Collections.java revision 51b1b6997fd3f980076b8081f7f1165ccc2a4008
1/*
2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package java.util;
27import java.io.Serializable;
28import java.io.ObjectOutputStream;
29import java.io.IOException;
30import java.lang.reflect.Array;
31
32/**
33 * This class consists exclusively of static methods that operate on or return
34 * collections.  It contains polymorphic algorithms that operate on
35 * collections, "wrappers", which return a new collection backed by a
36 * specified collection, and a few other odds and ends.
37 *
38 * <p>The methods of this class all throw a <tt>NullPointerException</tt>
39 * if the collections or class objects provided to them are null.
40 *
41 * <p>The documentation for the polymorphic algorithms contained in this class
42 * generally includes a brief description of the <i>implementation</i>.  Such
43 * descriptions should be regarded as <i>implementation notes</i>, rather than
44 * parts of the <i>specification</i>.  Implementors should feel free to
45 * substitute other algorithms, so long as the specification itself is adhered
46 * to.  (For example, the algorithm used by <tt>sort</tt> does not have to be
47 * a mergesort, but it does have to be <i>stable</i>.)
48 *
49 * <p>The "destructive" algorithms contained in this class, that is, the
50 * algorithms that modify the collection on which they operate, are specified
51 * to throw <tt>UnsupportedOperationException</tt> if the collection does not
52 * support the appropriate mutation primitive(s), such as the <tt>set</tt>
53 * method.  These algorithms may, but are not required to, throw this
54 * exception if an invocation would have no effect on the collection.  For
55 * example, invoking the <tt>sort</tt> method on an unmodifiable list that is
56 * already sorted may or may not throw <tt>UnsupportedOperationException</tt>.
57 *
58 * <p>This class is a member of the
59 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
60 * Java Collections Framework</a>.
61 *
62 * @author  Josh Bloch
63 * @author  Neal Gafter
64 * @see     Collection
65 * @see     Set
66 * @see     List
67 * @see     Map
68 * @since   1.2
69 */
70
71public class Collections {
72    // Suppresses default constructor, ensuring non-instantiability.
73    private Collections() {
74    }
75
76    // Algorithms
77
78    /*
79     * Tuning parameters for algorithms - Many of the List algorithms have
80     * two implementations, one of which is appropriate for RandomAccess
81     * lists, the other for "sequential."  Often, the random access variant
82     * yields better performance on small sequential access lists.  The
83     * tuning parameters below determine the cutoff point for what constitutes
84     * a "small" sequential access list for each algorithm.  The values below
85     * were empirically determined to work well for LinkedList. Hopefully
86     * they should be reasonable for other sequential access List
87     * implementations.  Those doing performance work on this code would
88     * do well to validate the values of these parameters from time to time.
89     * (The first word of each tuning parameter name is the algorithm to which
90     * it applies.)
91     */
92    private static final int BINARYSEARCH_THRESHOLD   = 5000;
93    private static final int REVERSE_THRESHOLD        =   18;
94    private static final int SHUFFLE_THRESHOLD        =    5;
95    private static final int FILL_THRESHOLD           =   25;
96    private static final int ROTATE_THRESHOLD         =  100;
97    private static final int COPY_THRESHOLD           =   10;
98    private static final int REPLACEALL_THRESHOLD     =   11;
99    private static final int INDEXOFSUBLIST_THRESHOLD =   35;
100
101    /**
102     * Sorts the specified list into ascending order, according to the
103     * {@linkplain Comparable natural ordering} of its elements.
104     * All elements in the list must implement the {@link Comparable}
105     * interface.  Furthermore, all elements in the list must be
106     * <i>mutually comparable</i> (that is, {@code e1.compareTo(e2)}
107     * must not throw a {@code ClassCastException} for any elements
108     * {@code e1} and {@code e2} in the list).
109     *
110     * <p>This sort is guaranteed to be <i>stable</i>:  equal elements will
111     * not be reordered as a result of the sort.
112     *
113     * <p>The specified list must be modifiable, but need not be resizable.
114     *
115     * <p>Implementation note: This implementation is a stable, adaptive,
116     * iterative mergesort that requires far fewer than n lg(n) comparisons
117     * when the input array is partially sorted, while offering the
118     * performance of a traditional mergesort when the input array is
119     * randomly ordered.  If the input array is nearly sorted, the
120     * implementation requires approximately n comparisons.  Temporary
121     * storage requirements vary from a small constant for nearly sorted
122     * input arrays to n/2 object references for randomly ordered input
123     * arrays.
124     *
125     * <p>The implementation takes equal advantage of ascending and
126     * descending order in its input array, and can take advantage of
127     * ascending and descending order in different parts of the same
128     * input array.  It is well-suited to merging two or more sorted arrays:
129     * simply concatenate the arrays and sort the resulting array.
130     *
131     * <p>The implementation was adapted from Tim Peters's list sort for Python
132     * (<a href="http://svn.python.org/projects/python/trunk/Objects/listsort.txt">
133     * TimSort</a>).  It uses techiques from Peter McIlroy's "Optimistic
134     * Sorting and Information Theoretic Complexity", in Proceedings of the
135     * Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 467-474,
136     * January 1993.
137     *
138     * <p>This implementation dumps the specified list into an array, sorts
139     * the array, and iterates over the list resetting each element
140     * from the corresponding position in the array.  This avoids the
141     * n<sup>2</sup> log(n) performance that would result from attempting
142     * to sort a linked list in place.
143     *
144     * @param  list the list to be sorted.
145     * @throws ClassCastException if the list contains elements that are not
146     *         <i>mutually comparable</i> (for example, strings and integers).
147     * @throws UnsupportedOperationException if the specified list's
148     *         list-iterator does not support the {@code set} operation.
149     * @throws IllegalArgumentException (optional) if the implementation
150     *         detects that the natural ordering of the list elements is
151     *         found to violate the {@link Comparable} contract
152     */
153    public static <T extends Comparable<? super T>> void sort(List<T> list) {
154        Object[] a = list.toArray();
155        Arrays.sort(a);
156        ListIterator<T> i = list.listIterator();
157        for (int j=0; j<a.length; j++) {
158            i.next();
159            i.set((T)a[j]);
160        }
161    }
162
163    /**
164     * Sorts the specified list according to the order induced by the
165     * specified comparator.  All elements in the list must be <i>mutually
166     * comparable</i> using the specified comparator (that is,
167     * {@code c.compare(e1, e2)} must not throw a {@code ClassCastException}
168     * for any elements {@code e1} and {@code e2} in the list).
169     *
170     * <p>This sort is guaranteed to be <i>stable</i>:  equal elements will
171     * not be reordered as a result of the sort.
172     *
173     * <p>The specified list must be modifiable, but need not be resizable.
174     *
175     * <p>Implementation note: This implementation is a stable, adaptive,
176     * iterative mergesort that requires far fewer than n lg(n) comparisons
177     * when the input array is partially sorted, while offering the
178     * performance of a traditional mergesort when the input array is
179     * randomly ordered.  If the input array is nearly sorted, the
180     * implementation requires approximately n comparisons.  Temporary
181     * storage requirements vary from a small constant for nearly sorted
182     * input arrays to n/2 object references for randomly ordered input
183     * arrays.
184     *
185     * <p>The implementation takes equal advantage of ascending and
186     * descending order in its input array, and can take advantage of
187     * ascending and descending order in different parts of the same
188     * input array.  It is well-suited to merging two or more sorted arrays:
189     * simply concatenate the arrays and sort the resulting array.
190     *
191     * <p>The implementation was adapted from Tim Peters's list sort for Python
192     * (<a href="http://svn.python.org/projects/python/trunk/Objects/listsort.txt">
193     * TimSort</a>).  It uses techiques from Peter McIlroy's "Optimistic
194     * Sorting and Information Theoretic Complexity", in Proceedings of the
195     * Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 467-474,
196     * January 1993.
197     *
198     * <p>This implementation dumps the specified list into an array, sorts
199     * the array, and iterates over the list resetting each element
200     * from the corresponding position in the array.  This avoids the
201     * n<sup>2</sup> log(n) performance that would result from attempting
202     * to sort a linked list in place.
203     *
204     * @param  list the list to be sorted.
205     * @param  c the comparator to determine the order of the list.  A
206     *        {@code null} value indicates that the elements' <i>natural
207     *        ordering</i> should be used.
208     * @throws ClassCastException if the list contains elements that are not
209     *         <i>mutually comparable</i> using the specified comparator.
210     * @throws UnsupportedOperationException if the specified list's
211     *         list-iterator does not support the {@code set} operation.
212     * @throws IllegalArgumentException (optional) if the comparator is
213     *         found to violate the {@link Comparator} contract
214     */
215    public static <T> void sort(List<T> list, Comparator<? super T> c) {
216        Object[] a = list.toArray();
217        Arrays.sort(a, (Comparator)c);
218        ListIterator i = list.listIterator();
219        for (int j=0; j<a.length; j++) {
220            i.next();
221            i.set(a[j]);
222        }
223    }
224
225
226    /**
227     * Searches the specified list for the specified object using the binary
228     * search algorithm.  The list must be sorted into ascending order
229     * according to the {@linkplain Comparable natural ordering} of its
230     * elements (as by the {@link #sort(List)} method) prior to making this
231     * call.  If it is not sorted, the results are undefined.  If the list
232     * contains multiple elements equal to the specified object, there is no
233     * guarantee which one will be found.
234     *
235     * <p>This method runs in log(n) time for a "random access" list (which
236     * provides near-constant-time positional access).  If the specified list
237     * does not implement the {@link RandomAccess} interface and is large,
238     * this method will do an iterator-based binary search that performs
239     * O(n) link traversals and O(log n) element comparisons.
240     *
241     * @param  list the list to be searched.
242     * @param  key the key to be searched for.
243     * @return the index of the search key, if it is contained in the list;
244     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
245     *         <i>insertion point</i> is defined as the point at which the
246     *         key would be inserted into the list: the index of the first
247     *         element greater than the key, or <tt>list.size()</tt> if all
248     *         elements in the list are less than the specified key.  Note
249     *         that this guarantees that the return value will be &gt;= 0 if
250     *         and only if the key is found.
251     * @throws ClassCastException if the list contains elements that are not
252     *         <i>mutually comparable</i> (for example, strings and
253     *         integers), or the search key is not mutually comparable
254     *         with the elements of the list.
255     */
256    public static <T>
257    int binarySearch(List<? extends Comparable<? super T>> list, T key) {
258        if (list instanceof RandomAccess || list.size()<BINARYSEARCH_THRESHOLD)
259            return Collections.indexedBinarySearch(list, key);
260        else
261            return Collections.iteratorBinarySearch(list, key);
262    }
263
264    private static <T>
265    int indexedBinarySearch(List<? extends Comparable<? super T>> list, T key)
266    {
267        int low = 0;
268        int high = list.size()-1;
269
270        while (low <= high) {
271            int mid = (low + high) >>> 1;
272            Comparable<? super T> midVal = list.get(mid);
273            int cmp = midVal.compareTo(key);
274
275            if (cmp < 0)
276                low = mid + 1;
277            else if (cmp > 0)
278                high = mid - 1;
279            else
280                return mid; // key found
281        }
282        return -(low + 1);  // key not found
283    }
284
285    private static <T>
286    int iteratorBinarySearch(List<? extends Comparable<? super T>> list, T key)
287    {
288        int low = 0;
289        int high = list.size()-1;
290        ListIterator<? extends Comparable<? super T>> i = list.listIterator();
291
292        while (low <= high) {
293            int mid = (low + high) >>> 1;
294            Comparable<? super T> midVal = get(i, mid);
295            int cmp = midVal.compareTo(key);
296
297            if (cmp < 0)
298                low = mid + 1;
299            else if (cmp > 0)
300                high = mid - 1;
301            else
302                return mid; // key found
303        }
304        return -(low + 1);  // key not found
305    }
306
307    /**
308     * Gets the ith element from the given list by repositioning the specified
309     * list listIterator.
310     */
311    private static <T> T get(ListIterator<? extends T> i, int index) {
312        T obj = null;
313        int pos = i.nextIndex();
314        if (pos <= index) {
315            do {
316                obj = i.next();
317            } while (pos++ < index);
318        } else {
319            do {
320                obj = i.previous();
321            } while (--pos > index);
322        }
323        return obj;
324    }
325
326    /**
327     * Searches the specified list for the specified object using the binary
328     * search algorithm.  The list must be sorted into ascending order
329     * according to the specified comparator (as by the
330     * {@link #sort(List, Comparator) sort(List, Comparator)}
331     * method), prior to making this call.  If it is
332     * not sorted, the results are undefined.  If the list contains multiple
333     * elements equal to the specified object, there is no guarantee which one
334     * will be found.
335     *
336     * <p>This method runs in log(n) time for a "random access" list (which
337     * provides near-constant-time positional access).  If the specified list
338     * does not implement the {@link RandomAccess} interface and is large,
339     * this method will do an iterator-based binary search that performs
340     * O(n) link traversals and O(log n) element comparisons.
341     *
342     * @param  list the list to be searched.
343     * @param  key the key to be searched for.
344     * @param  c the comparator by which the list is ordered.
345     *         A <tt>null</tt> value indicates that the elements'
346     *         {@linkplain Comparable natural ordering} should be used.
347     * @return the index of the search key, if it is contained in the list;
348     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
349     *         <i>insertion point</i> is defined as the point at which the
350     *         key would be inserted into the list: the index of the first
351     *         element greater than the key, or <tt>list.size()</tt> if all
352     *         elements in the list are less than the specified key.  Note
353     *         that this guarantees that the return value will be &gt;= 0 if
354     *         and only if the key is found.
355     * @throws ClassCastException if the list contains elements that are not
356     *         <i>mutually comparable</i> using the specified comparator,
357     *         or the search key is not mutually comparable with the
358     *         elements of the list using this comparator.
359     */
360    public static <T> int binarySearch(List<? extends T> list, T key, Comparator<? super T> c) {
361        if (c==null)
362            return binarySearch((List) list, key);
363
364        if (list instanceof RandomAccess || list.size()<BINARYSEARCH_THRESHOLD)
365            return Collections.indexedBinarySearch(list, key, c);
366        else
367            return Collections.iteratorBinarySearch(list, key, c);
368    }
369
370    private static <T> int indexedBinarySearch(List<? extends T> l, T key, Comparator<? super T> c) {
371        int low = 0;
372        int high = l.size()-1;
373
374        while (low <= high) {
375            int mid = (low + high) >>> 1;
376            T midVal = l.get(mid);
377            int cmp = c.compare(midVal, key);
378
379            if (cmp < 0)
380                low = mid + 1;
381            else if (cmp > 0)
382                high = mid - 1;
383            else
384                return mid; // key found
385        }
386        return -(low + 1);  // key not found
387    }
388
389    private static <T> int iteratorBinarySearch(List<? extends T> l, T key, Comparator<? super T> c) {
390        int low = 0;
391        int high = l.size()-1;
392        ListIterator<? extends T> i = l.listIterator();
393
394        while (low <= high) {
395            int mid = (low + high) >>> 1;
396            T midVal = get(i, mid);
397            int cmp = c.compare(midVal, key);
398
399            if (cmp < 0)
400                low = mid + 1;
401            else if (cmp > 0)
402                high = mid - 1;
403            else
404                return mid; // key found
405        }
406        return -(low + 1);  // key not found
407    }
408
409    private interface SelfComparable extends Comparable<SelfComparable> {}
410
411
412    /**
413     * Reverses the order of the elements in the specified list.<p>
414     *
415     * This method runs in linear time.
416     *
417     * @param  list the list whose elements are to be reversed.
418     * @throws UnsupportedOperationException if the specified list or
419     *         its list-iterator does not support the <tt>set</tt> operation.
420     */
421    public static void reverse(List<?> list) {
422        int size = list.size();
423        if (size < REVERSE_THRESHOLD || list instanceof RandomAccess) {
424            for (int i=0, mid=size>>1, j=size-1; i<mid; i++, j--)
425                swap(list, i, j);
426        } else {
427            ListIterator fwd = list.listIterator();
428            ListIterator rev = list.listIterator(size);
429            for (int i=0, mid=list.size()>>1; i<mid; i++) {
430                Object tmp = fwd.next();
431                fwd.set(rev.previous());
432                rev.set(tmp);
433            }
434        }
435    }
436
437    /**
438     * Randomly permutes the specified list using a default source of
439     * randomness.  All permutations occur with approximately equal
440     * likelihood.<p>
441     *
442     * The hedge "approximately" is used in the foregoing description because
443     * default source of randomness is only approximately an unbiased source
444     * of independently chosen bits. If it were a perfect source of randomly
445     * chosen bits, then the algorithm would choose permutations with perfect
446     * uniformity.<p>
447     *
448     * This implementation traverses the list backwards, from the last element
449     * up to the second, repeatedly swapping a randomly selected element into
450     * the "current position".  Elements are randomly selected from the
451     * portion of the list that runs from the first element to the current
452     * position, inclusive.<p>
453     *
454     * This method runs in linear time.  If the specified list does not
455     * implement the {@link RandomAccess} interface and is large, this
456     * implementation dumps the specified list into an array before shuffling
457     * it, and dumps the shuffled array back into the list.  This avoids the
458     * quadratic behavior that would result from shuffling a "sequential
459     * access" list in place.
460     *
461     * @param  list the list to be shuffled.
462     * @throws UnsupportedOperationException if the specified list or
463     *         its list-iterator does not support the <tt>set</tt> operation.
464     */
465    public static void shuffle(List<?> list) {
466        Random rnd = r;
467        if (rnd == null)
468            r = rnd = new Random();
469        shuffle(list, rnd);
470    }
471    private static Random r;
472
473    /**
474     * Randomly permute the specified list using the specified source of
475     * randomness.  All permutations occur with equal likelihood
476     * assuming that the source of randomness is fair.<p>
477     *
478     * This implementation traverses the list backwards, from the last element
479     * up to the second, repeatedly swapping a randomly selected element into
480     * the "current position".  Elements are randomly selected from the
481     * portion of the list that runs from the first element to the current
482     * position, inclusive.<p>
483     *
484     * This method runs in linear time.  If the specified list does not
485     * implement the {@link RandomAccess} interface and is large, this
486     * implementation dumps the specified list into an array before shuffling
487     * it, and dumps the shuffled array back into the list.  This avoids the
488     * quadratic behavior that would result from shuffling a "sequential
489     * access" list in place.
490     *
491     * @param  list the list to be shuffled.
