuppressWarnings({"unchecked", "rawtypes"})
776    public static <T> T max(Collection<? extends T> coll, Comparator<? super T> comp) {
777        if (comp==null)
778            return (T)max((Collection) coll);
779
780        Iterator<? extends T> i = coll.iterator();
781        T candidate = i.next();
782
783        while (i.hasNext()) {
784            T next = i.next();
785            if (comp.compare(next, candidate) > 0)
786                candidate = next;
787        }
788        return candidate;
789    }
790
791    /**
792     * Rotates the elements in the specified list by the specified distance.
793     * After calling this method, the element at index <tt>i</tt> will be
794     * the element previously at index <tt>(i - distance)</tt> mod
795     * <tt>list.size()</tt>, for all values of <tt>i</tt> between <tt>0</tt>
796     * and <tt>list.size()-1</tt>, inclusive.  (This method has no effect on
797     * the size of the list.)
798     *
799     * <p>For example, suppose <tt>list</tt> comprises<tt> [t, a, n, k, s]</tt>.
800     * After invoking <tt>Collections.rotate(list, 1)</tt> (or
801     * <tt>Collections.rotate(list, -4)</tt>), <tt>list</tt> will comprise
802     * <tt>[s, t, a, n, k]</tt>.
803     *
804     * <p>Note that this method can usefully be applied to sublists to
805     * move one or more elements within a list while preserving the
806     * order of the remaining elements.  For example, the following idiom
807     * moves the element at index <tt>j</tt> forward to position
808     * <tt>k</tt> (which must be greater than or equal to <tt>j</tt>):
809     * <pre>
810     *     Collections.rotate(list.subList(j, k+1), -1);
811     * </pre>
812     * To make this concrete, suppose <tt>list</tt> comprises
813     * <tt>[a, b, c, d, e]</tt>.  To move the element at index <tt>1</tt>
814     * (<tt>b</tt>) forward two positions, perform the following invocation:
815     * <pre>
816     *     Collections.rotate(l.subList(1, 4), -1);
817     * </pre>
818     * The resulting list is <tt>[a, c, d, b, e]</tt>.
819     *
820     * <p>To move more than one element forward, increase the absolute value
821     * of the rotation distance.  To move elements backward, use a positive
822     * shift distance.
823     *
824     * <p>If the specified list is small or implements the {@link
825     * RandomAccess} interface, this implementation exchanges the first
826     * element into the location it should go, and then repeatedly exchanges
827     * the displaced element into the location it should go until a displaced
828     * element is swapped into the first element.  If necessary, the process
829     * is repeated on the second and successive elements, until the rotation
830     * is complete.  If the specified list is large and doesn't implement the
831     * <tt>RandomAccess</tt> interface, this implementation breaks the
832     * list into two sublist views around index <tt>-distance mod size</tt>.
833     * Then the {@link #reverse(List)} method is invoked on each sublist view,
834     * and finally it is invoked on the entire list.  For a more complete
835     * description of both algorithms, see Section 2.3 of Jon Bentley's
836     * <i>Programming Pearls</i> (Addison-Wesley, 1986).
837     *
838     * @param list the list to be rotated.
839     * @param distance the distance to rotate the list.  There are no
840     *        constraints on this value; it may be zero, negative, or
841     *        greater than <tt>list.size()</tt>.
842     * @throws UnsupportedOperationException if the specified list or
843     *         its list-iterator does not support the <tt>set</tt> operation.
844     * @since 1.4
845     */
846    public static void rotate(List<?> list, int distance) {
847        if (list instanceof RandomAccess || list.size() < ROTATE_THRESHOLD)
848            rotate1(list, distance);
849        else
850            rotate2(list, distance);
851    }
852
853    private static <T> void rotate1(List<T> list, int distance) {
854        int size = list.size();
855        if (size == 0)
856            return;
857        distance = distance % size;
858        if (distance < 0)
859            distance += size;
860        if (distance == 0)
861            return;
862
863        for (int cycleStart = 0, nMoved = 0; nMoved != size; cycleStart++) {
864            T displaced = list.get(cycleStart);
865            int i = cycleStart;
866            do {
867                i += distance;
868                if (i >= size)
869                    i -= size;
870                displaced = list.set(i, displaced);
871                nMoved ++;
872            } while (i != cycleStart);
873        }
874    }
875
876    private static void rotate2(List<?> list, int distance) {
877        int size = list.size();
878        if (size == 0)
879            return;
880        int mid =  -distance % size;
881        if (mid < 0)
882            mid += size;
883        if (mid == 0)
884            return;
885
886        reverse(list.subList(0, mid));
887        reverse(list.subList(mid, size));
888        reverse(list);
889    }
890
891    /**
892     * Replaces all occurrences of one specified value in a list with another.
893     * More formally, replaces with <tt>newVal</tt> each element <tt>e</tt>
894     * in <tt>list</tt> such that
895     * <tt>(oldVal==null ? e==null : oldVal.equals(e))</tt>.
896     * (This method has no effect on the size of the list.)
897     *
898     * @param  <T> the class of the objects in the list
899     * @param list the list in which replacement is to occur.
900     * @param oldVal the old value to be replaced.
901     * @param newVal the new value with which <tt>oldVal</tt> is to be
902     *        replaced.
903     * @return <tt>true</tt> if <tt>list</tt> contained one or more elements
904     *         <tt>e</tt> such that
905     *         <tt>(oldVal==null ?  e==null : oldVal.equals(e))</tt>.
906     * @throws UnsupportedOperationException if the specified list or
907     *         its list-iterator does not support the <tt>set</tt> operation.
908     * @since  1.4
909     */
910    public static <T> boolean replaceAll(List<T> list, T oldVal, T newVal) {
911        boolean result = false;
912        int size = list.size();
913        if (size < REPLACEALL_THRESHOLD || list instanceof RandomAccess) {
914            if (oldVal==null) {
915                for (int i=0; i<size; i++) {
916                    if (list.get(i)==null) {
917                        list.set(i, newVal);
918                        result = true;
919                    }
920                }
921            } else {
922                for (int i=0; i<size; i++) {
923                    if (oldVal.equals(list.get(i))) {
924                        list.set(i, newVal);
925                        result = true;
926                    }
927                }
928            }
929        } else {
930            ListIterator<T> itr=list.listIterator();
931            if (oldVal==null) {
932                for (int i=0; i<size; i++) {
933                    if (itr.next()==null) {
934                        itr.set(newVal);
935                        result = true;
936                    }
937                }
938            } else {
939                for (int i=0; i<size; i++) {
940                    if (oldVal.equals(itr.next())) {
941                        itr.set(newVal);
942                        result = true;
943                    }
944                }
945            }
946        }
947        return result;
948    }
949
950    /**
951     * Returns the starting position of the first occurrence of the specified
952     * target list within the specified source list, or -1 if there is no
953     * such occurrence.  More formally, returns the lowest index <tt>i</tt>
954     * such that {@code source.subList(i, i+target.size()).equals(target)},
955     * or -1 if there is no such index.  (Returns -1 if
956     * {@code target.size() > source.size()})
957     *
958     * <p>This implementation uses the "brute force" technique of scanning
959     * over the source list, looking for a match with the target at each
960     * location in turn.
961     *
962     * @param source the list in which to search for the first occurrence
963     *        of <tt>target</tt>.
964     * @param target the list to search for as a subList of <tt>source</tt>.
965     * @return the starting position of the first occurrence of the specified
966     *         target list within the specified source list, or -1 if there
967     *         is no such occurrence.
968     * @since  1.4
969     */
970    public static int indexOfSubList(List<?> source, List<?> target) {
971        int sourceSize = source.size();
972        int targetSize = target.size();
973        int maxCandidate = sourceSize - targetSize;
974
975        if (sourceSize < INDEXOFSUBLIST_THRESHOLD ||
976            (source instanceof RandomAccess&&target instanceof RandomAccess)) {
977        nextCand:
978            for (int candidate = 0; candidate <= maxCandidate; candidate++) {
979                for (int i=0, j=candidate; i<targetSize; i++, j++)
980                    if (!eq(target.get(i), source.get(j)))
981                        continue nextCand;  // Element mismatch, try next cand
982                return candidate;  // All elements of candidate matched target
983            }
984        } else {  // Iterator version of above algorithm
985            ListIterator<?> si = source.listIterator();
986        nextCand:
987            for (int candidate = 0; candidate <= maxCandidate; candidate++) {
988                ListIterator<?> ti = target.listIterator();
989                for (int i=0; i<targetSize; i++) {
990                    if (!eq(ti.next(), si.next())) {
991                        // Back up source iterator to next candidate
992                        for (int j=0; j<i; j++)
993                            si.previous();
994                        continue nextCand;
995                    }
996                }
997                return candidate;
998            }
999        }
1000        return -1;  // No candidate matched the target
1001    }
1002
1003    /**
1004     * Returns the starting position of the last occurrence of the specified
1005     * target list within the specified source list, or -1 if there is no such
1006     * occurrence.  More formally, returns the highest index <tt>i</tt>
1007     * such that {@code source.subList(i, i+target.size()).equals(target)},
1008     * or -1 if there is no such index.  (Returns -1 if
1009     * {@code target.size() > source.size()})
1010     *
1011     * <p>This implementation uses the "brute force" technique of iterating
1012     * over the source list, looking for a match with the target at each
1013     * location in turn.
1014     *
1015     * @param source the list in which to search for the last occurrence
1016     *        of <tt>target</tt>.
1017     * @param target the list to search for as a subList of <tt>source</tt>.
1018     * @return the starting position of the last occurrence of the specified
1019     *         target list within the specified source list, or -1 if there
1020     *         is no such occurrence.
1021     * @since  1.4
1022     */
1023    public static int lastIndexOfSubList(List<?> source, List<?> target) {
1024        int sourceSize = source.size();
1025        int targetSize = target.size();
1026        int maxCandidate = sourceSize - targetSize;
1027
1028        if (sourceSize < INDEXOFSUBLIST_THRESHOLD ||
1029            source instanceof RandomAccess) {   // Index access version
1030        nextCand:
1031            for (int candidate = maxCandidate; candidate >= 0; candidate--) {
1032                for (int i=0, j=candidate; i<targetSize; i++, j++)
1033                    if (!eq(target.get(i), source.get(j)))
1034                        continue nextCand;  // Element mismatch, try next cand
1035                return candidate;  // All elements of candidate matched target
1036            }
1037        } else {  // Iterator version of above algorithm
1038            if (maxCandidate < 0)
1039                return -1;
1040            ListIterator<?> si = source.listIterator(maxCandidate);
1041        nextCand:
1042            for (int candidate = maxCandidate; candidate >= 0; candidate--) {
1043                ListIterator<?> ti = target.listIterator();
1044                for (int i=0; i<targetSize; i++) {
1045                    if (!eq(ti.next(), si.next())) {
1046                        if (candidate != 0) {
1047                            // Back up source iterator to next candidate
1048                            for (int j=0; j<=i+1; j++)
1049                                si.previous();
1050                        }
1051                        continue nextCand;
1052                    }
1053                }
1054                return candidate;
1055            }
1056        }
1057        return -1;  // No candidate matched the target
1058    }
1059
1060
1061    // Unmodifiable Wrappers
1062
1063    /**
1064     * Returns an unmodifiable view of the specified collection.  This method
1065     * allows modules to provide users with "read-only" access to internal
1066     * collections.  Query operations on the returned collection "read through"
1067     * to the specified collection, and attempts to modify the returned
1068     * collection, whether direct or via its iterator, result in an
1069     * <tt>UnsupportedOperationException</tt>.<p>
1070     *
1071     * The returned collection does <i>not</i> pass the hashCode and equals
1072     * operations through to the backing collection, but relies on
1073     * <tt>Object</tt>'s <tt>equals</tt> and <tt>hashCode</tt> methods.  This
1074     * is necessary to preserve the contracts of these operations in the case
1075     * that the backing collection is a set or a list.<p>
1076     *
1077     * The returned collection will be serializable if the specified collection
1078     * is serializable.
1079     *
1080     * @param  <T> the class of the objects in the collection
1081     * @param  c the collection for which an unmodifiable view is to be
1082     *         returned.
1083     * @return an unmodifiable view of the specified collection.
1084     */
1085    public static <T> Collection<T> unmodifiableCollection(Collection<? extends T> c) {
1086        return new UnmodifiableCollection<>(c);
1087    }
1088
1089    /**
1090     * @serial include
1091     */
1092    static class UnmodifiableCollection<E> implements Collection<E>, Serializable {
1093        private static final long serialVersionUID = 1820017752578914078L;
1094
1095        final Collection<? extends E> c;
1096
1097        UnmodifiableCollection(Collection<? extends E> c) {
1098            if (c==null)
1099                throw new NullPointerException();
1100            this.c = c;
1101        }
1102
1103        public int size()                   {return c.size();}
1104        public boolean isEmpty()            {return c.isEmpty();}
1105        public boolean contains(Object o)   {return c.contains(o);}
1106        public Object[] toArray()           {return c.toArray();}
1107        public <T> T[] toArray(T[] a)       {return c.toArray(a);}
1108        public String toString()            {return c.toString();}
1109
1110        public Iterator<E> iterator() {
1111            return new Iterator<E>() {
1112                private final Iterator<? extends E> i = c.iterator();
1113
1114                public boolean hasNext() {return i.hasNext();}
1115                public E next()          {return i.next();}
1116                public void remove() {
1117                    throw new UnsupportedOperationException();
1118                }
1119                @Override
1120                public void forEachRemaining(Consumer<? super E> action) {
1121                    // Use backing collection version
1122                    i.forEachRemaining(action);
1123                }
1124            };
1125        }
1126
1127        public boolean add(E e) {
1128            throw new UnsupportedOperationException();
1129        }
1130        public boolean remove(Object o) {
1131            throw new UnsupportedOperationException();
1132        }
1133
1134        public boolean containsAll(Collection<?> coll) {
1135            return c.containsAll(coll);
1136        }
1137        public boolean addAll(Collection<? extends E> coll) {
1138            throw new UnsupportedOperationException();
1139        }
1140        public boolean removeAll(Collection<?> coll) {
1141            throw new UnsupportedOperationException();
1142        }
1143        public boolean retainAll(Collection<?> coll) {
1144            throw new UnsupportedOperationException();
1145        }
1146        public void clear() {
1147            throw new UnsupportedOperationException();
1148        }
1149
1150        // Override default methods in Collection
1151        @Override
1152        public void forEach(Consumer<? super E> action) {
1153            c.forEach(action);
1154        }
1155
1156        @Override
1157        public boolean removeIf(Predicate<? super E> filter) {
1158            throw new UnsupportedOperationException();
1159        }
1160
1161        @SuppressWarnings("unchecked")
1162        @Override
1163        public Spliterator<E> spliterator() {
1164            return (Spliterator<E>)c.spliterator();
1165        }
1166        @SuppressWarnings("unchecked")
1167        @Override
1168        public Stream<E> stream() {
1169            return (Stream<E>)c.stream();
1170        }
1171        @SuppressWarnings("unchecked")
1172        @Override
1173        public Stream<E> parallelStream() {
1174            return (Stream<E>)c.parallelStream();
1175        }
1176    }
1177
1178    /**
1179     * Returns an unmodifiable view of the specified set.  This method allows
1180     * modules to provide users with "read-only" access to internal sets.
1181     * Query operations on the returned set "read through" to the specified
1182     * set, and attempts to modify the returned set, whether direct or via its
1183     * iterator, result in an <tt>UnsupportedOperationException</tt>.<p>
1184     *
1185     * The returned set will be serializable if the specified set
1186     * is serializable.
1187     *
1188     * @param  <T> the class of the objects in the set
1189     * @param  s the set for which an unmodifiable view is to be returned.
1190     * @return an unmodifiable view of the specified set.
1191     */
1192    public static <T> Set<T> unmodifiableSet(Set<? extends T> s) {
1193        return new UnmodifiableSet<>(s);
1194    }
1195
1196    /**
1197     * @serial include
1198     */
1199    static class UnmodifiableSet<E> extends UnmodifiableCollection<E>
1200                                 implements Set<E>, Serializable {
1201        private static final long serialVersionUID = -9215047833775013803L;
1202
1203        UnmodifiableSet(Set<? extends E> s)     {super(s);}
1204        public boolean equals(Object o) {return o == this || c.equals(o);}
1205        public int hashCode()           {return c.hashCode();}
1206    }
1207
1208    /**
1209     * Returns an unmodifiable view of the specified sorted set.  This method
1210     * allows modules to provide users with "read-only" access to internal
1211     * sorted sets.  Query operations on the returned sorted set "read
1212     * through" to the specified sorted set.  Attempts to modify the returned
1213     * sorted set, whether direct, via its iterator, or via its
1214     * <tt>subSet</tt>, <tt>headSet</tt>, or <tt>tailSet</tt> views, result in
1215     * an <tt>UnsupportedOperationException</tt>.<p>
1216     *
1217     * The returned sorted set will be serializable if the specified sorted set
1218     * is serializable.
1219     *
1220     * @param  <T> the class of the objects in the set
1221     * @param s the sorted set for which an unmodifiable view is to be
1222     *        returned.
1223     * @return an unmodifiable view of the specified sorted set.
