ComparableTimSort.java revision 49965c1dc9da104344f4893a05e45795a5740d20
1/*
2 * Copyright (c) 2009, 2013, Oracle and/or its affiliates. All rights reserved.
3 * Copyright 2009 Google Inc.  All Rights Reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.  Oracle designates this
9 * particular file as subject to the "Classpath" exception as provided
10 * by Oracle in the LICENSE file that accompanied this code.
11 *
12 * This code is distributed in the hope that it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 * version 2 for more details (a copy is included in the LICENSE file that
16 * accompanied this code).
17 *
18 * You should have received a copy of the GNU General Public License version
19 * 2 along with this work; if not, write to the Free Software Foundation,
20 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
21 *
22 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
23 * or visit www.oracle.com if you need additional information or have any
24 * questions.
25 */
26
27package java.util;
28
29/**
30 * This is a near duplicate of {@link TimSort}, modified for use with
31 * arrays of objects that implement {@link Comparable}, instead of using
32 * explicit comparators.
33 *
34 * <p>If you are using an optimizing VM, you may find that ComparableTimSort
35 * offers no performance benefit over TimSort in conjunction with a
36 * comparator that simply returns {@code ((Comparable)first).compareTo(Second)}.
37 * If this is the case, you are better off deleting ComparableTimSort to
38 * eliminate the code duplication.  (See Arrays.java for details.)
39 *
40 * @author Josh Bloch
41 */
42class ComparableTimSort {
43    /**
44     * This is the minimum sized sequence that will be merged.  Shorter
45     * sequences will be lengthened by calling binarySort.  If the entire
46     * array is less than this length, no merges will be performed.
47     *
48     * This constant should be a power of two.  It was 64 in Tim Peter's C
49     * implementation, but 32 was empirically determined to work better in
50     * this implementation.  In the unlikely event that you set this constant
51     * to be a number that's not a power of two, you'll need to change the
52     * {@link #minRunLength} computation.
53     *
54     * If you decrease this constant, you must change the stackLen
55     * computation in the TimSort constructor, or you risk an
56     * ArrayOutOfBounds exception.  See listsort.txt for a discussion
57     * of the minimum stack length required as a function of the length
58     * of the array being sorted and the minimum merge sequence length.
59     */
60    private static final int MIN_MERGE = 32;
61
62    /**
63     * The array being sorted.
64     */
65    private final Object[] a;
66
67    /**
68     * When we get into galloping mode, we stay there until both runs win less
69     * often than MIN_GALLOP consecutive times.
70     */
71    private static final int  MIN_GALLOP = 7;
72
73    /**
74     * This controls when we get *into* galloping mode.  It is initialized
75     * to MIN_GALLOP.  The mergeLo and mergeHi methods nudge it higher for
76     * random data, and lower for highly structured data.
77     */
78    private int minGallop = MIN_GALLOP;
79
80    /**
81     * Maximum initial size of tmp array, which is used for merging.  The array
82     * can grow to accommodate demand.
83     *
84     * Unlike Tim's original C version, we do not allocate this much storage
85     * when sorting smaller arrays.  This change was required for performance.
86     */
87    private static final int INITIAL_TMP_STORAGE_LENGTH = 256;
88
89    /**
90     * Temp storage for merges. A workspace array may optionally be
91     * provided in constructor, and if so will be used as long as it
92     * is big enough.
93     */
94    private Object[] tmp;
95    private int tmpBase; // base of tmp array slice
96    private int tmpLen;  // length of tmp array slice
97
98    /**
99     * A stack of pending runs yet to be merged.  Run i starts at
100     * address base[i] and extends for len[i] elements.  It's always
101     * true (so long as the indices are in bounds) that:
102     *
103     *     runBase[i] + runLen[i] == runBase[i + 1]
104     *
105     * so we could cut the storage for this, but it's a minor amount,
106     * and keeping all the info explicit simplifies the code.
107     */
108    private int stackSize = 0;  // Number of pending runs on stack
109    private final int[] runBase;
110    private final int[] runLen;
111
112    /**
113     * Creates a TimSort instance to maintain the state of an ongoing sort.