492     * @param  rnd the source of randomness to use to shuffle the list.
493     * @throws UnsupportedOperationException if the specified list or its
494     *         list-iterator does not support the <tt>set</tt> operation.
495     */
496    public static void shuffle(List<?> list, Random rnd) {
497        int size = list.size();
498        if (size < SHUFFLE_THRESHOLD || list instanceof RandomAccess) {
499            for (int i=size; i>1; i--)
500                swap(list, i-1, rnd.nextInt(i));
501        } else {
502            Object arr[] = list.toArray();
503
504            // Shuffle array
505            for (int i=size; i>1; i--)
506                swap(arr, i-1, rnd.nextInt(i));
507
508            // Dump array back into list
509            ListIterator it = list.listIterator();
510            for (int i=0; i<arr.length; i++) {
511                it.next();
512                it.set(arr[i]);
513            }
514        }
515    }
516
517    /**
518     * Swaps the elements at the specified positions in the specified list.
519     * (If the specified positions are equal, invoking this method leaves
520     * the list unchanged.)
521     *
522     * @param list The list in which to swap elements.
523     * @param i the index of one element to be swapped.
524     * @param j the index of the other element to be swapped.
525     * @throws IndexOutOfBoundsException if either <tt>i</tt> or <tt>j</tt>
526     *         is out of range (i &lt; 0 || i &gt;= list.size()
527     *         || j &lt; 0 || j &gt;= list.size()).
528     * @since 1.4
529     */
530    public static void swap(List<?> list, int i, int j) {
531        final List l = list;
532        l.set(i, l.set(j, l.get(i)));
533    }
534
535    /**
536     * Swaps the two specified elements in the specified array.
537     */
538    private static void swap(Object[] arr, int i, int j) {
539        Object tmp = arr[i];
540        arr[i] = arr[j];
541        arr[j] = tmp;
542    }
543
544    /**
545     * Replaces all of the elements of the specified list with the specified
546     * element. <p>
547     *
548     * This method runs in linear time.
549     *
550     * @param  list the list to be filled with the specified element.
551     * @param  obj The element with which to fill the specified list.
552     * @throws UnsupportedOperationException if the specified list or its
553     *         list-iterator does not support the <tt>set</tt> operation.
554     */
555    public static <T> void fill(List<? super T> list, T obj) {
556        int size = list.size();
557
558        if (size < FILL_THRESHOLD || list instanceof RandomAccess) {
559            for (int i=0; i<size; i++)
560                list.set(i, obj);
561        } else {
562            ListIterator<? super T> itr = list.listIterator();
563            for (int i=0; i<size; i++) {
564                itr.next();
565                itr.set(obj);
566            }
567        }
568    }
569
570    /**
571     * Copies all of the elements from one list into another.  After the
572     * operation, the index of each copied element in the destination list
573     * will be identical to its index in the source list.  The destination
574     * list must be at least as long as the source list.  If it is longer, the
575     * remaining elements in the destination list are unaffected. <p>
576     *
577     * This method runs in linear time.
578     *
579     * @param  dest The destination list.
580     * @param  src The source list.
581     * @throws IndexOutOfBoundsException if the destination list is too small
582     *         to contain the entire source List.
583     * @throws UnsupportedOperationException if the destination list's
584     *         list-iterator does not support the <tt>set</tt> operation.
585     */
586    public static <T> void copy(List<? super T> dest, List<? extends T> src) {
587        int srcSize = src.size();
588        if (srcSize > dest.size())
589            throw new IndexOutOfBoundsException("Source does not fit in dest");
590
591        if (srcSize < COPY_THRESHOLD ||
592            (src instanceof RandomAccess && dest instanceof RandomAccess)) {
593            for (int i=0; i<srcSize; i++)
594                dest.set(i, src.get(i));
595        } else {
596            ListIterator<? super T> di=dest.listIterator();
597            ListIterator<? extends T> si=src.listIterator();
598            for (int i=0; i<srcSize; i++) {
599                di.next();
600                di.set(si.next());
601            }
602        }
603    }
604
605    /**
606     * Returns the minimum element of the given collection, according to the
607     * <i>natural ordering</i> of its elements.  All elements in the
608     * collection must implement the <tt>Comparable</tt> interface.
609     * Furthermore, all elements in the collection must be <i>mutually
610     * comparable</i> (that is, <tt>e1.compareTo(e2)</tt> must not throw a
611     * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
612     * <tt>e2</tt> in the collection).<p>
613     *
614     * This method iterates over the entire collection, hence it requires
615     * time proportional to the size of the collection.
616     *
617     * @param  coll the collection whose minimum element is to be determined.
618     * @return the minimum element of the given collection, according
619     *         to the <i>natural ordering</i> of its elements.
620     * @throws ClassCastException if the collection contains elements that are
621     *         not <i>mutually comparable</i> (for example, strings and
622     *         integers).
623     * @throws NoSuchElementException if the collection is empty.
624     * @see Comparable
625     */
626    public static <T extends Object & Comparable<? super T>> T min(Collection<? extends T> coll) {
627        Iterator<? extends T> i = coll.iterator();
628        T candidate = i.next();
629
630        while (i.hasNext()) {
631            T next = i.next();
632            if (next.compareTo(candidate) < 0)
633                candidate = next;
634        }
635        return candidate;
636    }
637
638    /**
639     * Returns the minimum element of the given collection, according to the
640     * order induced by the specified comparator.  All elements in the
641     * collection must be <i>mutually comparable</i> by the specified
642     * comparator (that is, <tt>comp.compare(e1, e2)</tt> must not throw a
643     * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
644     * <tt>e2</tt> in the collection).<p>
645     *
646     * This method iterates over the entire collection, hence it requires
647     * time proportional to the size of the collection.
648     *
649     * @param  coll the collection whose minimum element is to be determined.
650     * @param  comp the comparator with which to determine the minimum element.
651     *         A <tt>null</tt> value indicates that the elements' <i>natural
652     *         ordering</i> should be used.
653     * @return the minimum element of the given collection, according
654     *         to the specified comparator.
655     * @throws ClassCastException if the collection contains elements that are
656     *         not <i>mutually comparable</i> using the specified comparator.
657     * @throws NoSuchElementException if the collection is empty.
658     * @see Comparable
659     */
660    public static <T> T min(Collection<? extends T> coll, Comparator<? super T> comp) {
661        if (comp==null)
662            return (T)min((Collection<SelfComparable>) (Collection) coll);
663
664        Iterator<? extends T> i = coll.iterator();
665        T candidate = i.next();
666
667        while (i.hasNext()) {
668            T next = i.next();
669            if (comp.compare(next, candidate) < 0)
670                candidate = next;
671        }
672        return candidate;
673    }
674
675    /**
676     * Returns the maximum element of the given collection, according to the
677     * <i>natural ordering</i> of its elements.  All elements in the
678     * collection must implement the <tt>Comparable</tt> interface.
679     * Furthermore, all elements in the collection must be <i>mutually
680     * comparable</i> (that is, <tt>e1.compareTo(e2)</tt> must not throw a
681     * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
682     * <tt>e2</tt> in the collection).<p>
683     *
684     * This method iterates over the entire collection, hence it requires
685     * time proportional to the size of the collection.
686     *
687     * @param  coll the collection whose maximum element is to be determined.
688     * @return the maximum element of the given collection, according
689     *         to the <i>natural ordering</i> of its elements.
690     * @throws ClassCastException if the collection contains elements that are
691     *         not <i>mutually comparable</i> (for example, strings and
692     *         integers).
693     * @throws NoSuchElementException if the collection is empty.
694     * @see Comparable
695     */
696    public static <T extends Object & Comparable<? super T>> T max(Collection<? extends T> coll) {
697        Iterator<? extends T> i = coll.iterator();
698        T candidate = i.next();
699
700        while (i.hasNext()) {
701            T next = i.next();
702            if (next.compareTo(candidate) > 0)
703                candidate = next;
704        }
705        return candidate;
706    }
707
708    /**
709     * Returns the maximum element of the given collection, according to the
710     * order induced by the specified comparator.  All elements in the
711     * collection must be <i>mutually comparable</i> by the specified
712     * comparator (that is, <tt>comp.compare(e1, e2)</tt> must not throw a
713     * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
714     * <tt>e2</tt> in the collection).<p>
715     *
716     * This method iterates over the entire collection, hence it requires
717     * time proportional to the size of the collection.
718     *
719     * @param  coll the collection whose maximum element is to be determined.
720     * @param  comp the comparator with which to determine the maximum element.
721     *         A <tt>null</tt> value indicates that the elements' <i>natural
722     *        ordering</i> should be used.
723     * @return the maximum element of the given collection, according
724     *         to the specified comparator.
725     * @throws ClassCastException if the collection contains elements that are
726     *         not <i>mutually comparable</i> using the specified comparator.
727     * @throws NoSuchElementException if the collection is empty.
728     * @see Comparable
729     */
730    public static <T> T max(Collection<? extends T> coll, Comparator<? super T> comp) {
731        if (comp==null)
732            return (T)max((Collection<SelfComparable>) (Collection) coll);
733
734        Iterator<? extends T> i = coll.iterator();
735        T candidate = i.next();
736
737        while (i.hasNext()) {
738            T next = i.next();
739            if (comp.compare(next, candidate) > 0)
740                candidate = next;
741        }
742        return candidate;
743    }
744
745    /**
746     * Rotates the elements in the specified list by the specified distance.
747     * After calling this method, the element at index <tt>i</tt> will be
748     * the element previously at index <tt>(i - distance)</tt> mod
749     * <tt>list.size()</tt>, for all values of <tt>i</tt> between <tt>0</tt>
750     * and <tt>list.size()-1</tt>, inclusive.  (This method has no effect on
751     * the size of the list.)
752     *
753     * <p>For example, suppose <tt>list</tt> comprises<tt> [t, a, n, k, s]</tt>.
754     * After invoking <tt>Collections.rotate(list, 1)</tt> (or
755     * <tt>Collections.rotate(list, -4)</tt>), <tt>list</tt> will comprise
756     * <tt>[s, t, a, n, k]</tt>.
757     *
758     * <p>Note that this method can usefully be applied to sublists to
759     * move one or more elements within a list while preserving the
760     * order of the remaining elements.  For example, the following idiom
761     * moves the element at index <tt>j</tt> forward to position
762     * <tt>k</tt> (which must be greater than or equal to <tt>j</tt>):
763     * <pre>
764     *     Collections.rotate(list.subList(j, k+1), -1);
765     * </pre>
766     * To make this concrete, suppose <tt>list</tt> comprises
767     * <tt>[a, b, c, d, e]</tt>.  To move the element at index <tt>1</tt>
768     * (<tt>b</tt>) forward two positions, perform the following invocation:
769     * <pre>
770     *     Collections.rotate(l.subList(1, 4), -1);
771     * </pre>
772     * The resulting list is <tt>[a, c, d, b, e]</tt>.
773     *
774     * <p>To move more than one element forward, increase the absolute value
775     * of the rotation distance.  To move elements backward, use a positive
776     * shift distance.
777     *
778     * <p>If the specified list is small or implements the {@link
779     * RandomAccess} interface, this implementation exchanges the first
780     * element into the location it should go, and then repeatedly exchanges
781     * the displaced element into the location it should go until a displaced
782     * element is swapped into the first element.  If necessary, the process
783     * is repeated on the second and successive elements, until the rotation
784     * is complete.  If the specified list is large and doesn't implement the
785     * <tt>RandomAccess</tt> interface, this implementation breaks the
786     * list into two sublist views around index <tt>-distance mod size</tt>.
787     * Then the {@link #reverse(List)} method is invoked on each sublist view,
788     * and finally it is invoked on the entire list.  For a more complete
789     * description of both algorithms, see Section 2.3 of Jon Bentley's
790     * <i>Programming Pearls</i> (Addison-Wesley, 1986).
791     *
792     * @param list the list to be rotated.
793     * @param distance the distance to rotate the list.  There are no
794     *        constraints on this value; it may be zero, negative, or
795     *        greater than <tt>list.size()</tt>.
796     * @throws UnsupportedOperationException if the specified list or
797     *         its list-iterator does not support the <tt>set</tt> operation.
798     * @since 1.4
799     */
800    public static void rotate(List<?> list, int distance) {
801        if (list instanceof RandomAccess || list.size() < ROTATE_THRESHOLD)
802            rotate1(list, distance);
803        else
804            rotate2(list, distance);
805    }
806
807    private static <T> void rotate1(List<T> list, int distance) {
808        int size = list.size();
809        if (size == 0)
810            return;
811        distance = distance % size;
812        if (distance < 0)
813            distance += size;
814        if (distance == 0)
815            return;
816
817        for (int cycleStart = 0, nMoved = 0; nMoved != size; cycleStart++) {
818            T displaced = list.get(cycleStart);
819            int i = cycleStart;
820            do {
821                i += distance;
822                if (i >= size)
823                    i -= size;
824                displaced = list.set(i, displaced);
825                nMoved ++;
826            } while (i != cycleStart);
827        }
828    }
829
830    private static void rotate2(List<?> list, int distance) {
831        int size = list.size();
832        if (size == 0)
833            return;
834        int mid =  -distance % size;
835        if (mid < 0)
836            mid += size;
837        if (mid == 0)
838            return;
839
840        reverse(list.subList(0, mid));
841        reverse(list.subList(mid, size));
842        reverse(list);
843    }
844
845    /**
846     * Replaces all occurrences of one specified value in a list with another.
847     * More formally, replaces with <tt>newVal</tt> each element <tt>e</tt>
848     * in <tt>list</tt> such that
849     * <tt>(oldVal==null ? e==null : oldVal.equals(e))</tt>.
850     * (This method has no effect on the size of the list.)
851     *
852     * @param list the list in which replacement is to occur.
853     * @param oldVal the old value to be replaced.
854     * @param newVal the new value with which <tt>oldVal</tt> is to be
855     *        replaced.
856     * @return <tt>true</tt> if <tt>list</tt> contained one or more elements
857     *         <tt>e</tt> such that
858     *         <tt>(oldVal==null ?  e==null : oldVal.equals(e))</tt>.
859     * @throws UnsupportedOperationException if the specified list or
860     *         its list-iterator does not support the <tt>set</tt> operation.
861     * @since  1.4
862     */
863    public static <T> boolean replaceAll(List<T> list, T oldVal, T newVal) {
864        boolean result = false;
865        int size = list.size();
866        if (size < REPLACEALL_THRESHOLD || list instanceof RandomAccess) {
867            if (oldVal==null) {
868                for (int i=0; i<size; i++) {
869                    if (list.get(i)==null) {
870                        list.set(i, newVal);
871                        result = true;
872                    }
873                }
874            } else {
875                for (int i=0; i<size; i++) {
876                    if (oldVal.equals(list.get(i))) {
877                        list.set(i, newVal);
878                        result = true;
879                    }
880                }
881            }
882        } else {
883            ListIterator<T> itr=list.listIterator();
884            if (oldVal==null) {
885                for (int i=0; i<size; i++) {
886                    if (itr.next()==null) {
887                        itr.set(newVal);
888                        result = true;
889                    }
890                }
891            } else {
892                for (int i=0; i<size; i++) {
893                    if (oldVal.equals(itr.next())) {
894                        itr.set(newVal);
895                        result = true;
896                    }
897                }
898            }
899        }
900        return result;
901    }
902
903    /**
904     * Returns the starting position of the first occurrence of the specified
905     * target list within the specified source list, or -1 if there is no
906     * such occurrence.  More formally, returns the lowest index <tt>i</tt>
907     * such that <tt>source.subList(i, i+target.size()).equals(target)</tt>,
908     * or -1 if there is no such index.  (Returns -1 if
909     * <tt>target.size() > source.size()</tt>.)
910     *
911     * <p>This implementation uses the "brute force" technique of scanning
912     * over the source list, looking for a match with the target at each
913     * location in turn.
914     *
915     * @param source the list in which to search for the first occurrence
916     *        of <tt>target</tt>.
917     * @param target the list to search for as a subList of <tt>source</tt>.
918     * @return the starting position of the first occurrence of the specified
919     *         target list within the specified source list, or -1 if there
920     *         is no such occurrence.
921     * @since  1.4
922     */
923    public static int indexOfSubList(List<?> source, List<?> target) {
924        int sourceSize = source.size();
925        int targetSize = target.size();
926        int maxCandidate = sourceSize - targetSize;
927
928        if (sourceSize < INDEXOFSUBLIST_THRESHOLD ||
929            (source instanceof RandomAccess&&target instanceof RandomAccess)) {
930        nextCand:
931            for (int candidate = 0; candidate <= maxCandidate; candidate++) {
932                for (int i=0, j=candidate; i<targetSize; i++, j++)
933                    if (!eq(target.get(i), source.get(j)))
934                        continue nextCand;  // Element mismatch, try next cand
935                return candidate;  // All elements of candidate matched target
936            }
937        } else {  // Iterator version of above algorithm
938            ListIterator<?> si = source.listIterator();
939        nextCand:
940            for (int candidate = 0; candidate <= maxCandidate; candidate++) {
941                ListIterator<?> ti = target.listIterator();
942                for (int i=0; i<targetSize; i++) {
943                    if (!eq(ti.next(), si.next())) {
944                        // Back up source iterator to next candidate
945                        for (int j=0; j<i; j++)
946                            si.previous();
947                        continue nextCand;
948                    }
949                }
950                return candidate;
951            }
952        }
953        return -1;  // No candidate matched the target
954    }
955
956    /**
957     * Returns the starting position of the last occurrence of the specified
958     * target list within the specified source list, or -1 if there is no such
959     * occurrence.  More formally, returns the highest index <tt>i</tt>
960     * such that <tt>source.subList(i, i+target.size()).equals(target)</tt>,
961     * or -1 if there is no such index.  (Returns -1 if
962     * <tt>target.size() > source.size()</tt>.)
963     *
964     * <p>This implementation uses the "brute force" technique of iterating
965     * over the source list, looking for a match with the target at each
966     * location in turn.
967     *
968     * @param source the list in which to search for the last occurrence
969     *        of <tt>target</tt>.
970     * @param target the list to search for as a subList of <tt>source</tt>.
971     * @return the starting position of the last occurrence of the specified
972     *         target list within the specified source list, or -1 if there
973     *         is no such occurrence.
