ComparableTimSort.java revision 2d5f13085d5a82ba648a244a58f834bf438a979b
1/*
2 * Copyright (c) 2009, 2013, Oracle and/or its affiliates. All rights reserved.
3 * Copyright 2009 Google Inc.  All Rights Reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.  Oracle designates this
9 * particular file as subject to the "Classpath" exception as provided
10 * by Oracle in the LICENSE file that accompanied this code.
11 *
12 * This code is distributed in the hope that it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 * version 2 for more details (a copy is included in the LICENSE file that
16 * accompanied this code).
17 *
18 * You should have received a copy of the GNU General Public License version
19 * 2 along with this work; if not, write to the Free Software Foundation,
20 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
21 *
22 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
23 * or visit www.oracle.com if you need additional information or have any
24 * questions.
25 */
26
27package java.util;
28
29/**
30 * This is a near duplicate of {@link TimSort}, modified for use with
31 * arrays of objects that implement {@link Comparable}, instead of using
32 * explicit comparators.
33 *
34 * <p>If you are using an optimizing VM, you may find that ComparableTimSort
35 * offers no performance benefit over TimSort in conjunction with a
36 * comparator that simply returns {@code ((Comparable)first).compareTo(Second)}.
37 * If this is the case, you are better off deleting ComparableTimSort to
38 * eliminate the code duplication.  (See Arrays.java for details.)
39 *
40 * @author Josh Bloch
41 */
42class ComparableTimSort {
43    /**
44     * This is the minimum sized sequence that will be merged.  Shorter
45     * sequences will be lengthened by calling binarySort.  If the entire
46     * array is less than this length, no merges will be performed.
47     *
48     * This constant should be a power of two.  It was 64 in Tim Peter's C
49     * implementation, but 32 was empirically determined to work better in
50     * this implementation.  In the unlikely event that you set this constant
51     * to be a number that's not a power of two, you'll need to change the
52     * {@link #minRunLength} computation.
53     *
54     * If you decrease this constant, you must change the stackLen
55     * computation in the TimSort constructor, or you risk an
56     * ArrayOutOfBounds exception.  See listsort.txt for a discussion
57     * of the minimum stack length required as a function of the length
58     * of the array being sorted and the minimum merge sequence length.
59     */
60    private static final int MIN_MERGE = 32;
61
62    /**
63     * The array being sorted.
64     */
65    private final Object[] a;
66
67    /**
68     * When we get into galloping mode, we stay there until both runs win less
69     * often than MIN_GALLOP consecutive times.
70     */
71    private static final int  MIN_GALLOP = 7;
72
73    /**
74     * This controls when we get *into* galloping mode.  It is initialized
75     * to MIN_GALLOP.  The mergeLo and mergeHi methods nudge it higher for
76     * random data, and lower for highly structured data.
77     */
78    private int minGallop = MIN_GALLOP;
79
80    /**
81     * Maximum initial size of tmp array, which is used for merging.  The array
82     * can grow to accommodate demand.
83     *
84     * Unlike Tim's original C version, we do not allocate this much storage
85     * when sorting smaller arrays.  This change was required for performance.
86     */
87    private static final int INITIAL_TMP_STORAGE_LENGTH = 256;
88
89    /**
90     * Temp storage for merges. A workspace array may optionally be
91     * provided in constructor, and if so will be used as long as it
92     * is big enough.
93     */
94    private Object[] tmp;
95    private int tmpBase; // base of tmp array slice
96    private int tmpLen;  // length of tmp array slice
97
98    /**
99     * A stack of pending runs yet to be merged.  Run i starts at
100     * address base[i] and extends for len[i] elements.  It's always
101     * true (so long as the indices are in bounds) that:
102     *
103     *     runBase[i] + runLen[i] == runBase[i + 1]
104     *
105     * so we could cut the storage for this, but it's a minor amount,
106     * and keeping all the info explicit simplifies the code.
107     */
108    private int stackSize = 0;  // Number of pending runs on stack
109    private final int[] runBase;
110    private final int[] runLen;
111
112    /**
113     * Creates a TimSort instance to maintain the state of an ongoing sort.