114     *
115     * @param a the array to be sorted
116     * @param work a workspace array (slice)
117     * @param workBase origin of usable space in work array
118     * @param workLen usable size of work array
119     */
120    private ComparableTimSort(Object[] a, Object[] work, int workBase, int workLen) {
121        this.a = a;
122
123        // Allocate temp storage (which may be increased later if necessary)
124        int len = a.length;
125        int tlen = (len < 2 * INITIAL_TMP_STORAGE_LENGTH) ?
126            len >>> 1 : INITIAL_TMP_STORAGE_LENGTH;
127        if (work == null || workLen < tlen || workBase + tlen > work.length) {
128            tmp = new Object[tlen];
129            tmpBase = 0;
130            tmpLen = tlen;
131        }
132        else {
133            tmp = work;
134            tmpBase = workBase;
135            tmpLen = workLen;
136        }
137
138        /*
139         * Allocate runs-to-be-merged stack (which cannot be expanded).  The
140         * stack length requirements are described in listsort.txt.  The C
141         * version always uses the same stack length (85), but this was
142         * measured to be too expensive when sorting "mid-sized" arrays (e.g.,
143         * 100 elements) in Java.  Therefore, we use smaller (but sufficiently
144         * large) stack lengths for smaller arrays.  The "magic numbers" in the
145         * computation below must be changed if MIN_MERGE is decreased.  See
146         * the MIN_MERGE declaration above for more information.
147         * The maximum value of 49 allows for an array up to length
148         * Integer.MAX_VALUE-4, if array is filled by the worst case stack size
149         * increasing scenario. More explanations are given in section 4 of:
150         * http://envisage-project.eu/wp-content/uploads/2015/02/sorting.pdf
151         */
152        int stackLen = (len <    120  ?  5 :
153                        len <   1542  ? 10 :
154                        len < 119151  ? 24 : 49);
155        runBase = new int[stackLen];
156        runLen = new int[stackLen];
157    }
158
159    /*
160     * The next method (package private and static) constitutes the
161     * entire API of this class.
162     */
163
164    /**
165     * Sorts the given range, using the given workspace array slice
166     * for temp storage when possible. This method is designed to be
167     * invoked from public methods (in class Arrays) after performing
168     * any necessary array bounds checks and expanding parameters into
169     * the required forms.
170     *
171     * @param a the array to be sorted
172     * @param lo the index of the first element, inclusive, to be sorted
173     * @param hi the index of the last element, exclusive, to be sorted
174     * @param work a workspace array (slice)
175     * @param workBase origin of usable space in work array
176     * @param workLen usable size of work array
177     * @since 1.8
178     */
179    static void sort(Object[] a, int lo, int hi, Object[] work, int workBase, int workLen) {
180        assert a != null && lo >= 0 && lo <= hi && hi <= a.length;
181
182        int nRemaining  = hi - lo;
183        if (nRemaining < 2)
184            return;  // Arrays of size 0 and 1 are always sorted
185
186        // If array is small, do a "mini-TimSort" with no merges
187        if (nRemaining < MIN_MERGE) {
188            int initRunLen = countRunAndMakeAscending(a, lo, hi);
189            binarySort(a, lo, hi, lo + initRunLen);
190            return;
191        }
192
193        /**
194         * March over the array once, left to right, finding natural runs,
195         * extending short natural runs to minRun elements, and merging runs
196         * to maintain stack invariant.
197         */
198        ComparableTimSort ts = new ComparableTimSort(a, work, workBase, workLen);
199        int minRun = minRunLength(nRemaining);
200        do {
201            // Identify next run
202            int runLen = countRunAndMakeAscending(a, lo, hi);
203
204            // If run is short, extend to min(minRun, nRemaining)
205            if (runLen < minRun) {
206                int force = nRemaining <= minRun ? nRemaining : minRun;
207                binarySort(a, lo, lo + force, lo + runLen);
208                runLen = force;
209            }
210
211            // Push run onto pending-run stack, and maybe merge
212            ts.pushRun(lo, runLen);
213            ts.mergeCollapse();
214
215            // Advance to find next run
216            lo += runLen;
217            nRemaining -= runLen;
218        } while (nRemaining != 0);
219
220        // Merge all remaining runs to complete sort
221        assert lo == hi;
222        ts.mergeForceCollapse();
223        assert ts.stackSize == 1;
224    }
225
226    /**
227     * Sorts the specified portion of the specified array using a binary
228     * insertion sort.  This is the best method for sorting small numbers
229     * of elements.  It requires O(n log n) compares, but O(n^2) data
230     * movement (worst case).