974     * @since  1.4
975     */
976    public static int lastIndexOfSubList(List<?> source, List<?> target) {
977        int sourceSize = source.size();
978        int targetSize = target.size();
979        int maxCandidate = sourceSize - targetSize;
980
981        if (sourceSize < INDEXOFSUBLIST_THRESHOLD ||
982            source instanceof RandomAccess) {   // Index access version
983        nextCand:
984            for (int candidate = maxCandidate; candidate >= 0; candidate--) {
985                for (int i=0, j=candidate; i<targetSize; i++, j++)
986                    if (!eq(target.get(i), source.get(j)))
987                        continue nextCand;  // Element mismatch, try next cand
988                return candidate;  // All elements of candidate matched target
989            }
990        } else {  // Iterator version of above algorithm
991            if (maxCandidate < 0)
992                return -1;
993            ListIterator<?> si = source.listIterator(maxCandidate);
994        nextCand:
995            for (int candidate = maxCandidate; candidate >= 0; candidate--) {
996                ListIterator<?> ti = target.listIterator();
997                for (int i=0; i<targetSize; i++) {
998                    if (!eq(ti.next(), si.next())) {
999                        if (candidate != 0) {
1000                            // Back up source iterator to next candidate
1001                            for (int j=0; j<=i+1; j++)
1002                                si.previous();
1003                        }
1004                        continue nextCand;
1005                    }
1006                }
1007                return candidate;
1008            }
1009        }
1010        return -1;  // No candidate matched the target
1011    }
1012
1013
1014    // Unmodifiable Wrappers
1015
1016    /**
1017     * Returns an unmodifiable view of the specified collection.  This method
1018     * allows modules to provide users with "read-only" access to internal
1019     * collections.  Query operations on the returned collection "read through"
1020     * to the specified collection, and attempts to modify the returned
1021     * collection, whether direct or via its iterator, result in an
1022     * <tt>UnsupportedOperationException</tt>.<p>
1023     *
1024     * The returned collection does <i>not</i> pass the hashCode and equals
1025     * operations through to the backing collection, but relies on
1026     * <tt>Object</tt>'s <tt>equals</tt> and <tt>hashCode</tt> methods.  This
1027     * is necessary to preserve the contracts of these operations in the case
1028     * that the backing collection is a set or a list.<p>
1029     *
1030     * The returned collection will be serializable if the specified collection
1031     * is serializable.
1032     *
1033     * @param  c the collection for which an unmodifiable view is to be
1034     *         returned.
1035     * @return an unmodifiable view of the specified collection.
1036     */
1037    public static <T> Collection<T> unmodifiableCollection(Collection<? extends T> c) {
1038        return new UnmodifiableCollection<>(c);
1039    }
1040
1041    /**
1042     * @serial include
1043     */
1044    static class UnmodifiableCollection<E> implements Collection<E>, Serializable {
1045        private static final long serialVersionUID = 1820017752578914078L;
1046
1047        final Collection<? extends E> c;
1048
1049        UnmodifiableCollection(Collection<? extends E> c) {
1050            if (c==null)
1051                throw new NullPointerException();
1052            this.c = c;
1053        }
1054
1055        public int size()                   {return c.size();}
1056        public boolean isEmpty()            {return c.isEmpty();}
1057        public boolean contains(Object o)   {return c.contains(o);}
1058        public Object[] toArray()           {return c.toArray();}
1059        public <T> T[] toArray(T[] a)       {return c.toArray(a);}
1060        public String toString()            {return c.toString();}
1061
1062        public Iterator<E> iterator() {
1063            return new Iterator<E>() {
1064                private final Iterator<? extends E> i = c.iterator();
1065
1066                public boolean hasNext() {return i.hasNext();}
1067                public E next()          {return i.next();}
1068                public void remove() {
1069                    throw new UnsupportedOperationException();
1070                }
1071            };
1072        }
1073
1074        public boolean add(E e) {
1075            throw new UnsupportedOperationException();
1076        }
1077        public boolean remove(Object o) {
1078            throw new UnsupportedOperationException();
1079        }
1080
1081        public boolean containsAll(Collection<?> coll) {
1082            return c.containsAll(coll);
1083        }
1084        public boolean addAll(Collection<? extends E> coll) {
1085            throw new UnsupportedOperationException();
1086        }
1087        public boolean removeAll(Collection<?> coll) {
1088            throw new UnsupportedOperationException();
1089        }
1090        public boolean retainAll(Collection<?> coll) {
1091            throw new UnsupportedOperationException();
1092        }
1093        public void clear() {
1094            throw new UnsupportedOperationException();
1095        }
1096    }
1097
1098    /**
1099     * Returns an unmodifiable view of the specified set.  This method allows
1100     * modules to provide users with "read-only" access to internal sets.
1101     * Query operations on the returned set "read through" to the specified
1102     * set, and attempts to modify the returned set, whether direct or via its
1103     * iterator, result in an <tt>UnsupportedOperationException</tt>.<p>
1104     *
1105     * The returned set will be serializable if the specified set
1106     * is serializable.
1107     *
1108     * @param  s the set for which an unmodifiable view is to be returned.
1109     * @return an unmodifiable view of the specified set.
1110     */
1111    public static <T> Set<T> unmodifiableSet(Set<? extends T> s) {
1112        return new UnmodifiableSet<>(s);
1113    }
1114
1115    /**
1116     * @serial include
1117     */
1118    static class UnmodifiableSet<E> extends UnmodifiableCollection<E>
1119                                 implements Set<E>, Serializable {
1120        private static final long serialVersionUID = -9215047833775013803L;
1121
1122        UnmodifiableSet(Set<? extends E> s)     {super(s);}
1123        public boolean equals(Object o) {return o == this || c.equals(o);}
1124        public int hashCode()           {return c.hashCode();}
1125    }
1126
1127    /**
1128     * Returns an unmodifiable view of the specified sorted set.  This method
1129     * allows modules to provide users with "read-only" access to internal
1130     * sorted sets.  Query operations on the returned sorted set "read
1131     * through" to the specified sorted set.  Attempts to modify the returned
1132     * sorted set, whether direct, via its iterator, or via its
1133     * <tt>subSet</tt>, <tt>headSet</tt>, or <tt>tailSet</tt> views, result in
1134     * an <tt>UnsupportedOperationException</tt>.<p>
1135     *
1136     * The returned sorted set will be serializable if the specified sorted set
1137     * is serializable.
1138     *
1139     * @param s the sorted set for which an unmodifiable view is to be
1140     *        returned.
1141     * @return an unmodifiable view of the specified sorted set.
1142     */
1143    public static <T> SortedSet<T> unmodifiableSortedSet(SortedSet<T> s) {
1144        return new UnmodifiableSortedSet<>(s);
1145    }
1146
1147    /**
1148     * @serial include
1149     */
1150    static class UnmodifiableSortedSet<E>
1151                             extends UnmodifiableSet<E>
1152                             implements SortedSet<E>, Serializable {
1153        private static final long serialVersionUID = -4929149591599911165L;
1154        private final SortedSet<E> ss;
1155
1156        UnmodifiableSortedSet(SortedSet<E> s) {super(s); ss = s;}
1157
1158        public Comparator<? super E> comparator() {return ss.comparator();}
1159
1160        public SortedSet<E> subSet(E fromElement, E toElement) {
1161            return new UnmodifiableSortedSet<>(ss.subSet(fromElement,toElement));
1162        }
1163        public SortedSet<E> headSet(E toElement) {
1164            return new UnmodifiableSortedSet<>(ss.headSet(toElement));
1165        }
1166        public SortedSet<E> tailSet(E fromElement) {
1167            return new UnmodifiableSortedSet<>(ss.tailSet(fromElement));
1168        }
1169
1170        public E first()                   {return ss.first();}
1171        public E last()                    {return ss.last();}
1172    }
1173
1174    /**
1175     * Returns an unmodifiable view of the specified list.  This method allows
1176     * modules to provide users with "read-only" access to internal
1177     * lists.  Query operations on the returned list "read through" to the
1178     * specified list, and attempts to modify the returned list, whether
1179     * direct or via its iterator, result in an
1180     * <tt>UnsupportedOperationException</tt>.<p>
1181     *
1182     * The returned list will be serializable if the specified list
1183     * is serializable. Similarly, the returned list will implement
1184     * {@link RandomAccess} if the specified list does.
1185     *
1186     * @param  list the list for which an unmodifiable view is to be returned.
1187     * @return an unmodifiable view of the specified list.
1188     */
1189    public static <T> List<T> unmodifiableList(List<? extends T> list) {
1190        return (list instanceof RandomAccess ?
1191                new UnmodifiableRandomAccessList<>(list) :
1192                new UnmodifiableList<>(list));
1193    }
1194
1195    /**
1196     * @serial include
1197     */
1198    static class UnmodifiableList<E> extends UnmodifiableCollection<E>
1199                                  implements List<E> {
1200        private static final long serialVersionUID = -283967356065247728L;
1201        final List<? extends E> list;
1202
1203        UnmodifiableList(List<? extends E> list) {
1204            super(list);
1205            this.list = list;
1206        }
1207
1208        public boolean equals(Object o) {return o == this || list.equals(o);}
1209        public int hashCode()           {return list.hashCode();}
1210
1211        public E get(int index) {return list.get(index);}
1212        public E set(int index, E element) {
1213            throw new UnsupportedOperationException();
1214        }
1215        public void add(int index, E element) {
1216            throw new UnsupportedOperationException();
1217        }
1218        public E remove(int index) {
1219            throw new UnsupportedOperationException();
1220        }
1221        public int indexOf(Object o)            {return list.indexOf(o);}
1222        public int lastIndexOf(Object o)        {return list.lastIndexOf(o);}
1223        public boolean addAll(int index, Collection<? extends E> c) {
1224            throw new UnsupportedOperationException();
1225        }
1226        public ListIterator<E> listIterator()   {return listIterator(0);}
1227
1228        public ListIterator<E> listIterator(final int index) {
1229            return new ListIterator<E>() {
1230                private final ListIterator<? extends E> i
1231                    = list.listIterator(index);
1232
1233                public boolean hasNext()     {return i.hasNext();}
1234                public E next()              {return i.next();}
1235                public boolean hasPrevious() {return i.hasPrevious();}
1236                public E previous()          {return i.previous();}
1237                public int nextIndex()       {return i.nextIndex();}
1238                public int previousIndex()   {return i.previousIndex();}
1239
1240                public void remove() {
1241                    throw new UnsupportedOperationException();
1242                }
1243                public void set(E e) {
1244                    throw new UnsupportedOperationException();
1245                }
1246                public void add(E e) {
1247                    throw new UnsupportedOperationException();
1248                }
1249            };
1250        }
1251
1252        public List<E> subList(int fromIndex, int toIndex) {
1253            return new UnmodifiableList<>(list.subList(fromIndex, toIndex));
1254        }
1255
1256        /**
1257         * UnmodifiableRandomAccessList instances are serialized as
1258         * UnmodifiableList instances to allow them to be deserialized
1259         * in pre-1.4 JREs (which do not have UnmodifiableRandomAccessList).
1260         * This method inverts the transformation.  As a beneficial
1261         * side-effect, it also grafts the RandomAccess marker onto
1262         * UnmodifiableList instances that were serialized in pre-1.4 JREs.
1263         *
1264         * Note: Unfortunately, UnmodifiableRandomAccessList instances
1265         * serialized in 1.4.1 and deserialized in 1.4 will become
1266         * UnmodifiableList instances, as this method was missing in 1.4.
1267         */
1268        private Object readResolve() {
1269            return (list instanceof RandomAccess
1270                    ? new UnmodifiableRandomAccessList<>(list)
1271                    : this);
1272        }
1273    }
1274
1275    /**
1276     * @serial include
1277     */
1278    static class UnmodifiableRandomAccessList<E> extends UnmodifiableList<E>
1279                                              implements RandomAccess
1280    {
1281        UnmodifiableRandomAccessList(List<? extends E> list) {
1282            super(list);
1283        }
1284
1285        public List<E> subList(int fromIndex, int toIndex) {
1286            return new UnmodifiableRandomAccessList<>(
1287                list.subList(fromIndex, toIndex));
1288        }
1289
1290        private static final long serialVersionUID = -2542308836966382001L;
1291
1292        /**
1293         * Allows instances to be deserialized in pre-1.4 JREs (which do
1294         * not have UnmodifiableRandomAccessList).  UnmodifiableList has
1295         * a readResolve method that inverts this transformation upon
1296         * deserialization.
1297         */
1298        private Object writeReplace() {
1299            return new UnmodifiableList<>(list);
1300        }
1301    }
1302
1303    /**
1304     * Returns an unmodifiable view of the specified map.  This method
1305     * allows modules to provide users with "read-only" access to internal
1306     * maps.  Query operations on the returned map "read through"
1307     * to the specified map, and attempts to modify the returned
1308     * map, whether direct or via its collection views, result in an
1309     * <tt>UnsupportedOperationException</tt>.<p>
1310     *
1311     * The returned map will be serializable if the specified map
1312     * is serializable.
1313     *
1314     * @param  m the map for which an unmodifiable view is to be returned.
1315     * @return an unmodifiable view of the specified map.
1316     */
1317    public static <K,V> Map<K,V> unmodifiableMap(Map<? extends K, ? extends V> m) {
1318        return new UnmodifiableMap<>(m);
1319    }
1320
1321    /**
1322     * @serial include
1323     */
1324    private static class UnmodifiableMap<K,V> implements Map<K,V>, Serializable {
1325        private static final long serialVersionUID = -1034234728574286014L;
1326
1327        private final Map<? extends K, ? extends V> m;
1328
1329        UnmodifiableMap(Map<? extends K, ? extends V> m) {
1330            if (m==null)
1331                throw new NullPointerException();
1332            this.m = m;
1333        }
1334
1335        public int size()                        {return m.size();}
1336        public boolean isEmpty()                 {return m.isEmpty();}
1337        public boolean containsKey(Object key)   {return m.containsKey(key);}
1338        public boolean containsValue(Object val) {return m.containsValue(val);}
1339        public V get(Object key)                 {return m.get(key);}
1340
1341        public V put(K key, V value) {
1342            throw new UnsupportedOperationException();
1343        }
1344        public V remove(Object key) {
1345            throw new UnsupportedOperationException();
1346        }
1347        public void putAll(Map<? extends K, ? extends V> m) {
1348            throw new UnsupportedOperationException();
1349        }
1350        public void clear() {
1351            throw new UnsupportedOperationException();
1352        }
1353
1354        private transient Set<K> keySet = null;
1355        private transient Set<Map.Entry<K,V>> entrySet = null;
1356        private transient Collection<V> values = null;
1357
1358        public Set<K> keySet() {
1359            if (keySet==null)
1360                keySet = unmodifiableSet(m.keySet());
1361            return keySet;
1362        }
1363
1364        public Set<Map.Entry<K,V>> entrySet() {
1365            if (entrySet==null)
1366                entrySet = new UnmodifiableEntrySet<>(m.entrySet());
1367            return entrySet;
1368        }
1369
1370        public Collection<V> values() {
1371            if (values==null)
1372                values = unmodifiableCollection(m.values());
1373            return values;
1374        }
1375
1376        public boolean equals(Object o) {return o == this || m.equals(o);}
1377        public int hashCode()           {return m.hashCode();}
1378        public String toString()        {return m.toString();}
1379
1380        /**
1381         * We need this class in addition to UnmodifiableSet as
1382         * Map.Entries themselves permit modification of the backing Map
1383         * via their setValue operation.  This class is subtle: there are
1384         * many possible attacks that must be thwarted.
1385         *
1386         * @serial include
1387         */
1388        static class UnmodifiableEntrySet<K,V>
1389            extends UnmodifiableSet<Map.Entry<K,V>> {
1390            private static final long serialVersionUID = 7854390611657943733L;
1391
1392            UnmodifiableEntrySet(Set<? extends Map.Entry<? extends K, ? extends V>> s) {
1393                super((Set)s);
1394            }
1395            public Iterator<Map.Entry<K,V>> iterator() {
1396                return new Iterator<Map.Entry<K,V>>() {
1397                    private final Iterator<? extends Map.Entry<? extends K, ? extends V>> i = c.iterator();
1398
1399                    public boolean hasNext() {
1400                        return i.hasNext();
1401                    }
1402                    public Map.Entry<K,V> next() {
1403                        return new UnmodifiableEntry<>(i.next());
1404                    }
1405                    public void remove() {
1406                        throw new UnsupportedOperationException();
1407                    }
1408                };
1409            }
1410
1411            public Object[] toArray() {
1412                Object[] a = c.toArray();
1413                for (int i=0; i<a.length; i++)
1414                    a[i] = new UnmodifiableEntry<>((Map.Entry<K,V>)a[i]);
1415                return a;
1416            }
1417
1418            public <T> T[] toArray(T[] a) {
1419                // We don't pass a to c.toArray, to avoid window of
1420                // vulnerability wherein an unscrupulous multithreaded client
1421                // could get his hands on raw (unwrapped) Entries from c.
1422                Object[] arr = c.toArray(a.length==0 ? a : Arrays.copyOf(a, 0));
1423
1424                for (int i=0; i<arr.length; i++)
1425                    arr[i] = new UnmodifiableEntry<>((Map.Entry<K,V>)arr[i]);
1426
1427                if (arr.length > a.length)
1428                    return (T[])arr;
1429
1430                System.arraycopy(arr, 0, a, 0, arr.length);
1431                if (a.length > arr.length)
1432                    a[arr.length] = null;
1433                return a;
1434            }
1435
1436            /**
1437             * This method is overridden to protect the backing set against
1438             * an object with a nefarious equals function that senses
1439             * that the equality-candidate is Map.Entry and calls its
1440             * setValue method.
1441             */
1442            public boolean contains(Object o) {
1443                if (!(o instanceof Map.Entry))
1444                    return false;
1445                return c.contains(
1446                    new UnmodifiableEntry<>((Map.Entry<?,?>) o));
1447            }
1448
1449            /**
1450             * The next two methods are overridden to protect against
1451             * an unscrupulous List whose contains(Object o) method senses
1452             * when o is a Map.Entry, and calls o.setValue.
1453             */
1454            public boolean containsAll(Collection<?> coll) {
1455                for (Object e : coll) {
1456                    if (!contains(e)) // Invokes safe contains() above
1457                        return false;
1458                }
1459                return true;
1460            }
1461            public boolean equals(Object o) {
1462                if (o == this)
1463                    return true;
1464
1465                if (!(o instanceof Set))
1466                    return false;
1467                Set s = (Set) o;
1468                if (s.size() != c.size())
1469                    return false;
1470                return containsAll(s); // Invokes safe containsAll() above
1471            }
1472
1473            /**
1474             * This "wrapper class" serves two purposes: it prevents
1475             * the client from modifying the backing Map, by short-circuiting
1476             * the setValue method, and it protects the backing Map against
1477             * an ill-behaved Map.Entry that attempts to modify another
1478             * Map Entry when asked to perform an equality check.