114     *
115     * @param a the array to be sorted
116     * @param work a workspace array (slice)
117     * @param workBase origin of usable space in work array
118     * @param workLen usable size of work array
119     */
120    private ComparableTimSort(Object[] a, Object[] work, int workBase, int workLen) {
121        this.a = a;
122
123        // Allocate temp storage (which may be increased later if necessary)
124        int len = a.length;
125        int tlen = (len < 2 * INITIAL_TMP_STORAGE_LENGTH) ?
126            len >>> 1 : INITIAL_TMP_STORAGE_LENGTH;
127        if (work == null || workLen < tlen || workBase + tlen > work.length) {
128            tmp = new Object[tlen];
129            tmpBase = 0;
130            tmpLen = tlen;
131        }
132        else {
133            tmp = work;
134            tmpBase = workBase;
135            tmpLen = workLen;
136        }
137
138        /*
139         * Allocate runs-to-be-merged stack (which cannot be expanded).  The
140         * stack length requirements are described in listsort.txt.  The C
141         * version always uses the same stack length (85), but this was
142         * measured to be too expensive when sorting "mid-sized" arrays (e.g.,
143         * 100 elements) in Java.  Therefore, we use smaller (but sufficiently
144         * large) stack lengths for smaller arrays.  The "magic numbers" in the
145         * computation below must be changed if MIN_MERGE is decreased.  See
146         * the MIN_MERGE declaration above for more information.
147         */
148        int stackLen = (len <    120  ?  5 :
149                        len <   1542  ? 10 :
150                        len < 119151  ? 24 : 40);
151        runBase = new int[stackLen];
152        runLen = new int[stackLen];
153    }
154
155    /*
156     * The next method (package private and static) constitutes the
157     * entire API of this class.
158     */
159
160    /**
161     * Sorts the given range, using the given workspace array slice
162     * for temp storage when possible. This method is designed to be
163     * invoked from public methods (in class Arrays) after performing
164     * any necessary array bounds checks and expanding parameters into
165     * the required forms.
166     *
167     * @param a the array to be sorted
168     * @param lo the index of the first element, inclusive, to be sorted
169     * @param hi the index of the last element, exclusive, to be sorted
170     * @param work a workspace array (slice)
171     * @param workBase origin of usable space in work array
172     * @param workLen usable size of work array
173     * @since 1.8
174     */
175    static void sort(Object[] a, int lo, int hi, Object[] work, int workBase, int workLen) {
176        assert a != null && lo >= 0 && lo <= hi && hi <= a.length;
177
178        int nRemaining  = hi - lo;
179        if (nRemaining < 2)
180            return;  // Arrays of size 0 and 1 are always sorted
181
182        // If array is small, do a "mini-TimSort" with no merges
183        if (nRemaining < MIN_MERGE) {
184            int initRunLen = countRunAndMakeAscending(a, lo, hi);
185            binarySort(a, lo, hi, lo + initRunLen);
186            return;
187        }
188
189        /**
190         * March over the array once, left to right, finding natural runs,
191         * extending short natural runs to minRun elements, and merging runs
192         * to maintain stack invariant.
193         */
194        ComparableTimSort ts = new ComparableTimSort(a, work, workBase, workLen);
195        int minRun = minRunLength(nRemaining);
196        do {
197            // Identify next run
198            int runLen = countRunAndMakeAscending(a, lo, hi);
199
200            // If run is short, extend to min(minRun, nRemaining)
201            if (runLen < minRun) {
202                int force = nRemaining <= minRun ? nRemaining : minRun;
203                binarySort(a, lo, lo + force, lo + runLen);
204                runLen = force;
205            }
206
207            // Push run onto pending-run stack, and maybe merge
208            ts.pushRun(lo, runLen);
209            ts.mergeCollapse();
210
211            // Advance to find next run
212            lo += runLen;
213            nRemaining -= runLen;
214        } while (nRemaining != 0);
215
216        // Merge all remaining runs to complete sort
217        assert lo == hi;
218        ts.mergeForceCollapse();
219        assert ts.stackSize == 1;
220    }
221
222    /**
223     * Sorts the specified portion of the specified array using a binary
224     * insertion sort.  This is the best method for sorting small numbers
225     * of elements.  It requires O(n log n) compares, but O(n^2) data
226     * movement (worst case).
227     *
228     * If the initial part of the specified range is already sorted,
229     * this method can take advantage of it: the method assumes that the
230     * elements from index {@code lo}, inclusive, to {@code start},
231     * exclusive are already sorted.