1224     */
1225    public static <T> SortedSet<T> unmodifiableSortedSet(SortedSet<T> s) {
1226        return new UnmodifiableSortedSet<>(s);
1227    }
1228
1229    /**
1230     * @serial include
1231     */
1232    static class UnmodifiableSortedSet<E>
1233                             extends UnmodifiableSet<E>
1234                             implements SortedSet<E>, Serializable {
1235        private static final long serialVersionUID = -4929149591599911165L;
1236        private final SortedSet<E> ss;
1237
1238        UnmodifiableSortedSet(SortedSet<E> s) {super(s); ss = s;}
1239
1240        public Comparator<? super E> comparator() {return ss.comparator();}
1241
1242        public SortedSet<E> subSet(E fromElement, E toElement) {
1243            return new UnmodifiableSortedSet<>(ss.subSet(fromElement,toElement));
1244        }
1245        public SortedSet<E> headSet(E toElement) {
1246            return new UnmodifiableSortedSet<>(ss.headSet(toElement));
1247        }
1248        public SortedSet<E> tailSet(E fromElement) {
1249            return new UnmodifiableSortedSet<>(ss.tailSet(fromElement));
1250        }
1251
1252        public E first()                   {return ss.first();}
1253        public E last()                    {return ss.last();}
1254    }
1255
1256    /**
1257     * Returns an unmodifiable view of the specified list.  This method allows
1258     * modules to provide users with "read-only" access to internal
1259     * lists.  Query operations on the returned list "read through" to the
1260     * specified list, and attempts to modify the returned list, whether
1261     * direct or via its iterator, result in an
1262     * <tt>UnsupportedOperationException</tt>.<p>
1263     *
1264     * The returned list will be serializable if the specified list
1265     * is serializable. Similarly, the returned list will implement
1266     * {@link RandomAccess} if the specified list does.
1267     *
1268     * @param  <T> the class of the objects in the list
1269     * @param  list the list for which an unmodifiable view is to be returned.
1270     * @return an unmodifiable view of the specified list.
1271     */
1272    public static <T> List<T> unmodifiableList(List<? extends T> list) {
1273        return (list instanceof RandomAccess ?
1274                new UnmodifiableRandomAccessList<>(list) :
1275                new UnmodifiableList<>(list));
1276    }
1277
1278    /**
1279     * @serial include
1280     */
1281    static class UnmodifiableList<E> extends UnmodifiableCollection<E>
1282                                  implements List<E> {
1283        private static final long serialVersionUID = -283967356065247728L;
1284
1285        final List<? extends E> list;
1286
1287        UnmodifiableList(List<? extends E> list) {
1288            super(list);
1289            this.list = list;
1290        }
1291
1292        public boolean equals(Object o) {return o == this || list.equals(o);}
1293        public int hashCode()           {return list.hashCode();}
1294
1295        public E get(int index) {return list.get(index);}
1296        public E set(int index, E element) {
1297            throw new UnsupportedOperationException();
1298        }
1299        public void add(int index, E element) {
1300            throw new UnsupportedOperationException();
1301        }
1302        public E remove(int index) {
1303            throw new UnsupportedOperationException();
1304        }
1305        public int indexOf(Object o)            {return list.indexOf(o);}
1306        public int lastIndexOf(Object o)        {return list.lastIndexOf(o);}
1307        public boolean addAll(int index, Collection<? extends E> c) {
1308            throw new UnsupportedOperationException();
1309        }
1310        @Override
1311        public void replaceAll(UnaryOperator<E> operator) {
1312            throw new UnsupportedOperationException();
1313        }
1314        @Override
1315        public void sort(Comparator<? super E> c) {
1316            throw new UnsupportedOperationException();
1317        }
1318        public ListIterator<E> listIterator()   {return listIterator(0);}
1319
1320        public ListIterator<E> listIterator(final int index) {
1321            return new ListIterator<E>() {
1322                private final ListIterator<? extends E> i
1323                    = list.listIterator(index);
1324
1325                public boolean hasNext()     {return i.hasNext();}
1326                public E next()              {return i.next();}
1327                public boolean hasPrevious() {return i.hasPrevious();}
1328                public E previous()          {return i.previous();}
1329                public int nextIndex()       {return i.nextIndex();}
1330                public int previousIndex()   {return i.previousIndex();}
1331
1332                public void remove() {
1333                    throw new UnsupportedOperationException();
1334                }
1335                public void set(E e) {
1336                    throw new UnsupportedOperationException();
1337                }
1338                public void add(E e) {
1339                    throw new UnsupportedOperationException();
1340                }
1341
1342                @Override
1343                public void forEachRemaining(Consumer<? super E> action) {
1344                    i.forEachRemaining(action);
1345                }
1346            };
1347        }
1348
1349        public List<E> subList(int fromIndex, int toIndex) {
1350            return new UnmodifiableList<>(list.subList(fromIndex, toIndex));
1351        }
1352
1353        /**
1354         * UnmodifiableRandomAccessList instances are serialized as
1355         * UnmodifiableList instances to allow them to be deserialized
1356         * in pre-1.4 JREs (which do not have UnmodifiableRandomAccessList).
1357         * This method inverts the transformation.  As a beneficial
1358         * side-effect, it also grafts the RandomAccess marker onto
1359         * UnmodifiableList instances that were serialized in pre-1.4 JREs.
1360         *
1361         * Note: Unfortunately, UnmodifiableRandomAccessList instances
1362         * serialized in 1.4.1 and deserialized in 1.4 will become
1363         * UnmodifiableList instances, as this method was missing in 1.4.
1364         */
1365        private Object readResolve() {
1366            return (list instanceof RandomAccess
1367                    ? new UnmodifiableRandomAccessList<>(list)
1368                    : this);
1369        }
1370    }
1371
1372    /**
1373     * @serial include
1374     */
1375    static class UnmodifiableRandomAccessList<E> extends UnmodifiableList<E>
1376                                              implements RandomAccess
1377    {
1378        UnmodifiableRandomAccessList(List<? extends E> list) {
1379            super(list);
1380        }
1381
1382        public List<E> subList(int fromIndex, int toIndex) {
1383            return new UnmodifiableRandomAccessList<>(
1384                list.subList(fromIndex, toIndex));
1385        }
1386
1387        private static final long serialVersionUID = -2542308836966382001L;
1388
1389        /**
1390         * Allows instances to be deserialized in pre-1.4 JREs (which do
1391         * not have UnmodifiableRandomAccessList).  UnmodifiableList has
1392         * a readResolve method that inverts this transformation upon
1393         * deserialization.
1394         */
1395        private Object writeReplace() {
1396            return new UnmodifiableList<>(list);
1397        }
1398    }
1399
1400    /**
1401     * Returns an unmodifiable view of the specified map.  This method
1402     * allows modules to provide users with "read-only" access to internal
1403     * maps.  Query operations on the returned map "read through"
1404     * to the specified map, and attempts to modify the returned
1405     * map, whether direct or via its collection views, result in an
1406     * <tt>UnsupportedOperationException</tt>.<p>
1407     *
1408     * The returned map will be serializable if the specified map
1409     * is serializable.
1410     *
1411     * @param <K> the class of the map keys
1412     * @param <V> the class of the map values
1413     * @param  m the map for which an unmodifiable view is to be returned.
1414     * @return an unmodifiable view of the specified map.
1415     */
1416    public static <K,V> Map<K,V> unmodifiableMap(Map<? extends K, ? extends V> m) {
1417        return new UnmodifiableMap<>(m);
1418    }
1419
1420    /**
1421     * @serial include
1422     */
1423    private static class UnmodifiableMap<K,V> implements Map<K,V>, Serializable {
1424        private static final long serialVersionUID = -1034234728574286014L;
1425
1426        private final Map<? extends K, ? extends V> m;
1427
1428        UnmodifiableMap(Map<? extends K, ? extends V> m) {
1429            if (m==null)
1430                throw new NullPointerException();
1431            this.m = m;
1432        }
1433
1434        public int size()                        {return m.size();}
1435        public boolean isEmpty()                 {return m.isEmpty();}
1436        public boolean containsKey(Object key)   {return m.containsKey(key);}
1437        public boolean containsValue(Object val) {return m.containsValue(val);}
1438        public V get(Object key)                 {return m.get(key);}
1439
1440        public V put(K key, V value) {
1441            throw new UnsupportedOperationException();
1442        }
1443        public V remove(Object key) {
1444            throw new UnsupportedOperationException();
1445        }
1446        public void putAll(Map<? extends K, ? extends V> m) {
1447            throw new UnsupportedOperationException();
1448        }
1449        public void clear() {
1450            throw new UnsupportedOperationException();
1451        }
1452
1453        private transient Set<K> keySet = null;
1454        private transient Set<Map.Entry<K,V>> entrySet = null;
1455        private transient Collection<V> values = null;
1456
1457        public Set<K> keySet() {
1458            if (keySet==null)
1459                keySet = unmodifiableSet(m.keySet());
1460            return keySet;
1461        }
1462
1463        public Set<Map.Entry<K,V>> entrySet() {
1464            if (entrySet==null)
1465                entrySet = new UnmodifiableEntrySet<>(m.entrySet());
1466            return entrySet;
1467        }
1468
1469        public Collection<V> values() {
1470            if (values==null)
1471                values = unmodifiableCollection(m.values());
1472            return values;
1473        }
1474
1475        public boolean equals(Object o) {return o == this || m.equals(o);}
1476        public int hashCode()           {return m.hashCode();}
1477        public String toString()        {return m.toString();}
1478
1479        // Override default methods in Map
1480        @Override
1481        @SuppressWarnings("unchecked")
1482        public V getOrDefault(Object k, V defaultValue) {
1483            // Safe cast as we don't change the value
1484            return ((Map<K, V>)m).getOrDefault(k, defaultValue);
1485        }
1486
1487        @Override
1488        public void forEach(BiConsumer<? super K, ? super V> action) {
1489            m.forEach(action);
1490        }
1491
1492        @Override
1493        public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1494            throw new UnsupportedOperationException();
1495        }
1496
1497        @Override
1498        public V putIfAbsent(K key, V value) {
1499            throw new UnsupportedOperationException();
1500        }
1501
1502        @Override
1503        public boolean remove(Object key, Object value) {
1504            throw new UnsupportedOperationException();
1505        }
1506
1507        @Override
1508        public boolean replace(K key, V oldValue, V newValue) {
1509            throw new UnsupportedOperationException();
1510        }
1511
1512        @Override
1513        public V replace(K key, V value) {
1514            throw new UnsupportedOperationException();
1515        }
1516
1517        @Override
1518        public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
1519            throw new UnsupportedOperationException();
1520        }
1521
1522        @Override
1523        public V computeIfPresent(K key,
1524                                  BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1525            throw new UnsupportedOperationException();
1526        }
1527
1528        @Override
1529        public V compute(K key,
1530                         BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1531            throw new UnsupportedOperationException();
1532        }
1533
1534        @Override
1535        public V merge(K key, V value,
1536                       BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1537            throw new UnsupportedOperationException();
1538        }
1539
1540        /**
1541         * We need this class in addition to UnmodifiableSet as
1542         * Map.Entries themselves permit modification of the backing Map
1543         * via their setValue operation.  This class is subtle: there are
1544         * many possible attacks that must be thwarted.
1545         *
1546         * @serial include
1547         */
1548        static class UnmodifiableEntrySet<K,V>
1549            extends UnmodifiableSet<Map.Entry<K,V>> {
1550            private static final long serialVersionUID = 7854390611657943733L;
1551
1552            @SuppressWarnings({"unchecked", "rawtypes"})
1553            UnmodifiableEntrySet(Set<? extends Map.Entry<? extends K, ? extends V>> s) {
1554                // Need to cast to raw in order to work around a limitation in the type system
1555                super((Set)s);
1556            }
1557
1558            static <K, V> Consumer<Map.Entry<K, V>> entryConsumer(Consumer<? super Entry<K, V>> action) {
1559                return e -> action.accept(new UnmodifiableEntry<>(e));
1560            }
1561
1562            // Override default methods in Collection
1563            public void forEach(Consumer<? super Entry<K, V>> action) {
1564                Objects.requireNonNull(action);
1565                c.forEach(entryConsumer(action));
1566            }
1567
1568            static final class UnmodifiableEntrySetSpliterator<K, V>
1569                    implements Spliterator<Entry<K,V>> {
1570                final Spliterator<Map.Entry<K, V>> s;
1571
1572                UnmodifiableEntrySetSpliterator(Spliterator<Entry<K, V>> s) {
1573                    this.s = s;
1574                }
1575
1576                @Override
1577                public boolean tryAdvance(Consumer<? super Entry<K, V>> action) {
1578                    Objects.requireNonNull(action);
1579                    return s.tryAdvance(entryConsumer(action));
1580                }
1581
1582                @Override
1583                public void forEachRemaining(Consumer<? super Entry<K, V>> action) {
1584                    Objects.requireNonNull(action);
1585                    s.forEachRemaining(entryConsumer(action));
1586                }
1587
1588                @Override
1589                public Spliterator<Entry<K, V>> trySplit() {
1590                    Spliterator<Entry<K, V>> split = s.trySplit();
1591                    return split == null
1592                           ? null
1593                           : new UnmodifiableEntrySetSpliterator<>(split);
1594                }
1595
1596                @Override
1597                public long estimateSize() {
1598                    return s.estimateSize();
1599                }
1600
1601                @Override
1602                public long getExactSizeIfKnown() {
1603                    return s.getExactSizeIfKnown();
1604                }
1605
1606                @Override
1607                public int characteristics() {
1608                    return s.characteristics();
1609                }
1610
1611                @Override
1612                public boolean hasCharacteristics(int characteristics) {
1613                    return s.hasCharacteristics(characteristics);
1614                }
1615
1616                @Override
1617                public Comparator<? super Entry<K, V>> getComparator() {
1618                    return s.getComparator();
1619                }
1620            }
1621
1622            @SuppressWarnings("unchecked")
1623            public Spliterator<Entry<K,V>> spliterator() {
1624                return new UnmodifiableEntrySetSpliterator<>(
1625                        (Spliterator<Map.Entry<K, V>>) c.spliterator());
1626            }
1627
1628            @Override
1629            public Stream<Entry<K,V>> stream() {
1630                return StreamSupport.stream(spliterator(), false);
1631            }
1632
1633            @Override
1634            public Stream<Entry<K,V>> parallelStream() {
1635                return StreamSupport.stream(spliterator(), true);
1636            }
1637
1638            public Iterator<Map.Entry<K,V>> iterator() {
1639                return new Iterator<Map.Entry<K,V>>() {
1640                    private final Iterator<? extends Map.Entry<? extends K, ? extends V>> i = c.iterator();
1641
1642                    public boolean hasNext() {
1643                        return i.hasNext();
1644                    }
1645                    public Map.Entry<K,V> next() {
1646                        return new UnmodifiableEntry<>(i.next());
1647                    }
1648                    public void remove() {
1649                        throw new UnsupportedOperationException();
1650                    }
1651                    // Android-note: This seems pretty inconsistent. Unlike other subclasses, we aren't
1652                    // delegating to the subclass iterator here. Seems like an oversight.
1653                };
1654            }
1655
1656            @SuppressWarnings("unchecked")
1657            public Object[] toArray() {
1658                Object[] a = c.toArray();
1659                for (int i=0; i<a.length; i++)
1660                    a[i] = new UnmodifiableEntry<>((Map.Entry<? extends K, ? extends V>)a[i]);
1661                return a;
1662            }
1663
1664            @SuppressWarnings("unchecked")
1665            public <T> T[] toArray(T[] a) {
1666                // We don't pass a to c.toArray, to avoid window of
1667                // vulnerability wherein an unscrupulous multithreaded client
1668                // could get his hands on raw (unwrapped) Entries from c.
1669                Object[] arr = c.toArray(a.length==0 ? a : Arrays.copyOf(a, 0));
1670
1671                for (int i=0; i<arr.length; i++)
1672                    arr[i] = new UnmodifiableEntry<>((Map.Entry<? extends K, ? extends V>)arr[i]);
1673
1674                if (arr.length > a.length)
1675                    return (T[])arr;
1676
1677                System.arraycopy(arr, 0, a, 0, arr.length);
1678                if (a.length > arr.length)
1679                    a[arr.length] = null;
1680                return a;
1681            }
1682
1683            /**
1684             * This method is overridden to protect the backing set against
1685             * an object with a nefarious equals function that senses
1686             * that the equality-candidate is Map.Entry and calls its
1687             * setValue method.
1688             */
1689            public boolean contains(Object o) {
1690                if (!(o instanceof Map.Entry))
1691                    return false;
1692                return c.contains(
1693                    new UnmodifiableEntry<>((Map.Entry<?,?>) o));
1694            }
1695
1696            /**
1697             * The next two methods are overridden to protect against
1698             * an unscrupulous List whose contains(Object o) method senses
1699             * when o is a Map.Entry, and calls o.setValue.
1700             */
1701            public boolean containsAll(Collection<?> coll) {
1702                for (Object e : coll) {
1703                    if (!contains(e)) // Invokes safe contains() above
1704                        return false;
1705                }
1706                return true;
1707            }
1708            public boolean equals(Object o) {
1709                if (o == this)
1710                    return true;
1711
1712                if (!(o instanceof Set))
1713                    return false;
1714                Set<?> s = (Set<?>) o;
1715                if (s.size() != c.size())
1716                    return false;
1717                return containsAll(s); // Invokes safe containsAll() above
1718            }
1719
1720            /**
1721             * This "wrapper class" serves two purposes: it prevents
1722             * the client from modifying the backing Map, by short-circuiting
1723             * the setValue method, and it protects the backing Map against
1724             * an ill-behaved Map.Entry that attempts to modify another
1725             * Map Entry when asked to perform an equality check.