1479             */
1480            private static class UnmodifiableEntry<K,V> implements Map.Entry<K,V> {
1481                private Map.Entry<? extends K, ? extends V> e;
1482
1483                UnmodifiableEntry(Map.Entry<? extends K, ? extends V> e) {this.e = e;}
1484
1485                public K getKey()        {return e.getKey();}
1486                public V getValue()      {return e.getValue();}
1487                public V setValue(V value) {
1488                    throw new UnsupportedOperationException();
1489                }
1490                public int hashCode()    {return e.hashCode();}
1491                public boolean equals(Object o) {
1492                    if (this == o)
1493                        return true;
1494                    if (!(o instanceof Map.Entry))
1495                        return false;
1496                    Map.Entry t = (Map.Entry)o;
1497                    return eq(e.getKey(),   t.getKey()) &&
1498                           eq(e.getValue(), t.getValue());
1499                }
1500                public String toString() {return e.toString();}
1501            }
1502        }
1503    }
1504
1505    /**
1506     * Returns an unmodifiable view of the specified sorted map.  This method
1507     * allows modules to provide users with "read-only" access to internal
1508     * sorted maps.  Query operations on the returned sorted map "read through"
1509     * to the specified sorted map.  Attempts to modify the returned
1510     * sorted map, whether direct, via its collection views, or via its
1511     * <tt>subMap</tt>, <tt>headMap</tt>, or <tt>tailMap</tt> views, result in
1512     * an <tt>UnsupportedOperationException</tt>.<p>
1513     *
1514     * The returned sorted map will be serializable if the specified sorted map
1515     * is serializable.
1516     *
1517     * @param m the sorted map for which an unmodifiable view is to be
1518     *        returned.
1519     * @return an unmodifiable view of the specified sorted map.
1520     */
1521    public static <K,V> SortedMap<K,V> unmodifiableSortedMap(SortedMap<K, ? extends V> m) {
1522        return new UnmodifiableSortedMap<>(m);
1523    }
1524
1525    /**
1526     * @serial include
1527     */
1528    static class UnmodifiableSortedMap<K,V>
1529          extends UnmodifiableMap<K,V>
1530          implements SortedMap<K,V>, Serializable {
1531        private static final long serialVersionUID = -8806743815996713206L;
1532
1533        private final SortedMap<K, ? extends V> sm;
1534
1535        UnmodifiableSortedMap(SortedMap<K, ? extends V> m) {super(m); sm = m;}
1536
1537        public Comparator<? super K> comparator() {return sm.comparator();}
1538
1539        public SortedMap<K,V> subMap(K fromKey, K toKey) {
1540            return new UnmodifiableSortedMap<>(sm.subMap(fromKey, toKey));
1541        }
1542        public SortedMap<K,V> headMap(K toKey) {
1543            return new UnmodifiableSortedMap<>(sm.headMap(toKey));
1544        }
1545        public SortedMap<K,V> tailMap(K fromKey) {
1546            return new UnmodifiableSortedMap<>(sm.tailMap(fromKey));
1547        }
1548
1549        public K firstKey()           {return sm.firstKey();}
1550        public K lastKey()            {return sm.lastKey();}
1551    }
1552
1553
1554    // Synch Wrappers
1555
1556    /**
1557     * Returns a synchronized (thread-safe) collection backed by the specified
1558     * collection.  In order to guarantee serial access, it is critical that
1559     * <strong>all</strong> access to the backing collection is accomplished
1560     * through the returned collection.<p>
1561     *
1562     * It is imperative that the user manually synchronize on the returned
1563     * collection when iterating over it:
1564     * <pre>
1565     *  Collection c = Collections.synchronizedCollection(myCollection);
1566     *     ...
1567     *  synchronized (c) {
1568     *      Iterator i = c.iterator(); // Must be in the synchronized block
1569     *      while (i.hasNext())
1570     *         foo(i.next());
1571     *  }
1572     * </pre>
1573     * Failure to follow this advice may result in non-deterministic behavior.
1574     *
1575     * <p>The returned collection does <i>not</i> pass the <tt>hashCode</tt>
1576     * and <tt>equals</tt> operations through to the backing collection, but
1577     * relies on <tt>Object</tt>'s equals and hashCode methods.  This is
1578     * necessary to preserve the contracts of these operations in the case
1579     * that the backing collection is a set or a list.<p>
1580     *
1581     * The returned collection will be serializable if the specified collection
1582     * is serializable.
1583     *
1584     * @param  c the collection to be "wrapped" in a synchronized collection.
1585     * @return a synchronized view of the specified collection.
1586     */
1587    public static <T> Collection<T> synchronizedCollection(Collection<T> c) {
1588        return new SynchronizedCollection<>(c);
1589    }
1590
1591    static <T> Collection<T> synchronizedCollection(Collection<T> c, Object mutex) {
1592        return new SynchronizedCollection<>(c, mutex);
1593    }
1594
1595    /**
1596     * @serial include
1597     */
1598    static class SynchronizedCollection<E> implements Collection<E>, Serializable {
1599        private static final long serialVersionUID = 3053995032091335093L;
1600
1601        final Collection<E> c;  // Backing Collection
1602        final Object mutex;     // Object on which to synchronize
1603
1604        SynchronizedCollection(Collection<E> c) {
1605            if (c==null)
1606                throw new NullPointerException();
1607            this.c = c;
1608            mutex = this;
1609        }
1610        SynchronizedCollection(Collection<E> c, Object mutex) {
1611            this.c = c;
1612            this.mutex = mutex;
1613        }
1614
1615        public int size() {
1616            synchronized (mutex) {return c.size();}
1617        }
1618        public boolean isEmpty() {
1619            synchronized (mutex) {return c.isEmpty();}
1620        }
1621        public boolean contains(Object o) {
1622            synchronized (mutex) {return c.contains(o);}
1623        }
1624        public Object[] toArray() {
1625            synchronized (mutex) {return c.toArray();}
1626        }
1627        public <T> T[] toArray(T[] a) {
1628            synchronized (mutex) {return c.toArray(a);}
1629        }
1630
1631        public Iterator<E> iterator() {
1632            return c.iterator(); // Must be manually synched by user!
1633        }
1634
1635        public boolean add(E e) {
1636            synchronized (mutex) {return c.add(e);}
1637        }
1638        public boolean remove(Object o) {
1639            synchronized (mutex) {return c.remove(o);}
1640        }
1641
1642        public boolean containsAll(Collection<?> coll) {
1643            synchronized (mutex) {return c.containsAll(coll);}
1644        }
1645        public boolean addAll(Collection<? extends E> coll) {
1646            synchronized (mutex) {return c.addAll(coll);}
1647        }
1648        public boolean removeAll(Collection<?> coll) {
1649            synchronized (mutex) {return c.removeAll(coll);}
1650        }
1651        public boolean retainAll(Collection<?> coll) {
1652            synchronized (mutex) {return c.retainAll(coll);}
1653        }
1654        public void clear() {
1655            synchronized (mutex) {c.clear();}
1656        }
1657        public String toString() {
1658            synchronized (mutex) {return c.toString();}
1659        }
1660        private void writeObject(ObjectOutputStream s) throws IOException {
1661            synchronized (mutex) {s.defaultWriteObject();}
1662        }
1663    }
1664
1665    /**
1666     * Returns a synchronized (thread-safe) set backed by the specified
1667     * set.  In order to guarantee serial access, it is critical that
1668     * <strong>all</strong> access to the backing set is accomplished
1669     * through the returned set.<p>
1670     *
1671     * It is imperative that the user manually synchronize on the returned
1672     * set when iterating over it:
1673     * <pre>
1674     *  Set s = Collections.synchronizedSet(new HashSet());
1675     *      ...
1676     *  synchronized (s) {
1677     *      Iterator i = s.iterator(); // Must be in the synchronized block
1678     *      while (i.hasNext())
1679     *          foo(i.next());
1680     *  }
1681     * </pre>
1682     * Failure to follow this advice may result in non-deterministic behavior.
1683     *
1684     * <p>The returned set will be serializable if the specified set is
1685     * serializable.
1686     *
1687     * @param  s the set to be "wrapped" in a synchronized set.
1688     * @return a synchronized view of the specified set.
1689     */
1690    public static <T> Set<T> synchronizedSet(Set<T> s) {
1691        return new SynchronizedSet<>(s);
1692    }
1693
1694    static <T> Set<T> synchronizedSet(Set<T> s, Object mutex) {
1695        return new SynchronizedSet<>(s, mutex);
1696    }
1697
1698    /**
1699     * @serial include
1700     */
1701    static class SynchronizedSet<E>
1702          extends SynchronizedCollection<E>
1703          implements Set<E> {
1704        private static final long serialVersionUID = 487447009682186044L;
1705
1706        SynchronizedSet(Set<E> s) {
1707            super(s);
1708        }
1709        SynchronizedSet(Set<E> s, Object mutex) {
1710            super(s, mutex);
1711        }
1712
1713        public boolean equals(Object o) {
1714            if (this == o)
1715                return true;
1716            synchronized (mutex) {return c.equals(o);}
1717        }
1718        public int hashCode() {
1719            synchronized (mutex) {return c.hashCode();}
1720        }
1721    }
1722
1723    /**
1724     * Returns a synchronized (thread-safe) sorted set backed by the specified
1725     * sorted set.  In order to guarantee serial access, it is critical that
1726     * <strong>all</strong> access to the backing sorted set is accomplished
1727     * through the returned sorted set (or its views).<p>
1728     *
1729     * It is imperative that the user manually synchronize on the returned
1730     * sorted set when iterating over it or any of its <tt>subSet</tt>,
1731     * <tt>headSet</tt>, or <tt>tailSet</tt> views.
1732     * <pre>
1733     *  SortedSet s = Collections.synchronizedSortedSet(new TreeSet());
1734     *      ...
1735     *  synchronized (s) {
1736     *      Iterator i = s.iterator(); // Must be in the synchronized block
1737     *      while (i.hasNext())
1738     *          foo(i.next());
1739     *  }
1740     * </pre>
1741     * or:
1742     * <pre>
1743     *  SortedSet s = Collections.synchronizedSortedSet(new TreeSet());
1744     *  SortedSet s2 = s.headSet(foo);
1745     *      ...
1746     *  synchronized (s) {  // Note: s, not s2!!!
1747     *      Iterator i = s2.iterator(); // Must be in the synchronized block
1748     *      while (i.hasNext())
1749     *          foo(i.next());
1750     *  }
1751     * </pre>
1752     * Failure to follow this advice may result in non-deterministic behavior.
1753     *
1754     * <p>The returned sorted set will be serializable if the specified
1755     * sorted set is serializable.
1756     *
1757     * @param  s the sorted set to be "wrapped" in a synchronized sorted set.
1758     * @return a synchronized view of the specified sorted set.
1759     */
1760    public static <T> SortedSet<T> synchronizedSortedSet(SortedSet<T> s) {
1761        return new SynchronizedSortedSet<>(s);
1762    }
1763
1764    /**
1765     * @serial include
1766     */
1767    static class SynchronizedSortedSet<E>
1768        extends SynchronizedSet<E>
1769        implements SortedSet<E>
1770    {
1771        private static final long serialVersionUID = 8695801310862127406L;
1772
1773        private final SortedSet<E> ss;
1774
1775        SynchronizedSortedSet(SortedSet<E> s) {
1776            super(s);
1777            ss = s;
1778        }
1779        SynchronizedSortedSet(SortedSet<E> s, Object mutex) {
1780            super(s, mutex);
1781            ss = s;
1782        }
1783
1784        public Comparator<? super E> comparator() {
1785            synchronized (mutex) {return ss.comparator();}
1786        }
1787
1788        public SortedSet<E> subSet(E fromElement, E toElement) {
1789            synchronized (mutex) {
1790                return new SynchronizedSortedSet<>(
1791                    ss.subSet(fromElement, toElement), mutex);
1792            }
1793        }
1794        public SortedSet<E> headSet(E toElement) {
1795            synchronized (mutex) {
1796                return new SynchronizedSortedSet<>(ss.headSet(toElement), mutex);
1797            }
1798        }
1799        public SortedSet<E> tailSet(E fromElement) {
1800            synchronized (mutex) {
1801               return new SynchronizedSortedSet<>(ss.tailSet(fromElement),mutex);
1802            }
1803        }
1804
1805        public E first() {
1806            synchronized (mutex) {return ss.first();}
1807        }
1808        public E last() {
1809            synchronized (mutex) {return ss.last();}
1810        }
1811    }
1812
1813    /**
1814     * Returns a synchronized (thread-safe) list backed by the specified
1815     * list.  In order to guarantee serial access, it is critical that
1816     * <strong>all</strong> access to the backing list is accomplished
1817     * through the returned list.<p>
1818     *
1819     * It is imperative that the user manually synchronize on the returned
1820     * list when iterating over it:
1821     * <pre>
1822     *  List list = Collections.synchronizedList(new ArrayList());
1823     *      ...
1824     *  synchronized (list) {
1825     *      Iterator i = list.iterator(); // Must be in synchronized block
1826     *      while (i.hasNext())
1827     *          foo(i.next());
1828     *  }
1829     * </pre>
1830     * Failure to follow this advice may result in non-deterministic behavior.
1831     *
1832     * <p>The returned list will be serializable if the specified list is
1833     * serializable.
1834     *
1835     * @param  list the list to be "wrapped" in a synchronized list.
1836     * @return a synchronized view of the specified list.
1837     */
1838    public static <T> List<T> synchronizedList(List<T> list) {
1839        return (list instanceof RandomAccess ?
1840                new SynchronizedRandomAccessList<>(list) :
1841                new SynchronizedList<>(list));
1842    }
1843
1844    static <T> List<T> synchronizedList(List<T> list, Object mutex) {
1845        return (list instanceof RandomAccess ?
1846                new SynchronizedRandomAccessList<>(list, mutex) :
1847                new SynchronizedList<>(list, mutex));
1848    }
1849
1850    /**
1851     * @serial include
1852     */
1853    static class SynchronizedList<E>
1854        extends SynchronizedCollection<E>
1855        implements List<E> {
1856        private static final long serialVersionUID = -7754090372962971524L;
1857
1858        final List<E> list;
1859
1860        SynchronizedList(List<E> list) {
1861            super(list);
1862            this.list = list;
1863        }
1864        SynchronizedList(List<E> list, Object mutex) {
1865            super(list, mutex);
1866            this.list = list;
1867        }
1868
1869        public boolean equals(Object o) {
1870            if (this == o)
1871                return true;
1872            synchronized (mutex) {return list.equals(o);}
1873        }
1874        public int hashCode() {
1875            synchronized (mutex) {return list.hashCode();}
1876        }
1877
1878        public E get(int index) {
1879            synchronized (mutex) {return list.get(index);}
1880        }
1881        public E set(int index, E element) {
1882            synchronized (mutex) {return list.set(index, element);}
1883        }
1884        public void add(int index, E element) {
1885            synchronized (mutex) {list.add(index, element);}
1886        }
1887        public E remove(int index) {
1888            synchronized (mutex) {return list.remove(index);}
1889        }
1890
1891        public int indexOf(Object o) {
1892            synchronized (mutex) {return list.indexOf(o);}
1893        }
1894        public int lastIndexOf(Object o) {
1895            synchronized (mutex) {return list.lastIndexOf(o);}
1896        }
1897
1898        public boolean addAll(int index, Collection<? extends E> c) {
1899            synchronized (mutex) {return list.addAll(index, c);}
1900        }
1901
1902        public ListIterator<E> listIterator() {
1903            return list.listIterator(); // Must be manually synched by user
1904        }
1905
1906        public ListIterator<E> listIterator(int index) {
1907            return list.listIterator(index); // Must be manually synched by user
1908        }
1909
1910        public List<E> subList(int fromIndex, int toIndex) {
1911            synchronized (mutex) {
1912                return new SynchronizedList<>(list.subList(fromIndex, toIndex),
1913                                            mutex);
1914            }
1915        }
1916
1917        /**
1918         * SynchronizedRandomAccessList instances are serialized as
1919         * SynchronizedList instances to allow them to be deserialized
1920         * in pre-1.4 JREs (which do not have SynchronizedRandomAccessList).
1921         * This method inverts the transformation.  As a beneficial
1922         * side-effect, it also grafts the RandomAccess marker onto
1923         * SynchronizedList instances that were serialized in pre-1.4 JREs.
1924         *
1925         * Note: Unfortunately, SynchronizedRandomAccessList instances
1926         * serialized in 1.4.1 and deserialized in 1.4 will become
1927         * SynchronizedList instances, as this method was missing in 1.4.
1928         */
1929        private Object readResolve() {
1930            return (list instanceof RandomAccess
1931                    ? new SynchronizedRandomAccessList<>(list)
1932                    : this);
1933        }
1934    }
1935
1936    /**
1937     * @serial include
1938     */
1939    static class SynchronizedRandomAccessList<E>
1940        extends SynchronizedList<E>
1941        implements RandomAccess {
1942
1943        SynchronizedRandomAccessList(List<E> list) {
1944            super(list);
1945        }
1946
1947        SynchronizedRandomAccessList(List<E> list, Object mutex) {
1948            super(list, mutex);
1949        }
1950
1951        public List<E> subList(int fromIndex, int toIndex) {
1952            synchronized (mutex) {
1953                return new SynchronizedRandomAccessList<>(
1954                    list.subList(fromIndex, toIndex), mutex);
1955            }
1956        }
1957
1958        private static final long serialVersionUID = 1530674583602358482L;
1959
1960        /**
1961         * Allows instances to be deserialized in pre-1.4 JREs (which do
1962         * not have SynchronizedRandomAccessList).  SynchronizedList has
1963         * a readResolve method that inverts this transformation upon
1964         * deserialization.
1965         */
1966        private Object writeReplace() {
1967            return new SynchronizedList<>(list);
1968        }
1969    }
1970
1971    /**
1972     * Returns a synchronized (thread-safe) map backed by the specified
1973     * map.  In order to guarantee serial access, it is critical that
1974     * <strong>all</strong> access to the backing map is accomplished
1975     * through the returned map.<p>
1976     *
1977     * It is imperative that the user manually synchronize on the returned
1978     * map when iterating over any of its collection views:
1979     * <pre>
1980     *  Map m = Collections.synchronizedMap(new HashMap());
1981     *      ...