232     *
233     * @param a the array in which a range is to be sorted
234     * @param lo the index of the first element in the range to be sorted
235     * @param hi the index after the last element in the range to be sorted
236     * @param start the index of the first element in the range that is
237     *        not already known to be sorted ({@code lo <= start <= hi})
238     */
239    @SuppressWarnings({"fallthrough", "rawtypes", "unchecked"})
240    private static void binarySort(Object[] a, int lo, int hi, int start) {
241        assert lo <= start && start <= hi;
242        if (start == lo)
243            start++;
244        for ( ; start < hi; start++) {
245            Comparable pivot = (Comparable) a[start];
246
247            // Set left (and right) to the index where a[start] (pivot) belongs
248            int left = lo;
249            int right = start;
250            assert left <= right;
251            /*
252             * Invariants:
253             *   pivot >= all in [lo, left).
254             *   pivot <  all in [right, start).
255             */
256            while (left < right) {
257                int mid = (left + right) >>> 1;
258                if (pivot.compareTo(a[mid]) < 0)
259                    right = mid;
260                else
261                    left = mid + 1;
262            }
263            assert left == right;
264
265            /*
266             * The invariants still hold: pivot >= all in [lo, left) and
267             * pivot < all in [left, start), so pivot belongs at left.  Note
268             * that if there are elements equal to pivot, left points to the
269             * first slot after them -- that's why this sort is stable.
270             * Slide elements over to make room for pivot.
271             */
272            int n = start - left;  // The number of elements to move
273            // Switch is just an optimization for arraycopy in default case
274            switch (n) {
275                case 2:  a[left + 2] = a[left + 1];
276                case 1:  a[left + 1] = a[left];
277                         break;
278                default: System.arraycopy(a, left, a, left + 1, n);
279            }
280            a[left] = pivot;
281        }
282    }
283
284    /**
285     * Returns the length of the run beginning at the specified position in
286     * the specified array and reverses the run if it is descending (ensuring
287     * that the run will always be ascending when the method returns).
288     *
289     * A run is the longest ascending sequence with:
290     *
291     *    a[lo] <= a[lo + 1] <= a[lo + 2] <= ...
292     *
293     * or the longest descending sequence with:
294     *
295     *    a[lo] >  a[lo + 1] >  a[lo + 2] >  ...
296     *
297     * For its intended use in a stable mergesort, the strictness of the
298     * definition of "descending" is needed so that the call can safely
299     * reverse a descending sequence without violating stability.
300     *
301     * @param a the array in which a run is to be counted and possibly reversed
302     * @param lo index of the first element in the run
303     * @param hi index after the last element that may be contained in the run.
304              It is required that {@code lo < hi}.
305     * @return  the length of the run beginning at the specified position in
306     *          the specified array
307     */
308    @SuppressWarnings({"unchecked", "rawtypes"})
309    private static int countRunAndMakeAscending(Object[] a, int lo, int hi) {
310        assert lo < hi;
311        int runHi = lo + 1;
312        if (runHi == hi)
313            return 1;
314
315        // Find end of run, and reverse range if descending
316        if (((Comparable) a[runHi++]).compareTo(a[lo]) < 0) { // Descending
317            while (runHi < hi && ((Comparable) a[runHi]).compareTo(a[runHi - 1]) < 0)
318                runHi++;
319            reverseRange(a, lo, runHi);
320        } else {                              // Ascending
321            while (runHi < hi && ((Comparable) a[runHi]).compareTo(a[runHi - 1]) >= 0)
322                runHi++;
323        }
324
325        return runHi - lo;
326    }
327
328    /**
329     * Reverse the specified range of the specified array.
330     *
331     * @param a the array in which a range is to be reversed
332     * @param lo the index of the first element in the range to be reversed
333     * @param hi the index after the last element in the range to be reversed
334     */
335    private static void reverseRange(Object[] a, int lo, int hi) {
336        hi--;
337        while (lo < hi) {
338            Object t = a[lo];
339            a[lo++] = a[hi];
340            a[hi--] = t;
341        }
342    }
343
344    /**
345     * Returns the minimum acceptable run length for an array of the specified
346     * length. Natural runs shorter than this will be extended with
347     * {@link #binarySort}.