1726             */
1727            private static class UnmodifiableEntry<K,V> implements Map.Entry<K,V> {
1728                private Map.Entry<? extends K, ? extends V> e;
1729
1730                UnmodifiableEntry(Map.Entry<? extends K, ? extends V> e)
1731                        {this.e = Objects.requireNonNull(e);}
1732
1733                public K getKey()        {return e.getKey();}
1734                public V getValue()      {return e.getValue();}
1735                public V setValue(V value) {
1736                    throw new UnsupportedOperationException();
1737                }
1738                public int hashCode()    {return e.hashCode();}
1739                public boolean equals(Object o) {
1740                    if (this == o)
1741                        return true;
1742                    if (!(o instanceof Map.Entry))
1743                        return false;
1744                    Map.Entry<?,?> t = (Map.Entry<?,?>)o;
1745                    return eq(e.getKey(),   t.getKey()) &&
1746                           eq(e.getValue(), t.getValue());
1747                }
1748                public String toString() {return e.toString();}
1749            }
1750        }
1751    }
1752
1753    /**
1754     * Returns an unmodifiable view of the specified sorted map.  This method
1755     * allows modules to provide users with "read-only" access to internal
1756     * sorted maps.  Query operations on the returned sorted map "read through"
1757     * to the specified sorted map.  Attempts to modify the returned
1758     * sorted map, whether direct, via its collection views, or via its
1759     * <tt>subMap</tt>, <tt>headMap</tt>, or <tt>tailMap</tt> views, result in
1760     * an <tt>UnsupportedOperationException</tt>.<p>
1761     *
1762     * The returned sorted map will be serializable if the specified sorted map
1763     * is serializable.
1764     *
1765     * @param <K> the class of the map keys
1766     * @param <V> the class of the map values
1767     * @param m the sorted map for which an unmodifiable view is to be
1768     *        returned.
1769     * @return an unmodifiable view of the specified sorted map.
1770     */
1771    public static <K,V> SortedMap<K,V> unmodifiableSortedMap(SortedMap<K, ? extends V> m) {
1772        return new UnmodifiableSortedMap<>(m);
1773    }
1774
1775    /**
1776     * @serial include
1777     */
1778    static class UnmodifiableSortedMap<K,V>
1779          extends UnmodifiableMap<K,V>
1780          implements SortedMap<K,V>, Serializable {
1781        private static final long serialVersionUID = -8806743815996713206L;
1782
1783        private final SortedMap<K, ? extends V> sm;
1784
1785        UnmodifiableSortedMap(SortedMap<K, ? extends V> m) {super(m); sm = m; }
1786        public Comparator<? super K> comparator()   { return sm.comparator(); }
1787        public SortedMap<K,V> subMap(K fromKey, K toKey)
1788             { return new UnmodifiableSortedMap<>(sm.subMap(fromKey, toKey)); }
1789        public SortedMap<K,V> headMap(K toKey)
1790                     { return new UnmodifiableSortedMap<>(sm.headMap(toKey)); }
1791        public SortedMap<K,V> tailMap(K fromKey)
1792                   { return new UnmodifiableSortedMap<>(sm.tailMap(fromKey)); }
1793        public K firstKey()                           { return sm.firstKey(); }
1794        public K lastKey()                             { return sm.lastKey(); }
1795    }
1796
1797    // Synch Wrappers
1798
1799    // TODO: Replace {@code stream} with {@link Stream} once we have them.
1800    /**
1801     * Returns a synchronized (thread-safe) collection backed by the specified
1802     * collection.  In order to guarantee serial access, it is critical that
1803     * <strong>all</strong> access to the backing collection is accomplished
1804     * through the returned collection.<p>
1805     *
1806     * It is imperative that the user manually synchronize on the returned
1807     * collection when traversing it via {@link Iterator}, {@link Spliterator}
1808     * or {@code Stream}:
1809     * <pre>
1810     *  Collection c = Collections.synchronizedCollection(myCollection);
1811     *     ...
1812     *  synchronized (c) {
1813     *      Iterator i = c.iterator(); // Must be in the synchronized block
1814     *      while (i.hasNext())
1815     *         foo(i.next());
1816     *  }
1817     * </pre>
1818     * Failure to follow this advice may result in non-deterministic behavior.
1819     *
1820     * <p>The returned collection does <i>not</i> pass the {@code hashCode}
1821     * and {@code equals} operations through to the backing collection, but
1822     * relies on {@code Object}'s equals and hashCode methods.  This is
1823     * necessary to preserve the contracts of these operations in the case
1824     * that the backing collection is a set or a list.<p>
1825     *
1826     * The returned collection will be serializable if the specified collection
1827     * is serializable.
1828     *
1829     * @param  <T> the class of the objects in the collection
1830     * @param  c the collection to be "wrapped" in a synchronized collection.
1831     * @return a synchronized view of the specified collection.
1832     */
1833    public static <T> Collection<T> synchronizedCollection(Collection<T> c) {
1834        return new SynchronizedCollection<>(c);
1835    }
1836
1837    static <T> Collection<T> synchronizedCollection(Collection<T> c, Object mutex) {
1838        return new SynchronizedCollection<>(c, mutex);
1839    }
1840
1841    /**
1842     * @serial include
1843     */
1844    static class SynchronizedCollection<E> implements Collection<E>, Serializable {
1845        private static final long serialVersionUID = 3053995032091335093L;
1846
1847        final Collection<E> c;  // Backing Collection
1848        final Object mutex;     // Object on which to synchronize
1849
1850        SynchronizedCollection(Collection<E> c) {
1851            this.c = Objects.requireNonNull(c);
1852            mutex = this;
1853        }
1854
1855        SynchronizedCollection(Collection<E> c, Object mutex) {
1856            this.c = Objects.requireNonNull(c);
1857            this.mutex = Objects.requireNonNull(mutex);
1858        }
1859
1860        public int size() {
1861            synchronized (mutex) {return c.size();}
1862        }
1863        public boolean isEmpty() {
1864            synchronized (mutex) {return c.isEmpty();}
1865        }
1866        public boolean contains(Object o) {
1867            synchronized (mutex) {return c.contains(o);}
1868        }
1869        public Object[] toArray() {
1870            synchronized (mutex) {return c.toArray();}
1871        }
1872        public <T> T[] toArray(T[] a) {
1873            synchronized (mutex) {return c.toArray(a);}
1874        }
1875
1876        public Iterator<E> iterator() {
1877            return c.iterator(); // Must be manually synched by user!
1878        }
1879
1880        public boolean add(E e) {
1881            synchronized (mutex) {return c.add(e);}
1882        }
1883        public boolean remove(Object o) {
1884            synchronized (mutex) {return c.remove(o);}
1885        }
1886
1887        public boolean containsAll(Collection<?> coll) {
1888            synchronized (mutex) {return c.containsAll(coll);}
1889        }
1890        public boolean addAll(Collection<? extends E> coll) {
1891            synchronized (mutex) {return c.addAll(coll);}
1892        }
1893        public boolean removeAll(Collection<?> coll) {
1894            synchronized (mutex) {return c.removeAll(coll);}
1895        }
1896        public boolean retainAll(Collection<?> coll) {
1897            synchronized (mutex) {return c.retainAll(coll);}
1898        }
1899        public void clear() {
1900            synchronized (mutex) {c.clear();}
1901        }
1902        public String toString() {
1903            synchronized (mutex) {return c.toString();}
1904        }
1905        // Override default methods in Collection
1906        @Override
1907        public void forEach(Consumer<? super E> consumer) {
1908            synchronized (mutex) {c.forEach(consumer);}
1909        }
1910        @Override
1911        public boolean removeIf(Predicate<? super E> filter) {
1912            synchronized (mutex) {return c.removeIf(filter);}
1913        }
1914        @Override
1915        public Spliterator<E> spliterator() {
1916            return c.spliterator(); // Must be manually synched by user!
1917        }
1918        @Override
1919        public Stream<E> stream() {
1920            return c.stream(); // Must be manually synched by user!
1921        }
1922        @Override
1923        public Stream<E> parallelStream() {
1924            return c.parallelStream(); // Must be manually synched by user!
1925        }
1926        private void writeObject(ObjectOutputStream s) throws IOException {
1927            synchronized (mutex) {s.defaultWriteObject();}
1928        }
1929    }
1930
1931    /**
1932     * Returns a synchronized (thread-safe) set backed by the specified
1933     * set.  In order to guarantee serial access, it is critical that
1934     * <strong>all</strong> access to the backing set is accomplished
1935     * through the returned set.<p>
1936     *
1937     * It is imperative that the user manually synchronize on the returned
1938     * set when iterating over it:
1939     * <pre>
1940     *  Set s = Collections.synchronizedSet(new HashSet());
1941     *      ...
1942     *  synchronized (s) {
1943     *      Iterator i = s.iterator(); // Must be in the synchronized block
1944     *      while (i.hasNext())
1945     *          foo(i.next());
1946     *  }
1947     * </pre>
1948     * Failure to follow this advice may result in non-deterministic behavior.
1949     *
1950     * <p>The returned set will be serializable if the specified set is
1951     * serializable.
1952     *
1953     * @param  <T> the class of the objects in the set
1954     * @param  s the set to be "wrapped" in a synchronized set.
1955     * @return a synchronized view of the specified set.
1956     */
1957    public static <T> Set<T> synchronizedSet(Set<T> s) {
1958        return new SynchronizedSet<>(s);
1959    }
1960
1961    static <T> Set<T> synchronizedSet(Set<T> s, Object mutex) {
1962        return new SynchronizedSet<>(s, mutex);
1963    }
1964
1965    /**
1966     * @serial include
1967     */
1968    static class SynchronizedSet<E>
1969          extends SynchronizedCollection<E>
1970          implements Set<E> {
1971        private static final long serialVersionUID = 487447009682186044L;
1972
1973        SynchronizedSet(Set<E> s) {
1974            super(s);
1975        }
1976        SynchronizedSet(Set<E> s, Object mutex) {
1977            super(s, mutex);
1978        }
1979
1980        public boolean equals(Object o) {
1981            if (this == o)
1982                return true;
1983            synchronized (mutex) {return c.equals(o);}
1984        }
1985        public int hashCode() {
1986            synchronized (mutex) {return c.hashCode();}
1987        }
1988    }
1989
1990    /**
1991     * Returns a synchronized (thread-safe) sorted set backed by the specified
1992     * sorted set.  In order to guarantee serial access, it is critical that
1993     * <strong>all</strong> access to the backing sorted set is accomplished
1994     * through the returned sorted set (or its views).<p>
1995     *
1996     * It is imperative that the user manually synchronize on the returned
1997     * sorted set when iterating over it or any of its <tt>subSet</tt>,
1998     * <tt>headSet</tt>, or <tt>tailSet</tt> views.
1999     * <pre>
2000     *  SortedSet s = Collections.synchronizedSortedSet(new TreeSet());
2001     *      ...
2002     *  synchronized (s) {
2003     *      Iterator i = s.iterator(); // Must be in the synchronized block
2004     *      while (i.hasNext())
2005     *          foo(i.next());
2006     *  }
2007     * </pre>
2008     * or:
2009     * <pre>
2010     *  SortedSet s = Collections.synchronizedSortedSet(new TreeSet());
2011     *  SortedSet s2 = s.headSet(foo);
2012     *      ...
2013     *  synchronized (s) {  // Note: s, not s2!!!
2014     *      Iterator i = s2.iterator(); // Must be in the synchronized block
2015     *      while (i.hasNext())
2016     *          foo(i.next());
2017     *  }
2018     * </pre>
2019     * Failure to follow this advice may result in non-deterministic behavior.
2020     *
2021     * <p>The returned sorted set will be serializable if the specified
2022     * sorted set is serializable.
2023     *
2024     * @param  <T> the class of the objects in the set
2025     * @param  s the sorted set to be "wrapped" in a synchronized sorted set.
2026     * @return a synchronized view of the specified sorted set.
2027     */
2028    public static <T> SortedSet<T> synchronizedSortedSet(SortedSet<T> s) {
2029        return new SynchronizedSortedSet<>(s);
2030    }
2031
2032    /**
2033     * @serial include
2034     */
2035    static class SynchronizedSortedSet<E>
2036        extends SynchronizedSet<E>
2037        implements SortedSet<E>
2038    {
2039        private static final long serialVersionUID = 8695801310862127406L;
2040
2041        private final SortedSet<E> ss;
2042
2043        SynchronizedSortedSet(SortedSet<E> s) {
2044            super(s);
2045            ss = s;
2046        }
2047        SynchronizedSortedSet(SortedSet<E> s, Object mutex) {
2048            super(s, mutex);
2049            ss = s;
2050        }
2051
2052        public Comparator<? super E> comparator() {
2053            synchronized (mutex) {return ss.comparator();}
2054        }
2055
2056        public SortedSet<E> subSet(E fromElement, E toElement) {
2057            synchronized (mutex) {
2058                return new SynchronizedSortedSet<>(
2059                    ss.subSet(fromElement, toElement), mutex);
2060            }
2061        }
2062        public SortedSet<E> headSet(E toElement) {
2063            synchronized (mutex) {
2064                return new SynchronizedSortedSet<>(ss.headSet(toElement), mutex);
2065            }
2066        }
2067        public SortedSet<E> tailSet(E fromElement) {
2068            synchronized (mutex) {
2069               return new SynchronizedSortedSet<>(ss.tailSet(fromElement),mutex);
2070            }
2071        }
2072
2073        public E first() {
2074            synchronized (mutex) {return ss.first();}
2075        }
2076        public E last() {
2077            synchronized (mutex) {return ss.last();}
2078        }
2079    }
2080
2081    /**
2082     * Returns a synchronized (thread-safe) list backed by the specified
2083     * list.  In order to guarantee serial access, it is critical that
2084     * <strong>all</strong> access to the backing list is accomplished
2085     * through the returned list.<p>
2086     *
2087     * It is imperative that the user manually synchronize on the returned
2088     * list when iterating over it:
2089     * <pre>
2090     *  List list = Collections.synchronizedList(new ArrayList());
2091     *      ...
2092     *  synchronized (list) {
2093     *      Iterator i = list.iterator(); // Must be in synchronized block
2094     *      while (i.hasNext())
2095     *          foo(i.next());
2096     *  }
2097     * </pre>
2098     * Failure to follow this advice may result in non-deterministic behavior.
2099     *
2100     * <p>The returned list will be serializable if the specified list is
2101     * serializable.
2102     *
2103     * @param  <T> the class of the objects in the list
2104     * @param  list the list to be "wrapped" in a synchronized list.
2105     * @return a synchronized view of the specified list.
2106     */
2107    public static <T> List<T> synchronizedList(List<T> list) {
2108        return (list instanceof RandomAccess ?
2109                new SynchronizedRandomAccessList<>(list) :
2110                new SynchronizedList<>(list));
2111    }
2112
2113    static <T> List<T> synchronizedList(List<T> list, Object mutex) {
2114        return (list instanceof RandomAccess ?
2115                new SynchronizedRandomAccessList<>(list, mutex) :
2116                new SynchronizedList<>(list, mutex));
2117    }
2118
2119    /**
2120     * @serial include
2121     */
2122    static class SynchronizedList<E>
2123        extends SynchronizedCollection<E>
2124        implements List<E> {
2125        private static final long serialVersionUID = -7754090372962971524L;
2126
2127        final List<E> list;
2128
2129        SynchronizedList(List<E> list) {
2130            super(list);
2131            this.list = list;
2132        }
2133        SynchronizedList(List<E> list, Object mutex) {
2134            super(list, mutex);
2135            this.list = list;
2136        }
2137
2138        public boolean equals(Object o) {
2139            if (this == o)
2140                return true;
2141            synchronized (mutex) {return list.equals(o);}
2142        }
2143        public int hashCode() {
2144            synchronized (mutex) {return list.hashCode();}
2145        }
2146
2147        public E get(int index) {
2148            synchronized (mutex) {return list.get(index);}
2149        }
2150        public E set(int index, E element) {
2151            synchronized (mutex) {return list.set(index, element);}
2152        }
2153        public void add(int index, E element) {
2154            synchronized (mutex) {list.add(index, element);}
2155        }
2156        public E remove(int index) {
2157            synchronized (mutex) {return list.remove(index);}
2158        }
2159
2160        public int indexOf(Object o) {
2161            synchronized (mutex) {return list.indexOf(o);}
2162        }
2163        public int lastIndexOf(Object o) {
2164            synchronized (mutex) {return list.lastIndexOf(o);}
2165        }
2166
2167        public boolean addAll(int index, Collection<? extends E> c) {
2168            synchronized (mutex) {return list.addAll(index, c);}
2169        }
2170
2171        public ListIterator<E> listIterator() {
2172            return list.listIterator(); // Must be manually synched by user
2173        }
2174
2175        public ListIterator<E> listIterator(int index) {
2176            return list.listIterator(index); // Must be manually synched by user
2177        }
2178
2179        public List<E> subList(int fromIndex, int toIndex) {
2180            synchronized (mutex) {
2181                return new SynchronizedList<>(list.subList(fromIndex, toIndex),
2182                                            mutex);
2183            }
2184        }
2185
2186        @Override
2187        public void replaceAll(UnaryOperator<E> operator) {
2188            synchronized (mutex) {list.replaceAll(operator);}
2189        }
2190        @Override
2191        public void sort(Comparator<? super E> c) {
2192            synchronized (mutex) {list.sort(c);}
2193        }
2194
2195        /**
2196         * SynchronizedRandomAccessList instances are serialized as
2197         * SynchronizedList instances to allow them to be deserialized
2198         * in pre-1.4 JREs (which do not have SynchronizedRandomAccessList).
2199         * This method inverts the transformation.  As a beneficial
2200         * side-effect, it also grafts the RandomAccess marker onto
2201         * SynchronizedList instances that were serialized in pre-1.4 JREs.
2202         *
2203         * Note: Unfortunately, SynchronizedRandomAccessList instances
2204         * serialized in 1.4.1 and deserialized in 1.4 will become
2205         * SynchronizedList instances, as this method was missing in 1.4.