1982     *  Set s = m.keySet();  // Needn't be in synchronized block
1983     *      ...
1984     *  synchronized (m) {  // Synchronizing on m, not s!
1985     *      Iterator i = s.iterator(); // Must be in synchronized block
1986     *      while (i.hasNext())
1987     *          foo(i.next());
1988     *  }
1989     * </pre>
1990     * Failure to follow this advice may result in non-deterministic behavior.
1991     *
1992     * <p>The returned map will be serializable if the specified map is
1993     * serializable.
1994     *
1995     * @param  m the map to be "wrapped" in a synchronized map.
1996     * @return a synchronized view of the specified map.
1997     */
1998    public static <K,V> Map<K,V> synchronizedMap(Map<K,V> m) {
1999        return new SynchronizedMap<>(m);
2000    }
2001
2002    /**
2003     * @serial include
2004     */
2005    private static class SynchronizedMap<K,V>
2006        implements Map<K,V>, Serializable {
2007        private static final long serialVersionUID = 1978198479659022715L;
2008
2009        private final Map<K,V> m;     // Backing Map
2010        final Object      mutex;        // Object on which to synchronize
2011
2012        SynchronizedMap(Map<K,V> m) {
2013            if (m==null)
2014                throw new NullPointerException();
2015            this.m = m;
2016            mutex = this;
2017        }
2018
2019        SynchronizedMap(Map<K,V> m, Object mutex) {
2020            this.m = m;
2021            this.mutex = mutex;
2022        }
2023
2024        public int size() {
2025            synchronized (mutex) {return m.size();}
2026        }
2027        public boolean isEmpty() {
2028            synchronized (mutex) {return m.isEmpty();}
2029        }
2030        public boolean containsKey(Object key) {
2031            synchronized (mutex) {return m.containsKey(key);}
2032        }
2033        public boolean containsValue(Object value) {
2034            synchronized (mutex) {return m.containsValue(value);}
2035        }
2036        public V get(Object key) {
2037            synchronized (mutex) {return m.get(key);}
2038        }
2039
2040        public V put(K key, V value) {
2041            synchronized (mutex) {return m.put(key, value);}
2042        }
2043        public V remove(Object key) {
2044            synchronized (mutex) {return m.remove(key);}
2045        }
2046        public void putAll(Map<? extends K, ? extends V> map) {
2047            synchronized (mutex) {m.putAll(map);}
2048        }
2049        public void clear() {
2050            synchronized (mutex) {m.clear();}
2051        }
2052
2053        private transient Set<K> keySet = null;
2054        private transient Set<Map.Entry<K,V>> entrySet = null;
2055        private transient Collection<V> values = null;
2056
2057        public Set<K> keySet() {
2058            synchronized (mutex) {
2059                if (keySet==null)
2060                    keySet = new SynchronizedSet<>(m.keySet(), mutex);
2061                return keySet;
2062            }
2063        }
2064
2065        public Set<Map.Entry<K,V>> entrySet() {
2066            synchronized (mutex) {
2067                if (entrySet==null)
2068                    entrySet = new SynchronizedSet<>(m.entrySet(), mutex);
2069                return entrySet;
2070            }
2071        }
2072
2073        public Collection<V> values() {
2074            synchronized (mutex) {
2075                if (values==null)
2076                    values = new SynchronizedCollection<>(m.values(), mutex);
2077                return values;
2078            }
2079        }
2080
2081        public boolean equals(Object o) {
2082            if (this == o)
2083                return true;
2084            synchronized (mutex) {return m.equals(o);}
2085        }
2086        public int hashCode() {
2087            synchronized (mutex) {return m.hashCode();}
2088        }
2089        public String toString() {
2090            synchronized (mutex) {return m.toString();}
2091        }
2092        private void writeObject(ObjectOutputStream s) throws IOException {
2093            synchronized (mutex) {s.defaultWriteObject();}
2094        }
2095    }
2096
2097    /**
2098     * Returns a synchronized (thread-safe) sorted map backed by the specified
2099     * sorted map.  In order to guarantee serial access, it is critical that
2100     * <strong>all</strong> access to the backing sorted map is accomplished
2101     * through the returned sorted map (or its views).<p>
2102     *
2103     * It is imperative that the user manually synchronize on the returned
2104     * sorted map when iterating over any of its collection views, or the
2105     * collections views of any of its <tt>subMap</tt>, <tt>headMap</tt> or
2106     * <tt>tailMap</tt> views.
2107     * <pre>
2108     *  SortedMap m = Collections.synchronizedSortedMap(new TreeMap());
2109     *      ...
2110     *  Set s = m.keySet();  // Needn't be in synchronized block
2111     *      ...
2112     *  synchronized (m) {  // Synchronizing on m, not s!
2113     *      Iterator i = s.iterator(); // Must be in synchronized block
2114     *      while (i.hasNext())
2115     *          foo(i.next());
2116     *  }
2117     * </pre>
2118     * or:
2119     * <pre>
2120     *  SortedMap m = Collections.synchronizedSortedMap(new TreeMap());
2121     *  SortedMap m2 = m.subMap(foo, bar);
2122     *      ...
2123     *  Set s2 = m2.keySet();  // Needn't be in synchronized block
2124     *      ...
2125     *  synchronized (m) {  // Synchronizing on m, not m2 or s2!
2126     *      Iterator i = s.iterator(); // Must be in synchronized block
2127     *      while (i.hasNext())
2128     *          foo(i.next());
2129     *  }
2130     * </pre>
2131     * Failure to follow this advice may result in non-deterministic behavior.
2132     *
2133     * <p>The returned sorted map will be serializable if the specified
2134     * sorted map is serializable.
2135     *
2136     * @param  m the sorted map to be "wrapped" in a synchronized sorted map.
2137     * @return a synchronized view of the specified sorted map.
2138     */
2139    public static <K,V> SortedMap<K,V> synchronizedSortedMap(SortedMap<K,V> m) {
2140        return new SynchronizedSortedMap<>(m);
2141    }
2142
2143
2144    /**
2145     * @serial include
2146     */
2147    static class SynchronizedSortedMap<K,V>
2148        extends SynchronizedMap<K,V>
2149        implements SortedMap<K,V>
2150    {
2151        private static final long serialVersionUID = -8798146769416483793L;
2152
2153        private final SortedMap<K,V> sm;
2154
2155        SynchronizedSortedMap(SortedMap<K,V> m) {
2156            super(m);
2157            sm = m;
2158        }
2159        SynchronizedSortedMap(SortedMap<K,V> m, Object mutex) {
2160            super(m, mutex);
2161            sm = m;
2162        }
2163
2164        public Comparator<? super K> comparator() {
2165            synchronized (mutex) {return sm.comparator();}
2166        }
2167
2168        public SortedMap<K,V> subMap(K fromKey, K toKey) {
2169            synchronized (mutex) {
2170                return new SynchronizedSortedMap<>(
2171                    sm.subMap(fromKey, toKey), mutex);
2172            }
2173        }
2174        public SortedMap<K,V> headMap(K toKey) {
2175            synchronized (mutex) {
2176                return new SynchronizedSortedMap<>(sm.headMap(toKey), mutex);
2177            }
2178        }
2179        public SortedMap<K,V> tailMap(K fromKey) {
2180            synchronized (mutex) {
2181               return new SynchronizedSortedMap<>(sm.tailMap(fromKey),mutex);
2182            }
2183        }
2184
2185        public K firstKey() {
2186            synchronized (mutex) {return sm.firstKey();}
2187        }
2188        public K lastKey() {
2189            synchronized (mutex) {return sm.lastKey();}
2190        }
2191    }
2192
2193    // Dynamically typesafe collection wrappers
2194
2195    /**
2196     * Returns a dynamically typesafe view of the specified collection.
2197     * Any attempt to insert an element of the wrong type will result in an
2198     * immediate {@link ClassCastException}.  Assuming a collection
2199     * contains no incorrectly typed elements prior to the time a
2200     * dynamically typesafe view is generated, and that all subsequent
2201     * access to the collection takes place through the view, it is
2202     * <i>guaranteed</i> that the collection cannot contain an incorrectly
2203     * typed element.
2204     *
2205     * <p>The generics mechanism in the language provides compile-time
2206     * (static) type checking, but it is possible to defeat this mechanism
2207     * with unchecked casts.  Usually this is not a problem, as the compiler
2208     * issues warnings on all such unchecked operations.  There are, however,
2209     * times when static type checking alone is not sufficient.  For example,
2210     * suppose a collection is passed to a third-party library and it is
2211     * imperative that the library code not corrupt the collection by
2212     * inserting an element of the wrong type.
2213     *
2214     * <p>Another use of dynamically typesafe views is debugging.  Suppose a
2215     * program fails with a {@code ClassCastException}, indicating that an
2216     * incorrectly typed element was put into a parameterized collection.
2217     * Unfortunately, the exception can occur at any time after the erroneous
2218     * element is inserted, so it typically provides little or no information
2219     * as to the real source of the problem.  If the problem is reproducible,
2220     * one can quickly determine its source by temporarily modifying the
2221     * program to wrap the collection with a dynamically typesafe view.
2222     * For example, this declaration:
2223     *  <pre> {@code
2224     *     Collection<String> c = new HashSet<String>();
2225     * }</pre>
2226     * may be replaced temporarily by this one:
2227     *  <pre> {@code
2228     *     Collection<String> c = Collections.checkedCollection(
2229     *         new HashSet<String>(), String.class);
2230     * }</pre>
2231     * Running the program again will cause it to fail at the point where
2232     * an incorrectly typed element is inserted into the collection, clearly
2233     * identifying the source of the problem.  Once the problem is fixed, the
2234     * modified declaration may be reverted back to the original.
2235     *
2236     * <p>The returned collection does <i>not</i> pass the hashCode and equals
2237     * operations through to the backing collection, but relies on
2238     * {@code Object}'s {@code equals} and {@code hashCode} methods.  This
2239     * is necessary to preserve the contracts of these operations in the case
2240     * that the backing collection is a set or a list.
2241     *
2242     * <p>The returned collection will be serializable if the specified
2243     * collection is serializable.
2244     *
2245     * <p>Since {@code null} is considered to be a value of any reference
2246     * type, the returned collection permits insertion of null elements
2247     * whenever the backing collection does.
2248     *
2249     * @param c the collection for which a dynamically typesafe view is to be
2250     *          returned
2251     * @param type the type of element that {@code c} is permitted to hold
2252     * @return a dynamically typesafe view of the specified collection
2253     * @since 1.5
2254     */
2255    public static <E> Collection<E> checkedCollection(Collection<E> c,
2256                                                      Class<E> type) {
2257        return new CheckedCollection<>(c, type);
2258    }
2259
2260    @SuppressWarnings("unchecked")
2261    static <T> T[] zeroLengthArray(Class<T> type) {
2262        return (T[]) Array.newInstance(type, 0);
2263    }
2264
2265    /**
2266     * @serial include
2267     */
2268    static class CheckedCollection<E> implements Collection<E>, Serializable {
2269        private static final long serialVersionUID = 1578914078182001775L;
2270
2271        final Collection<E> c;
2272        final Class<E> type;
2273
2274        void typeCheck(Object o) {
2275            if (o != null && !type.isInstance(o))
2276                throw new ClassCastException(badElementMsg(o));
2277        }
2278
2279        private String badElementMsg(Object o) {
2280            return "Attempt to insert " + o.getClass() +
2281                " element into collection with element type " + type;
2282        }
2283
2284        CheckedCollection(Collection<E> c, Class<E> type) {
2285            if (c==null || type == null)
2286                throw new NullPointerException();
2287            this.c = c;
2288            this.type = type;
2289        }
2290
2291        public int size()                 { return c.size(); }
2292        public boolean isEmpty()          { return c.isEmpty(); }
2293        public boolean contains(Object o) { return c.contains(o); }
2294        public Object[] toArray()         { return c.toArray(); }
2295        public <T> T[] toArray(T[] a)     { return c.toArray(a); }
2296        public String toString()          { return c.toString(); }
2297        public boolean remove(Object o)   { return c.remove(o); }
2298        public void clear()               {        c.clear(); }
2299
2300        public boolean containsAll(Collection<?> coll) {
2301            return c.containsAll(coll);
2302        }
2303        public boolean removeAll(Collection<?> coll) {
2304            return c.removeAll(coll);
2305        }
2306        public boolean retainAll(Collection<?> coll) {
2307            return c.retainAll(coll);
2308        }
2309
2310        public Iterator<E> iterator() {
2311            final Iterator<E> it = c.iterator();
2312            return new Iterator<E>() {
2313                public boolean hasNext() { return it.hasNext(); }
2314                public E next()          { return it.next(); }
2315                public void remove()     {        it.remove(); }};
2316        }
2317
2318        public boolean add(E e) {
2319            typeCheck(e);
2320            return c.add(e);
2321        }
2322
2323        private E[] zeroLengthElementArray = null; // Lazily initialized
2324
2325        private E[] zeroLengthElementArray() {
2326            return zeroLengthElementArray != null ? zeroLengthElementArray :
2327                (zeroLengthElementArray = zeroLengthArray(type));
2328        }
2329
2330        @SuppressWarnings("unchecked")
2331        Collection<E> checkedCopyOf(Collection<? extends E> coll) {
2332            Object[] a = null;
2333            try {
2334                E[] z = zeroLengthElementArray();
2335                a = coll.toArray(z);
2336                // Defend against coll violating the toArray contract
2337                if (a.getClass() != z.getClass())
2338                    a = Arrays.copyOf(a, a.length, z.getClass());
2339            } catch (ArrayStoreException ignore) {
2340                // To get better and consistent diagnostics,
2341                // we call typeCheck explicitly on each element.
2342                // We call clone() to defend against coll retaining a
2343                // reference to the returned array and storing a bad
2344                // element into it after it has been type checked.
2345                a = coll.toArray().clone();
2346                for (Object o : a)
2347                    typeCheck(o);
2348            }
2349            // A slight abuse of the type system, but safe here.
2350            return (Collection<E>) Arrays.asList(a);
2351        }
2352
2353        public boolean addAll(Collection<? extends E> coll) {
2354            // Doing things this way insulates us from concurrent changes
2355            // in the contents of coll and provides all-or-nothing
2356            // semantics (which we wouldn't get if we type-checked each
2357            // element as we added it)
2358            return c.addAll(checkedCopyOf(coll));
2359        }
2360    }
2361
2362    /**
2363     * Returns a dynamically typesafe view of the specified set.
2364     * Any attempt to insert an element of the wrong type will result in
2365     * an immediate {@link ClassCastException}.  Assuming a set contains
2366     * no incorrectly typed elements prior to the time a dynamically typesafe
2367     * view is generated, and that all subsequent access to the set
2368     * takes place through the view, it is <i>guaranteed</i> that the
2369     * set cannot contain an incorrectly typed element.
2370     *
2371     * <p>A discussion of the use of dynamically typesafe views may be
2372     * found in the documentation for the {@link #checkedCollection
2373     * checkedCollection} method.
2374     *
2375     * <p>The returned set will be serializable if the specified set is
2376     * serializable.
2377     *
2378     * <p>Since {@code null} is considered to be a value of any reference
2379     * type, the returned set permits insertion of null elements whenever
2380     * the backing set does.
2381     *
2382     * @param s the set for which a dynamically typesafe view is to be
2383     *          returned
2384     * @param type the type of element that {@code s} is permitted to hold
2385     * @return a dynamically typesafe view of the specified set
2386     * @since 1.5
2387     */
2388    public static <E> Set<E> checkedSet(Set<E> s, Class<E> type) {
2389        return new CheckedSet<>(s, type);
2390    }
2391
2392    /**
2393     * @serial include
2394     */
2395    static class CheckedSet<E> extends CheckedCollection<E>
2396                                 implements Set<E>, Serializable
2397    {
2398        private static final long serialVersionUID = 4694047833775013803L;
2399
2400        CheckedSet(Set<E> s, Class<E> elementType) { super(s, elementType); }
2401
2402        public boolean equals(Object o) { return o == this || c.equals(o); }
2403        public int hashCode()           { return c.hashCode(); }
2404    }
2405
2406    /**
2407     * Returns a dynamically typesafe view of the specified sorted set.
2408     * Any attempt to insert an element of the wrong type will result in an
2409     * immediate {@link ClassCastException}.  Assuming a sorted set
2410     * contains no incorrectly typed elements prior to the time a
2411     * dynamically typesafe view is generated, and that all subsequent
2412     * access to the sorted set takes place through the view, it is
2413     * <i>guaranteed</i> that the sorted set cannot contain an incorrectly
2414     * typed element.
2415     *
2416     * <p>A discussion of the use of dynamically typesafe views may be
2417     * found in the documentation for the {@link #checkedCollection
2418     * checkedCollection} method.
2419     *
2420     * <p>The returned sorted set will be serializable if the specified sorted
2421     * set is serializable.
2422     *
2423     * <p>Since {@code null} is considered to be a value of any reference
2424     * type, the returned sorted set permits insertion of null elements
2425     * whenever the backing sorted set does.
2426     *
2427     * @param s the sorted set for which a dynamically typesafe view is to be
2428     *          returned
2429     * @param type the type of element that {@code s} is permitted to hold
2430     * @return a dynamically typesafe view of the specified sorted set
2431     * @since 1.5
2432     */
2433    public static <E> SortedSet<E> checkedSortedSet(SortedSet<E> s,
2434                                                    Class<E> type) {
2435        return new CheckedSortedSet<>(s, type);
2436    }
2437
2438    /**
2439     * @serial include
2440     */
2441    static class CheckedSortedSet<E> extends CheckedSet<E>
2442        implements SortedSet<E>, Serializable
2443    {
2444        private static final long serialVersionUID = 1599911165492914959L;
2445        private final SortedSet<E> ss;
2446
2447        CheckedSortedSet(SortedSet<E> s, Class<E> type) {
2448            super(s, type);
2449            ss = s;
2450        }
2451
2452        public Comparator<? super E> comparator() { return ss.comparator(); }
2453        public E first()                   { return ss.first(); }
2454        public E last()                    { return ss.last(); }
2455
2456        public SortedSet<E> subSet(E fromElement, E toElement) {
2457            return checkedSortedSet(ss.subSet(fromElement,toElement), type);
2458        }
2459        public SortedSet<E> headSet(E toElement) {
2460            return checkedSortedSet(ss.headSet(toElement), type);
2461        }
2462        public SortedSet<E> tailSet(E fromElement) {
2463            return checkedSortedSet(ss.tailSet(fromElement), type);
2464        }
2465    }
2466
2467    /**
2468     * Returns a dynamically typesafe view of the specified list.