348     *
349     * Roughly speaking, the computation is:
350     *
351     *  If n < MIN_MERGE, return n (it's too small to bother with fancy stuff).
352     *  Else if n is an exact power of 2, return MIN_MERGE/2.
353     *  Else return an int k, MIN_MERGE/2 <= k <= MIN_MERGE, such that n/k
354     *   is close to, but strictly less than, an exact power of 2.
355     *
356     * For the rationale, see listsort.txt.
357     *
358     * @param n the length of the array to be sorted
359     * @return the length of the minimum run to be merged
360     */
361    private static int minRunLength(int n) {
362        assert n >= 0;
363        int r = 0;      // Becomes 1 if any 1 bits are shifted off
364        while (n >= MIN_MERGE) {
365            r |= (n & 1);
366            n >>= 1;
367        }
368        return n + r;
369    }
370
371    /**
372     * Pushes the specified run onto the pending-run stack.
373     *
374     * @param runBase index of the first element in the run
375     * @param runLen  the number of elements in the run
376     */
377    private void pushRun(int runBase, int runLen) {
378        this.runBase[stackSize] = runBase;
379        this.runLen[stackSize] = runLen;
380        stackSize++;
381    }
382
383    /**
384     * Examines the stack of runs waiting to be merged and merges adjacent runs
385     * until the stack invariants are reestablished:
386     *
387     *     1. runLen[i - 3] > runLen[i - 2] + runLen[i - 1]
388     *     2. runLen[i - 2] > runLen[i - 1]
389     *
390     * This method is called each time a new run is pushed onto the stack,
391     * so the invariants are guaranteed to hold for i < stackSize upon
392     * entry to the method.
393     */
394    private void mergeCollapse() {
395        while (stackSize > 1) {
396            int n = stackSize - 2;
397            if (n > 0 && runLen[n-1] <= runLen[n] + runLen[n+1]) {
398                if (runLen[n - 1] < runLen[n + 1])
399                    n--;
400                mergeAt(n);
401            } else if (runLen[n] <= runLen[n + 1]) {
402                mergeAt(n);
403            } else {
404                break; // Invariant is established
405            }
406        }
407    }
408
409    /**
410     * Merges all runs on the stack until only one remains.  This method is
411     * called once, to complete the sort.
412     */
413    private void mergeForceCollapse() {
414        while (stackSize > 1) {
415            int n = stackSize - 2;
416            if (n > 0 && runLen[n - 1] < runLen[n + 1])
417                n--;
418            mergeAt(n);
419        }
420    }
421
422    /**
423     * Merges the two runs at stack indices i and i+1.  Run i must be
424     * the penultimate or antepenultimate run on the stack.  In other words,
425     * i must be equal to stackSize-2 or stackSize-3.
426     *
427     * @param i stack index of the first of the two runs to merge
428     */
429    @SuppressWarnings("unchecked")
430    private void mergeAt(int i) {
431        assert stackSize >= 2;
432        assert i >= 0;
433        assert i == stackSize - 2 || i == stackSize - 3;
434
435        int base1 = runBase[i];
436        int len1 = runLen[i];
437        int base2 = runBase[i + 1];
438        int len2 = runLen[i + 1];
439        assert len1 > 0 && len2 > 0;
440        assert base1 + len1 == base2;
441
442        /*
443         * Record the length of the combined runs; if i is the 3rd-last
444         * run now, also slide over the last run (which isn't involved
445         * in this merge).  The current run (i+1) goes away in any case.
446         */
447        runLen[i] = len1 + len2;
448        if (i == stackSize - 3) {
449            runBase[i + 1] = runBase[i + 2];
450            runLen[i + 1] = runLen[i + 2];
451        }
452        stackSize--;
453
454        /*
455         * Find where the first element of run2 goes in run1. Prior elements
456         * in run1 can be ignored (because they're already in place).
457         */
458        int k = gallopRight((Comparable<Object>) a[base2], a, base1, len1, 0);
459        assert k >= 0;
460        base1 += k;
461        len1 -= k;
462        if (len1 == 0)
463            return;
464
465        /*
466         * Find where the last element of run1 goes in run2. Subsequent elements
467         * in run2 can be ignored (because they're already in place).