231     *
232     * If the initial part of the specified range is already sorted,
233     * this method can take advantage of it: the method assumes that the
234     * elements from index {@code lo}, inclusive, to {@code start},
235     * exclusive are already sorted.
236     *
237     * @param a the array in which a range is to be sorted
238     * @param lo the index of the first element in the range to be sorted
239     * @param hi the index after the last element in the range to be sorted
240     * @param start the index of the first element in the range that is
241     *        not already known to be sorted ({@code lo <= start <= hi})
242     */
243    @SuppressWarnings({"fallthrough", "rawtypes", "unchecked"})
244    private static void binarySort(Object[] a, int lo, int hi, int start) {
245        assert lo <= start && start <= hi;
246        if (start == lo)
247            start++;
248        for ( ; start < hi; start++) {
249            Comparable pivot = (Comparable) a[start];
250
251            // Set left (and right) to the index where a[start] (pivot) belongs
252            int left = lo;
253            int right = start;
254            assert left <= right;
255            /*
256             * Invariants:
257             *   pivot >= all in [lo, left).
258             *   pivot <  all in [right, start).
259             */
260            while (left < right) {
261                int mid = (left + right) >>> 1;
262                if (pivot.compareTo(a[mid]) < 0)
263                    right = mid;
264                else
265                    left = mid + 1;
266            }
267            assert left == right;
268
269            /*
270             * The invariants still hold: pivot >= all in [lo, left) and
271             * pivot < all in [left, start), so pivot belongs at left.  Note
272             * that if there are elements equal to pivot, left points to the
273             * first slot after them -- that's why this sort is stable.
274             * Slide elements over to make room for pivot.
275             */
276            int n = start - left;  // The number of elements to move
277            // Switch is just an optimization for arraycopy in default case
278            switch (n) {
279                case 2:  a[left + 2] = a[left + 1];
280                case 1:  a[left + 1] = a[left];
281                         break;
282                default: System.arraycopy(a, left, a, left + 1, n);
283            }
284            a[left] = pivot;
285        }
286    }
287
288    /**
289     * Returns the length of the run beginning at the specified position in
290     * the specified array and reverses the run if it is descending (ensuring
291     * that the run will always be ascending when the method returns).
292     *
293     * A run is the longest ascending sequence with:
294     *
295     *    a[lo] <= a[lo + 1] <= a[lo + 2] <= ...
296     *
297     * or the longest descending sequence with:
298     *
299     *    a[lo] >  a[lo + 1] >  a[lo + 2] >  ...
300     *
301     * For its intended use in a stable mergesort, the strictness of the
302     * definition of "descending" is needed so that the call can safely
303     * reverse a descending sequence without violating stability.
304     *
305     * @param a the array in which a run is to be counted and possibly reversed
306     * @param lo index of the first element in the run
307     * @param hi index after the last element that may be contained in the run.
308              It is required that {@code lo < hi}.
309     * @return  the length of the run beginning at the specified position in
310     *          the specified array
311     */
312    @SuppressWarnings({"unchecked", "rawtypes"})
313    private static int countRunAndMakeAscending(Object[] a, int lo, int hi) {
314        assert lo < hi;
315        int runHi = lo + 1;
316        if (runHi == hi)
317            return 1;
318
319        // Find end of run, and reverse range if descending
320        if (((Comparable) a[runHi++]).compareTo(a[lo]) < 0) { // Descending
321            while (runHi < hi && ((Comparable) a[runHi]).compareTo(a[runHi - 1]) < 0)
322                runHi++;
323            reverseRange(a, lo, runHi);
324        } else {                              // Ascending
325            while (runHi < hi && ((Comparable) a[runHi]).compareTo(a[runHi - 1]) >= 0)
326                runHi++;
327        }
328
329        return runHi - lo;
330    }
331
332    /**
333     * Reverse the specified range of the specified array.
334     *
335     * @param a the array in which a range is to be reversed
336     * @param lo the index of the first element in the range to be reversed
337     * @param hi the index after the last element in the range to be reversed
338     */
339    private static void reverseRange(Object[] a, int lo, int hi) {
340        hi--;
341        while (lo < hi) {
342            Object t = a[lo];
343            a[lo++] = a[hi];
344            a[hi--] = t;
345        }
346    }
347
348    /**
349     * Returns the minimum acceptable run length for an array of the specified
350     * length. Natural runs shorter than this will be extended with
351     * {@link #binarySort}.
