Formatter.java revision 49965c1dc9da104344f4893a05e45795a5740d20
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 * Copyright (c) 2003, 2011, Oracle and/or its affiliates. All rights reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.  Oracle designates this
9 * particular file as subject to the "Classpath" exception as provided
10 * by Oracle in the LICENSE file that accompanied this code.
11 *
12 * This code is distributed in the hope that it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 * version 2 for more details (a copy is included in the LICENSE file that
16 * accompanied this code).
17 *
18 * You should have received a copy of the GNU General Public License version
19 * 2 along with this work; if not, write to the Free Software Foundation,
20 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
21 *
22 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
23 * or visit www.oracle.com if you need additional information or have any
24 * questions.
25 */
26
27package java.util;
28
29import java.io.BufferedWriter;
30import java.io.Closeable;
31import java.io.IOException;
32import java.io.File;
33import java.io.FileOutputStream;
34import java.io.FileNotFoundException;
35import java.io.Flushable;
36import java.io.OutputStream;
37import java.io.OutputStreamWriter;
38import java.io.PrintStream;
39import java.io.UnsupportedEncodingException;
40import java.math.BigDecimal;
41import java.math.BigInteger;
42import java.math.MathContext;
43import java.math.RoundingMode;
44import java.nio.charset.Charset;
45import java.nio.charset.IllegalCharsetNameException;
46import java.nio.charset.UnsupportedCharsetException;
47import java.text.DateFormatSymbols;
48import java.text.DecimalFormat;
49import java.text.DecimalFormatSymbols;
50import java.text.NumberFormat;
51
52import libcore.icu.LocaleData;
53import sun.misc.FpUtils;
54import sun.misc.DoubleConsts;
55import sun.misc.FormattedFloatingDecimal;
56
57/**
58 * An interpreter for printf-style format strings.  This class provides support
59 * for layout justification and alignment, common formats for numeric, string,
60 * and date/time data, and locale-specific output.  Common Java types such as
61 * {@code byte}, {@link java.math.BigDecimal BigDecimal}, and {@link Calendar}
62 * are supported.  Limited formatting customization for arbitrary user types is
63 * provided through the {@link Formattable} interface.
64 *
65 * <p> Formatters are not necessarily safe for multithreaded access.  Thread
66 * safety is optional and is the responsibility of users of methods in this
67 * class.
68 *
69 * <p> Formatted printing for the Java language is heavily inspired by C's
70 * {@code printf}.  Although the format strings are similar to C, some
71 * customizations have been made to accommodate the Java language and exploit
72 * some of its features.  Also, Java formatting is more strict than C's; for
73 * example, if a conversion is incompatible with a flag, an exception will be
74 * thrown.  In C inapplicable flags are silently ignored.  The format strings
75 * are thus intended to be recognizable to C programmers but not necessarily
76 * completely compatible with those in C.
77 *
78 * <p> Examples of expected usage:
79 *
80 * <blockquote><pre>
81 *   StringBuilder sb = new StringBuilder();
82 *   // Send all output to the Appendable object sb
83 *   Formatter formatter = new Formatter(sb, Locale.US);
84 *
85 *   // Explicit argument indices may be used to re-order output.
86 *   formatter.format("%4$2s %3$2s %2$2s %1$2s", "a", "b", "c", "d")
87 *   // -&gt; " d  c  b  a"
88 *
89 *   // Optional locale as the first argument can be used to get
90 *   // locale-specific formatting of numbers.  The precision and width can be
91 *   // given to round and align the value.
92 *   formatter.format(Locale.FRANCE, "e = %+10.4f", Math.E);
93 *   // -&gt; "e =    +2,7183"
94 *
95 *   // The '(' numeric flag may be used to format negative numbers with
96 *   // parentheses rather than a minus sign.  Group separators are
97 *   // automatically inserted.
98 *   formatter.format("Amount gained or lost since last statement: $ %(,.2f",
99 *                    balanceDelta);
100 *   // -&gt; "Amount gained or lost since last statement: $ (6,217.58)"
101 * </pre></blockquote>
102 *
103 * <p> Convenience methods for common formatting requests exist as illustrated
104 * by the following invocations:
105 *
106 * <blockquote><pre>
107 *   // Writes a formatted string to System.out.
108 *   System.out.format("Local time: %tT", Calendar.getInstance());
109 *   // -&gt; "Local time: 13:34:18"
110 *
111 *   // Writes formatted output to System.err.