468         */
469        len2 = gallopLeft((Comparable<Object>) a[base1 + len1 - 1], a,
470                base2, len2, len2 - 1);
471        assert len2 >= 0;
472        if (len2 == 0)
473            return;
474
475        // Merge remaining runs, using tmp array with min(len1, len2) elements
476        if (len1 <= len2)
477            mergeLo(base1, len1, base2, len2);
478        else
479            mergeHi(base1, len1, base2, len2);
480    }
481
482    /**
483     * Locates the position at which to insert the specified key into the
484     * specified sorted range; if the range contains an element equal to key,
485     * returns the index of the leftmost equal element.
486     *
487     * @param key the key whose insertion point to search for
488     * @param a the array in which to search
489     * @param base the index of the first element in the range
490     * @param len the length of the range; must be > 0
491     * @param hint the index at which to begin the search, 0 <= hint < n.
492     *     The closer hint is to the result, the faster this method will run.
493     * @return the int k,  0 <= k <= n such that a[b + k - 1] < key <= a[b + k],
494     *    pretending that a[b - 1] is minus infinity and a[b + n] is infinity.
495     *    In other words, key belongs at index b + k; or in other words,
496     *    the first k elements of a should precede key, and the last n - k
497     *    should follow it.
498     */
499    private static int gallopLeft(Comparable<Object> key, Object[] a,
500            int base, int len, int hint) {
501        assert len > 0 && hint >= 0 && hint < len;
502
503        int lastOfs = 0;
504        int ofs = 1;
505        if (key.compareTo(a[base + hint]) > 0) {
506            // Gallop right until a[base+hint+lastOfs] < key <= a[base+hint+ofs]
507            int maxOfs = len - hint;
508            while (ofs < maxOfs && key.compareTo(a[base + hint + ofs]) > 0) {
509                lastOfs = ofs;
510                ofs = (ofs << 1) + 1;
511                if (ofs <= 0)   // int overflow
512                    ofs = maxOfs;
513            }
514            if (ofs > maxOfs)
515                ofs = maxOfs;
516
517            // Make offsets relative to base
518            lastOfs += hint;
519            ofs += hint;
520        } else { // key <= a[base + hint]
521            // Gallop left until a[base+hint-ofs] < key <= a[base+hint-lastOfs]
522            final int maxOfs = hint + 1;
523            while (ofs < maxOfs && key.compareTo(a[base + hint - ofs]) <= 0) {
524                lastOfs = ofs;
525                ofs = (ofs << 1) + 1;
526                if (ofs <= 0)   // int overflow
527                    ofs = maxOfs;
528            }
529            if (ofs > maxOfs)
530                ofs = maxOfs;
531
532            // Make offsets relative to base
533            int tmp = lastOfs;
534            lastOfs = hint - ofs;
535            ofs = hint - tmp;
536        }
537        assert -1 <= lastOfs && lastOfs < ofs && ofs <= len;
538
539        /*
540         * Now a[base+lastOfs] < key <= a[base+ofs], so key belongs somewhere
541         * to the right of lastOfs but no farther right than ofs.  Do a binary
542         * search, with invariant a[base + lastOfs - 1] < key <= a[base + ofs].
543         */
544        lastOfs++;
545        while (lastOfs < ofs) {
546            int m = lastOfs + ((ofs - lastOfs) >>> 1);
547
548            if (key.compareTo(a[base + m]) > 0)
549                lastOfs = m + 1;  // a[base + m] < key
550            else
551                ofs = m;          // key <= a[base + m]
552        }
553        assert lastOfs == ofs;    // so a[base + ofs - 1] < key <= a[base + ofs]
554        return ofs;
555    }
556
557    /**
558     * Like gallopLeft, except that if the range contains an element equal to
559     * key, gallopRight returns the index after the rightmost equal element.
560     *
561     * @param key the key whose insertion point to search for
562     * @param a the array in which to search
563     * @param base the index of the first element in the range
564     * @param len the length of the range; must be > 0
565     * @param hint the index at which to begin the search, 0 <= hint < n.
566     *     The closer hint is to the result, the faster this method will run.