352     *
353     * Roughly speaking, the computation is:
354     *
355     *  If n < MIN_MERGE, return n (it's too small to bother with fancy stuff).
356     *  Else if n is an exact power of 2, return MIN_MERGE/2.
357     *  Else return an int k, MIN_MERGE/2 <= k <= MIN_MERGE, such that n/k
358     *   is close to, but strictly less than, an exact power of 2.
359     *
360     * For the rationale, see listsort.txt.
361     *
362     * @param n the length of the array to be sorted
363     * @return the length of the minimum run to be merged
364     */
365    private static int minRunLength(int n) {
366        assert n >= 0;
367        int r = 0;      // Becomes 1 if any 1 bits are shifted off
368        while (n >= MIN_MERGE) {
369            r |= (n & 1);
370            n >>= 1;
371        }
372        return n + r;
373    }
374
375    /**
376     * Pushes the specified run onto the pending-run stack.
377     *
378     * @param runBase index of the first element in the run
379     * @param runLen  the number of elements in the run
380     */
381    private void pushRun(int runBase, int runLen) {
382        this.runBase[stackSize] = runBase;
383        this.runLen[stackSize] = runLen;
384        stackSize++;
385    }
386
387    /**
388     * Examines the stack of runs waiting to be merged and merges adjacent runs
389     * until the stack invariants are reestablished:
390     *
391     *     1. runLen[i - 3] > runLen[i - 2] + runLen[i - 1]
392     *     2. runLen[i - 2] > runLen[i - 1]
393     *
394     * This method is called each time a new run is pushed onto the stack,
395     * so the invariants are guaranteed to hold for i < stackSize upon
396     * entry to the method.
397     */
398    private void mergeCollapse() {
399        while (stackSize > 1) {
400            int n = stackSize - 2;
401            if (n > 0 && runLen[n-1] <= runLen[n] + runLen[n+1]) {
402                if (runLen[n - 1] < runLen[n + 1])
403                    n--;
404                mergeAt(n);
405            } else if (runLen[n] <= runLen[n + 1]) {
406                mergeAt(n);
407            } else {
408                break; // Invariant is established
409            }
410        }
411    }
412
413    /**
414     * Merges all runs on the stack until only one remains.  This method is
415     * called once, to complete the sort.
416     */
417    private void mergeForceCollapse() {
418        while (stackSize > 1) {
419            int n = stackSize - 2;
420            if (n > 0 && runLen[n - 1] < runLen[n + 1])
421                n--;
422            mergeAt(n);
423        }
424    }
425
426    /**
427     * Merges the two runs at stack indices i and i+1.  Run i must be
428     * the penultimate or antepenultimate run on the stack.  In other words,
429     * i must be equal to stackSize-2 or stackSize-3.
430     *
431     * @param i stack index of the first of the two runs to merge
432     */
433    @SuppressWarnings("unchecked")
434    private void mergeAt(int i) {
435        assert stackSize >= 2;
436        assert i >= 0;
437        assert i == stackSize - 2 || i == stackSize - 3;
438
439        int base1 = runBase[i];
440        int len1 = runLen[i];
441        int base2 = runBase[i + 1];
442        int len2 = runLen[i + 1];
443        assert len1 > 0 && len2 > 0;
444        assert base1 + len1 == base2;
445
446        /*
447         * Record the length of the combined runs; if i is the 3rd-last
448         * run now, also slide over the last run (which isn't involved
449         * in this merge).  The current run (i+1) goes away in any case.
450         */
451        runLen[i] = len1 + len2;
452        if (i == stackSize - 3) {
453            runBase[i + 1] = runBase[i + 2];
454            runLen[i + 1] = runLen[i + 2];
455        }
456        stackSize--;
457
458        /*
459         * Find where the first element of run2 goes in run1. Prior elements
460         * in run1 can be ignored (because they're already in place).
461         */
462        int k = gallopRight((Comparable<Object>) a[base2], a, base1, len1, 0);
463        assert k >= 0;
464        base1 += k;
465        len1 -= k;
466        if (len1 == 0)
467            return;
468
469        /*
470         * Find where the last element of run1 goes in run2. Subsequent elements
471         * in run2 can be ignored (because they're already in place).