112 *   System.err.printf("Unable to open file '%1$s': %2$s",
113 *                     fileName, exception.getMessage());
114 *   // -&gt; "Unable to open file 'food': No such file or directory"
115 * </pre></blockquote>
116 *
117 * <p> Like C's {@code sprintf(3)}, Strings may be formatted using the static
118 * method {@link String#format(String,Object...) String.format}:
119 *
120 * <blockquote><pre>
121 *   // Format a string containing a date.
122 *   import java.util.Calendar;
123 *   import java.util.GregorianCalendar;
124 *   import static java.util.Calendar.*;
125 *
126 *   Calendar c = new GregorianCalendar(1995, MAY, 23);
127 *   String s = String.format("Duke's Birthday: %1$tm %1$te,%1$tY", c);
128 *   // -&gt; s == "Duke's Birthday: May 23, 1995"
129 * </pre></blockquote>
130 *
131 * <h3><a name="org">Organization</a></h3>
132 *
133 * <p> This specification is divided into two sections.  The first section, <a
134 * href="#summary">Summary</a>, covers the basic formatting concepts.  This
135 * section is intended for users who want to get started quickly and are
136 * familiar with formatted printing in other programming languages.  The second
137 * section, <a href="#detail">Details</a>, covers the specific implementation
138 * details.  It is intended for users who want more precise specification of
139 * formatting behavior.
140 *
141 * <h3><a name="summary">Summary</a></h3>
142 *
143 * <p> This section is intended to provide a brief overview of formatting
144 * concepts.  For precise behavioral details, refer to the <a
145 * href="#detail">Details</a> section.
146 *
147 * <h4><a name="syntax">Format String Syntax</a></h4>
148 *
149 * <p> Every method which produces formatted output requires a <i>format
150 * string</i> and an <i>argument list</i>.  The format string is a {@link
151 * String} which may contain fixed text and one or more embedded <i>format
152 * specifiers</i>.  Consider the following example:
153 *
154 * <blockquote><pre>
155 *   Calendar c = ...;
156 *   String s = String.format("Duke's Birthday: %1$tm %1$te,%1$tY", c);
157 * </pre></blockquote>
158 *
159 * This format string is the first argument to the {@code format} method.  It
160 * contains three format specifiers "{@code %1$tm}", "{@code %1$te}", and
161 * "{@code %1$tY}" which indicate how the arguments should be processed and
162 * where they should be inserted in the text.  The remaining portions of the
163 * format string are fixed text including {@code "Dukes Birthday: "} and any
164 * other spaces or punctuation.
165 *
166 * The argument list consists of all arguments passed to the method after the
167 * format string.  In the above example, the argument list is of size one and
168 * consists of the {@link java.util.Calendar Calendar} object {@code c}.
169 *
170 * <ul>
171 *
172 * <li> The format specifiers for general, character, and numeric types have
173 * the following syntax:
174 *
175 * <blockquote><pre>
176 *   %[argument_index$][flags][width][.precision]conversion
177 * </pre></blockquote>
178 *
179 * <p> The optional <i>argument_index</i> is a decimal integer indicating the
180 * position of the argument in the argument list.  The first argument is
181 * referenced by "{@code 1$}", the second by "{@code 2$}", etc.
182 *
183 * <p> The optional <i>flags</i> is a set of characters that modify the output
184 * format.  The set of valid flags depends on the conversion.
185 *
186 * <p> The optional <i>width</i> is a non-negative decimal integer indicating
187 * the minimum number of characters to be written to the output.
188 *
189 * <p> The optional <i>precision</i> is a non-negative decimal integer usually
190 * used to restrict the number of characters.  The specific behavior depends on
191 * the conversion.
192 *
193 * <p> The required <i>conversion</i> is a character indicating how the
194 * argument should be formatted.  The set of valid conversions for a given
195 * argument depends on the argument's data type.
196 *
197 * <li> The format specifiers for types which are used to represents dates and
198 * times have the following syntax:
199 *
200 * <blockquote><pre>
201 *   %[argument_index$][flags][width]conversion
202 * </pre></blockquote>
203 *
204 * <p> The optional <i>argument_index</i>, <i>flags</i> and <i>width</i> are
205 * defined as above.