2469     * Any attempt to insert an element of the wrong type will result in
2470     * an immediate {@link ClassCastException}.  Assuming a list contains
2471     * no incorrectly typed elements prior to the time a dynamically typesafe
2472     * view is generated, and that all subsequent access to the list
2473     * takes place through the view, it is <i>guaranteed</i> that the
2474     * list cannot contain an incorrectly typed element.
2475     *
2476     * <p>A discussion of the use of dynamically typesafe views may be
2477     * found in the documentation for the {@link #checkedCollection
2478     * checkedCollection} method.
2479     *
2480     * <p>The returned list will be serializable if the specified list
2481     * is serializable.
2482     *
2483     * <p>Since {@code null} is considered to be a value of any reference
2484     * type, the returned list permits insertion of null elements whenever
2485     * the backing list does.
2486     *
2487     * @param list the list for which a dynamically typesafe view is to be
2488     *             returned
2489     * @param type the type of element that {@code list} is permitted to hold
2490     * @return a dynamically typesafe view of the specified list
2491     * @since 1.5
2492     */
2493    public static <E> List<E> checkedList(List<E> list, Class<E> type) {
2494        return (list instanceof RandomAccess ?
2495                new CheckedRandomAccessList<>(list, type) :
2496                new CheckedList<>(list, type));
2497    }
2498
2499    /**
2500     * @serial include
2501     */
2502    static class CheckedList<E>
2503        extends CheckedCollection<E>
2504        implements List<E>
2505    {
2506        private static final long serialVersionUID = 65247728283967356L;
2507        final List<E> list;
2508
2509        CheckedList(List<E> list, Class<E> type) {
2510            super(list, type);
2511            this.list = list;
2512        }
2513
2514        public boolean equals(Object o)  { return o == this || list.equals(o); }
2515        public int hashCode()            { return list.hashCode(); }
2516        public E get(int index)          { return list.get(index); }
2517        public E remove(int index)       { return list.remove(index); }
2518        public int indexOf(Object o)     { return list.indexOf(o); }
2519        public int lastIndexOf(Object o) { return list.lastIndexOf(o); }
2520
2521        public E set(int index, E element) {
2522            typeCheck(element);
2523            return list.set(index, element);
2524        }
2525
2526        public void add(int index, E element) {
2527            typeCheck(element);
2528            list.add(index, element);
2529        }
2530
2531        public boolean addAll(int index, Collection<? extends E> c) {
2532            return list.addAll(index, checkedCopyOf(c));
2533        }
2534        public ListIterator<E> listIterator()   { return listIterator(0); }
2535
2536        public ListIterator<E> listIterator(final int index) {
2537            final ListIterator<E> i = list.listIterator(index);
2538
2539            return new ListIterator<E>() {
2540                public boolean hasNext()     { return i.hasNext(); }
2541                public E next()              { return i.next(); }
2542                public boolean hasPrevious() { return i.hasPrevious(); }
2543                public E previous()          { return i.previous(); }
2544                public int nextIndex()       { return i.nextIndex(); }
2545                public int previousIndex()   { return i.previousIndex(); }
2546                public void remove()         {        i.remove(); }
2547
2548                public void set(E e) {
2549                    typeCheck(e);
2550                    i.set(e);
2551                }
2552
2553                public void add(E e) {
2554                    typeCheck(e);
2555                    i.add(e);
2556                }
2557            };
2558        }
2559
2560        public List<E> subList(int fromIndex, int toIndex) {
2561            return new CheckedList<>(list.subList(fromIndex, toIndex), type);
2562        }
2563    }
2564
2565    /**
2566     * @serial include
2567     */
2568    static class CheckedRandomAccessList<E> extends CheckedList<E>
2569                                            implements RandomAccess
2570    {
2571        private static final long serialVersionUID = 1638200125423088369L;
2572
2573        CheckedRandomAccessList(List<E> list, Class<E> type) {
2574            super(list, type);
2575        }
2576
2577        public List<E> subList(int fromIndex, int toIndex) {
2578            return new CheckedRandomAccessList<>(
2579                list.subList(fromIndex, toIndex), type);
2580        }
2581    }
2582
2583    /**
2584     * Returns a dynamically typesafe view of the specified map.
2585     * Any attempt to insert a mapping whose key or value have the wrong
2586     * type will result in an immediate {@link ClassCastException}.
2587     * Similarly, any attempt to modify the value currently associated with
2588     * a key will result in an immediate {@link ClassCastException},
2589     * whether the modification is attempted directly through the map
2590     * itself, or through a {@link Map.Entry} instance obtained from the
2591     * map's {@link Map#entrySet() entry set} view.
2592     *
2593     * <p>Assuming a map contains no incorrectly typed keys or values
2594     * prior to the time a dynamically typesafe view is generated, and
2595     * that all subsequent access to the map takes place through the view
2596     * (or one of its collection views), it is <i>guaranteed</i> that the
2597     * map cannot contain an incorrectly typed key or value.
2598     *
2599     * <p>A discussion of the use of dynamically typesafe views may be
2600     * found in the documentation for the {@link #checkedCollection
2601     * checkedCollection} method.
2602     *
2603     * <p>The returned map will be serializable if the specified map is
2604     * serializable.
2605     *
2606     * <p>Since {@code null} is considered to be a value of any reference
2607     * type, the returned map permits insertion of null keys or values
2608     * whenever the backing map does.
2609     *
2610     * @param m the map for which a dynamically typesafe view is to be
2611     *          returned
2612     * @param keyType the type of key that {@code m} is permitted to hold
2613     * @param valueType the type of value that {@code m} is permitted to hold
2614     * @return a dynamically typesafe view of the specified map
2615     * @since 1.5
2616     */
2617    public static <K, V> Map<K, V> checkedMap(Map<K, V> m,
2618                                              Class<K> keyType,
2619                                              Class<V> valueType) {
2620        return new CheckedMap<>(m, keyType, valueType);
2621    }
2622
2623
2624    /**
2625     * @serial include
2626     */
2627    private static class CheckedMap<K,V>
2628        implements Map<K,V>, Serializable
2629    {
2630        private static final long serialVersionUID = 5742860141034234728L;
2631
2632        private final Map<K, V> m;
2633        final Class<K> keyType;
2634        final Class<V> valueType;
2635
2636        private void typeCheck(Object key, Object value) {
2637            if (key != null && !keyType.isInstance(key))
2638                throw new ClassCastException(badKeyMsg(key));
2639
2640            if (value != null && !valueType.isInstance(value))
2641                throw new ClassCastException(badValueMsg(value));
2642        }
2643
2644        private String badKeyMsg(Object key) {
2645            return "Attempt to insert " + key.getClass() +
2646                " key into map with key type " + keyType;
2647        }
2648
2649        private String badValueMsg(Object value) {
2650            return "Attempt to insert " + value.getClass() +
2651                " value into map with value type " + valueType;
2652        }
2653
2654        CheckedMap(Map<K, V> m, Class<K> keyType, Class<V> valueType) {
2655            if (m == null || keyType == null || valueType == null)
2656                throw new NullPointerException();
2657            this.m = m;
2658            this.keyType = keyType;
2659            this.valueType = valueType;
2660        }
2661
2662        public int size()                      { return m.size(); }
2663        public boolean isEmpty()               { return m.isEmpty(); }
2664        public boolean containsKey(Object key) { return m.containsKey(key); }
2665        public boolean containsValue(Object v) { return m.containsValue(v); }
2666        public V get(Object key)               { return m.get(key); }
2667        public V remove(Object key)            { return m.remove(key); }
2668        public void clear()                    { m.clear(); }
2669        public Set<K> keySet()                 { return m.keySet(); }
2670        public Collection<V> values()          { return m.values(); }
2671        public boolean equals(Object o)        { return o == this || m.equals(o); }
2672        public int hashCode()                  { return m.hashCode(); }
2673        public String toString()               { return m.toString(); }
2674
2675        public V put(K key, V value) {
2676            typeCheck(key, value);
2677            return m.put(key, value);
2678        }
2679
2680        @SuppressWarnings("unchecked")
2681        public void putAll(Map<? extends K, ? extends V> t) {
2682            // Satisfy the following goals:
2683            // - good diagnostics in case of type mismatch
2684            // - all-or-nothing semantics
2685            // - protection from malicious t
2686            // - correct behavior if t is a concurrent map
2687            Object[] entries = t.entrySet().toArray();
2688            List<Map.Entry<K,V>> checked = new ArrayList<>(entries.length);
2689            for (Object o : entries) {
2690                Map.Entry<?,?> e = (Map.Entry<?,?>) o;
2691                Object k = e.getKey();
2692                Object v = e.getValue();
2693                typeCheck(k, v);
2694                checked.add(
2695                    new AbstractMap.SimpleImmutableEntry<>((K) k, (V) v));
2696            }
2697            for (Map.Entry<K,V> e : checked)
2698                m.put(e.getKey(), e.getValue());
2699        }
2700
2701        private transient Set<Map.Entry<K,V>> entrySet = null;
2702
2703        public Set<Map.Entry<K,V>> entrySet() {
2704            if (entrySet==null)
2705                entrySet = new CheckedEntrySet<>(m.entrySet(), valueType);
2706            return entrySet;
2707        }
2708
2709        /**
2710         * We need this class in addition to CheckedSet as Map.Entry permits
2711         * modification of the backing Map via the setValue operation.  This
2712         * class is subtle: there are many possible attacks that must be
2713         * thwarted.
2714         *
2715         * @serial exclude
2716         */
2717        static class CheckedEntrySet<K,V> implements Set<Map.Entry<K,V>> {
2718            private final Set<Map.Entry<K,V>> s;
2719            private final Class<V> valueType;
2720
2721            CheckedEntrySet(Set<Map.Entry<K, V>> s, Class<V> valueType) {
2722                this.s = s;
2723                this.valueType = valueType;
2724            }
2725
2726            public int size()        { return s.size(); }
2727            public boolean isEmpty() { return s.isEmpty(); }
2728            public String toString() { return s.toString(); }
2729            public int hashCode()    { return s.hashCode(); }
2730            public void clear()      {        s.clear(); }
2731
2732            public boolean add(Map.Entry<K, V> e) {
2733                throw new UnsupportedOperationException();
2734            }
2735            public boolean addAll(Collection<? extends Map.Entry<K, V>> coll) {
2736                throw new UnsupportedOperationException();
2737            }
2738
2739            public Iterator<Map.Entry<K,V>> iterator() {
2740                final Iterator<Map.Entry<K, V>> i = s.iterator();
2741                final Class<V> valueType = this.valueType;
2742
2743                return new Iterator<Map.Entry<K,V>>() {
2744                    public boolean hasNext() { return i.hasNext(); }
2745                    public void remove()     { i.remove(); }
2746
2747                    public Map.Entry<K,V> next() {
2748                        return checkedEntry(i.next(), valueType);
2749                    }
2750                };
2751            }
2752
2753            @SuppressWarnings("unchecked")
2754            public Object[] toArray() {
2755                Object[] source = s.toArray();
2756
2757                /*
2758                 * Ensure that we don't get an ArrayStoreException even if
2759                 * s.toArray returns an array of something other than Object
2760                 */
2761                Object[] dest = (CheckedEntry.class.isInstance(
2762                    source.getClass().getComponentType()) ? source :
2763                                 new Object[source.length]);
2764
2765                for (int i = 0; i < source.length; i++)
2766                    dest[i] = checkedEntry((Map.Entry<K,V>)source[i],
2767                                           valueType);
2768                return dest;
2769            }
2770
2771            @SuppressWarnings("unchecked")
2772            public <T> T[] toArray(T[] a) {
2773                // We don't pass a to s.toArray, to avoid window of
2774                // vulnerability wherein an unscrupulous multithreaded client
2775                // could get his hands on raw (unwrapped) Entries from s.
2776                T[] arr = s.toArray(a.length==0 ? a : Arrays.copyOf(a, 0));
2777
2778                for (int i=0; i<arr.length; i++)
2779                    arr[i] = (T) checkedEntry((Map.Entry<K,V>)arr[i],
2780                                              valueType);
2781                if (arr.length > a.length)
2782                    return arr;
2783
2784                System.arraycopy(arr, 0, a, 0, arr.length);
2785                if (a.length > arr.length)
2786                    a[arr.length] = null;
2787                return a;
2788            }
2789
2790            /**
2791             * This method is overridden to protect the backing set against
2792             * an object with a nefarious equals function that senses
2793             * that the equality-candidate is Map.Entry and calls its
2794             * setValue method.
2795             */
2796            public boolean contains(Object o) {
2797                if (!(o instanceof Map.Entry))
2798                    return false;
2799                Map.Entry<?,?> e = (Map.Entry<?,?>) o;
2800                return s.contains(
2801                    (e instanceof CheckedEntry) ? e : checkedEntry(e, valueType));
2802            }
2803
2804            /**
2805             * The bulk collection methods are overridden to protect
2806             * against an unscrupulous collection whose contains(Object o)
2807             * method senses when o is a Map.Entry, and calls o.setValue.
2808             */
2809            public boolean containsAll(Collection<?> c) {
2810                for (Object o : c)
2811                    if (!contains(o)) // Invokes safe contains() above
2812                        return false;
2813                return true;
2814            }
2815
2816            public boolean remove(Object o) {
2817                if (!(o instanceof Map.Entry))
2818                    return false;
2819                return s.remove(new AbstractMap.SimpleImmutableEntry
2820                                <>((Map.Entry<?,?>)o));
2821            }
2822
2823            public boolean removeAll(Collection<?> c) {
2824                return batchRemove(c, false);
2825            }
2826            public boolean retainAll(Collection<?> c) {
2827                return batchRemove(c, true);
2828            }
2829            private boolean batchRemove(Collection<?> c, boolean complement) {
2830                boolean modified = false;
2831                Iterator<Map.Entry<K,V>> it = iterator();
2832                while (it.hasNext()) {
2833                    if (c.contains(it.next()) != complement) {
2834                        it.remove();
2835                        modified = true;
2836                    }
2837                }
2838                return modified;
2839            }
2840
2841            public boolean equals(Object o) {
2842                if (o == this)
2843                    return true;
2844                if (!(o instanceof Set))
2845                    return false;
2846                Set<?> that = (Set<?>) o;
2847                return that.size() == s.size()
2848                    && containsAll(that); // Invokes safe containsAll() above
2849            }
2850
2851            static <K,V,T> CheckedEntry<K,V,T> checkedEntry(Map.Entry<K,V> e,
2852                                                            Class<T> valueType) {
2853                return new CheckedEntry<>(e, valueType);
2854            }
2855
2856            /**
2857             * This "wrapper class" serves two purposes: it prevents
2858             * the client from modifying the backing Map, by short-circuiting
2859             * the setValue method, and it protects the backing Map against
2860             * an ill-behaved Map.Entry that attempts to modify another
2861             * Map.Entry when asked to perform an equality check.
2862             */
2863            private static class CheckedEntry<K,V,T> implements Map.Entry<K,V> {
2864                private final Map.Entry<K, V> e;
2865                private final Class<T> valueType;
2866
2867                CheckedEntry(Map.Entry<K, V> e, Class<T> valueType) {
2868                    this.e = e;
2869                    this.valueType = valueType;
2870                }
2871
2872                public K getKey()        { return e.getKey(); }
2873                public V getValue()      { return e.getValue(); }
2874                public int hashCode()    { return e.hashCode(); }
2875                public String toString() { return e.toString(); }
2876
2877                public V setValue(V value) {
2878                    if (value != null && !valueType.isInstance(value))
2879                        throw new ClassCastException(badValueMsg(value));
2880                    return e.setValue(value);
2881                }
2882
2883                private String badValueMsg(Object value) {
2884                    return "Attempt to insert " + value.getClass() +
2885                        " value into map with value type " + valueType;
2886                }
2887
2888                public boolean equals(Object o) {
2889                    if (o == this)
2890                        return true;
2891                    if (!(o instanceof Map.Entry))
2892                        return false;
2893                    return e.equals(new AbstractMap.SimpleImmutableEntry
2894                                    <>((Map.Entry<?,?>)o));
2895                }
2896            }
2897        }
2898    }
2899
2900    /**
2901     * Returns a dynamically typesafe view of the specified sorted map.
2902     * Any attempt to insert a mapping whose key or value have the wrong
2903     * type will result in an immediate {@link ClassCastException}.
2904     * Similarly, any attempt to modify the value currently associated with
2905     * a key will result in an immediate {@link ClassCastException},
2906     * whether the modification is attempted directly through the map
2907     * itself, or through a {@link Map.Entry} instance obtained from the
2908     * map's {@link Map#entrySet() entry set} view.
2909     *
2910     * <p>Assuming a map contains no incorrectly typed keys or values
2911     * prior to the time a dynamically typesafe view is generated, and
2912     * that all subsequent access to the map takes place through the view
2913     * (or one of its collection views), it is <i>guaranteed</i> that the
2914     * map cannot contain an incorrectly typed key or value.
2915     *
2916     * <p>A discussion of the use of dynamically typesafe views may be
2917     * found in the documentation for the {@link #checkedCollection
2918     * checkedCollection} method.
2919     *
2920     * <p>The returned map will be serializable if the specified map is
2921     * serializable.
2922     *
2923     * <p>Since {@code null} is considered to be a value of any reference
2924     * type, the returned map permits insertion of null keys or values
2925     * whenever the backing map does.