472         */
473        len2 = gallopLeft((Comparable<Object>) a[base1 + len1 - 1], a,
474                base2, len2, len2 - 1);
475        assert len2 >= 0;
476        if (len2 == 0)
477            return;
478
479        // Merge remaining runs, using tmp array with min(len1, len2) elements
480        if (len1 <= len2)
481            mergeLo(base1, len1, base2, len2);
482        else
483            mergeHi(base1, len1, base2, len2);
484    }
485
486    /**
487     * Locates the position at which to insert the specified key into the
488     * specified sorted range; if the range contains an element equal to key,
489     * returns the index of the leftmost equal element.
490     *
491     * @param key the key whose insertion point to search for
492     * @param a the array in which to search
493     * @param base the index of the first element in the range
494     * @param len the length of the range; must be > 0
495     * @param hint the index at which to begin the search, 0 <= hint < n.
496     *     The closer hint is to the result, the faster this method will run.
497     * @return the int k,  0 <= k <= n such that a[b + k - 1] < key <= a[b + k],
498     *    pretending that a[b - 1] is minus infinity and a[b + n] is infinity.
499     *    In other words, key belongs at index b + k; or in other words,
500     *    the first k elements of a should precede key, and the last n - k
501     *    should follow it.
502     */
503    private static int gallopLeft(Comparable<Object> key, Object[] a,
504            int base, int len, int hint) {
505        assert len > 0 && hint >= 0 && hint < len;
506
507        int lastOfs = 0;
508        int ofs = 1;
509        if (key.compareTo(a[base + hint]) > 0) {
510            // Gallop right until a[base+hint+lastOfs] < key <= a[base+hint+ofs]
511            int maxOfs = len - hint;
512            while (ofs < maxOfs && key.compareTo(a[base + hint + ofs]) > 0) {
513                lastOfs = ofs;
514                ofs = (ofs << 1) + 1;
515                if (ofs <= 0)   // int overflow
516                    ofs = maxOfs;
517            }
518            if (ofs > maxOfs)
519                ofs = maxOfs;
520
521            // Make offsets relative to base
522            lastOfs += hint;
523            ofs += hint;
524        } else { // key <= a[base + hint]
525            // Gallop left until a[base+hint-ofs] < key <= a[base+hint-lastOfs]
526            final int maxOfs = hint + 1;
527            while (ofs < maxOfs && key.compareTo(a[base + hint - ofs]) <= 0) {
528                lastOfs = ofs;
529                ofs = (ofs << 1) + 1;
530                if (ofs <= 0)   // int overflow
531                    ofs = maxOfs;
532            }
533            if (ofs > maxOfs)
534                ofs = maxOfs;
535
536            // Make offsets relative to base
537            int tmp = lastOfs;
538            lastOfs = hint - ofs;
539            ofs = hint - tmp;
540        }
541        assert -1 <= lastOfs && lastOfs < ofs && ofs <= len;
542
543        /*
544         * Now a[base+lastOfs] < key <= a[base+ofs], so key belongs somewhere
545         * to the right of lastOfs but no farther right than ofs.  Do a binary
546         * search, with invariant a[base + lastOfs - 1] < key <= a[base + ofs].
547         */
548        lastOfs++;
549        while (lastOfs < ofs) {
550            int m = lastOfs + ((ofs - lastOfs) >>> 1);
551
552            if (key.compareTo(a[base + m]) > 0)
553                lastOfs = m + 1;  // a[base + m] < key
554            else
555                ofs = m;          // key <= a[base + m]
556        }
557        assert lastOfs == ofs;    // so a[base + ofs - 1] < key <= a[base + ofs]
558        return ofs;
559    }
560
561    /**
562     * Like gallopLeft, except that if the range contains an element equal to
563     * key, gallopRight returns the index after the rightmost equal element.
564     *
565     * @param key the key whose insertion point to search for
566     * @param a the array in which to search
567     * @param base the index of the first element in the range
568     * @param len the length of the range; must be > 0
569     * @param hint the index at which to begin the search, 0 <= hint < n.
570     *     The closer hint is to the result, the faster this method will run.