567     * @return the int k,  0 <= k <= n such that a[b + k - 1] <= key < a[b + k]
568     */
569    private static int gallopRight(Comparable<Object> key, Object[] a,
570            int base, int len, int hint) {
571        assert len > 0 && hint >= 0 && hint < len;
572
573        int ofs = 1;
574        int lastOfs = 0;
575        if (key.compareTo(a[base + hint]) < 0) {
576            // Gallop left until a[b+hint - ofs] <= key < a[b+hint - lastOfs]
577            int maxOfs = hint + 1;
578            while (ofs < maxOfs && key.compareTo(a[base + hint - ofs]) < 0) {
579                lastOfs = ofs;
580                ofs = (ofs << 1) + 1;
581                if (ofs <= 0)   // int overflow
582                    ofs = maxOfs;
583            }
584            if (ofs > maxOfs)
585                ofs = maxOfs;
586
587            // Make offsets relative to b
588            int tmp = lastOfs;
589            lastOfs = hint - ofs;
590            ofs = hint - tmp;
591        } else { // a[b + hint] <= key
592            // Gallop right until a[b+hint + lastOfs] <= key < a[b+hint + ofs]
593            int maxOfs = len - hint;
594            while (ofs < maxOfs && key.compareTo(a[base + hint + ofs]) >= 0) {
595                lastOfs = ofs;
596                ofs = (ofs << 1) + 1;
597                if (ofs <= 0)   // int overflow
598                    ofs = maxOfs;
599            }
600            if (ofs > maxOfs)
601                ofs = maxOfs;
602
603            // Make offsets relative to b
604            lastOfs += hint;
605            ofs += hint;
606        }
607        assert -1 <= lastOfs && lastOfs < ofs && ofs <= len;
608
609        /*
610         * Now a[b + lastOfs] <= key < a[b + ofs], so key belongs somewhere to
611         * the right of lastOfs but no farther right than ofs.  Do a binary
612         * search, with invariant a[b + lastOfs - 1] <= key < a[b + ofs].
613         */
614        lastOfs++;
615        while (lastOfs < ofs) {
616            int m = lastOfs + ((ofs - lastOfs) >>> 1);
617
618            if (key.compareTo(a[base + m]) < 0)
619                ofs = m;          // key < a[b + m]
620            else
621                lastOfs = m + 1;  // a[b + m] <= key
622        }
623        assert lastOfs == ofs;    // so a[b + ofs - 1] <= key < a[b + ofs]
624        return ofs;
625    }
626
627    /**
628     * Merges two adjacent runs in place, in a stable fashion.  The first
629     * element of the first run must be greater than the first element of the
630     * second run (a[base1] > a[base2]), and the last element of the first run
631     * (a[base1 + len1-1]) must be greater than all elements of the second run.
632     *
633     * For performance, this method should be called only when len1 <= len2;
634     * its twin, mergeHi should be called if len1 >= len2.  (Either method
635     * may be called if len1 == len2.)
636     *
637     * @param base1 index of first element in first run to be merged
638     * @param len1  length of first run to be merged (must be > 0)
639     * @param base2 index of first element in second run to be merged
640     *        (must be aBase + aLen)
641     * @param len2  length of second run to be merged (must be > 0)
642     */
643    @SuppressWarnings({"unchecked", "rawtypes"})
644    private void mergeLo(int base1, int len1, int base2, int len2) {
645        assert len1 > 0 && len2 > 0 && base1 + len1 == base2;
646
647        // Copy first run into temp array
648        Object[] a = this.a; // For performance
649        Object[] tmp = ensureCapacity(len1);
650
651        int cursor1 = tmpBase; // Indexes into tmp array
652        int cursor2 = base2;   // Indexes int a
653        int dest = base1;      // Indexes int a
654        System.arraycopy(a, base1, tmp, cursor1, len1);
655
656        // Move first element of second run and deal with degenerate cases
657        a[dest++] = a[cursor2++];
658        if (--len2 == 0) {
659            System.arraycopy(tmp, cursor1, a, dest, len1);
660            return;
661        }
662        if (len1 == 1) {
663            System.arraycopy(a, cursor2, a, dest, len2);
664            a[dest + len2] = tmp[cursor1]; // Last elt of run 1 to end of merge
665            return;
666        }
667
668        int minGallop = this.minGallop;  // Use local variable for performance
669    outer:
670        while (true) {
671            int count1 = 0; // Number of times in a row that first run won
672            int count2 = 0; // Number of times in a row that second run won
673
674            /*
675             * Do the straightforward thing until (if ever) one run starts
676             * winning consistently.