2206         */
2207        private Object readResolve() {
2208            return (list instanceof RandomAccess
2209                    ? new SynchronizedRandomAccessList<>(list)
2210                    : this);
2211        }
2212    }
2213
2214    /**
2215     * @serial include
2216     */
2217    static class SynchronizedRandomAccessList<E>
2218        extends SynchronizedList<E>
2219        implements RandomAccess {
2220
2221        SynchronizedRandomAccessList(List<E> list) {
2222            super(list);
2223        }
2224
2225        SynchronizedRandomAccessList(List<E> list, Object mutex) {
2226            super(list, mutex);
2227        }
2228
2229        public List<E> subList(int fromIndex, int toIndex) {
2230            synchronized (mutex) {
2231                return new SynchronizedRandomAccessList<>(
2232                    list.subList(fromIndex, toIndex), mutex);
2233            }
2234        }
2235
2236        private static final long serialVersionUID = 1530674583602358482L;
2237
2238        /**
2239         * Allows instances to be deserialized in pre-1.4 JREs (which do
2240         * not have SynchronizedRandomAccessList).  SynchronizedList has
2241         * a readResolve method that inverts this transformation upon
2242         * deserialization.
2243         */
2244        private Object writeReplace() {
2245            return new SynchronizedList<>(list);
2246        }
2247    }
2248
2249    /**
2250     * Returns a synchronized (thread-safe) map backed by the specified
2251     * map.  In order to guarantee serial access, it is critical that
2252     * <strong>all</strong> access to the backing map is accomplished
2253     * through the returned map.<p>
2254     *
2255     * It is imperative that the user manually synchronize on the returned
2256     * map when iterating over any of its collection views:
2257     * <pre>
2258     *  Map m = Collections.synchronizedMap(new HashMap());
2259     *      ...
2260     *  Set s = m.keySet();  // Needn't be in synchronized block
2261     *      ...
2262     *  synchronized (m) {  // Synchronizing on m, not s!
2263     *      Iterator i = s.iterator(); // Must be in synchronized block
2264     *      while (i.hasNext())
2265     *          foo(i.next());
2266     *  }
2267     * </pre>
2268     * Failure to follow this advice may result in non-deterministic behavior.
2269     *
2270     * <p>The returned map will be serializable if the specified map is
2271     * serializable.
2272     *
2273     * @param <K> the class of the map keys
2274     * @param <V> the class of the map values
2275     * @param  m the map to be "wrapped" in a synchronized map.
2276     * @return a synchronized view of the specified map.
2277     */
2278    public static <K,V> Map<K,V> synchronizedMap(Map<K,V> m) {
2279        return new SynchronizedMap<>(m);
2280    }
2281
2282    /**
2283     * @serial include
2284     */
2285    private static class SynchronizedMap<K,V>
2286        implements Map<K,V>, Serializable {
2287        private static final long serialVersionUID = 1978198479659022715L;
2288
2289        private final Map<K,V> m;     // Backing Map
2290        final Object      mutex;        // Object on which to synchronize
2291
2292        SynchronizedMap(Map<K,V> m) {
2293            this.m = Objects.requireNonNull(m);
2294            mutex = this;
2295        }
2296
2297        SynchronizedMap(Map<K,V> m, Object mutex) {
2298            this.m = m;
2299            this.mutex = mutex;
2300        }
2301
2302        public int size() {
2303            synchronized (mutex) {return m.size();}
2304        }
2305        public boolean isEmpty() {
2306            synchronized (mutex) {return m.isEmpty();}
2307        }
2308        public boolean containsKey(Object key) {
2309            synchronized (mutex) {return m.containsKey(key);}
2310        }
2311        public boolean containsValue(Object value) {
2312            synchronized (mutex) {return m.containsValue(value);}
2313        }
2314        public V get(Object key) {
2315            synchronized (mutex) {return m.get(key);}
2316        }
2317
2318        public V put(K key, V value) {
2319            synchronized (mutex) {return m.put(key, value);}
2320        }
2321        public V remove(Object key) {
2322            synchronized (mutex) {return m.remove(key);}
2323        }
2324        public void putAll(Map<? extends K, ? extends V> map) {
2325            synchronized (mutex) {m.putAll(map);}
2326        }
2327        public void clear() {
2328            synchronized (mutex) {m.clear();}
2329        }
2330
2331        private transient Set<K> keySet = null;
2332        private transient Set<Map.Entry<K,V>> entrySet = null;
2333        private transient Collection<V> values = null;
2334
2335        public Set<K> keySet() {
2336            synchronized (mutex) {
2337                if (keySet==null)
2338                    keySet = new SynchronizedSet<>(m.keySet(), mutex);
2339                return keySet;
2340            }
2341        }
2342
2343        public Set<Map.Entry<K,V>> entrySet() {
2344            synchronized (mutex) {
2345                if (entrySet==null)
2346                    entrySet = new SynchronizedSet<>(m.entrySet(), mutex);
2347                return entrySet;
2348            }
2349        }
2350
2351        public Collection<V> values() {
2352            synchronized (mutex) {
2353                if (values==null)
2354                    values = new SynchronizedCollection<>(m.values(), mutex);
2355                return values;
2356            }
2357        }
2358
2359        public boolean equals(Object o) {
2360            if (this == o)
2361                return true;
2362            synchronized (mutex) {return m.equals(o);}
2363        }
2364        public int hashCode() {
2365            synchronized (mutex) {return m.hashCode();}
2366        }
2367        public String toString() {
2368            synchronized (mutex) {return m.toString();}
2369        }
2370
2371        // Override default methods in Map
2372        @Override
2373        public V getOrDefault(Object k, V defaultValue) {
2374            synchronized (mutex) {return m.getOrDefault(k, defaultValue);}
2375        }
2376        @Override
2377        public void forEach(BiConsumer<? super K, ? super V> action) {
2378            synchronized (mutex) {m.forEach(action);}
2379        }
2380        @Override
2381        public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
2382            synchronized (mutex) {m.replaceAll(function);}
2383        }
2384        @Override
2385        public V putIfAbsent(K key, V value) {
2386            synchronized (mutex) {return m.putIfAbsent(key, value);}
2387        }
2388        @Override
2389        public boolean remove(Object key, Object value) {
2390            synchronized (mutex) {return m.remove(key, value);}
2391        }
2392        @Override
2393        public boolean replace(K key, V oldValue, V newValue) {
2394            synchronized (mutex) {return m.replace(key, oldValue, newValue);}
2395        }
2396        @Override
2397        public V replace(K key, V value) {
2398            synchronized (mutex) {return m.replace(key, value);}
2399        }
2400        @Override
2401        public V computeIfAbsent(K key,
2402                                 Function<? super K, ? extends V> mappingFunction) {
2403            synchronized (mutex) {return m.computeIfAbsent(key, mappingFunction);}
2404        }
2405        @Override
2406        public V computeIfPresent(K key,
2407                                  BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2408            synchronized (mutex) {return m.computeIfPresent(key, remappingFunction);}
2409        }
2410        @Override
2411        public V compute(K key,
2412                         BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2413            synchronized (mutex) {return m.compute(key, remappingFunction);}
2414        }
2415        @Override
2416        public V merge(K key, V value,
2417                       BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
2418            synchronized (mutex) {return m.merge(key, value, remappingFunction);}
2419        }
2420
2421        private void writeObject(ObjectOutputStream s) throws IOException {
2422            synchronized (mutex) {s.defaultWriteObject();}
2423        }
2424    }
2425
2426    /**
2427     * Returns a synchronized (thread-safe) sorted map backed by the specified
2428     * sorted map.  In order to guarantee serial access, it is critical that
2429     * <strong>all</strong> access to the backing sorted map is accomplished
2430     * through the returned sorted map (or its views).<p>
2431     *
2432     * It is imperative that the user manually synchronize on the returned
2433     * sorted map when iterating over any of its collection views, or the
2434     * collections views of any of its <tt>subMap</tt>, <tt>headMap</tt> or
2435     * <tt>tailMap</tt> views.
2436     * <pre>
2437     *  SortedMap m = Collections.synchronizedSortedMap(new TreeMap());
2438     *      ...
2439     *  Set s = m.keySet();  // Needn't be in synchronized block
2440     *      ...
2441     *  synchronized (m) {  // Synchronizing on m, not s!
2442     *      Iterator i = s.iterator(); // Must be in synchronized block
2443     *      while (i.hasNext())
2444     *          foo(i.next());
2445     *  }
2446     * </pre>
2447     * or:
2448     * <pre>
2449     *  SortedMap m = Collections.synchronizedSortedMap(new TreeMap());
2450     *  SortedMap m2 = m.subMap(foo, bar);
2451     *      ...
2452     *  Set s2 = m2.keySet();  // Needn't be in synchronized block
2453     *      ...
2454     *  synchronized (m) {  // Synchronizing on m, not m2 or s2!
2455     *      Iterator i = s.iterator(); // Must be in synchronized block
2456     *      while (i.hasNext())
2457     *          foo(i.next());
2458     *  }
2459     * </pre>
2460     * Failure to follow this advice may result in non-deterministic behavior.
2461     *
2462     * <p>The returned sorted map will be serializable if the specified
2463     * sorted map is serializable.
2464     *
2465     * @param <K> the class of the map keys
2466     * @param <V> the class of the map values
2467     * @param  m the sorted map to be "wrapped" in a synchronized sorted map.
2468     * @return a synchronized view of the specified sorted map.
2469     */
2470    public static <K,V> SortedMap<K,V> synchronizedSortedMap(SortedMap<K,V> m) {
2471        return new SynchronizedSortedMap<>(m);
2472    }
2473
2474    /**
2475     * @serial include
2476     */
2477    static class SynchronizedSortedMap<K,V>
2478        extends SynchronizedMap<K,V>
2479        implements SortedMap<K,V>
2480    {
2481        private static final long serialVersionUID = -8798146769416483793L;
2482
2483        private final SortedMap<K,V> sm;
2484
2485        SynchronizedSortedMap(SortedMap<K,V> m) {
2486            super(m);
2487            sm = m;
2488        }
2489        SynchronizedSortedMap(SortedMap<K,V> m, Object mutex) {
2490            super(m, mutex);
2491            sm = m;
2492        }
2493
2494        public Comparator<? super K> comparator() {
2495            synchronized (mutex) {return sm.comparator();}
2496        }
2497
2498        public SortedMap<K,V> subMap(K fromKey, K toKey) {
2499            synchronized (mutex) {
2500                return new SynchronizedSortedMap<>(
2501                    sm.subMap(fromKey, toKey), mutex);
2502            }
2503        }
2504        public SortedMap<K,V> headMap(K toKey) {
2505            synchronized (mutex) {
2506                return new SynchronizedSortedMap<>(sm.headMap(toKey), mutex);
2507            }
2508        }
2509        public SortedMap<K,V> tailMap(K fromKey) {
2510            synchronized (mutex) {
2511               return new SynchronizedSortedMap<>(sm.tailMap(fromKey),mutex);
2512            }
2513        }
2514
2515        public K firstKey() {
2516            synchronized (mutex) {return sm.firstKey();}
2517        }
2518        public K lastKey() {
2519            synchronized (mutex) {return sm.lastKey();}
2520        }
2521    }
2522
2523    // Dynamically typesafe collection wrappers
2524
2525    /**
2526     * Returns a dynamically typesafe view of the specified collection.
2527     * Any attempt to insert an element of the wrong type will result in an
2528     * immediate {@link ClassCastException}.  Assuming a collection
2529     * contains no incorrectly typed elements prior to the time a
2530     * dynamically typesafe view is generated, and that all subsequent
2531     * access to the collection takes place through the view, it is
2532     * <i>guaranteed</i> that the collection cannot contain an incorrectly
2533     * typed element.
2534     *
2535     * <p>The generics mechanism in the language provides compile-time
2536     * (static) type checking, but it is possible to defeat this mechanism
2537     * with unchecked casts.  Usually this is not a problem, as the compiler
2538     * issues warnings on all such unchecked operations.  There are, however,
2539     * times when static type checking alone is not sufficient.  For example,
2540     * suppose a collection is passed to a third-party library and it is
2541     * imperative that the library code not corrupt the collection by
2542     * inserting an element of the wrong type.
2543     *
2544     * <p>Another use of dynamically typesafe views is debugging.  Suppose a
2545     * program fails with a {@code ClassCastException}, indicating that an
2546     * incorrectly typed element was put into a parameterized collection.
2547     * Unfortunately, the exception can occur at any time after the erroneous
2548     * element is inserted, so it typically provides little or no information
2549     * as to the real source of the problem.  If the problem is reproducible,
2550     * one can quickly determine its source by temporarily modifying the
2551     * program to wrap the collection with a dynamically typesafe view.
2552     * For example, this declaration:
2553     *  <pre> {@code
2554     *     Collection<String> c = new HashSet<>();
2555     * }</pre>
2556     * may be replaced temporarily by this one:
2557     *  <pre> {@code
2558     *     Collection<String> c = Collections.checkedCollection(
2559     *         new HashSet<>(), String.class);
2560     * }</pre>
2561     * Running the program again will cause it to fail at the point where
2562     * an incorrectly typed element is inserted into the collection, clearly
2563     * identifying the source of the problem.  Once the problem is fixed, the
2564     * modified declaration may be reverted back to the original.
2565     *
2566     * <p>The returned collection does <i>not</i> pass the hashCode and equals
2567     * operations through to the backing collection, but relies on
2568     * {@code Object}'s {@code equals} and {@code hashCode} methods.  This
2569     * is necessary to preserve the contracts of these operations in the case
2570     * that the backing collection is a set or a list.
2571     *
2572     * <p>The returned collection will be serializable if the specified
2573     * collection is serializable.
2574     *
2575     * <p>Since {@code null} is considered to be a value of any reference
2576     * type, the returned collection permits insertion of null elements
2577     * whenever the backing collection does.
2578     *
2579     * @param <E> the class of the objects in the collection
2580     * @param c the collection for which a dynamically typesafe view is to be
2581     *          returned
2582     * @param type the type of element that {@code c} is permitted to hold
2583     * @return a dynamically typesafe view of the specified collection
2584     * @since 1.5
2585     */
2586    public static <E> Collection<E> checkedCollection(Collection<E> c,
2587                                                      Class<E> type) {
2588        return new CheckedCollection<>(c, type);
2589    }
2590
2591    @SuppressWarnings("unchecked")
2592    static <T> T[] zeroLengthArray(Class<T> type) {
2593        return (T[]) Array.newInstance(type, 0);
2594    }
2595
2596    /**
2597     * @serial include
2598     */
2599    static class CheckedCollection<E> implements Collection<E>, Serializable {
2600        private static final long serialVersionUID = 1578914078182001775L;
2601
2602        final Collection<E> c;
2603        final Class<E> type;
2604
2605        void typeCheck(Object o) {
2606            if (o != null && !type.isInstance(o))
2607                throw new ClassCastException(badElementMsg(o));
2608        }
2609
2610        private String badElementMsg(Object o) {
2611            return "Attempt to insert " + o.getClass() +
2612                " element into collection with element type " + type;
2613        }
2614
2615        CheckedCollection(Collection<E> c, Class<E> type) {
2616            if (c==null || type == null)
2617                throw new NullPointerException();
2618            this.c = c;
2619            this.type = type;
2620        }
2621
2622        public int size()                 { return c.size(); }
2623        public boolean isEmpty()          { return c.isEmpty(); }
2624        public boolean contains(Object o) { return c.contains(o); }
2625        public Object[] toArray()         { return c.toArray(); }
2626        public <T> T[] toArray(T[] a)     { return c.toArray(a); }
2627        public String toString()          { return c.toString(); }
2628        public boolean remove(Object o)   { return c.remove(o); }
2629        public void clear()               {        c.clear(); }
2630
2631        public boolean containsAll(Collection<?> coll) {
2632            return c.containsAll(coll);
2633        }
2634        public boolean removeAll(Collection<?> coll) {
2635            return c.removeAll(coll);
2636        }
2637        public boolean retainAll(Collection<?> coll) {
2638            return c.retainAll(coll);
2639        }
2640
2641        public Iterator<E> iterator() {
2642            // JDK-6363904 - unwrapped iterator could be typecast to
2643            // ListIterator with unsafe set()
2644            final Iterator<E> it = c.iterator();
2645            return new Iterator<E>() {
2646                public boolean hasNext() { return it.hasNext(); }
2647                public E next()          { return it.next(); }
2648                public void remove()     {        it.remove(); }};
2649            // Android-note: Should we delegate to it for forEachRemaining ?
2650        }
2651
2652        public boolean add(E e) {
2653            typeCheck(e);
2654            return c.add(e);
2655        }
2656
2657        private E[] zeroLengthElementArray = null; // Lazily initialized
2658
2659        private E[] zeroLengthElementArray() {
2660            return zeroLengthElementArray != null ? zeroLengthElementArray :
2661                (zeroLengthElementArray = zeroLengthArray(type));
2662        }
2663
2664        @SuppressWarnings("unchecked")
2665        Collection<E> checkedCopyOf(Collection<? extends E> coll) {
2666            Object[] a = null;
2667            try {
2668                E[] z = zeroLengthElementArray();
2669                a = coll.toArray(z);
2670                // Defend against coll violating the toArray contract
2671                if (a.getClass() != z.getClass())
2672                    a = Arrays.copyOf(a, a.length, z.getClass());
2673            } catch (ArrayStoreException ignore) {
2674                // To get better and consistent diagnostics,
2675                // we call typeCheck explicitly on each element.
2676                // We call clone() to defend against coll retaining a
2677                // reference to the returned array and storing a bad
2678                // element into it after it has been type checked.
2679                a = coll.toArray().clone();
2680                for (Object o : a)
2681                    typeCheck(o);
2682            }
2683            // A slight abuse of the type system, but safe here.