571     * @return the int k,  0 <= k <= n such that a[b + k - 1] <= key < a[b + k]
572     */
573    private static int gallopRight(Comparable<Object> key, Object[] a,
574            int base, int len, int hint) {
575        assert len > 0 && hint >= 0 && hint < len;
576
577        int ofs = 1;
578        int lastOfs = 0;
579        if (key.compareTo(a[base + hint]) < 0) {
580            // Gallop left until a[b+hint - ofs] <= key < a[b+hint - lastOfs]
581            int maxOfs = hint + 1;
582            while (ofs < maxOfs && key.compareTo(a[base + hint - ofs]) < 0) {
583                lastOfs = ofs;
584                ofs = (ofs << 1) + 1;
585                if (ofs <= 0)   // int overflow
586                    ofs = maxOfs;
587            }
588            if (ofs > maxOfs)
589                ofs = maxOfs;
590
591            // Make offsets relative to b
592            int tmp = lastOfs;
593            lastOfs = hint - ofs;
594            ofs = hint - tmp;
595        } else { // a[b + hint] <= key
596            // Gallop right until a[b+hint + lastOfs] <= key < a[b+hint + ofs]
597            int maxOfs = len - hint;
598            while (ofs < maxOfs && key.compareTo(a[base + hint + ofs]) >= 0) {
599                lastOfs = ofs;
600                ofs = (ofs << 1) + 1;
601                if (ofs <= 0)   // int overflow
602                    ofs = maxOfs;
603            }
604            if (ofs > maxOfs)
605                ofs = maxOfs;
606
607            // Make offsets relative to b
608            lastOfs += hint;
609            ofs += hint;
610        }
611        assert -1 <= lastOfs && lastOfs < ofs && ofs <= len;
612
613        /*
614         * Now a[b + lastOfs] <= key < a[b + ofs], so key belongs somewhere to
615         * the right of lastOfs but no farther right than ofs.  Do a binary
616         * search, with invariant a[b + lastOfs - 1] <= key < a[b + ofs].
617         */
618        lastOfs++;
619        while (lastOfs < ofs) {
620            int m = lastOfs + ((ofs - lastOfs) >>> 1);
621
622            if (key.compareTo(a[base + m]) < 0)
623                ofs = m;          // key < a[b + m]
624            else
625                lastOfs = m + 1;  // a[b + m] <= key
626        }
627        assert lastOfs == ofs;    // so a[b + ofs - 1] <= key < a[b + ofs]
628        return ofs;
629    }
630
631    /**
632     * Merges two adjacent runs in place, in a stable fashion.  The first
633     * element of the first run must be greater than the first element of the
634     * second run (a[base1] > a[base2]), and the last element of the first run
635     * (a[base1 + len1-1]) must be greater than all elements of the second run.
636     *
637     * For performance, this method should be called only when len1 <= len2;
638     * its twin, mergeHi should be called if len1 >= len2.  (Either method
639     * may be called if len1 == len2.)
640     *
641     * @param base1 index of first element in first run to be merged
642     * @param len1  length of first run to be merged (must be > 0)
643     * @param base2 index of first element in second run to be merged
644     *        (must be aBase + aLen)
645     * @param len2  length of second run to be merged (must be > 0)
646     */
647    @SuppressWarnings({"unchecked", "rawtypes"})
648    private void mergeLo(int base1, int len1, int base2, int len2) {
649        assert len1 > 0 && len2 > 0 && base1 + len1 == base2;
650
651        // Copy first run into temp array
652        Object[] a = this.a; // For performance
653        Object[] tmp = ensureCapacity(len1);
654
655        int cursor1 = tmpBase; // Indexes into tmp array
656        int cursor2 = base2;   // Indexes int a
657        int dest = base1;      // Indexes int a
658        System.arraycopy(a, base1, tmp, cursor1, len1);
659
660        // Move first element of second run and deal with degenerate cases
661        a[dest++] = a[cursor2++];
662        if (--len2 == 0) {
663            System.arraycopy(tmp, cursor1, a, dest, len1);
664            return;
665        }
666        if (len1 == 1) {
667            System.arraycopy(a, cursor2, a, dest, len2);
668            a[dest + len2] = tmp[cursor1]; // Last elt of run 1 to end of merge
669            return;
670        }
671
672        int minGallop = this.minGallop;  // Use local variable for performance
673    outer:
674        while (true) {
675            int count1 = 0; // Number of times in a row that first run won
676            int count2 = 0; // Number of times in a row that second run won
677
678            /*
679             * Do the straightforward thing until (if ever) one run starts
680             * winning consistently.