677             */
678            do {
679                assert len1 > 1 && len2 > 0;
680                if (((Comparable) a[cursor2]).compareTo(tmp[cursor1]) < 0) {
681                    a[dest++] = a[cursor2++];
682                    count2++;
683                    count1 = 0;
684                    if (--len2 == 0)
685                        break outer;
686                } else {
687                    a[dest++] = tmp[cursor1++];
688                    count1++;
689                    count2 = 0;
690                    if (--len1 == 1)
691                        break outer;
692                }
693            } while ((count1 | count2) < minGallop);
694
695            /*
696             * One run is winning so consistently that galloping may be a
697             * huge win. So try that, and continue galloping until (if ever)
698             * neither run appears to be winning consistently anymore.
699             */
700            do {
701                assert len1 > 1 && len2 > 0;
702                count1 = gallopRight((Comparable) a[cursor2], tmp, cursor1, len1, 0);
703                if (count1 != 0) {
704                    System.arraycopy(tmp, cursor1, a, dest, count1);
705                    dest += count1;
706                    cursor1 += count1;
707                    len1 -= count1;
708                    if (len1 <= 1)  // len1 == 1 || len1 == 0
709                        break outer;
710                }
711                a[dest++] = a[cursor2++];
712                if (--len2 == 0)
713                    break outer;
714
715                count2 = gallopLeft((Comparable) tmp[cursor1], a, cursor2, len2, 0);
716                if (count2 != 0) {
717                    System.arraycopy(a, cursor2, a, dest, count2);
718                    dest += count2;
719                    cursor2 += count2;
720                    len2 -= count2;
721                    if (len2 == 0)
722                        break outer;
723                }
724                a[dest++] = tmp[cursor1++];
725                if (--len1 == 1)
726                    break outer;
727                minGallop--;
728            } while (count1 >= MIN_GALLOP | count2 >= MIN_GALLOP);
729            if (minGallop < 0)
730                minGallop = 0;
731            minGallop += 2;  // Penalize for leaving gallop mode
732        }  // End of "outer" loop
733        this.minGallop = minGallop < 1 ? 1 : minGallop;  // Write back to field
734
735        if (len1 == 1) {
736            assert len2 > 0;
737            System.arraycopy(a, cursor2, a, dest, len2);
738            a[dest + len2] = tmp[cursor1]; //  Last elt of run 1 to end of merge
739        } else if (len1 == 0) {
740            throw new IllegalArgumentException(
741                "Comparison method violates its general contract!");
742        } else {
743            assert len2 == 0;
744            assert len1 > 1;
745            System.arraycopy(tmp, cursor1, a, dest, len1);
746        }
747    }
748
749    /**
750     * Like mergeLo, except that this method should be called only if
751     * len1 >= len2; mergeLo should be called if len1 <= len2.  (Either method
752     * may be called if len1 == len2.)
753     *
754     * @param base1 index of first element in first run to be merged
755     * @param len1  length of first run to be merged (must be > 0)
756     * @param base2 index of first element in second run to be merged
757     *        (must be aBase + aLen)
758     * @param len2  length of second run to be merged (must be > 0)
759     */
760    @SuppressWarnings({"unchecked", "rawtypes"})
761    private void mergeHi(int base1, int len1, int base2, int len2) {
762        assert len1 > 0 && len2 > 0 && base1 + len1 == base2;
763
764        // Copy second run into temp array
765        Object[] a = this.a; // For performance
766        Object[] tmp = ensureCapacity(len2);
767        int tmpBase = this.tmpBase;
768        System.arraycopy(a, base2, tmp, tmpBase, len2);
769
770        int cursor1 = base1 + len1 - 1;  // Indexes into a
771        int cursor2 = tmpBase + len2 - 1; // Indexes into tmp array
772        int dest = base2 + len2 - 1;     // Indexes into a
773
774        // Move last element of first run and deal with degenerate cases
775        a[dest--] = a[cursor1--];
776        if (--len1 == 0) {
777            System.arraycopy(tmp, tmpBase, a, dest - (len2 - 1), len2);
778            return;
779        }
780        if (len2 == 1) {
781            dest -= len1;
782            cursor1 -= len1;
783            System.arraycopy(a, cursor1 + 1, a, dest + 1, len1);
784            a[dest] = tmp[cursor2];
785            return;
786        }
787
788        int minGallop = this.minGallop;  // Use local variable for performance
789    outer:
790        while (true) {
791            int count1 = 0; // Number of times in a row that first run won
792            int count2 = 0; // Number of times in a row that second run won
793
794            /*
795             * Do the straightforward thing until (if ever) one run
796             * appears to win consistently.