2926     *
2927     * @param m the map for which a dynamically typesafe view is to be
2928     *          returned
2929     * @param keyType the type of key that {@code m} is permitted to hold
2930     * @param valueType the type of value that {@code m} is permitted to hold
2931     * @return a dynamically typesafe view of the specified map
2932     * @since 1.5
2933     */
2934    public static <K,V> SortedMap<K,V> checkedSortedMap(SortedMap<K, V> m,
2935                                                        Class<K> keyType,
2936                                                        Class<V> valueType) {
2937        return new CheckedSortedMap<>(m, keyType, valueType);
2938    }
2939
2940    /**
2941     * @serial include
2942     */
2943    static class CheckedSortedMap<K,V> extends CheckedMap<K,V>
2944        implements SortedMap<K,V>, Serializable
2945    {
2946        private static final long serialVersionUID = 1599671320688067438L;
2947
2948        private final SortedMap<K, V> sm;
2949
2950        CheckedSortedMap(SortedMap<K, V> m,
2951                         Class<K> keyType, Class<V> valueType) {
2952            super(m, keyType, valueType);
2953            sm = m;
2954        }
2955
2956        public Comparator<? super K> comparator() { return sm.comparator(); }
2957        public K firstKey()                       { return sm.firstKey(); }
2958        public K lastKey()                        { return sm.lastKey(); }
2959
2960        public SortedMap<K,V> subMap(K fromKey, K toKey) {
2961            return checkedSortedMap(sm.subMap(fromKey, toKey),
2962                                    keyType, valueType);
2963        }
2964        public SortedMap<K,V> headMap(K toKey) {
2965            return checkedSortedMap(sm.headMap(toKey), keyType, valueType);
2966        }
2967        public SortedMap<K,V> tailMap(K fromKey) {
2968            return checkedSortedMap(sm.tailMap(fromKey), keyType, valueType);
2969        }
2970    }
2971
2972    // Empty collections
2973
2974    /**
2975     * Returns an iterator that has no elements.  More precisely,
2976     *
2977     * <ul compact>
2978     *
2979     * <li>{@link Iterator#hasNext hasNext} always returns {@code
2980     * false}.
2981     *
2982     * <li>{@link Iterator#next next} always throws {@link
2983     * NoSuchElementException}.
2984     *
2985     * <li>{@link Iterator#remove remove} always throws {@link
2986     * IllegalStateException}.
2987     *
2988     * </ul>
2989     *
2990     * <p>Implementations of this method are permitted, but not
2991     * required, to return the same object from multiple invocations.
2992     *
2993     * @return an empty iterator
2994     * @since 1.7
2995     */
2996    @SuppressWarnings("unchecked")
2997    public static <T> Iterator<T> emptyIterator() {
2998        return (Iterator<T>) EmptyIterator.EMPTY_ITERATOR;
2999    }
3000
3001    private static class EmptyIterator<E> implements Iterator<E> {
3002        static final EmptyIterator<Object> EMPTY_ITERATOR
3003            = new EmptyIterator<>();
3004
3005        public boolean hasNext() { return false; }
3006        public E next() { throw new NoSuchElementException(); }
3007        public void remove() { throw new IllegalStateException(); }
3008    }
3009
3010    /**
3011     * Returns a list iterator that has no elements.  More precisely,
3012     *
3013     * <ul compact>
3014     *
3015     * <li>{@link Iterator#hasNext hasNext} and {@link
3016     * ListIterator#hasPrevious hasPrevious} always return {@code
3017     * false}.
3018     *
3019     * <li>{@link Iterator#next next} and {@link ListIterator#previous
3020     * previous} always throw {@link NoSuchElementException}.
3021     *
3022     * <li>{@link Iterator#remove remove} and {@link ListIterator#set
3023     * set} always throw {@link IllegalStateException}.
3024     *
3025     * <li>{@link ListIterator#add add} always throws {@link
3026     * UnsupportedOperationException}.
3027     *
3028     * <li>{@link ListIterator#nextIndex nextIndex} always returns
3029     * {@code 0} .
3030     *
3031     * <li>{@link ListIterator#previousIndex previousIndex} always
3032     * returns {@code -1}.
3033     *
3034     * </ul>
3035     *
3036     * <p>Implementations of this method are permitted, but not
3037     * required, to return the same object from multiple invocations.
3038     *
3039     * @return an empty list iterator
3040     * @since 1.7
3041     */
3042    @SuppressWarnings("unchecked")
3043    public static <T> ListIterator<T> emptyListIterator() {
3044        return (ListIterator<T>) EmptyListIterator.EMPTY_ITERATOR;
3045    }
3046
3047    private static class EmptyListIterator<E>
3048        extends EmptyIterator<E>
3049        implements ListIterator<E>
3050    {
3051        static final EmptyListIterator<Object> EMPTY_ITERATOR
3052            = new EmptyListIterator<>();
3053
3054        public boolean hasPrevious() { return false; }
3055        public E previous() { throw new NoSuchElementException(); }
3056        public int nextIndex()     { return 0; }
3057        public int previousIndex() { return -1; }
3058        public void set(E e) { throw new IllegalStateException(); }
3059        public void add(E e) { throw new UnsupportedOperationException(); }
3060    }
3061
3062    /**
3063     * Returns an enumeration that has no elements.  More precisely,
3064     *
3065     * <ul compact>
3066     *
3067     * <li>{@link Enumeration#hasMoreElements hasMoreElements} always
3068     * returns {@code false}.
3069     *
3070     * <li> {@link Enumeration#nextElement nextElement} always throws
3071     * {@link NoSuchElementException}.
3072     *
3073     * </ul>
3074     *
3075     * <p>Implementations of this method are permitted, but not
3076     * required, to return the same object from multiple invocations.
3077     *
3078     * @return an empty enumeration
3079     * @since 1.7
3080     */
3081    @SuppressWarnings("unchecked")
3082    public static <T> Enumeration<T> emptyEnumeration() {
3083        return (Enumeration<T>) EmptyEnumeration.EMPTY_ENUMERATION;
3084    }
3085
3086    private static class EmptyEnumeration<E> implements Enumeration<E> {
3087        static final EmptyEnumeration<Object> EMPTY_ENUMERATION
3088            = new EmptyEnumeration<>();
3089
3090        public boolean hasMoreElements() { return false; }
3091        public E nextElement() { throw new NoSuchElementException(); }
3092    }
3093
3094    /**
3095     * The empty set (immutable).  This set is serializable.
3096     *
3097     * @see #emptySet()
3098     */
3099    @SuppressWarnings("unchecked")
3100    public static final Set EMPTY_SET = new EmptySet<>();
3101
3102    /**
3103     * Returns the empty set (immutable).  This set is serializable.
3104     * Unlike the like-named field, this method is parameterized.
3105     *
3106     * <p>This example illustrates the type-safe way to obtain an empty set:
3107     * <pre>
3108     *     Set&lt;String&gt; s = Collections.emptySet();
3109     * </pre>
3110     * Implementation note:  Implementations of this method need not
3111     * create a separate <tt>Set</tt> object for each call.   Using this
3112     * method is likely to have comparable cost to using the like-named
3113     * field.  (Unlike this method, the field does not provide type safety.)
3114     *
3115     * @see #EMPTY_SET
3116     * @since 1.5
3117     */
3118    @SuppressWarnings("unchecked")
3119    public static final <T> Set<T> emptySet() {
3120        return (Set<T>) EMPTY_SET;
3121    }
3122
3123    /**
3124     * @serial include
3125     */
3126    private static class EmptySet<E>
3127        extends AbstractSet<E>
3128        implements Serializable
3129    {
3130        private static final long serialVersionUID = 1582296315990362920L;
3131
3132        public Iterator<E> iterator() { return emptyIterator(); }
3133
3134        public int size() {return 0;}
3135        public boolean isEmpty() {return true;}
3136
3137        public boolean contains(Object obj) {return false;}
3138        public boolean containsAll(Collection<?> c) { return c.isEmpty(); }
3139
3140        public Object[] toArray() { return new Object[0]; }
3141
3142        public <T> T[] toArray(T[] a) {
3143            if (a.length > 0)
3144                a[0] = null;
3145            return a;
3146        }
3147
3148        // Preserves singleton property
3149        private Object readResolve() {
3150            return EMPTY_SET;
3151        }
3152    }
3153
3154    /**
3155     * The empty list (immutable).  This list is serializable.
3156     *
3157     * @see #emptyList()
3158     */
3159    @SuppressWarnings("unchecked")
3160    public static final List EMPTY_LIST = new EmptyList<>();
3161
3162    /**
3163     * Returns the empty list (immutable).  This list is serializable.
3164     *
3165     * <p>This example illustrates the type-safe way to obtain an empty list:
3166     * <pre>
3167     *     List&lt;String&gt; s = Collections.emptyList();
3168     * </pre>
3169     * Implementation note:  Implementations of this method need not
3170     * create a separate <tt>List</tt> object for each call.   Using this
3171     * method is likely to have comparable cost to using the like-named
3172     * field.  (Unlike this method, the field does not provide type safety.)
3173     *
3174     * @see #EMPTY_LIST
3175     * @since 1.5
3176     */
3177    @SuppressWarnings("unchecked")
3178    public static final <T> List<T> emptyList() {
3179        return (List<T>) EMPTY_LIST;
3180    }
3181
3182    /**
3183     * @serial include
3184     */
3185    private static class EmptyList<E>
3186        extends AbstractList<E>
3187        implements RandomAccess, Serializable {
3188        private static final long serialVersionUID = 8842843931221139166L;
3189
3190        public Iterator<E> iterator() {
3191            return emptyIterator();
3192        }
3193        public ListIterator<E> listIterator() {
3194            return emptyListIterator();
3195        }
3196
3197        public int size() {return 0;}
3198        public boolean isEmpty() {return true;}
3199
3200        public boolean contains(Object obj) {return false;}
3201        public boolean containsAll(Collection<?> c) { return c.isEmpty(); }
3202
3203        public Object[] toArray() { return new Object[0]; }
3204
3205        public <T> T[] toArray(T[] a) {
3206            if (a.length > 0)
3207                a[0] = null;
3208            return a;
3209        }
3210
3211        public E get(int index) {
3212            throw new IndexOutOfBoundsException("Index: "+index);
3213        }
3214
3215        public boolean equals(Object o) {
3216            return (o instanceof List) && ((List<?>)o).isEmpty();
3217        }
3218
3219        public int hashCode() { return 1; }
3220
3221        // Preserves singleton property
3222        private Object readResolve() {
3223            return EMPTY_LIST;
3224        }
3225    }
3226
3227    /**
3228     * The empty map (immutable).  This map is serializable.
3229     *
3230     * @see #emptyMap()
3231     * @since 1.3
3232     */
3233    @SuppressWarnings("unchecked")
3234    public static final Map EMPTY_MAP = new EmptyMap<>();
3235
3236    /**
3237     * Returns the empty map (immutable).  This map is serializable.
3238     *
3239     * <p>This example illustrates the type-safe way to obtain an empty set:
3240     * <pre>
3241     *     Map&lt;String, Date&gt; s = Collections.emptyMap();
3242     * </pre>
3243     * Implementation note:  Implementations of this method need not
3244     * create a separate <tt>Map</tt> object for each call.   Using this
3245     * method is likely to have comparable cost to using the like-named
3246     * field.  (Unlike this method, the field does not provide type safety.)
3247     *
3248     * @see #EMPTY_MAP
3249     * @since 1.5
3250     */
3251    @SuppressWarnings("unchecked")
3252    public static final <K,V> Map<K,V> emptyMap() {
3253        return (Map<K,V>) EMPTY_MAP;
3254    }
3255
3256    /**
3257     * @serial include
3258     */
3259    private static class EmptyMap<K,V>
3260        extends AbstractMap<K,V>
3261        implements Serializable
3262    {
3263        private static final long serialVersionUID = 6428348081105594320L;
3264
3265        public int size()                          {return 0;}
3266        public boolean isEmpty()                   {return true;}
3267        public boolean containsKey(Object key)     {return false;}
3268        public boolean containsValue(Object value) {return false;}
3269        public V get(Object key)                   {return null;}
3270        public Set<K> keySet()                     {return emptySet();}
3271        public Collection<V> values()              {return emptySet();}
3272        public Set<Map.Entry<K,V>> entrySet()      {return emptySet();}
3273
3274        public boolean equals(Object o) {
3275            return (o instanceof Map) && ((Map<?,?>)o).isEmpty();
3276        }
3277
3278        public int hashCode()                      {return 0;}
3279
3280        // Preserves singleton property
3281        private Object readResolve() {
3282            return EMPTY_MAP;
3283        }
3284    }
3285
3286    // Singleton collections
3287
3288    /**
3289     * Returns an immutable set containing only the specified object.
3290     * The returned set is serializable.
3291     *
3292     * @param o the sole object to be stored in the returned set.
3293     * @return an immutable set containing only the specified object.
3294     */
3295    public static <T> Set<T> singleton(T o) {
3296        return new SingletonSet<>(o);
3297    }
3298
3299    static <E> Iterator<E> singletonIterator(final E e) {
3300        return new Iterator<E>() {
3301            private boolean hasNext = true;
3302            public boolean hasNext() {
3303                return hasNext;
3304            }
3305            public E next() {
3306                if (hasNext) {
3307                    hasNext = false;
3308                    return e;
3309                }
3310                throw new NoSuchElementException();
3311            }
3312            public void remove() {
3313                throw new UnsupportedOperationException();
3314            }
3315        };
3316    }
3317
3318    /**
3319     * @serial include
3320     */
3321    private static class SingletonSet<E>
3322        extends AbstractSet<E>
3323        implements Serializable
3324    {
3325        private static final long serialVersionUID = 3193687207550431679L;
3326
3327        private final E element;
3328
3329        SingletonSet(E e) {element = e;}
3330
3331        public Iterator<E> iterator() {
3332            return singletonIterator(element);
3333        }
3334
3335        public int size() {return 1;}
3336
3337        public boolean contains(Object o) {return eq(o, element);}
3338    }
3339
3340    /**
3341     * Returns an immutable list containing only the specified object.
3342     * The returned list is serializable.
3343     *
3344     * @param o the sole object to be stored in the returned list.
3345     * @return an immutable list containing only the specified object.
3346     * @since 1.3
3347     */
3348    public static <T> List<T> singletonList(T o) {
3349        return new SingletonList<>(o);
3350    }
3351
3352    /**
3353     * @serial include
3354     */
3355    private static class SingletonList<E>
3356        extends AbstractList<E>
3357        implements RandomAccess, Serializable {
3358
3359        private static final long serialVersionUID = 3093736618740652951L;
3360
3361        private final E element;
3362
3363        SingletonList(E obj)                {element = obj;}
3364
3365        public Iterator<E> iterator() {
3366            return singletonIterator(element);
3367        }
3368
3369        public int size()                   {return 1;}
3370
3371        public boolean contains(Object obj) {return eq(obj, element);}
3372
3373        public E get(int index) {
3374            if (index != 0)
3375              throw new IndexOutOfBoundsException("Index: "+index+", Size: 1");
3376            return element;
3377        }
3378    }
3379
3380    /**
3381     * Returns an immutable map, mapping only the specified key to the
3382     * specified value.  The returned map is serializable.
3383     *
3384     * @param key the sole key to be stored in the returned map.
3385     * @param value the value to which the returned map maps <tt>key</tt>.
3386     * @return an immutable map containing only the specified key-value
3387     *         mapping.
3388     * @since 1.3
3389     */
3390    public static <K,V> Map<K,V> singletonMap(K key, V value) {
3391        return new SingletonMap<>(key, value);
3392    }
3393
3394    /**
3395     * @serial include
3396     */
3397    private static class SingletonMap<K,V>
3398          extends AbstractMap<K,V>
3399          implements Serializable {
3400        private static final long serialVersionUID = -6979724477215052911L;
3401
3402        private final K k;
3403        private final V v;
3404
3405        SingletonMap(K key, V value) {
3406            k = key;
3407            v = value;
3408        }
3409
3410        public int size()                          {return 1;}
3411
3412        public boolean isEmpty()                   {return false;}
3413
3414        public boolean containsKey(Object key)     {return eq(key, k);}
3415
3416        public boolean containsValue(Object value) {return eq(value, v);}
3417
3418        public V get(Object key)                   {return (eq(key, k) ? v : null);}
3419
3420        private transient Set<K> keySet = null;
3421        private transient Set<Map.Entry<K,V>> entrySet = null;
3422        private transient Collection<V> values = null;
3423
3424        public Set<K> keySet() {
3425            if (keySet==null)
3426                keySet = singleton(k);
3427            return keySet;
3428        }
3429
3430        public Set<Map.Entry<K,V>> entrySet() {
3431            if (entrySet==null)
3432                entrySet = Collections.<Map.Entry<K,V>>singleton(
3433                    new SimpleImmutableEntry<>(k, v));
3434            return entrySet;
3435        }
3436
3437        public Collection<V> values() {
3438            if (values==null)
3439                values = singleton(v);
3440            return values;
3441        }
3442
3443    }
3444
3445    // Miscellaneous
3446
3447    /**
3448     * Returns an immutable list consisting of <tt>n</tt> copies of the
3449     * specified object.  The newly allocated data object is tiny (it contains
3450     * a single reference to the data object).  This method is useful in
3451     * combination with the <tt>List.addAll</tt> method to grow lists.
3452     * The returned list is serializable.
3453     *
3454     * @param  n the number of elements in the returned list.
3455     * @param  o the element to appear repeatedly in the returned list.
3456     * @return an immutable list consisting of <tt>n</tt> copies of the
3457     *         specified object.