2684            return (Collection<E>) Arrays.asList(a);
2685        }
2686
2687        public boolean addAll(Collection<? extends E> coll) {
2688            // Doing things this way insulates us from concurrent changes
2689            // in the contents of coll and provides all-or-nothing
2690            // semantics (which we wouldn't get if we type-checked each
2691            // element as we added it)
2692            return c.addAll(checkedCopyOf(coll));
2693        }
2694
2695        // Override default methods in Collection
2696        @Override
2697        public void forEach(Consumer<? super E> action) {c.forEach(action);}
2698        @Override
2699        public boolean removeIf(Predicate<? super E> filter) {
2700            return c.removeIf(filter);
2701        }
2702        @Override
2703        public Spliterator<E> spliterator() {return c.spliterator();}
2704        @Override
2705        public Stream<E> stream()           {return c.stream();}
2706        @Override
2707        public Stream<E> parallelStream()   {return c.parallelStream();}
2708
2709    }
2710
2711    /**
2712     * Returns a dynamically typesafe view of the specified set.
2713     * Any attempt to insert an element of the wrong type will result in
2714     * an immediate {@link ClassCastException}.  Assuming a set contains
2715     * no incorrectly typed elements prior to the time a dynamically typesafe
2716     * view is generated, and that all subsequent access to the set
2717     * takes place through the view, it is <i>guaranteed</i> that the
2718     * set cannot contain an incorrectly typed element.
2719     *
2720     * <p>A discussion of the use of dynamically typesafe views may be
2721     * found in the documentation for the {@link #checkedCollection
2722     * checkedCollection} method.
2723     *
2724     * <p>The returned set will be serializable if the specified set is
2725     * serializable.
2726     *
2727     * <p>Since {@code null} is considered to be a value of any reference
2728     * type, the returned set permits insertion of null elements whenever
2729     * the backing set does.
2730     *
2731     * @param <E> the class of the objects in the set
2732     * @param s the set for which a dynamically typesafe view is to be
2733     *          returned
2734     * @param type the type of element that {@code s} is permitted to hold
2735     * @return a dynamically typesafe view of the specified set
2736     * @since 1.5
2737     */
2738    public static <E> Set<E> checkedSet(Set<E> s, Class<E> type) {
2739        return new CheckedSet<>(s, type);
2740    }
2741
2742    /**
2743     * @serial include
2744     */
2745    static class CheckedSet<E> extends CheckedCollection<E>
2746                                 implements Set<E>, Serializable
2747    {
2748        private static final long serialVersionUID = 4694047833775013803L;
2749
2750        CheckedSet(Set<E> s, Class<E> elementType) { super(s, elementType); }
2751
2752        public boolean equals(Object o) { return o == this || c.equals(o); }
2753        public int hashCode()           { return c.hashCode(); }
2754    }
2755
2756    /**
2757     * Returns a dynamically typesafe view of the specified sorted set.
2758     * Any attempt to insert an element of the wrong type will result in an
2759     * immediate {@link ClassCastException}.  Assuming a sorted set
2760     * contains no incorrectly typed elements prior to the time a
2761     * dynamically typesafe view is generated, and that all subsequent
2762     * access to the sorted set takes place through the view, it is
2763     * <i>guaranteed</i> that the sorted set cannot contain an incorrectly
2764     * typed element.
2765     *
2766     * <p>A discussion of the use of dynamically typesafe views may be
2767     * found in the documentation for the {@link #checkedCollection
2768     * checkedCollection} method.
2769     *
2770     * <p>The returned sorted set will be serializable if the specified sorted
2771     * set is serializable.
2772     *
2773     * <p>Since {@code null} is considered to be a value of any reference
2774     * type, the returned sorted set permits insertion of null elements
2775     * whenever the backing sorted set does.
2776     *
2777     * @param <E> the class of the objects in the set
2778     * @param s the sorted set for which a dynamically typesafe view is to be
2779     *          returned
2780     * @param type the type of element that {@code s} is permitted to hold
2781     * @return a dynamically typesafe view of the specified sorted set
2782     * @since 1.5
2783     */
2784    public static <E> SortedSet<E> checkedSortedSet(SortedSet<E> s,
2785                                                    Class<E> type) {
2786        return new CheckedSortedSet<>(s, type);
2787    }
2788
2789    /**
2790     * @serial include
2791     */
2792    static class CheckedSortedSet<E> extends CheckedSet<E>
2793        implements SortedSet<E>, Serializable
2794    {
2795        private static final long serialVersionUID = 1599911165492914959L;
2796
2797        private final SortedSet<E> ss;
2798
2799        CheckedSortedSet(SortedSet<E> s, Class<E> type) {
2800            super(s, type);
2801            ss = s;
2802        }
2803
2804        public Comparator<? super E> comparator() { return ss.comparator(); }
2805        public E first()                   { return ss.first(); }
2806        public E last()                    { return ss.last(); }
2807
2808        public SortedSet<E> subSet(E fromElement, E toElement) {
2809            return checkedSortedSet(ss.subSet(fromElement,toElement), type);
2810        }
2811        public SortedSet<E> headSet(E toElement) {
2812            return checkedSortedSet(ss.headSet(toElement), type);
2813        }
2814        public SortedSet<E> tailSet(E fromElement) {
2815            return checkedSortedSet(ss.tailSet(fromElement), type);
2816        }
2817    }
2818
2819    /**
2820     * Returns a dynamically typesafe view of the specified list.
2821     * Any attempt to insert an element of the wrong type will result in
2822     * an immediate {@link ClassCastException}.  Assuming a list contains
2823     * no incorrectly typed elements prior to the time a dynamically typesafe
2824     * view is generated, and that all subsequent access to the list
2825     * takes place through the view, it is <i>guaranteed</i> that the
2826     * list cannot contain an incorrectly typed element.
2827     *
2828     * <p>A discussion of the use of dynamically typesafe views may be
2829     * found in the documentation for the {@link #checkedCollection
2830     * checkedCollection} method.
2831     *
2832     * <p>The returned list will be serializable if the specified list
2833     * is serializable.
2834     *
2835     * <p>Since {@code null} is considered to be a value of any reference
2836     * type, the returned list permits insertion of null elements whenever
2837     * the backing list does.
2838     *
2839     * @param <E> the class of the objects in the list
2840     * @param list the list for which a dynamically typesafe view is to be
2841     *             returned
2842     * @param type the type of element that {@code list} is permitted to hold
2843     * @return a dynamically typesafe view of the specified list
2844     * @since 1.5
2845     */
2846    public static <E> List<E> checkedList(List<E> list, Class<E> type) {
2847        return (list instanceof RandomAccess ?
2848                new CheckedRandomAccessList<>(list, type) :
2849                new CheckedList<>(list, type));
2850    }
2851
2852    /**
2853     * @serial include
2854     */
2855    static class CheckedList<E>
2856        extends CheckedCollection<E>
2857        implements List<E>
2858    {
2859        private static final long serialVersionUID = 65247728283967356L;
2860        final List<E> list;
2861
2862        CheckedList(List<E> list, Class<E> type) {
2863            super(list, type);
2864            this.list = list;
2865        }
2866
2867        public boolean equals(Object o)  { return o == this || list.equals(o); }
2868        public int hashCode()            { return list.hashCode(); }
2869        public E get(int index)          { return list.get(index); }
2870        public E remove(int index)       { return list.remove(index); }
2871        public int indexOf(Object o)     { return list.indexOf(o); }
2872        public int lastIndexOf(Object o) { return list.lastIndexOf(o); }
2873
2874        public E set(int index, E element) {
2875            typeCheck(element);
2876            return list.set(index, element);
2877        }
2878
2879        public void add(int index, E element) {
2880            typeCheck(element);
2881            list.add(index, element);
2882        }
2883
2884        public boolean addAll(int index, Collection<? extends E> c) {
2885            return list.addAll(index, checkedCopyOf(c));
2886        }
2887        @Override
2888        public void replaceAll(UnaryOperator<E> operator) {
2889            list.replaceAll(operator);
2890        }
2891        @Override
2892        public void sort(Comparator<? super E> c) {
2893            list.sort(c);
2894        }
2895        public ListIterator<E> listIterator()   { return listIterator(0); }
2896
2897        public ListIterator<E> listIterator(final int index) {
2898            final ListIterator<E> i = list.listIterator(index);
2899
2900            return new ListIterator<E>() {
2901                public boolean hasNext()     { return i.hasNext(); }
2902                public E next()              { return i.next(); }
2903                public boolean hasPrevious() { return i.hasPrevious(); }
2904                public E previous()          { return i.previous(); }
2905                public int nextIndex()       { return i.nextIndex(); }
2906                public int previousIndex()   { return i.previousIndex(); }
2907                public void remove()         {        i.remove(); }
2908
2909                public void set(E e) {
2910                    typeCheck(e);
2911                    i.set(e);
2912                }
2913
2914                public void add(E e) {
2915                    typeCheck(e);
2916                    i.add(e);
2917                }
2918
2919                @Override
2920                public void forEachRemaining(Consumer<? super E> action) {
2921                    i.forEachRemaining(action);
2922                }
2923            };
2924        }
2925
2926        public List<E> subList(int fromIndex, int toIndex) {
2927            return new CheckedList<>(list.subList(fromIndex, toIndex), type);
2928        }
2929    }
2930
2931    /**
2932     * @serial include
2933     */
2934    static class CheckedRandomAccessList<E> extends CheckedList<E>
2935                                            implements RandomAccess
2936    {
2937        private static final long serialVersionUID = 1638200125423088369L;
2938
2939        CheckedRandomAccessList(List<E> list, Class<E> type) {
2940            super(list, type);
2941        }
2942
2943        public List<E> subList(int fromIndex, int toIndex) {
2944            return new CheckedRandomAccessList<>(
2945                    list.subList(fromIndex, toIndex), type);
2946        }
2947    }
2948
2949    /**
2950     * Returns a dynamically typesafe view of the specified map.
2951     * Any attempt to insert a mapping whose key or value have the wrong
2952     * type will result in an immediate {@link ClassCastException}.
2953     * Similarly, any attempt to modify the value currently associated with
2954     * a key will result in an immediate {@link ClassCastException},
2955     * whether the modification is attempted directly through the map
2956     * itself, or through a {@link Map.Entry} instance obtained from the
2957     * map's {@link Map#entrySet() entry set} view.
2958     *
2959     * <p>Assuming a map contains no incorrectly typed keys or values
2960     * prior to the time a dynamically typesafe view is generated, and
2961     * that all subsequent access to the map takes place through the view
2962     * (or one of its collection views), it is <i>guaranteed</i> that the
2963     * map cannot contain an incorrectly typed key or value.
2964     *
2965     * <p>A discussion of the use of dynamically typesafe views may be
2966     * found in the documentation for the {@link #checkedCollection
2967     * checkedCollection} method.
2968     *
2969     * <p>The returned map will be serializable if the specified map is
2970     * serializable.
2971     *
2972     * <p>Since {@code null} is considered to be a value of any reference
2973     * type, the returned map permits insertion of null keys or values
2974     * whenever the backing map does.
2975     *
2976     * @param <K> the class of the map keys
2977     * @param <V> the class of the map values
2978     * @param m the map for which a dynamically typesafe view is to be
2979     *          returned
2980     * @param keyType the type of key that {@code m} is permitted to hold
2981     * @param valueType the type of value that {@code m} is permitted to hold
2982     * @return a dynamically typesafe view of the specified map
2983     * @since 1.5
2984     */
2985    public static <K, V> Map<K, V> checkedMap(Map<K, V> m,
2986                                              Class<K> keyType,
2987                                              Class<V> valueType) {
2988        return new CheckedMap<>(m, keyType, valueType);
2989    }
2990
2991
2992    /**
2993     * @serial include
2994     */
2995    private static class CheckedMap<K,V>
2996        implements Map<K,V>, Serializable
2997    {
2998        private static final long serialVersionUID = 5742860141034234728L;
2999
3000        private final Map<K, V> m;
3001        final Class<K> keyType;
3002        final Class<V> valueType;
3003
3004        private void typeCheck(Object key, Object value) {
3005            if (key != null && !keyType.isInstance(key))
3006                throw new ClassCastException(badKeyMsg(key));
3007
3008            if (value != null && !valueType.isInstance(value))
3009                throw new ClassCastException(badValueMsg(value));
3010        }
3011
3012        private BiFunction<? super K, ? super V, ? extends V> typeCheck(
3013                BiFunction<? super K, ? super V, ? extends V> func) {
3014            Objects.requireNonNull(func);
3015            return (k, v) -> {
3016                V newValue = func.apply(k, v);
3017                typeCheck(k, newValue);
3018                return newValue;
3019            };
3020        }
3021
3022        private String badKeyMsg(Object key) {
3023            return "Attempt to insert " + key.getClass() +
3024                " key into map with key type " + keyType;
3025        }
3026
3027        private String badValueMsg(Object value) {
3028            return "Attempt to insert " + value.getClass() +
3029                " value into map with value type " + valueType;
3030        }
3031
3032        CheckedMap(Map<K, V> m, Class<K> keyType, Class<V> valueType) {
3033            this.m = Objects.requireNonNull(m);
3034            this.keyType = Objects.requireNonNull(keyType);
3035            this.valueType = Objects.requireNonNull(valueType);
3036        }
3037
3038        public int size()                      { return m.size(); }
3039        public boolean isEmpty()               { return m.isEmpty(); }
3040        public boolean containsKey(Object key) { return m.containsKey(key); }
3041        public boolean containsValue(Object v) { return m.containsValue(v); }
3042        public V get(Object key)               { return m.get(key); }
3043        public V remove(Object key)            { return m.remove(key); }
3044        public void clear()                    { m.clear(); }
3045        public Set<K> keySet()                 { return m.keySet(); }
3046        public Collection<V> values()          { return m.values(); }
3047        public boolean equals(Object o)        { return o == this || m.equals(o); }
3048        public int hashCode()                  { return m.hashCode(); }
3049        public String toString()               { return m.toString(); }
3050
3051        public V put(K key, V value) {
3052            typeCheck(key, value);
3053            return m.put(key, value);
3054        }
3055
3056        @SuppressWarnings("unchecked")
3057        public void putAll(Map<? extends K, ? extends V> t) {
3058            // Satisfy the following goals:
3059            // - good diagnostics in case of type mismatch
3060            // - all-or-nothing semantics
3061            // - protection from malicious t
3062            // - correct behavior if t is a concurrent map
3063            Object[] entries = t.entrySet().toArray();
3064            List<Map.Entry<K,V>> checked = new ArrayList<>(entries.length);
3065            for (Object o : entries) {
3066                Map.Entry<?,?> e = (Map.Entry<?,?>) o;
3067                Object k = e.getKey();
3068                Object v = e.getValue();
3069                typeCheck(k, v);
3070                checked.add(
3071                        new AbstractMap.SimpleImmutableEntry<>((K)k, (V)v));
3072            }
3073            for (Map.Entry<K,V> e : checked)
3074                m.put(e.getKey(), e.getValue());
3075        }
3076
3077        private transient Set<Map.Entry<K,V>> entrySet = null;
3078
3079        public Set<Map.Entry<K,V>> entrySet() {
3080            if (entrySet==null)
3081                entrySet = new CheckedEntrySet<>(m.entrySet(), valueType);
3082            return entrySet;
3083        }
3084
3085        // Override default methods in Map
3086        @Override
3087        public void forEach(BiConsumer<? super K, ? super V> action) {
3088            m.forEach(action);
3089        }
3090
3091        /**
3092         * We need this class in addition to CheckedSet as Map.Entry permits
3093         * modification of the backing Map via the setValue operation.  This
3094         * class is subtle: there are many possible attacks that must be
3095         * thwarted.
3096         *
3097         * @serial exclude
3098         */
3099        static class CheckedEntrySet<K,V> implements Set<Map.Entry<K,V>> {
3100            private final Set<Map.Entry<K,V>> s;
3101            private final Class<V> valueType;
3102
3103            CheckedEntrySet(Set<Map.Entry<K, V>> s, Class<V> valueType) {
3104                this.s = s;
3105                this.valueType = valueType;
3106            }
3107
3108            public int size()        { return s.size(); }
3109            public boolean isEmpty() { return s.isEmpty(); }
3110            public String toString() { return s.toString(); }
3111            public int hashCode()    { return s.hashCode(); }
3112            public void clear()      {        s.clear(); }
3113
3114            public boolean add(Map.Entry<K, V> e) {
3115                throw new UnsupportedOperationException();
3116            }
3117            public boolean addAll(Collection<? extends Map.Entry<K, V>> coll) {
3118                throw new UnsupportedOperationException();
3119            }
3120
3121            public Iterator<Map.Entry<K,V>> iterator() {
3122                final Iterator<Map.Entry<K, V>> i = s.iterator();
3123                final Class<V> valueType = this.valueType;
3124
3125                return new Iterator<Map.Entry<K,V>>() {
3126                    public boolean hasNext() { return i.hasNext(); }
3127                    public void remove()     { i.remove(); }
3128
3129                    public Map.Entry<K,V> next() {
3130                        return checkedEntry(i.next(), valueType);
3131                    }
3132                    // Android-note: forEachRemaining is missing checks.
3133                };
3134            }
3135
3136            @SuppressWarnings("unchecked")
3137            public Object[] toArray() {
3138                Object[] source = s.toArray();
3139
3140                /*
3141                 * Ensure that we don't get an ArrayStoreException even if
3142                 * s.toArray returns an array of something other than Object
3143                 */
3144                Object[] dest = (CheckedEntry.class.isInstance(
3145                    source.getClass().getComponentType()) ? source :
3146                                 new Object[source.length]);
3147
3148                for (int i = 0; i < source.length; i++)
3149                    dest[i] = checkedEntry((Map.Entry<K,V>)source[i],
3150                                           valueType);
3151                return dest;
3152            }
3153
3154            @SuppressWarnings("unchecked")
3155            public <T> T[] toArray(T[] a) {
3156                // We don't pass a to s.toArray, to avoid window of
3157                // vulnerability wherein an unscrupulous multithreaded client
3158                // could get his hands on raw (unwrapped) Entries from s.