797             */
798            do {
799                assert len1 > 0 && len2 > 1;
800                if (((Comparable) tmp[cursor2]).compareTo(a[cursor1]) < 0) {
801                    a[dest--] = a[cursor1--];
802                    count1++;
803                    count2 = 0;
804                    if (--len1 == 0)
805                        break outer;
806                } else {
807                    a[dest--] = tmp[cursor2--];
808                    count2++;
809                    count1 = 0;
810                    if (--len2 == 1)
811                        break outer;
812                }
813            } while ((count1 | count2) < minGallop);
814
815            /*
816             * One run is winning so consistently that galloping may be a
817             * huge win. So try that, and continue galloping until (if ever)
818             * neither run appears to be winning consistently anymore.
819             */
820            do {
821                assert len1 > 0 && len2 > 1;
822                count1 = len1 - gallopRight((Comparable) tmp[cursor2], a, base1, len1, len1 - 1);
823                if (count1 != 0) {
824                    dest -= count1;
825                    cursor1 -= count1;
826                    len1 -= count1;
827                    System.arraycopy(a, cursor1 + 1, a, dest + 1, count1);
828                    if (len1 == 0)
829                        break outer;
830                }
831                a[dest--] = tmp[cursor2--];
832                if (--len2 == 1)
833                    break outer;
834
835                count2 = len2 - gallopLeft((Comparable) a[cursor1], tmp, tmpBase, len2, len2 - 1);
836                if (count2 != 0) {
837                    dest -= count2;
838                    cursor2 -= count2;
839                    len2 -= count2;
840                    System.arraycopy(tmp, cursor2 + 1, a, dest + 1, count2);
841                    if (len2 <= 1)
842                        break outer; // len2 == 1 || len2 == 0
843                }
844                a[dest--] = a[cursor1--];
845                if (--len1 == 0)
846                    break outer;
847                minGallop--;
848            } while (count1 >= MIN_GALLOP | count2 >= MIN_GALLOP);
849            if (minGallop < 0)
850                minGallop = 0;
851            minGallop += 2;  // Penalize for leaving gallop mode
852        }  // End of "outer" loop
853        this.minGallop = minGallop < 1 ? 1 : minGallop;  // Write back to field
854
855        if (len2 == 1) {
856            assert len1 > 0;
857            dest -= len1;
858            cursor1 -= len1;
859            System.arraycopy(a, cursor1 + 1, a, dest + 1, len1);
860            a[dest] = tmp[cursor2];  // Move first elt of run2 to front of merge
861        } else if (len2 == 0) {
862            throw new IllegalArgumentException(
863                "Comparison method violates its general contract!");
864        } else {
865            assert len1 == 0;
866            assert len2 > 0;
867            System.arraycopy(tmp, tmpBase, a, dest - (len2 - 1), len2);
868        }
869    }
870
871    /**
872     * Ensures that the external array tmp has at least the specified
873     * number of elements, increasing its size if necessary.  The size
874     * increases exponentially to ensure amortized linear time complexity.
875     *
876     * @param minCapacity the minimum required capacity of the tmp array
877     * @return tmp, whether or not it grew
878     */
879    private Object[]  ensureCapacity(int minCapacity) {
880        if (tmpLen < minCapacity) {
881            // Compute smallest power of 2 > minCapacity
882            int newSize = minCapacity;
883            newSize |= newSize >> 1;
884            newSize |= newSize >> 2;
885            newSize |= newSize >> 4;
886            newSize |= newSize >> 8;
887            newSize |= newSize >> 16;
888            newSize++;
889
890            if (newSize < 0) // Not bloody likely!
891                newSize = minCapacity;
892            else
893                newSize = Math.min(newSize, a.length >>> 1);
894
895            @SuppressWarnings({"unchecked", "UnnecessaryLocalVariable"})
896            Object[] newArray = new Object[newSize];
897            tmp = newArray;
898            tmpLen = newSize;
899            tmpBase = 0;
900        }
901        return tmp;
902    }
903
904}
905