206 *
207 * <p> The required <i>conversion</i> is a two character sequence.  The first
208 * character is {@code 't'} or {@code 'T'}.  The second character indicates
209 * the format to be used.  These characters are similar to but not completely
210 * identical to those defined by GNU {@code date} and POSIX
211 * {@code strftime(3c)}.
212 *
213 * <li> The format specifiers which do not correspond to arguments have the
214 * following syntax:
215 *
216 * <blockquote><pre>
217 *   %[flags][width]conversion
218 * </pre></blockquote>
219 *
220 * <p> The optional <i>flags</i> and <i>width</i> is defined as above.
221 *
222 * <p> The required <i>conversion</i> is a character indicating content to be
223 * inserted in the output.
224 *
225 * </ul>
226 *
227 * <h4> Conversions </h4>
228 *
229 * <p> Conversions are divided into the following categories:
230 *
231 * <ol>
232 *
233 * <li> <b>General</b> - may be applied to any argument
234 * type
235 *
236 * <li> <b>Character</b> - may be applied to basic types which represent
237 * Unicode characters: {@code char}, {@link Character}, {@code byte}, {@link
238 * Byte}, {@code short}, and {@link Short}. This conversion may also be
239 * applied to the types {@code int} and {@link Integer} when {@link
240 * Character#isValidCodePoint} returns {@code true}
241 *
242 * <li> <b>Numeric</b>
243 *
244 * <ol>
245 *
246 * <li> <b>Integral</b> - may be applied to Java integral types: {@code byte},
247 * {@link Byte}, {@code short}, {@link Short}, {@code int} and {@link
248 * Integer}, {@code long}, {@link Long}, and {@link java.math.BigInteger
249 * BigInteger}
250 *
251 * <li><b>Floating Point</b> - may be applied to Java floating-point types:
252 * {@code float}, {@link Float}, {@code double}, {@link Double}, and {@link
253 * java.math.BigDecimal BigDecimal}
254 *
255 * </ol>
256 *
257 * <li> <b>Date/Time</b> - may be applied to Java types which are capable of
258 * encoding a date or time: {@code long}, {@link Long}, {@link Calendar}, and
259 * {@link Date}.
260 *
261 * <li> <b>Percent</b> - produces a literal {@code '%'}
262 * (<tt>'&#92;u0025'</tt>)
263 *
264 * <li> <b>Line Separator</b> - produces the platform-specific line separator
265 *
266 * </ol>
267 *
268 * <p> The following table summarizes the supported conversions.  Conversions
269 * denoted by an upper-case character (i.e. {@code 'B'}, {@code 'H'},
270 * {@code 'S'}, {@code 'C'}, {@code 'X'}, {@code 'E'}, {@code 'G'},
271 * {@code 'A'}, and {@code 'T'}) are the same as those for the corresponding
272 * lower-case conversion characters except that the result is converted to
273 * upper case according to the rules of the prevailing {@link java.util.Locale
274 * Locale}.  The result is equivalent to the following invocation of {@link
275 * String#toUpperCase()}
276 *
277 * <pre>
278 *    out.toUpperCase() </pre>
279 *
280 * <table cellpadding=5 summary="genConv">
281 *
282 * <tr><th valign="bottom"> Conversion
283 *     <th valign="bottom"> Argument Category
284 *     <th valign="bottom"> Description
285 *
286 * <tr><td valign="top"> {@code 'b'}, {@code 'B'}
287 *     <td valign="top"> general
288 *     <td> If the argument <i>arg</i> is {@code null}, then the result is
289 *     "{@code false}".  If <i>arg</i> is a {@code boolean} or {@link
290 *     Boolean}, then the result is the string returned by {@link
291 *     String#valueOf(boolean) String.valueOf(arg)}.  Otherwise, the result is
292 *     "true".
293 *
294 * <tr><td valign="top"> {@code 'h'}, {@code 'H'}
295 *     <td valign="top"> general
296 *     <td> If the argument <i>arg</i> is {@code null}, then the result is
297 *     "{@code null}".  Otherwise, the result is obtained by invoking
298 *     {@code Integer.toHexString(arg.hashCode())}.
299 *
300 * <tr><td valign="top"> {@code 's'}, {@code 'S'}
301 *     <td valign="top"> general
302 *     <td> If the argument <i>arg</i> is {@code null}, then the result is
303 *     "{@code null}".  If <i>arg</i> implements {@link Formattable}, then
304 *     {@link Formattable#formatTo arg.formatTo} is invoked. Otherwise, the
305 *     result is obtained by invoking {@code arg.toString()}.