3159                T[] arr = s.toArray(a.length==0 ? a : Arrays.copyOf(a, 0));
3160
3161                for (int i=0; i<arr.length; i++)
3162                    arr[i] = (T) checkedEntry((Map.Entry<K,V>)arr[i],
3163                                              valueType);
3164                if (arr.length > a.length)
3165                    return arr;
3166
3167                System.arraycopy(arr, 0, a, 0, arr.length);
3168                if (a.length > arr.length)
3169                    a[arr.length] = null;
3170                return a;
3171            }
3172
3173            /**
3174             * This method is overridden to protect the backing set against
3175             * an object with a nefarious equals function that senses
3176             * that the equality-candidate is Map.Entry and calls its
3177             * setValue method.
3178             */
3179            public boolean contains(Object o) {
3180                if (!(o instanceof Map.Entry))
3181                    return false;
3182                Map.Entry<?,?> e = (Map.Entry<?,?>) o;
3183                return s.contains(
3184                    (e instanceof CheckedEntry) ? e : checkedEntry(e, valueType));
3185            }
3186
3187            /**
3188             * The bulk collection methods are overridden to protect
3189             * against an unscrupulous collection whose contains(Object o)
3190             * method senses when o is a Map.Entry, and calls o.setValue.
3191             */
3192            public boolean containsAll(Collection<?> c) {
3193                for (Object o : c)
3194                    if (!contains(o)) // Invokes safe contains() above
3195                        return false;
3196                return true;
3197            }
3198
3199            public boolean remove(Object o) {
3200                if (!(o instanceof Map.Entry))
3201                    return false;
3202                return s.remove(new AbstractMap.SimpleImmutableEntry
3203                                <>((Map.Entry<?,?>)o));
3204            }
3205
3206            public boolean removeAll(Collection<?> c) {
3207                return batchRemove(c, false);
3208            }
3209            public boolean retainAll(Collection<?> c) {
3210                return batchRemove(c, true);
3211            }
3212            private boolean batchRemove(Collection<?> c, boolean complement) {
3213                Objects.requireNonNull(c);
3214                boolean modified = false;
3215                Iterator<Map.Entry<K,V>> it = iterator();
3216                while (it.hasNext()) {
3217                    if (c.contains(it.next()) != complement) {
3218                        it.remove();
3219                        modified = true;
3220                    }
3221                }
3222                return modified;
3223            }
3224
3225            public boolean equals(Object o) {
3226                if (o == this)
3227                    return true;
3228                if (!(o instanceof Set))
3229                    return false;
3230                Set<?> that = (Set<?>) o;
3231                return that.size() == s.size()
3232                    && containsAll(that); // Invokes safe containsAll() above
3233            }
3234
3235            static <K,V,T> CheckedEntry<K,V,T> checkedEntry(Map.Entry<K,V> e,
3236                                                            Class<T> valueType) {
3237                return new CheckedEntry<>(e, valueType);
3238            }
3239
3240            /**
3241             * This "wrapper class" serves two purposes: it prevents
3242             * the client from modifying the backing Map, by short-circuiting
3243             * the setValue method, and it protects the backing Map against
3244             * an ill-behaved Map.Entry that attempts to modify another
3245             * Map.Entry when asked to perform an equality check.
3246             */
3247            private static class CheckedEntry<K,V,T> implements Map.Entry<K,V> {
3248                private final Map.Entry<K, V> e;
3249                private final Class<T> valueType;
3250
3251                CheckedEntry(Map.Entry<K, V> e, Class<T> valueType) {
3252                    this.e = Objects.requireNonNull(e);
3253                    this.valueType = Objects.requireNonNull(valueType);
3254                }
3255
3256                public K getKey()        { return e.getKey(); }
3257                public V getValue()      { return e.getValue(); }
3258                public int hashCode()    { return e.hashCode(); }
3259                public String toString() { return e.toString(); }
3260
3261                public V setValue(V value) {
3262                    if (value != null && !valueType.isInstance(value))
3263                        throw new ClassCastException(badValueMsg(value));
3264                    return e.setValue(value);
3265                }
3266
3267                private String badValueMsg(Object value) {
3268                    return "Attempt to insert " + value.getClass() +
3269                        " value into map with value type " + valueType;
3270                }
3271
3272                public boolean equals(Object o) {
3273                    if (o == this)
3274                        return true;
3275                    if (!(o instanceof Map.Entry))
3276                        return false;
3277                    return e.equals(new AbstractMap.SimpleImmutableEntry
3278                                    <>((Map.Entry<?,?>)o));
3279                }
3280            }
3281        }
3282    }
3283
3284    /**
3285     * Returns a dynamically typesafe view of the specified sorted map.
3286     * Any attempt to insert a mapping whose key or value have the wrong
3287     * type will result in an immediate {@link ClassCastException}.
3288     * Similarly, any attempt to modify the value currently associated with
3289     * a key will result in an immediate {@link ClassCastException},
3290     * whether the modification is attempted directly through the map
3291     * itself, or through a {@link Map.Entry} instance obtained from the
3292     * map's {@link Map#entrySet() entry set} view.
3293     *
3294     * <p>Assuming a map contains no incorrectly typed keys or values
3295     * prior to the time a dynamically typesafe view is generated, and
3296     * that all subsequent access to the map takes place through the view
3297     * (or one of its collection views), it is <i>guaranteed</i> that the
3298     * map cannot contain an incorrectly typed key or value.
3299     *
3300     * <p>A discussion of the use of dynamically typesafe views may be
3301     * found in the documentation for the {@link #checkedCollection
3302     * checkedCollection} method.
3303     *
3304     * <p>The returned map will be serializable if the specified map is
3305     * serializable.
3306     *
3307     * <p>Since {@code null} is considered to be a value of any reference
3308     * type, the returned map permits insertion of null keys or values
3309     * whenever the backing map does.
3310     *
3311     * @param <K> the class of the map keys
3312     * @param <V> the class of the map values
3313     * @param m the map for which a dynamically typesafe view is to be
3314     *          returned
3315     * @param keyType the type of key that {@code m} is permitted to hold
3316     * @param valueType the type of value that {@code m} is permitted to hold
3317     * @return a dynamically typesafe view of the specified map
3318     * @since 1.5
3319     */
3320    public static <K,V> SortedMap<K,V> checkedSortedMap(SortedMap<K, V> m,
3321                                                        Class<K> keyType,
3322                                                        Class<V> valueType) {
3323        return new CheckedSortedMap<>(m, keyType, valueType);
3324    }
3325
3326    /**
3327     * @serial include
3328     */
3329    static class CheckedSortedMap<K,V> extends CheckedMap<K,V>
3330        implements SortedMap<K,V>, Serializable
3331    {
3332        private static final long serialVersionUID = 1599671320688067438L;
3333
3334        private final SortedMap<K, V> sm;
3335
3336        CheckedSortedMap(SortedMap<K, V> m,
3337                         Class<K> keyType, Class<V> valueType) {
3338            super(m, keyType, valueType);
3339            sm = m;
3340        }
3341
3342        public Comparator<? super K> comparator() { return sm.comparator(); }
3343        public K firstKey()                       { return sm.firstKey(); }
3344        public K lastKey()                        { return sm.lastKey(); }
3345
3346        public SortedMap<K,V> subMap(K fromKey, K toKey) {
3347            return checkedSortedMap(sm.subMap(fromKey, toKey),
3348                                    keyType, valueType);
3349        }
3350        public SortedMap<K,V> headMap(K toKey) {
3351            return checkedSortedMap(sm.headMap(toKey), keyType, valueType);
3352        }
3353        public SortedMap<K,V> tailMap(K fromKey) {
3354            return checkedSortedMap(sm.tailMap(fromKey), keyType, valueType);
3355        }
3356    }
3357
3358    // Empty collections
3359
3360    /**
3361     * Returns an iterator that has no elements.  More precisely,
3362     *
3363     * <ul>
3364     * <li>{@link Iterator#hasNext hasNext} always returns {@code
3365     * false}.</li>
3366     * <li>{@link Iterator#next next} always throws {@link
3367     * NoSuchElementException}.</li>
3368     * <li>{@link Iterator#remove remove} always throws {@link
3369     * IllegalStateException}.</li>
3370     * </ul>
3371     *
3372     * <p>Implementations of this method are permitted, but not
3373     * required, to return the same object from multiple invocations.
3374     *
3375     * @param <T> type of elements, if there were any, in the iterator
3376     * @return an empty iterator
3377     * @since 1.7
3378     */
3379    @SuppressWarnings("unchecked")
3380    public static <T> Iterator<T> emptyIterator() {
3381        return (Iterator<T>) EmptyIterator.EMPTY_ITERATOR;
3382    }
3383
3384    private static class EmptyIterator<E> implements Iterator<E> {
3385        static final EmptyIterator<Object> EMPTY_ITERATOR
3386            = new EmptyIterator<>();
3387
3388        public boolean hasNext() { return false; }
3389        public E next() { throw new NoSuchElementException(); }
3390        public void remove() { throw new IllegalStateException(); }
3391        @Override
3392        public void forEachRemaining(Consumer<? super E> action) {
3393            Objects.requireNonNull(action);
3394        }
3395    }
3396
3397    /**
3398     * Returns a list iterator that has no elements.  More precisely,
3399     *
3400     * <ul>
3401     * <li>{@link Iterator#hasNext hasNext} and {@link
3402     * ListIterator#hasPrevious hasPrevious} always return {@code
3403     * false}.</li>
3404     * <li>{@link Iterator#next next} and {@link ListIterator#previous
3405     * previous} always throw {@link NoSuchElementException}.</li>
3406     * <li>{@link Iterator#remove remove} and {@link ListIterator#set
3407     * set} always throw {@link IllegalStateException}.</li>
3408     * <li>{@link ListIterator#add add} always throws {@link
3409     * UnsupportedOperationException}.</li>
3410     * <li>{@link ListIterator#nextIndex nextIndex} always returns
3411     * {@code 0}.</li>
3412     * <li>{@link ListIterator#previousIndex previousIndex} always
3413     * returns {@code -1}.</li>
3414     * </ul>
3415     *
3416     * <p>Implementations of this method are permitted, but not
3417     * required, to return the same object from multiple invocations.
3418     *
3419     * @param <T> type of elements, if there were any, in the iterator
3420     * @return an empty list iterator
3421     * @since 1.7
3422     */
3423    @SuppressWarnings("unchecked")
3424    public static <T> ListIterator<T> emptyListIterator() {
3425        return (ListIterator<T>) EmptyListIterator.EMPTY_ITERATOR;
3426    }
3427
3428    private static class EmptyListIterator<E>
3429        extends EmptyIterator<E>
3430        implements ListIterator<E>
3431    {
3432        static final EmptyListIterator<Object> EMPTY_ITERATOR
3433            = new EmptyListIterator<>();
3434
3435        public boolean hasPrevious() { return false; }
3436        public E previous() { throw new NoSuchElementException(); }
3437        public int nextIndex()     { return 0; }
3438        public int previousIndex() { return -1; }
3439        public void set(E e) { throw new IllegalStateException(); }
3440        public void add(E e) { throw new UnsupportedOperationException(); }
3441    }
3442
3443    /**
3444     * Returns an enumeration that has no elements.  More precisely,
3445     *
3446     * <ul>
3447     * <li>{@link Enumeration#hasMoreElements hasMoreElements} always
3448     * returns {@code false}.</li>
3449     * <li> {@link Enumeration#nextElement nextElement} always throws
3450     * {@link NoSuchElementException}.</li>
3451     * </ul>
3452     *
3453     * <p>Implementations of this method are permitted, but not
3454     * required, to return the same object from multiple invocations.
3455     *
3456     * @param  <T> the class of the objects in the enumeration
3457     * @return an empty enumeration
3458     * @since 1.7
3459     */
3460    @SuppressWarnings("unchecked")
3461    public static <T> Enumeration<T> emptyEnumeration() {
3462        return (Enumeration<T>) EmptyEnumeration.EMPTY_ENUMERATION;
3463    }
3464
3465    private static class EmptyEnumeration<E> implements Enumeration<E> {
3466        static final EmptyEnumeration<Object> EMPTY_ENUMERATION
3467            = new EmptyEnumeration<>();
3468
3469        public boolean hasMoreElements() { return false; }
3470        public E nextElement() { throw new NoSuchElementException(); }
3471    }
3472
3473    /**
3474     * The empty set (immutable).  This set is serializable.
3475     *
3476     * @see #emptySet()
3477     */
3478    @SuppressWarnings("rawtypes")
3479    public static final Set EMPTY_SET = new EmptySet<>();
3480
3481    /**
3482     * Returns an empty set (immutable).  This set is serializable.
3483     * Unlike the like-named field, this method is parameterized.
3484     *
3485     * <p>This example illustrates the type-safe way to obtain an empty set:
3486     * <pre>
3487     *     Set&lt;String&gt; s = Collections.emptySet();
3488     * </pre>
3489     * @implNote Implementations of this method need not create a separate
3490     * {@code Set} object for each call.  Using this method is likely to have
3491     * comparable cost to using the like-named field.  (Unlike this method, the
3492     * field does not provide type safety.)
3493     *
3494     * @param  <T> the class of the objects in the set
3495     * @return the empty set
3496     *
3497     * @see #EMPTY_SET
3498     * @since 1.5
3499     */
3500    @SuppressWarnings("unchecked")
3501    public static final <T> Set<T> emptySet() {
3502        return (Set<T>) EMPTY_SET;
3503    }
3504
3505    /**
3506     * @serial include
3507     */
3508    private static class EmptySet<E>
3509        extends AbstractSet<E>
3510        implements Serializable
3511    {
3512        private static final long serialVersionUID = 1582296315990362920L;
3513
3514        public Iterator<E> iterator() { return emptyIterator(); }
3515
3516        public int size() {return 0;}
3517        public boolean isEmpty() {return true;}
3518
3519        public boolean contains(Object obj) {return false;}
3520        public boolean containsAll(Collection<?> c) { return c.isEmpty(); }
3521
3522        public Object[] toArray() { return new Object[0]; }
3523
3524        public <T> T[] toArray(T[] a) {
3525            if (a.length > 0)
3526                a[0] = null;
3527            return a;
3528        }
3529
3530        // Override default methods in Collection
3531        @Override
3532        public void forEach(Consumer<? super E> action) {
3533            Objects.requireNonNull(action);
3534        }
3535        @Override
3536        public boolean removeIf(Predicate<? super E> filter) {
3537            Objects.requireNonNull(filter);
3538            return false;
3539        }
3540        @Override
3541        public Spliterator<E> spliterator() { return Spliterators.emptySpliterator(); }
3542
3543        // Preserves singleton property
3544        private Object readResolve() {
3545            return EMPTY_SET;
3546        }
3547
3548    }
3549
3550    /**
3551     * The empty list (immutable).  This list is serializable.
3552     *
3553     * @see #emptyList()
3554     */
3555    @SuppressWarnings("rawtypes")
3556    public static final List EMPTY_LIST = new EmptyList<>();
3557
3558    /**
3559     * Returns an empty list (immutable).  This list is serializable.
3560     *
3561     * <p>This example illustrates the type-safe way to obtain an empty list:
3562     * <pre>
3563     *     List&lt;String&gt; s = Collections.emptyList();
3564     * </pre>
3565     * Implementation note:  Implementations of this method need not
3566     * create a separate <tt>List</tt> object for each call.   Using this
3567     * method is likely to have comparable cost to using the like-named
3568     * field.  (Unlike this method, the field does not provide type safety.)
3569     *
3570     * @param <T> type of elements, if there were any, in the list
3571     * @return an empty immutable list
3572     *
3573     * @see #EMPTY_LIST
3574     * @since 1.5
3575     */
3576    @SuppressWarnings("unchecked")
3577    public static final <T> List<T> emptyList() {
3578        return (List<T>) EMPTY_LIST;
3579    }
3580
3581    /**
3582     * @serial include
3583     */
3584    private static class EmptyList<E>
3585        extends AbstractList<E>
3586        implements RandomAccess, Serializable {
3587        private static final long serialVersionUID = 8842843931221139166L;
3588
3589        public Iterator<E> iterator() {
3590            return emptyIterator();
3591        }
3592        public ListIterator<E> listIterator() {
3593            return emptyListIterator();
3594        }
3595
3596        public int size() {return 0;}
3597        public boolean isEmpty() {return true;}
3598
3599        public boolean contains(Object obj) {return false;}
3600        public boolean containsAll(Collection<?> c) { return c.isEmpty(); }
3601
3602        public Object[] toArray() { return new Object[0]; }
3603
3604        public <T> T[] toArray(T[] a) {
3605            if (a.length > 0)
3606                a[0] = null;
3607            return a;
3608        }
3609
3610        public E get(int index) {
3611            throw new IndexOutOfBoundsException("Index: "+index);
3612        }
3613
3614        public boolean equals(Object o) {
3615            return (o instanceof List) && ((List<?>)o).isEmpty();
3616        }
3617
3618        public int hashCode() { return 1; }
3619
3620        @Override
3621        public boolean removeIf(Predicate<? super E> filter) {
3622            Objects.requireNonNull(filter);
3623            return false;
3624        }
3625
3626        // Override default methods in Collection
3627        @Override
3628        public void forEach(Consumer<? super E> action) {
3629            Objects.requireNonNull(action);
3630        }
3631
3632        @Override
3633        public Spliterator<E> spliterator() { return Spliterators.emptySpliterator(); }
3634
3635        @Override
3636        public void replaceAll(UnaryOperator<E> operator) {
3637            Objects.requireNonNull(operator);
3638        }
3639        @Override
3640        public void sort(Comparator<? super E> c) {
3641        }
3642
3643
3644        // Preserves singleton property
3645        private Object readResolve() {
3646            return EMPTY_LIST;
3647        }
3648    }
3649
3650    /**
3651     * The empty map (immutable).  This map is serializable.