681             */
682            do {
683                assert len1 > 1 && len2 > 0;
684                if (((Comparable) a[cursor2]).compareTo(tmp[cursor1]) < 0) {
685                    a[dest++] = a[cursor2++];
686                    count2++;
687                    count1 = 0;
688                    if (--len2 == 0)
689                        break outer;
690                } else {
691                    a[dest++] = tmp[cursor1++];
692                    count1++;
693                    count2 = 0;
694                    if (--len1 == 1)
695                        break outer;
696                }
697            } while ((count1 | count2) < minGallop);
698
699            /*
700             * One run is winning so consistently that galloping may be a
701             * huge win. So try that, and continue galloping until (if ever)
702             * neither run appears to be winning consistently anymore.
703             */
704            do {
705                assert len1 > 1 && len2 > 0;
706                count1 = gallopRight((Comparable) a[cursor2], tmp, cursor1, len1, 0);
707                if (count1 != 0) {
708                    System.arraycopy(tmp, cursor1, a, dest, count1);
709                    dest += count1;
710                    cursor1 += count1;
711                    len1 -= count1;
712                    if (len1 <= 1)  // len1 == 1 || len1 == 0
713                        break outer;
714                }
715                a[dest++] = a[cursor2++];
716                if (--len2 == 0)
717                    break outer;
718
719                count2 = gallopLeft((Comparable) tmp[cursor1], a, cursor2, len2, 0);
720                if (count2 != 0) {
721                    System.arraycopy(a, cursor2, a, dest, count2);
722                    dest += count2;
723                    cursor2 += count2;
724                    len2 -= count2;
725                    if (len2 == 0)
726                        break outer;
727                }
728                a[dest++] = tmp[cursor1++];
729                if (--len1 == 1)
730                    break outer;
731                minGallop--;
732            } while (count1 >= MIN_GALLOP | count2 >= MIN_GALLOP);
733            if (minGallop < 0)
734                minGallop = 0;
735            minGallop += 2;  // Penalize for leaving gallop mode
736        }  // End of "outer" loop
737        this.minGallop = minGallop < 1 ? 1 : minGallop;  // Write back to field
738
739        if (len1 == 1) {
740            assert len2 > 0;
741            System.arraycopy(a, cursor2, a, dest, len2);
742            a[dest + len2] = tmp[cursor1]; //  Last elt of run 1 to end of merge
743        } else if (len1 == 0) {
744            throw new IllegalArgumentException(
745                "Comparison method violates its general contract!");
746        } else {
747            assert len2 == 0;
748            assert len1 > 1;
749            System.arraycopy(tmp, cursor1, a, dest, len1);
750        }
751    }
752
753    /**
754     * Like mergeLo, except that this method should be called only if
755     * len1 >= len2; mergeLo should be called if len1 <= len2.  (Either method
756     * may be called if len1 == len2.)
757     *
758     * @param base1 index of first element in first run to be merged
759     * @param len1  length of first run to be merged (must be > 0)
760     * @param base2 index of first element in second run to be merged
761     *        (must be aBase + aLen)
762     * @param len2  length of second run to be merged (must be > 0)
763     */
764    @SuppressWarnings({"unchecked", "rawtypes"})
765    private void mergeHi(int base1, int len1, int base2, int len2) {
766        assert len1 > 0 && len2 > 0 && base1 + len1 == base2;
767
768        // Copy second run into temp array
769        Object[] a = this.a; // For performance
770        Object[] tmp = ensureCapacity(len2);
771        int tmpBase = this.tmpBase;
772        System.arraycopy(a, base2, tmp, tmpBase, len2);
773
774        int cursor1 = base1 + len1 - 1;  // Indexes into a
775        int cursor2 = tmpBase + len2 - 1; // Indexes into tmp array
776        int dest = base2 + len2 - 1;     // Indexes into a
777
778        // Move last element of first run and deal with degenerate cases
779        a[dest--] = a[cursor1--];
780        if (--len1 == 0) {
781            System.arraycopy(tmp, tmpBase, a, dest - (len2 - 1), len2);
782            return;
783        }
784        if (len2 == 1) {
785            dest -= len1;
786            cursor1 -= len1;
787            System.arraycopy(a, cursor1 + 1, a, dest + 1, len1);
788            a[dest] = tmp[cursor2];
789            return;
790        }
791
792        int minGallop = this.minGallop;  // Use local variable for performance
793    outer:
794        while (true) {
795            int count1 = 0; // Number of times in a row that first run won
796            int count2 = 0; // Number of times in a row that second run won
797
798            /*
799             * Do the straightforward thing until (if ever) one run
800             * appears to win consistently.