3458     * @throws IllegalArgumentException if {@code n < 0}
3459     * @see    List#addAll(Collection)
3460     * @see    List#addAll(int, Collection)
3461     */
3462    public static <T> List<T> nCopies(int n, T o) {
3463        if (n < 0)
3464            throw new IllegalArgumentException("List length = " + n);
3465        return new CopiesList<>(n, o);
3466    }
3467
3468    /**
3469     * @serial include
3470     */
3471    private static class CopiesList<E>
3472        extends AbstractList<E>
3473        implements RandomAccess, Serializable
3474    {
3475        private static final long serialVersionUID = 2739099268398711800L;
3476
3477        final int n;
3478        final E element;
3479
3480        CopiesList(int n, E e) {
3481            assert n >= 0;
3482            this.n = n;
3483            element = e;
3484        }
3485
3486        public int size() {
3487            return n;
3488        }
3489
3490        public boolean contains(Object obj) {
3491            return n != 0 && eq(obj, element);
3492        }
3493
3494        public int indexOf(Object o) {
3495            return contains(o) ? 0 : -1;
3496        }
3497
3498        public int lastIndexOf(Object o) {
3499            return contains(o) ? n - 1 : -1;
3500        }
3501
3502        public E get(int index) {
3503            if (index < 0 || index >= n)
3504                throw new IndexOutOfBoundsException("Index: "+index+
3505                                                    ", Size: "+n);
3506            return element;
3507        }
3508
3509        public Object[] toArray() {
3510            final Object[] a = new Object[n];
3511            if (element != null)
3512                Arrays.fill(a, 0, n, element);
3513            return a;
3514        }
3515
3516        public <T> T[] toArray(T[] a) {
3517            final int n = this.n;
3518            if (a.length < n) {
3519                a = (T[])java.lang.reflect.Array
3520                    .newInstance(a.getClass().getComponentType(), n);
3521                if (element != null)
3522                    Arrays.fill(a, 0, n, element);
3523            } else {
3524                Arrays.fill(a, 0, n, element);
3525                if (a.length > n)
3526                    a[n] = null;
3527            }
3528            return a;
3529        }
3530
3531        public List<E> subList(int fromIndex, int toIndex) {
3532            if (fromIndex < 0)
3533                throw new IndexOutOfBoundsException("fromIndex = " + fromIndex);
3534            if (toIndex > n)
3535                throw new IndexOutOfBoundsException("toIndex = " + toIndex);
3536            if (fromIndex > toIndex)
3537                throw new IllegalArgumentException("fromIndex(" + fromIndex +
3538                                                   ") > toIndex(" + toIndex + ")");
3539            return new CopiesList<>(toIndex - fromIndex, element);
3540        }
3541    }
3542
3543    /**
3544     * Returns a comparator that imposes the reverse of the <em>natural
3545     * ordering</em> on a collection of objects that implement the
3546     * {@code Comparable} interface.  (The natural ordering is the ordering
3547     * imposed by the objects' own {@code compareTo} method.)  This enables a
3548     * simple idiom for sorting (or maintaining) collections (or arrays) of
3549     * objects that implement the {@code Comparable} interface in
3550     * reverse-natural-order.  For example, suppose {@code a} is an array of
3551     * strings. Then: <pre>
3552     *          Arrays.sort(a, Collections.reverseOrder());
3553     * </pre> sorts the array in reverse-lexicographic (alphabetical) order.<p>
3554     *
3555     * The returned comparator is serializable.
3556     *
3557     * @return A comparator that imposes the reverse of the <i>natural
3558     *         ordering</i> on a collection of objects that implement
3559     *         the <tt>Comparable</tt> interface.
3560     * @see Comparable
3561     */
3562    public static <T> Comparator<T> reverseOrder() {
3563        return (Comparator<T>) ReverseComparator.REVERSE_ORDER;
3564    }
3565
3566    /**
3567     * @serial include
3568     */
3569    private static class ReverseComparator
3570        implements Comparator<Comparable<Object>>, Serializable {
3571
3572        private static final long serialVersionUID = 7207038068494060240L;
3573
3574        static final ReverseComparator REVERSE_ORDER
3575            = new ReverseComparator();
3576
3577        public int compare(Comparable<Object> c1, Comparable<Object> c2) {
3578            return c2.compareTo(c1);
3579        }
3580
3581        private Object readResolve() { return reverseOrder(); }
3582    }
3583
3584    /**
3585     * Returns a comparator that imposes the reverse ordering of the specified
3586     * comparator.  If the specified comparator is {@code null}, this method is
3587     * equivalent to {@link #reverseOrder()} (in other words, it returns a
3588     * comparator that imposes the reverse of the <em>natural ordering</em> on
3589     * a collection of objects that implement the Comparable interface).
3590     *
3591     * <p>The returned comparator is serializable (assuming the specified
3592     * comparator is also serializable or {@code null}).
3593     *
3594     * @param cmp a comparator who's ordering is to be reversed by the returned
3595     * comparator or {@code null}
3596     * @return A comparator that imposes the reverse ordering of the
3597     *         specified comparator.
3598     * @since 1.5
3599     */
3600    public static <T> Comparator<T> reverseOrder(Comparator<T> cmp) {
3601        if (cmp == null)
3602            return reverseOrder();
3603
3604        if (cmp instanceof ReverseComparator2)
3605            return ((ReverseComparator2<T>)cmp).cmp;
3606
3607        return new ReverseComparator2<>(cmp);
3608    }
3609
3610    /**
3611     * @serial include
3612     */
3613    private static class ReverseComparator2<T> implements Comparator<T>,
3614        Serializable
3615    {
3616        private static final long serialVersionUID = 4374092139857L;
3617
3618        /**
3619         * The comparator specified in the static factory.  This will never
3620         * be null, as the static factory returns a ReverseComparator
3621         * instance if its argument is null.
3622         *
3623         * @serial
3624         */
3625        final Comparator<T> cmp;
3626
3627        ReverseComparator2(Comparator<T> cmp) {
3628            assert cmp != null;
3629            this.cmp = cmp;
3630        }
3631
3632        public int compare(T t1, T t2) {
3633            return cmp.compare(t2, t1);
3634        }
3635
3636        public boolean equals(Object o) {
3637            return (o == this) ||
3638                (o instanceof ReverseComparator2 &&
3639                 cmp.equals(((ReverseComparator2)o).cmp));
3640        }
3641
3642        public int hashCode() {
3643            return cmp.hashCode() ^ Integer.MIN_VALUE;
3644        }
3645    }
3646
3647    /**
3648     * Returns an enumeration over the specified collection.  This provides
3649     * interoperability with legacy APIs that require an enumeration
3650     * as input.
3651     *
3652     * @param c the collection for which an enumeration is to be returned.
3653     * @return an enumeration over the specified collection.
3654     * @see Enumeration
3655     */
3656    public static <T> Enumeration<T> enumeration(final Collection<T> c) {
3657        return new Enumeration<T>() {
3658            private final Iterator<T> i = c.iterator();
3659
3660            public boolean hasMoreElements() {
3661                return i.hasNext();
3662            }
3663
3664            public T nextElement() {
3665                return i.next();
3666            }
3667        };
3668    }
3669
3670    /**
3671     * Returns an array list containing the elements returned by the
3672     * specified enumeration in the order they are returned by the
3673     * enumeration.  This method provides interoperability between
3674     * legacy APIs that return enumerations and new APIs that require
3675     * collections.
3676     *
3677     * @param e enumeration providing elements for the returned
3678     *          array list
3679     * @return an array list containing the elements returned
3680     *         by the specified enumeration.
3681     * @since 1.4
3682     * @see Enumeration
3683     * @see ArrayList
3684     */
3685    public static <T> ArrayList<T> list(Enumeration<T> e) {
3686        ArrayList<T> l = new ArrayList<>();
3687        while (e.hasMoreElements())
3688            l.add(e.nextElement());
3689        return l;
3690    }
3691
3692    /**
3693     * Returns true if the specified arguments are equal, or both null.
3694     */
3695    static boolean eq(Object o1, Object o2) {
3696        return o1==null ? o2==null : o1.equals(o2);
3697    }
3698
3699    /**
3700     * Returns the number of elements in the specified collection equal to the
3701     * specified object.  More formally, returns the number of elements
3702     * <tt>e</tt> in the collection such that
3703     * <tt>(o == null ? e == null : o.equals(e))</tt>.
3704     *
3705     * @param c the collection in which to determine the frequency
3706     *     of <tt>o</tt>
3707     * @param o the object whose frequency is to be determined
3708     * @throws NullPointerException if <tt>c</tt> is null
3709     * @since 1.5
3710     */
3711    public static int frequency(Collection<?> c, Object o) {
3712        int result = 0;
3713        if (o == null) {
3714            for (Object e : c)
3715                if (e == null)
3716                    result++;
3717        } else {
3718            for (Object e : c)
3719                if (o.equals(e))
3720                    result++;
3721        }
3722        return result;
3723    }
3724
3725    /**
3726     * Returns {@code true} if the two specified collections have no
3727     * elements in common.
3728     *
3729     * <p>Care must be exercised if this method is used on collections that
3730     * do not comply with the general contract for {@code Collection}.
3731     * Implementations may elect to iterate over either collection and test
3732     * for containment in the other collection (or to perform any equivalent
3733     * computation).  If either collection uses a nonstandard equality test
3734     * (as does a {@link SortedSet} whose ordering is not <em>compatible with
3735     * equals</em>, or the key set of an {@link IdentityHashMap}), both
3736     * collections must use the same nonstandard equality test, or the
3737     * result of this method is undefined.
3738     *
3739     * <p>Care must also be exercised when using collections that have
3740     * restrictions on the elements that they may contain. Collection
3741     * implementations are allowed to throw exceptions for any operation
3742     * involving elements they deem ineligible. For absolute safety the
3743     * specified collections should contain only elements which are
3744     * eligible elements for both collections.
3745     *
3746     * <p>Note that it is permissible to pass the same collection in both
3747     * parameters, in which case the method will return {@code true} if and
3748     * only if the collection is empty.
3749     *
3750     * @param c1 a collection
3751     * @param c2 a collection
3752     * @return {@code true} if the two specified collections have no
3753     * elements in common.
3754     * @throws NullPointerException if either collection is {@code null}.
3755     * @throws NullPointerException if one collection contains a {@code null}
3756     * element and {@code null} is not an eligible element for the other collection.
3757     * (<a href="Collection.html#optional-restrictions">optional</a>)
3758     * @throws ClassCastException if one collection contains an element that is
3759     * of a type which is ineligible for the other collection.
3760     * (<a href="Collection.html#optional-restrictions">optional</a>)
3761     * @since 1.5
3762     */
3763    public static boolean disjoint(Collection<?> c1, Collection<?> c2) {
3764        // The collection to be used for contains(). Preference is given to
3765        // the collection who's contains() has lower O() complexity.
3766        Collection<?> contains = c2;
3767        // The collection to be iterated. If the collections' contains() impl
3768        // are of different O() complexity, the collection with slower
3769        // contains() will be used for iteration. For collections who's
3770        // contains() are of the same complexity then best performance is
3771        // achieved by iterating the smaller collection.
3772        Collection<?> iterate = c1;
3773
3774        // Performance optimization cases. The heuristics:
3775        //   1. Generally iterate over c1.
3776        //   2. If c1 is a Set then iterate over c2.
3777        //   3. If either collection is empty then result is always true.
3778        //   4. Iterate over the smaller Collection.
3779        if (c1 instanceof Set) {
3780            // Use c1 for contains as a Set's contains() is expected to perform
3781            // better than O(N/2)
3782            iterate = c2;
3783            contains = c1;
3784        } else if (!(c2 instanceof Set)) {
3785            // Both are mere Collections. Iterate over smaller collection.
3786            // Example: If c1 contains 3 elements and c2 contains 50 elements and
3787            // assuming contains() requires ceiling(N/2) comparisons then
3788            // checking for all c1 elements in c2 would require 75 comparisons
3789            // (3 * ceiling(50/2)) vs. checking all c2 elements in c1 requiring
3790            // 100 comparisons (50 * ceiling(3/2)).
3791            int c1size = c1.size();
3792            int c2size = c2.size();
3793            if (c1size == 0 || c2size == 0) {
3794                // At least one collection is empty. Nothing will match.
3795                return true;
3796            }
3797
3798            if (c1size > c2size) {
3799                iterate = c2;
3800                contains = c1;
3801            }
3802        }
3803
3804        for (Object e : iterate) {
3805            if (contains.contains(e)) {
3806               // Found a common element. Collections are not disjoint.
3807                return false;
3808            }
3809        }
3810
3811        // No common elements were found.
3812        return true;
3813    }
3814
3815    /**
3816     * Adds all of the specified elements to the specified collection.
3817     * Elements to be added may be specified individually or as an array.
3818     * The behavior of this convenience method is identical to that of
3819     * <tt>c.addAll(Arrays.asList(elements))</tt>, but this method is likely
3820     * to run significantly faster under most implementations.
3821     *
3822     * <p>When elements are specified individually, this method provides a
3823     * convenient way to add a few elements to an existing collection:
3824     * <pre>
3825     *     Collections.addAll(flavors, "Peaches 'n Plutonium", "Rocky Racoon");
3826     * </pre>
3827     *
3828     * @param c the collection into which <tt>elements</tt> are to be inserted
3829     * @param elements the elements to insert into <tt>c</tt>
3830     * @return <tt>true</tt> if the collection changed as a result of the call
3831     * @throws UnsupportedOperationException if <tt>c</tt> does not support
3832     *         the <tt>add</tt> operation
3833     * @throws NullPointerException if <tt>elements</tt> contains one or more
3834     *         null values and <tt>c</tt> does not permit null elements, or
3835     *         if <tt>c</tt> or <tt>elements</tt> are <tt>null</tt>
3836     * @throws IllegalArgumentException if some property of a value in
3837     *         <tt>elements</tt> prevents it from being added to <tt>c</tt>
3838     * @see Collection#addAll(Collection)
3839     * @since 1.5
3840     */
3841    @SafeVarargs
3842    public static <T> boolean addAll(Collection<? super T> c, T... elements) {
3843        boolean result = false;
3844        for (T element : elements)
3845            result |= c.add(element);
3846        return result;
3847    }
3848
3849    /**
3850     * Returns a set backed by the specified map.  The resulting set displays
3851     * the same ordering, concurrency, and performance characteristics as the
3852     * backing map.  In essence, this factory method provides a {@link Set}
3853     * implementation corresponding to any {@link Map} implementation.  There
3854     * is no need to use this method on a {@link Map} implementation that
3855     * already has a corresponding {@link Set} implementation (such as {@link
3856     * HashMap} or {@link TreeMap}).
3857     *
3858     * <p>Each method invocation on the set returned by this method results in
3859     * exactly one method invocation on the backing map or its <tt>keySet</tt>
3860     * view, with one exception.  The <tt>addAll</tt> method is implemented
3861     * as a sequence of <tt>put</tt> invocations on the backing map.
3862     *
3863     * <p>The specified map must be empty at the time this method is invoked,
3864     * and should not be accessed directly after this method returns.  These
3865     * conditions are ensured if the map is created empty, passed directly
3866     * to this method, and no reference to the map is retained, as illustrated
3867     * in the following code fragment:
3868     * <pre>
3869     *    Set&lt;Object&gt; weakHashSet = Collections.newSetFromMap(
3870     *        new WeakHashMap&lt;Object, Boolean&gt;());
3871     * </pre>
3872     *
3873     * @param map the backing map
3874     * @return the set backed by the map
3875     * @throws IllegalArgumentException if <tt>map</tt> is not empty
3876     * @since 1.6
3877     */
3878    public static <E> Set<E> newSetFromMap(Map<E, Boolean> map) {
3879        return new SetFromMap<>(map);
3880    }
3881
3882    /**
3883     * @serial include
3884     */
3885    private static class SetFromMap<E> extends AbstractSet<E>
3886        implements Set<E>, Serializable
3887    {
3888        private final Map<E, Boolean> m;  // The backing map
3889        private transient Set<E> s;       // Its keySet
3890
3891        SetFromMap(Map<E, Boolean> map) {
3892            if (!map.isEmpty())
3893                throw new IllegalArgumentException("Map is non-empty");
3894            m = map;
3895            s = map.keySet();
3896        }
3897
3898        public void clear()               {        m.clear(); }
3899        public int size()                 { return m.size(); }
3900        public boolean isEmpty()          { return m.isEmpty(); }
3901        public boolean contains(Object o) { return m.containsKey(o); }
3902        public boolean remove(Object o)   { return m.remove(o) != null; }
3903        public boolean add(E e) { return m.put(e, Boolean.TRUE) == null; }
3904        public Iterator<E> iterator()     { return s.iterator(); }
3905        public Object[] toArray()         { return s.toArray(); }
3906        public <T> T[] toArray(T[] a)     { return s.toArray(a); }
3907        public String toString()          { return s.toString(); }
3908        public int hashCode()             { return s.hashCode(); }
3909        public boolean equals(Object o)   { return o == this || s.equals(o); }
3910        public boolean containsAll(Collection<?> c) {return s.containsAll(c);}
3911        public boolean removeAll(Collection<?> c)   {return s.removeAll(c);}
3912        public boolean retainAll(Collection<?> c)   {return s.retainAll(c);}
3913        // addAll is the only inherited implementation
3914
3915        private static final long serialVersionUID = 2454657854757543876L;
3916
3917        private void readObject(java.io.ObjectInputStream stream)
3918            throws IOException, ClassNotFoundException
3919        {
3920            stream.defaultReadObject();
3921            s = m.keySet();
3922        }
3923    }
3924
3925    /**
3926     * Returns a view of a {@link Deque} as a Last-in-first-out (Lifo)
3927     * {@link Queue}. Method <tt>add</tt> is mapped to <tt>push</tt>,
3928     * <tt>remove</tt> is mapped to <tt>pop</tt> and so on. This
3929     * view can be useful when you would like to use a method
3930     * requiring a <tt>Queue</tt> but you need Lifo ordering.
3931     *
3932     * <p>Each method invocation on the queue returned by this method
3933     * results in exactly one method invocation on the backing deque, with
3934     * one exception.  The {@link Queue#addAll addAll} method is
3935     * implemented as a sequence of {@link Deque#addFirst addFirst}
3936     * invocations on the backing deque.
3937     *
3938     * @param deque the deque
3939     * @return the queue
3940     * @since  1.6
3941     */
3942    public static <T> Queue<T> asLifoQueue(Deque<T> deque) {
3943        return new AsLIFOQueue<>(deque);
3944    }
3945
3946    /**
3947     * @serial include
3948     */
3949    static class AsLIFOQueue<E> extends AbstractQueue<E>
3950        implements Queue<E>, Serializable {
3951        private static final long serialVersionUID = 1802017725587941708L;
3952        private final Deque<E> q;
3953        AsLIFOQueue(Deque<E> q)           { this.q = q; }
3954        public boolean add(E e)           { q.addFirst(e); return true; }
3955        public boolean offer(E e)         { return q.offerFirst(e); }
3956        public E poll()                   { return q.pollFirst(); }
3957        public E remove()                 { return q.removeFirst(); }
3958        public E peek()                   { return q.peekFirst(); }
3959        public E element()                { return q.getFirst(); }
3960        public void clear()               {        q.clear(); }
3961        public int size()                 { return q.size(); }
3962        public boolean isEmpty()          { return q.isEmpty(); }
3963        public boolean contains(Object o) { return q.contains(o); }
3964        public boolean remove(Object o)   { return q.remove(o); }
3965        public Iterator<E> iterator()     { return q.iterator(); }
3966        public Object[] toArray()         { return q.toArray(); }
3967        public <T> T[] toArray(T[] a)     { return q.toArray(a); }
3968        public String toString()          { return q.toString(); }
3969        public boolean containsAll(Collection<?> c) {return q.containsAll(c);}
3970        public boolean removeAll(Collection<?> c)   {return q.removeAll(c);}
3971        public boolean retainAll(Collection<?> c)   {return q.retainAll(c);}
3972        // We use inherited addAll; forwarding addAll would be wrong
3973    }
3974}
3975