3652     *
3653     * @see #emptyMap()
3654     * @since 1.3
3655     */
3656    @SuppressWarnings("rawtypes")
3657    public static final Map EMPTY_MAP = new EmptyMap<>();
3658
3659    /**
3660     * Returns an empty map (immutable).  This map is serializable.
3661     *
3662     * <p>This example illustrates the type-safe way to obtain an empty map:
3663     * <pre>
3664     *     Map&lt;String, Date&gt; s = Collections.emptyMap();
3665     * </pre>
3666     * @implNote Implementations of this method need not create a separate
3667     * {@code Map} object for each call.  Using this method is likely to have
3668     * comparable cost to using the like-named field.  (Unlike this method, the
3669     * field does not provide type safety.)
3670     *
3671     * @param <K> the class of the map keys
3672     * @param <V> the class of the map values
3673     * @return an empty map
3674     * @see #EMPTY_MAP
3675     * @since 1.5
3676     */
3677    @SuppressWarnings("unchecked")
3678    public static final <K,V> Map<K,V> emptyMap() {
3679        return (Map<K,V>) EMPTY_MAP;
3680    }
3681
3682    /**
3683     * @serial include
3684     */
3685    private static class EmptyMap<K,V>
3686        extends AbstractMap<K,V>
3687        implements Serializable
3688    {
3689        private static final long serialVersionUID = 6428348081105594320L;
3690
3691        public int size()                          {return 0;}
3692        public boolean isEmpty()                   {return true;}
3693        public boolean containsKey(Object key)     {return false;}
3694        public boolean containsValue(Object value) {return false;}
3695        public V get(Object key)                   {return null;}
3696        public Set<K> keySet()                     {return emptySet();}
3697        public Collection<V> values()              {return emptySet();}
3698        public Set<Map.Entry<K,V>> entrySet()      {return emptySet();}
3699
3700        public boolean equals(Object o) {
3701            return (o instanceof Map) && ((Map<?,?>)o).isEmpty();
3702        }
3703
3704        public int hashCode()                      {return 0;}
3705
3706        // Override default methods in Map
3707        @Override
3708        @SuppressWarnings("unchecked")
3709        public V getOrDefault(Object k, V defaultValue) {
3710            return defaultValue;
3711        }
3712
3713        @Override
3714        public void forEach(BiConsumer<? super K, ? super V> action) {
3715            Objects.requireNonNull(action);
3716        }
3717
3718        @Override
3719        public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
3720            Objects.requireNonNull(function);
3721        }
3722
3723        @Override
3724        public V putIfAbsent(K key, V value) {
3725            throw new UnsupportedOperationException();
3726        }
3727
3728        @Override
3729        public boolean remove(Object key, Object value) {
3730            throw new UnsupportedOperationException();
3731        }
3732
3733        @Override
3734        public boolean replace(K key, V oldValue, V newValue) {
3735            throw new UnsupportedOperationException();
3736        }
3737
3738        @Override
3739        public V replace(K key, V value) {
3740            throw new UnsupportedOperationException();
3741        }
3742
3743        @Override
3744        public V computeIfAbsent(K key,
3745                                 Function<? super K, ? extends V> mappingFunction) {
3746            throw new UnsupportedOperationException();
3747        }
3748
3749        @Override
3750        public V computeIfPresent(K key,
3751                                  BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
3752            throw new UnsupportedOperationException();
3753        }
3754
3755        @Override
3756        public V compute(K key,
3757                         BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
3758            throw new UnsupportedOperationException();
3759        }
3760
3761        @Override
3762        public V merge(K key, V value,
3763                       BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
3764            throw new UnsupportedOperationException();
3765        }
3766
3767        // Preserves singleton property
3768        private Object readResolve() {
3769            return EMPTY_MAP;
3770        }
3771    }
3772
3773    // Singleton collections
3774
3775    /**
3776     * Returns an immutable set containing only the specified object.
3777     * The returned set is serializable.
3778     *
3779     * @param  <E> the class of the objects in the set
3780     * @param o the sole object to be stored in the returned set.
3781     * @return an immutable set containing only the specified object.
3782     */
3783    public static <E> Set<E> singleton(E o) {
3784        return new SingletonSet<>(o);
3785    }
3786
3787    static <E> Iterator<E> singletonIterator(final E e) {
3788        return new Iterator<E>() {
3789            private boolean hasNext = true;
3790            public boolean hasNext() {
3791                return hasNext;
3792            }
3793            public E next() {
3794                if (hasNext) {
3795                    hasNext = false;
3796                    return e;
3797                }
3798                throw new NoSuchElementException();
3799            }
3800            public void remove() {
3801                throw new UnsupportedOperationException();
3802            }
3803            @Override
3804            public void forEachRemaining(Consumer<? super E> action) {
3805                Objects.requireNonNull(action);
3806                if (hasNext) {
3807                    action.accept(e);
3808                    hasNext = false;
3809                }
3810            }
3811        };
3812    }
3813
3814    /**
3815     * Creates a {@code Spliterator} with only the specified element
3816     *
3817     * @param <T> Type of elements
3818     * @return A singleton {@code Spliterator}
3819     */
3820    static <T> Spliterator<T> singletonSpliterator(final T element) {
3821        return new Spliterator<T>() {
3822            long est = 1;
3823
3824            @Override
3825            public Spliterator<T> trySplit() {
3826                return null;
3827            }
3828
3829            @Override
3830            public boolean tryAdvance(Consumer<? super T> consumer) {
3831                Objects.requireNonNull(consumer);
3832                if (est > 0) {
3833                    est--;
3834                    consumer.accept(element);
3835                    return true;
3836                }
3837                return false;
3838            }
3839
3840            @Override
3841            public void forEachRemaining(Consumer<? super T> consumer) {
3842                tryAdvance(consumer);
3843            }
3844
3845            @Override
3846            public long estimateSize() {
3847                return est;
3848            }
3849
3850            @Override
3851            public int characteristics() {
3852                int value = (element != null) ? Spliterator.NONNULL : 0;
3853
3854                return value | Spliterator.SIZED | Spliterator.SUBSIZED | Spliterator.IMMUTABLE |
3855                       Spliterator.DISTINCT | Spliterator.ORDERED;
3856            }
3857        };
3858    }
3859
3860    /**
3861     * @serial include
3862     */
3863    private static class SingletonSet<E>
3864        extends AbstractSet<E>
3865        implements Serializable
3866    {
3867        private static final long serialVersionUID = 3193687207550431679L;
3868
3869        private final E element;
3870
3871        SingletonSet(E e) {element = e;}
3872
3873        public Iterator<E> iterator() {
3874            return singletonIterator(element);
3875        }
3876
3877        public int size() {return 1;}
3878
3879        public boolean contains(Object o) {return eq(o, element);}
3880
3881        // Override default methods for Collection
3882        @Override
3883        public void forEach(Consumer<? super E> action) {
3884            action.accept(element);
3885        }
3886        @Override
3887        public Spliterator<E> spliterator() {
3888            return singletonSpliterator(element);
3889        }
3890        @Override
3891        public boolean removeIf(Predicate<? super E> filter) {
3892            throw new UnsupportedOperationException();
3893        }
3894    }
3895
3896    /**
3897     * Returns an immutable list containing only the specified object.
3898     * The returned list is serializable.
3899     *
3900     * @param  <E> the class of the objects in the list
3901     * @param o the sole object to be stored in the returned list.
3902     * @return an immutable list containing only the specified object.
3903     * @since 1.3
3904     */
3905    public static <E> List<E> singletonList(E o) {
3906        return new SingletonList<>(o);
3907    }
3908
3909    /**
3910     * @serial include
3911     */
3912    private static class SingletonList<E>
3913        extends AbstractList<E>
3914        implements RandomAccess, Serializable {
3915
3916        private static final long serialVersionUID = 3093736618740652951L;
3917
3918        private final E element;
3919
3920        SingletonList(E obj)                {element = obj;}
3921
3922        public Iterator<E> iterator() {
3923            return singletonIterator(element);
3924        }
3925
3926        public int size()                   {return 1;}
3927
3928        public boolean contains(Object obj) {return eq(obj, element);}
3929
3930        public E get(int index) {
3931            if (index != 0)
3932              throw new IndexOutOfBoundsException("Index: "+index+", Size: 1");
3933            return element;
3934        }
3935
3936        // Override default methods for Collection
3937        @Override
3938        public void forEach(Consumer<? super E> action) {
3939            action.accept(element);
3940        }
3941        @Override
3942        public boolean removeIf(Predicate<? super E> filter) {
3943            throw new UnsupportedOperationException();
3944        }
3945        @Override
3946        public Spliterator<E> spliterator() {
3947            return singletonSpliterator(element);
3948        }
3949        public void replaceAll(UnaryOperator<E> operator) {
3950            throw new UnsupportedOperationException();
3951        }
3952        @Override
3953        public void sort(Comparator<? super E> c) {
3954        }
3955    }
3956
3957    /**
3958     * Returns an immutable map, mapping only the specified key to the
3959     * specified value.  The returned map is serializable.
3960     *
3961     * @param <K> the class of the map keys
3962     * @param <V> the class of the map values
3963     * @param key the sole key to be stored in the returned map.
3964     * @param value the value to which the returned map maps <tt>key</tt>.
3965     * @return an immutable map containing only the specified key-value
3966     *         mapping.
3967     * @since 1.3
3968     */
3969    public static <K,V> Map<K,V> singletonMap(K key, V value) {
3970        return new SingletonMap<>(key, value);
3971    }
3972
3973    /**
3974     * @serial include
3975     */
3976    private static class SingletonMap<K,V>
3977          extends AbstractMap<K,V>
3978          implements Serializable {
3979        private static final long serialVersionUID = -6979724477215052911L;
3980
3981        private final K k;
3982        private final V v;
3983
3984        SingletonMap(K key, V value) {
3985            k = key;
3986            v = value;
3987        }
3988
3989        public int size()                          {return 1;}
3990
3991        public boolean isEmpty()                   {return false;}
3992
3993        public boolean containsKey(Object key)     {return eq(key, k);}
3994
3995        public boolean containsValue(Object value) {return eq(value, v);}
3996
3997        public V get(Object key)                   {return (eq(key, k) ? v : null);}
3998
3999        private transient Set<K> keySet = null;
4000        private transient Set<Map.Entry<K,V>> entrySet = null;
4001        private transient Collection<V> values = null;
4002
4003        public Set<K> keySet() {
4004            if (keySet==null)
4005                keySet = singleton(k);
4006            return keySet;
4007        }
4008
4009        public Set<Map.Entry<K,V>> entrySet() {
4010            if (entrySet==null)
4011                entrySet = Collections.<Map.Entry<K,V>>singleton(
4012                    new SimpleImmutableEntry<>(k, v));
4013            return entrySet;
4014        }
4015
4016        public Collection<V> values() {
4017            if (values==null)
4018                values = singleton(v);
4019            return values;
4020        }
4021
4022        // Override default methods in Map
4023        @Override
4024        public V getOrDefault(Object key, V defaultValue) {
4025            return eq(key, k) ? v : defaultValue;
4026        }
4027
4028        @Override
4029        public void forEach(BiConsumer<? super K, ? super V> action) {
4030            action.accept(k, v);
4031        }
4032
4033        @Override
4034        public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
4035            throw new UnsupportedOperationException();
4036        }
4037
4038        @Override
4039        public V putIfAbsent(K key, V value) {
4040            throw new UnsupportedOperationException();
4041        }
4042
4043        @Override
4044        public boolean remove(Object key, Object value) {
4045            throw new UnsupportedOperationException();
4046        }
4047
4048        @Override
4049        public boolean replace(K key, V oldValue, V newValue) {
4050            throw new UnsupportedOperationException();
4051        }
4052
4053        @Override
4054        public V replace(K key, V value) {
4055            throw new UnsupportedOperationException();
4056        }
4057
4058        @Override
4059        public V computeIfAbsent(K key,
4060                                 Function<? super K, ? extends V> mappingFunction) {
4061            throw new UnsupportedOperationException();
4062        }
4063
4064        @Override
4065        public V computeIfPresent(K key,
4066                                  BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
4067            throw new UnsupportedOperationException();
4068        }
4069
4070        @Override
4071        public V compute(K key,
4072                         BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
4073            throw new UnsupportedOperationException();
4074        }
4075
4076        @Override
4077        public V merge(K key, V value,
4078                       BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
4079            throw new UnsupportedOperationException();
4080        }
4081    }
4082
4083    // Miscellaneous
4084
4085    /**
4086     * Returns an immutable list consisting of <tt>n</tt> copies of the
4087     * specified object.  The newly allocated data object is tiny (it contains
4088     * a single reference to the data object).  This method is useful in
4089     * combination with the <tt>List.addAll</tt> method to grow lists.
4090     * The returned list is serializable.
4091     *
4092     * @param  <T> the class of the object to copy and of the objects
4093     *         in the returned list.
4094     * @param  n the number of elements in the returned list.
4095     * @param  o the element to appear repeatedly in the returned list.
4096     * @return an immutable list consisting of <tt>n</tt> copies of the
4097     *         specified object.
4098     * @throws IllegalArgumentException if {@code n < 0}
4099     * @see    List#addAll(Collection)
4100     * @see    List#addAll(int, Collection)
4101     */
4102    public static <T> List<T> nCopies(int n, T o) {
4103        if (n < 0)
4104            throw new IllegalArgumentException("List length = " + n);
4105        return new CopiesList<>(n, o);
4106    }
4107
4108    /**
4109     * @serial include
4110     */
4111    private static class CopiesList<E>
4112        extends AbstractList<E>
4113        implements RandomAccess, Serializable
4114    {
4115        private static final long serialVersionUID = 2739099268398711800L;
4116
4117        final int n;
4118        final E element;
4119
4120        CopiesList(int n, E e) {
4121            assert n >= 0;
4122            this.n = n;
4123            element = e;
4124        }
4125
4126        public int size() {
4127            return n;
4128        }
4129
4130        public boolean contains(Object obj) {
4131            return n != 0 && eq(obj, element);
4132        }
4133
4134        public int indexOf(Object o) {
4135            return contains(o) ? 0 : -1;
4136        }
4137
4138        public int lastIndexOf(Object o) {
4139            return contains(o) ? n - 1 : -1;
4140        }
4141
4142        public E get(int index) {
4143            if (index < 0 || index >= n)
4144                throw new IndexOutOfBoundsException("Index: "+index+
4145                                                    ", Size: "+n);
4146            return element;
4147        }
4148
4149        public Object[] toArray() {
4150            final Object[] a = new Object[n];
4151            if (element != null)
4152                Arrays.fill(a, 0, n, element);
4153            return a;
4154        }
4155
4156        @SuppressWarnings("unchecked")
4157        public <T> T[] toArray(T[] a) {
4158            final int n = this.n;
4159            if (a.length < n) {
4160                a = (T[])java.lang.reflect.Array
4161                    .newInstance(a.getClass().getComponentType(), n);
4162                if (element != null)
4163                    Arrays.fill(a, 0, n, element);
4164            } else {
4165                Arrays.fill(a, 0, n, element);
4166                if (a.length > n)
4167                    a[n] = null;
4168            }
4169            return a;
4170        }
4171
4172        public List<E> subList(int fromIndex, int toIndex) {
4173            if (fromIndex < 0)
4174                throw new IndexOutOfBoundsException("fromIndex = " + fromIndex);
4175            if (toIndex > n)
4176                throw new IndexOutOfBoundsException("toIndex = " + toIndex);
4177            if (fromIndex > toIndex)
4178                throw new IllegalArgumentException("fromIndex(" + fromIndex +
4179                                                   ") > toIndex(" + toIndex + ")");
4180            return new CopiesList<>(toIndex - fromIndex, element);
4181        }
4182
4183        // Override default methods in Collection
4184        @Override
4185        public Stream<E> stream() {
4186            return IntStream.range(0, n).mapToObj(i -> element);
4187        }
4188
4189        @Override
4190        public Stream<E> parallelStream() {
4191            return IntStream.range(0, n).parallel().mapToObj(i -> element);
4192        }
4193
4194        @Override
4195        public Spliterator<E> spliterator() {
4196            return stream().spliterator();
4197        }
4198    }
4199
4200    /**
4201     * Returns a comparator that imposes the reverse of the <em>natural
4202     * ordering</em> on a collection of objects that implement the
4203     * {@code Comparable} interface.  (The natural ordering is the ordering
4204     * imposed by the objects' own {@code compareTo} method.)  This enables a
4205     * simple idiom for sorting (or maintaining) collections (or arrays) of
4206     * objects that implement the {@code Comparable} interface in
4207     * reverse-natural-order.  For example, suppose {@code a} is an array of
4208     * strings. Then: <pre>
4209     *          Arrays.sort(a, Collections.reverseOrder());
4210     * </pre> sorts the array in reverse-lexicographic (alphabetical) order.<p>
4211     *
4212     * The returned comparator is serializable.
4213     *
4214     * @param  <T> the class of the objects compared by the comparator
4215     * @return A comparator that imposes the reverse of the <i>natural
4216     *         ordering</i> on a collection of objects that implement
4217     *         the <tt>Comparable</tt> interface.
4218     * @see Comparable
4219     */
4220    @SuppressWarnings("unchecked")
4221    public static <T> Comparator<T> reverseOrder() {
4222        return (Comparator<T>) ReverseComparator.REVERSE_ORDER;
4223    }
4224
4225    /**
4226     * @serial include
4227     */
4228    private static class ReverseComparator
4229        implements Comparator<Comparable<Object>>, Serializable {
4230
4231        private static final long serialVersionUID = 7207038068494060240L;
4232
4233        static final ReverseComparator REVERSE_ORDER
4234            = new ReverseComparator();
4235
4236        public int compare(Comparable<Object> c1, Comparable<Object> c2) {
4237            return c2.compareTo(c1);
4238        }
4239
4240        private Object readResolve() { return Collections.reverseOrder(); }
4241
4242        @Override
4243        public Comparator<Comparable<Object>> reversed() {
4244            return Comparator.naturalOrder();
4245        }
4246    }
4247
4248    /**
4249     * Returns a comparator that imposes the reverse ordering of the specified
4250     * comparator.  If the specified comparator is {@code null}, this method is
4251     * equivalent to {@link #reverseOrder()} (in other words, it returns a
4252     * comparator that imposes the reverse of the <em>natural ordering</em> on
4253     * a collection of objects that implement the Comparable interface).