306 *
307 * <tr><td valign="top">{@code 'c'}, {@code 'C'}
308 *     <td valign="top"> character
309 *     <td> The result is a Unicode character
310 *
311 * <tr><td valign="top">{@code 'd'}
312 *     <td valign="top"> integral
313 *     <td> The result is formatted as a decimal integer
314 *
315 * <tr><td valign="top">{@code 'o'}
316 *     <td valign="top"> integral
317 *     <td> The result is formatted as an octal integer
318 *
319 * <tr><td valign="top">{@code 'x'}, {@code 'X'}
320 *     <td valign="top"> integral
321 *     <td> The result is formatted as a hexadecimal integer
322 *
323 * <tr><td valign="top">{@code 'e'}, {@code 'E'}
324 *     <td valign="top"> floating point
325 *     <td> The result is formatted as a decimal number in computerized
326 *     scientific notation
327 *
328 * <tr><td valign="top">{@code 'f'}
329 *     <td valign="top"> floating point
330 *     <td> The result is formatted as a decimal number
331 *
332 * <tr><td valign="top">{@code 'g'}, {@code 'G'}
333 *     <td valign="top"> floating point
334 *     <td> The result is formatted using computerized scientific notation or
335 *     decimal format, depending on the precision and the value after rounding.
336 *
337 * <tr><td valign="top">{@code 'a'}, {@code 'A'}
338 *     <td valign="top"> floating point
339 *     <td> The result is formatted as a hexadecimal floating-point number with
340 *     a significand and an exponent
341 *
342 * <tr><td valign="top">{@code 't'}, {@code 'T'}
343 *     <td valign="top"> date/time
344 *     <td> Prefix for date and time conversion characters.  See <a
345 *     href="#dt">Date/Time Conversions</a>.
346 *
347 * <tr><td valign="top">{@code '%'}
348 *     <td valign="top"> percent
349 *     <td> The result is a literal {@code '%'} (<tt>'&#92;u0025'</tt>)
350 *
351 * <tr><td valign="top">{@code 'n'}
352 *     <td valign="top"> line separator
353 *     <td> The result is the platform-specific line separator
354 *
355 * </table>
356 *
357 * <p> Any characters not explicitly defined as conversions are illegal and are
358 * reserved for future extensions.
359 *
360 * <h4><a name="dt">Date/Time Conversions</a></h4>
361 *
362 * <p> The following date and time conversion suffix characters are defined for
363 * the {@code 't'} and {@code 'T'} conversions.  The types are similar to but
364 * not completely identical to those defined by GNU {@code date} and POSIX
365 * {@code strftime(3c)}.  Additional conversion types are provided to access
366 * Java-specific functionality (e.g. {@code 'L'} for milliseconds within the
367 * second).
368 *
369 * <p> The following conversion characters are used for formatting times:
370 *
371 * <table cellpadding=5 summary="time">
372 *
373 * <tr><td valign="top"> {@code 'H'}
374 *     <td> Hour of the day for the 24-hour clock, formatted as two digits with
375 *     a leading zero as necessary i.e. {@code 00 - 23}.
376 *
377 * <tr><td valign="top">{@code 'I'}
378 *     <td> Hour for the 12-hour clock, formatted as two digits with a leading
379 *     zero as necessary, i.e.  {@code 01 - 12}.
380 *
381 * <tr><td valign="top">{@code 'k'}
382 *     <td> Hour of the day for the 24-hour clock, i.e. {@code 0 - 23}.
383 *
384 * <tr><td valign="top">{@code 'l'}
385 *     <td> Hour for the 12-hour clock, i.e. {@code 1 - 12}.
386 *
387 * <tr><td valign="top">{@code 'M'}
388 *     <td> Minute within the hour formatted as two digits with a leading zero
389 *     as necessary, i.e.  {@code 00 - 59}.
390 *
391 * <tr><td valign="top">{@code 'S'}
392 *     <td> Seconds within the minute, formatted as two digits with a leading
393 *     zero as necessary, i.e. {@code 00 - 60} ("{@code 60}" is a special
394 *     value required to support leap seconds).
395 *
396 * <tr><td valign="top">{@code 'L'}
397 *     <td> Millisecond within the second formatted as three digits with
398 *     leading zeros as necessary, i.e. {@code 000 - 999}.