801             */
802            do {
803                assert len1 > 0 && len2 > 1;
804                if (((Comparable) tmp[cursor2]).compareTo(a[cursor1]) < 0) {
805                    a[dest--] = a[cursor1--];
806                    count1++;
807                    count2 = 0;
808                    if (--len1 == 0)
809                        break outer;
810                } else {
811                    a[dest--] = tmp[cursor2--];
812                    count2++;
813                    count1 = 0;
814                    if (--len2 == 1)
815                        break outer;
816                }
817            } while ((count1 | count2) < minGallop);
818
819            /*
820             * One run is winning so consistently that galloping may be a
821             * huge win. So try that, and continue galloping until (if ever)
822             * neither run appears to be winning consistently anymore.
823             */
824            do {
825                assert len1 > 0 && len2 > 1;
826                count1 = len1 - gallopRight((Comparable) tmp[cursor2], a, base1, len1, len1 - 1);
827                if (count1 != 0) {
828                    dest -= count1;
829                    cursor1 -= count1;
830                    len1 -= count1;
831                    System.arraycopy(a, cursor1 + 1, a, dest + 1, count1);
832                    if (len1 == 0)
833                        break outer;
834                }
835                a[dest--] = tmp[cursor2--];
836                if (--len2 == 1)
837                    break outer;
838
839                count2 = len2 - gallopLeft((Comparable) a[cursor1], tmp, tmpBase, len2, len2 - 1);
840                if (count2 != 0) {
841                    dest -= count2;
842                    cursor2 -= count2;
843                    len2 -= count2;
844                    System.arraycopy(tmp, cursor2 + 1, a, dest + 1, count2);
845                    if (len2 <= 1)
846                        break outer; // len2 == 1 || len2 == 0
847                }
848                a[dest--] = a[cursor1--];
849                if (--len1 == 0)
850                    break outer;
851                minGallop--;
852            } while (count1 >= MIN_GALLOP | count2 >= MIN_GALLOP);
853            if (minGallop < 0)
854                minGallop = 0;
855            minGallop += 2;  // Penalize for leaving gallop mode
856        }  // End of "outer" loop
857        this.minGallop = minGallop < 1 ? 1 : minGallop;  // Write back to field
858
859        if (len2 == 1) {
860            assert len1 > 0;
861            dest -= len1;
862            cursor1 -= len1;
863            System.arraycopy(a, cursor1 + 1, a, dest + 1, len1);
864            a[dest] = tmp[cursor2];  // Move first elt of run2 to front of merge
865        } else if (len2 == 0) {
866            throw new IllegalArgumentException(
867                "Comparison method violates its general contract!");
868        } else {
869            assert len1 == 0;
870            assert len2 > 0;
871            System.arraycopy(tmp, tmpBase, a, dest - (len2 - 1), len2);
872        }
873    }
874
875    /**
876     * Ensures that the external array tmp has at least the specified
877     * number of elements, increasing its size if necessary.  The size
878     * increases exponentially to ensure amortized linear time complexity.
879     *
880     * @param minCapacity the minimum required capacity of the tmp array
881     * @return tmp, whether or not it grew
882     */
883    private Object[]  ensureCapacity(int minCapacity) {
884        if (tmpLen < minCapacity) {
885            // Compute smallest power of 2 > minCapacity
886            int newSize = minCapacity;
887            newSize |= newSize >> 1;
888            newSize |= newSize >> 2;
889            newSize |= newSize >> 4;
890            newSize |= newSize >> 8;
891            newSize |= newSize >> 16;
892            newSize++;
893
894            if (newSize < 0) // Not bloody likely!
895                newSize = minCapacity;
896            else
897                newSize = Math.min(newSize, a.length >>> 1);
898
899            @SuppressWarnings({"unchecked", "UnnecessaryLocalVariable"})
900            Object[] newArray = new Object[newSize];
901            tmp = newArray;
902            tmpLen = newSize;
903            tmpBase = 0;
904        }
905        return tmp;
906    }
907
908}
909