4254     *
4255     * <p>The returned comparator is serializable (assuming the specified
4256     * comparator is also serializable or {@code null}).
4257     *
4258     * @param <T> the class of the objects compared by the comparator
4259     * @param cmp a comparator who's ordering is to be reversed by the returned
4260     * comparator or {@code null}
4261     * @return A comparator that imposes the reverse ordering of the
4262     *         specified comparator.
4263     * @since 1.5
4264     */
4265    public static <T> Comparator<T> reverseOrder(Comparator<T> cmp) {
4266        if (cmp == null)
4267            return reverseOrder();
4268
4269        if (cmp instanceof ReverseComparator2)
4270            return ((ReverseComparator2<T>)cmp).cmp;
4271
4272        return new ReverseComparator2<>(cmp);
4273    }
4274
4275    /**
4276     * @serial include
4277     */
4278    private static class ReverseComparator2<T> implements Comparator<T>,
4279        Serializable
4280    {
4281        private static final long serialVersionUID = 4374092139857L;
4282
4283        /**
4284         * The comparator specified in the static factory.  This will never
4285         * be null, as the static factory returns a ReverseComparator
4286         * instance if its argument is null.
4287         *
4288         * @serial
4289         */
4290        final Comparator<T> cmp;
4291
4292        ReverseComparator2(Comparator<T> cmp) {
4293            assert cmp != null;
4294            this.cmp = cmp;
4295        }
4296
4297        public int compare(T t1, T t2) {
4298            return cmp.compare(t2, t1);
4299        }
4300
4301        public boolean equals(Object o) {
4302            return (o == this) ||
4303                (o instanceof ReverseComparator2 &&
4304                 cmp.equals(((ReverseComparator2)o).cmp));
4305        }
4306
4307        public int hashCode() {
4308            return cmp.hashCode() ^ Integer.MIN_VALUE;
4309        }
4310
4311        @Override
4312        public Comparator<T> reversed() {
4313            return cmp;
4314        }
4315    }
4316
4317    /**
4318     * Returns an enumeration over the specified collection.  This provides
4319     * interoperability with legacy APIs that require an enumeration
4320     * as input.
4321     *
4322     * @param  <T> the class of the objects in the collection
4323     * @param c the collection for which an enumeration is to be returned.
4324     * @return an enumeration over the specified collection.
4325     * @see Enumeration
4326     */
4327    public static <T> Enumeration<T> enumeration(final Collection<T> c) {
4328        return new Enumeration<T>() {
4329            private final Iterator<T> i = c.iterator();
4330
4331            public boolean hasMoreElements() {
4332                return i.hasNext();
4333            }
4334
4335            public T nextElement() {
4336                return i.next();
4337            }
4338        };
4339    }
4340
4341    /**
4342     * Returns an array list containing the elements returned by the
4343     * specified enumeration in the order they are returned by the
4344     * enumeration.  This method provides interoperability between
4345     * legacy APIs that return enumerations and new APIs that require
4346     * collections.
4347     *
4348     * @param <T> the class of the objects returned by the enumeration
4349     * @param e enumeration providing elements for the returned
4350     *          array list
4351     * @return an array list containing the elements returned
4352     *         by the specified enumeration.
4353     * @since 1.4
4354     * @see Enumeration
4355     * @see ArrayList
4356     */
4357    public static <T> ArrayList<T> list(Enumeration<T> e) {
4358        ArrayList<T> l = new ArrayList<>();
4359        while (e.hasMoreElements())
4360            l.add(e.nextElement());
4361        return l;
4362    }
4363
4364    /**
4365     * Returns true if the specified arguments are equal, or both null.
4366     *
4367     * NB: Do not replace with Object.equals until JDK-8015417 is resolved.
4368     */
4369    static boolean eq(Object o1, Object o2) {
4370        return o1==null ? o2==null : o1.equals(o2);
4371    }
4372
4373    /**
4374     * Returns the number of elements in the specified collection equal to the
4375     * specified object.  More formally, returns the number of elements
4376     * <tt>e</tt> in the collection such that
4377     * <tt>(o == null ? e == null : o.equals(e))</tt>.
4378     *
4379     * @param c the collection in which to determine the frequency
4380     *     of <tt>o</tt>
4381     * @param o the object whose frequency is to be determined
4382     * @return the number of elements in {@code c} equal to {@code o}
4383     * @throws NullPointerException if <tt>c</tt> is null
4384     * @since 1.5
4385     */
4386    public static int frequency(Collection<?> c, Object o) {
4387        int result = 0;
4388        if (o == null) {
4389            for (Object e : c)
4390                if (e == null)
4391                    result++;
4392        } else {
4393            for (Object e : c)
4394                if (o.equals(e))
4395                    result++;
4396        }
4397        return result;
4398    }
4399
4400    /**
4401     * Returns {@code true} if the two specified collections have no
4402     * elements in common.
4403     *
4404     * <p>Care must be exercised if this method is used on collections that
4405     * do not comply with the general contract for {@code Collection}.
4406     * Implementations may elect to iterate over either collection and test
4407     * for containment in the other collection (or to perform any equivalent
4408     * computation).  If either collection uses a nonstandard equality test
4409     * (as does a {@link SortedSet} whose ordering is not <em>compatible with
4410     * equals</em>, or the key set of an {@link IdentityHashMap}), both
4411     * collections must use the same nonstandard equality test, or the
4412     * result of this method is undefined.
4413     *
4414     * <p>Care must also be exercised when using collections that have
4415     * restrictions on the elements that they may contain. Collection
4416     * implementations are allowed to throw exceptions for any operation
4417     * involving elements they deem ineligible. For absolute safety the
4418     * specified collections should contain only elements which are
4419     * eligible elements for both collections.
4420     *
4421     * <p>Note that it is permissible to pass the same collection in both
4422     * parameters, in which case the method will return {@code true} if and
4423     * only if the collection is empty.
4424     *
4425     * @param c1 a collection
4426     * @param c2 a collection
4427     * @return {@code true} if the two specified collections have no
4428     * elements in common.
4429     * @throws NullPointerException if either collection is {@code null}.
4430     * @throws NullPointerException if one collection contains a {@code null}
4431     * element and {@code null} is not an eligible element for the other collection.
4432     * (<a href="Collection.html#optional-restrictions">optional</a>)
4433     * @throws ClassCastException if one collection contains an element that is
4434     * of a type which is ineligible for the other collection.
4435     * (<a href="Collection.html#optional-restrictions">optional</a>)
4436     * @since 1.5
4437     */
4438    public static boolean disjoint(Collection<?> c1, Collection<?> c2) {
4439        // The collection to be used for contains(). Preference is given to
4440        // the collection who's contains() has lower O() complexity.
4441        Collection<?> contains = c2;
4442        // The collection to be iterated. If the collections' contains() impl
4443        // are of different O() complexity, the collection with slower
4444        // contains() will be used for iteration. For collections who's
4445        // contains() are of the same complexity then best performance is
4446        // achieved by iterating the smaller collection.
4447        Collection<?> iterate = c1;
4448
4449        // Performance optimization cases. The heuristics:
4450        //   1. Generally iterate over c1.
4451        //   2. If c1 is a Set then iterate over c2.
4452        //   3. If either collection is empty then result is always true.
4453        //   4. Iterate over the smaller Collection.
4454        if (c1 instanceof Set) {
4455            // Use c1 for contains as a Set's contains() is expected to perform
4456            // better than O(N/2)
4457            iterate = c2;
4458            contains = c1;
4459        } else if (!(c2 instanceof Set)) {
4460            // Both are mere Collections. Iterate over smaller collection.
4461            // Example: If c1 contains 3 elements and c2 contains 50 elements and
4462            // assuming contains() requires ceiling(N/2) comparisons then
4463            // checking for all c1 elements in c2 would require 75 comparisons
4464            // (3 * ceiling(50/2)) vs. checking all c2 elements in c1 requiring
4465            // 100 comparisons (50 * ceiling(3/2)).
4466            int c1size = c1.size();
4467            int c2size = c2.size();
4468            if (c1size == 0 || c2size == 0) {
4469                // At least one collection is empty. Nothing will match.
4470                return true;
4471            }
4472
4473            if (c1size > c2size) {
4474                iterate = c2;
4475                contains = c1;
4476            }
4477        }
4478
4479        for (Object e : iterate) {
4480            if (contains.contains(e)) {
4481               // Found a common element. Collections are not disjoint.
4482                return false;
4483            }
4484        }
4485
4486        // No common elements were found.
4487        return true;
4488    }
4489
4490    /**
4491     * Adds all of the specified elements to the specified collection.
4492     * Elements to be added may be specified individually or as an array.
4493     * The behavior of this convenience method is identical to that of
4494     * <tt>c.addAll(Arrays.asList(elements))</tt>, but this method is likely
4495     * to run significantly faster under most implementations.
4496     *
4497     * <p>When elements are specified individually, this method provides a
4498     * convenient way to add a few elements to an existing collection:
4499     * <pre>
4500     *     Collections.addAll(flavors, "Peaches 'n Plutonium", "Rocky Racoon");
4501     * </pre>
4502     *
4503     * @param  <T> the class of the elements to add and of the collection
4504     * @param c the collection into which <tt>elements</tt> are to be inserted
4505     * @param elements the elements to insert into <tt>c</tt>
4506     * @return <tt>true</tt> if the collection changed as a result of the call
4507     * @throws UnsupportedOperationException if <tt>c</tt> does not support
4508     *         the <tt>add</tt> operation
4509     * @throws NullPointerException if <tt>elements</tt> contains one or more
4510     *         null values and <tt>c</tt> does not permit null elements, or
4511     *         if <tt>c</tt> or <tt>elements</tt> are <tt>null</tt>
4512     * @throws IllegalArgumentException if some property of a value in
4513     *         <tt>elements</tt> prevents it from being added to <tt>c</tt>
4514     * @see Collection#addAll(Collection)
4515     * @since 1.5
4516     */
4517    @SafeVarargs
4518    public static <T> boolean addAll(Collection<? super T> c, T... elements) {
4519        boolean result = false;
4520        for (T element : elements)
4521            result |= c.add(element);
4522        return result;
4523    }
4524
4525    /**
4526     * Returns a set backed by the specified map.  The resulting set displays
4527     * the same ordering, concurrency, and performance characteristics as the
4528     * backing map.  In essence, this factory method provides a {@link Set}
4529     * implementation corresponding to any {@link Map} implementation.  There
4530     * is no need to use this method on a {@link Map} implementation that
4531     * already has a corresponding {@link Set} implementation (such as {@link
4532     * HashMap} or {@link TreeMap}).
4533     *
4534     * <p>Each method invocation on the set returned by this method results in
4535     * exactly one method invocation on the backing map or its <tt>keySet</tt>
4536     * view, with one exception.  The <tt>addAll</tt> method is implemented
4537     * as a sequence of <tt>put</tt> invocations on the backing map.
4538     *
4539     * <p>The specified map must be empty at the time this method is invoked,
4540     * and should not be accessed directly after this method returns.  These
4541     * conditions are ensured if the map is created empty, passed directly
4542     * to this method, and no reference to the map is retained, as illustrated
4543     * in the following code fragment:
4544     * <pre>
4545     *    Set&lt;Object&gt; weakHashSet = Collections.newSetFromMap(
4546     *        new WeakHashMap&lt;Object, Boolean&gt;());
4547     * </pre>
4548     *
4549     * @param <E> the class of the map keys and of the objects in the
4550     *        returned set
4551     * @param map the backing map
4552     * @return the set backed by the map
4553     * @throws IllegalArgumentException if <tt>map</tt> is not empty
4554     * @since 1.6
4555     */
4556    public static <E> Set<E> newSetFromMap(Map<E, Boolean> map) {
4557        return new SetFromMap<>(map);
4558    }
4559
4560    /**
4561     * @serial include
4562     */
4563    private static class SetFromMap<E> extends AbstractSet<E>
4564        implements Set<E>, Serializable
4565    {
4566        private final Map<E, Boolean> m;  // The backing map
4567        private transient Set<E> s;       // Its keySet
4568
4569        SetFromMap(Map<E, Boolean> map) {
4570            if (!map.isEmpty())
4571                throw new IllegalArgumentException("Map is non-empty");
4572            m = map;
4573            s = map.keySet();
4574        }
4575
4576        public void clear()               {        m.clear(); }
4577        public int size()                 { return m.size(); }
4578        public boolean isEmpty()          { return m.isEmpty(); }
4579        public boolean contains(Object o) { return m.containsKey(o); }
4580        public boolean remove(Object o)   { return m.remove(o) != null; }
4581        public boolean add(E e) { return m.put(e, Boolean.TRUE) == null; }
4582        public Iterator<E> iterator()     { return s.iterator(); }
4583        public Object[] toArray()         { return s.toArray(); }
4584        public <T> T[] toArray(T[] a)     { return s.toArray(a); }
4585        public String toString()          { return s.toString(); }
4586        public int hashCode()             { return s.hashCode(); }
4587        public boolean equals(Object o)   { return o == this || s.equals(o); }
4588        public boolean containsAll(Collection<?> c) {return s.containsAll(c);}
4589        public boolean removeAll(Collection<?> c)   {return s.removeAll(c);}
4590        public boolean retainAll(Collection<?> c)   {return s.retainAll(c);}
4591        // addAll is the only inherited implementation
4592
4593        // Override default methods in Collection
4594        @Override
4595        public void forEach(Consumer<? super E> action) {
4596            s.forEach(action);
4597        }
4598        @Override
4599        public boolean removeIf(Predicate<? super E> filter) {
4600            return s.removeIf(filter);
4601        }
4602
4603        @Override
4604        public Spliterator<E> spliterator() {return s.spliterator();}
4605        @Override
4606        public Stream<E> stream()           {return s.stream();}
4607        @Override
4608        public Stream<E> parallelStream()   {return s.parallelStream();}
4609
4610        private static final long serialVersionUID = 2454657854757543876L;
4611
4612        private void readObject(java.io.ObjectInputStream stream)
4613            throws IOException, ClassNotFoundException
4614        {
4615            stream.defaultReadObject();
4616            s = m.keySet();
4617        }
4618    }
4619
4620    /**
4621     * Returns a view of a {@link Deque} as a Last-in-first-out (Lifo)
4622     * {@link Queue}. Method <tt>add</tt> is mapped to <tt>push</tt>,
4623     * <tt>remove</tt> is mapped to <tt>pop</tt> and so on. This
4624     * view can be useful when you would like to use a method
4625     * requiring a <tt>Queue</tt> but you need Lifo ordering.
4626     *
4627     * <p>Each method invocation on the queue returned by this method
4628     * results in exactly one method invocation on the backing deque, with
4629     * one exception.  The {@link Queue#addAll addAll} method is
4630     * implemented as a sequence of {@link Deque#addFirst addFirst}
4631     * invocations on the backing deque.
4632     *
4633     * @param  <T> the class of the objects in the deque
4634     * @param deque the deque
4635     * @return the queue
4636     * @since  1.6
4637     */
4638    public static <T> Queue<T> asLifoQueue(Deque<T> deque) {
4639        return new AsLIFOQueue<>(deque);
4640    }
4641
4642    /**
4643     * @serial include
4644     */
4645    static class AsLIFOQueue<E> extends AbstractQueue<E>
4646        implements Queue<E>, Serializable {
4647        private static final long serialVersionUID = 1802017725587941708L;
4648        private final Deque<E> q;
4649        AsLIFOQueue(Deque<E> q)           { this.q = q; }
4650        public boolean add(E e)           { q.addFirst(e); return true; }
4651        public boolean offer(E e)         { return q.offerFirst(e); }
4652        public E poll()                   { return q.pollFirst(); }
4653        public E remove()                 { return q.removeFirst(); }
4654        public E peek()                   { return q.peekFirst(); }
4655        public E element()                { return q.getFirst(); }
4656        public void clear()               {        q.clear(); }
4657        public int size()                 { return q.size(); }
4658        public boolean isEmpty()          { return q.isEmpty(); }
4659        public boolean contains(Object o) { return q.contains(o); }
4660        public boolean remove(Object o)   { return q.remove(o); }
4661        public Iterator<E> iterator()     { return q.iterator(); }
4662        public Object[] toArray()         { return q.toArray(); }
4663        public <T> T[] toArray(T[] a)     { return q.toArray(a); }
4664        public String toString()          { return q.toString(); }
4665        public boolean containsAll(Collection<?> c) {return q.containsAll(c);}
4666        public boolean removeAll(Collection<?> c)   {return q.removeAll(c);}
4667        public boolean retainAll(Collection<?> c)   {return q.retainAll(c);}
4668        // We use inherited addAll; forwarding addAll would be wrong
4669
4670        // Override default methods in Collection
4671        @Override
4672        public void forEach(Consumer<? super E> action) {q.forEach(action);}
4673        @Override
4674        public boolean removeIf(Predicate<? super E> filter) {
4675            return q.removeIf(filter);
4676        }
4677
4678        @Override
4679        public Spliterator<E> spliterator() {return q.spliterator();}
4680        @Override
4681        public Stream<E> stream()           {return q.stream();}
4682        @Override
4683        public Stream<E> parallelStream()   {return q.parallelStream();}
4684    }
4685}
4686