399 *
400 * <tr><td valign="top">{@code 'N'}
401 *     <td> Nanosecond within the second, formatted as nine digits with leading
402 *     zeros as necessary, i.e. {@code 000000000 - 999999999}.
403 *
404 * <tr><td valign="top">{@code 'p'}
405 *     <td> Locale-specific {@linkplain
406 *     java.text.DateFormatSymbols#getAmPmStrings morning or afternoon} marker
407 *     in lower case, e.g."{@code am}" or "{@code pm}". Use of the conversion
408 *     prefix {@code 'T'} forces this output to upper case.
409 *
410 * <tr><td valign="top">{@code 'z'}
411 *     <td> <a href="http://www.ietf.org/rfc/rfc0822.txt">RFC&nbsp;822</a>
412 *     style numeric time zone offset from GMT, e.g. {@code -0800}.  This
413 *     value will be adjusted as necessary for Daylight Saving Time.  For
414 *     {@code long}, {@link Long}, and {@link Date} the time zone used is
415 *     the {@linkplain TimeZone#getDefault() default time zone} for this
416 *     instance of the Java virtual machine.
417 *
418 * <tr><td valign="top">{@code 'Z'}
419 *     <td> A string representing the abbreviation for the time zone.  This
420 *     value will be adjusted as necessary for Daylight Saving Time.  For
421 *     {@code long}, {@link Long}, and {@link Date} the  time zone used is
422 *     the {@linkplain TimeZone#getDefault() default time zone} for this
423 *     instance of the Java virtual machine.  The Formatter's locale will
424 *     supersede the locale of the argument (if any).
425 *
426 * <tr><td valign="top">{@code 's'}
427 *     <td> Seconds since the beginning of the epoch starting at 1 January 1970
428 *     {@code 00:00:00} UTC, i.e. {@code Long.MIN_VALUE/1000} to
429 *     {@code Long.MAX_VALUE/1000}.
430 *
431 * <tr><td valign="top">{@code 'Q'}
432 *     <td> Milliseconds since the beginning of the epoch starting at 1 January
433 *     1970 {@code 00:00:00} UTC, i.e. {@code Long.MIN_VALUE} to
434 *     {@code Long.MAX_VALUE}.
435 *
436 * </table>
437 *
438 * <p> The following conversion characters are used for formatting dates:
439 *
440 * <table cellpadding=5 summary="date">
441 *
442 * <tr><td valign="top">{@code 'B'}
443 *     <td> Locale-specific {@linkplain java.text.DateFormatSymbols#getMonths
444 *     full month name}, e.g. {@code "January"}, {@code "February"}.
445 *
446 * <tr><td valign="top">{@code 'b'}
447 *     <td> Locale-specific {@linkplain
448 *     java.text.DateFormatSymbols#getShortMonths abbreviated month name},
449 *     e.g. {@code "Jan"}, {@code "Feb"}.
450 *
451 * <tr><td valign="top">{@code 'h'}
452 *     <td> Same as {@code 'b'}.
453 *
454 * <tr><td valign="top">{@code 'A'}
455 *     <td> Locale-specific full name of the {@linkplain
456 *     java.text.DateFormatSymbols#getWeekdays day of the week},
457 *     e.g. {@code "Sunday"}, {@code "Monday"}
458 *
459 * <tr><td valign="top">{@code 'a'}
460 *     <td> Locale-specific short name of the {@linkplain
461 *     java.text.DateFormatSymbols#getShortWeekdays day of the week},
462 *     e.g. {@code "Sun"}, {@code "Mon"}
463 *
464 * <tr><td valign="top">{@code 'C'}
465 *     <td> Four-digit year divided by {@code 100}, formatted as two digits
466 *     with leading zero as necessary, i.e. {@code 00 - 99}
467 *
468 * <tr><td valign="top">{@code 'Y'}
469 *     <td> Year, formatted as at least four digits with leading zeros as
470 *     necessary, e.g. {@code 0092} equals {@code 92} CE for the Gregorian
471 *     calendar.
472 *
473 * <tr><td valign="top">{@code 'y'}
474 *     <td> Last two digits of the year, formatted with leading zeros as
475 *     necessary, i.e. {@code 00 - 99}.
476 *
477 * <tr><td valign="top">{@code 'j'}
478 *     <td> Day of year, formatted as three digits with leading zeros as
479 *     necessary, e.g. {@code 001 - 366} for the Gregorian calendar.
480 *
481 * <tr><td valign="top">{@code 'm'}
482 *     <td> Month, formatted as two digits with leading zeros as necessary,
483 *     i.e. {@code 01 - 13}.
484 *
485 * <tr><td valign="top">{@code 'd'}
486 *     <td> Day of month, formatted as two digits with leading zeros as
487 *     necessary, i.e. {@code 01 - 31}
488 *
489 * <tr><td valign="top">{@code 'e'}
490 *     <td> Day of month, formatted as two digits, i.e. {@code 1 - 31}.
491 *
492 * </table>
493 *
494 * <p> The following conversion characters are used for formatting common
495 * date/time compositions.
496 *
497 * <table cellpadding=5 summary="composites">
498 *
499 * <tr><td valign="top">{@code 'R'}
500 *     <td> Time formatted for the 24-hour clock as {@code "%tH:%tM"}
501 *
502 * <tr><td valign="top">{@code 'T'}
503 *     <td> Time formatted for the 24-hour clock as {@code "%tH:%tM:%tS"}.
504 *
505 * <tr><td valign="top">{@code 'r'}
506 *     <td> Time formatted for the 12-hour clock as {@code "%tI:%tM:%tS %Tp"}.
507 *     The location of the morning or afternoon marker ({@code '%Tp'}) may be
508 *     locale-dependent.
509 *
510 * <tr><td valign="top">{@code 'D'}
511 *     <td> Date formatted as {@code "%tm/%td/%ty"}.
512 *
513 * <tr><td valign="top">{@code 'F'}
514 *     <td> <a href="http://www.w3.org/TR/NOTE-datetime">ISO&nbsp;8601</a>
515 *     complete date formatted as {@code "%tY-%tm-%td"}.
516 *
517 * <tr><td valign="top">{@code 'c'}
518 *     <td> Date and time formatted as {@code "%ta %tb %td %tT %tZ %tY"},
519 *     e.g. {@code "Sun Jul 20 16:17:00 EDT 1969"}.
520 *
521 * </table>
522 *
523 * <p> Any characters not explicitly defined as date/time conversion suffixes
524 * are illegal and are reserved for future extensions.
525 *
526 * <h4> Flags </h4>
527 *
528 * <p> The following table summarizes the supported flags.  <i>y</i> means the
529 * flag is supported for the indicated argument types.
530 *
531 * <table cellpadding=5 summary="genConv">
532 *
533 * <tr><th valign="bottom"> Flag <th valign="bottom"> General
534 *     <th valign="bottom"> Character <th valign="bottom"> Integral
535 *     <th valign="bottom"> Floating Point
536 *     <th valign="bottom"> Date/Time
537 *     <th valign="bottom"> Description
538 *
539 * <tr><td> '-' <td align="center" valign="top"> y
540 *     <td align="center" valign="top"> y
541 *     <td align="center" valign="top"> y
542 *     <td align="center" valign="top"> y
543 *     <td align="center" valign="top"> y
544 *     <td> The result will be left-justified.
545 *
546 * <tr><td> '#' <td align="center" valign="top"> y<sup>1</sup>
547 *     <td align="center" valign="top"> -
548 *     <td align="center" valign="top"> y<sup>3</sup>
549 *     <td align="center" valign="top"> y
550 *     <td align="center" valign="top"> -
551 *     <td> The result should use a conversion-dependent alternate form
552 *
553 * <tr><td> '+' <td align="center" valign="top"> -
554 *     <td align="center" valign="top"> -
555 *     <td align="center" valign="top"> y<sup>4</sup>
556 *     <td align="center" valign="top"> y
557 *     <td align="center" valign="top"> -
558 *     <td> The result will always include a sign
559 *
560 * <tr><td> '&nbsp;&nbsp;' <td align="center" valign="top"> -
561 *     <td align="center" valign="top"> -
562 *     <td align="center" valign="top"> y<sup>4</sup>
563 *     <td align="center" valign="top"> y
564 *     <td align="center" valign="top"> -
565 *     <td> The result will include a leading space for positive values
566 *
567 * <tr><td> '0' <td align="center" valign="top"> -
568 *     <td align="center" valign="top"> -
569 *     <td align="center" valign="top"> y
570 *     <td align="center" valign="top"> y
571 *     <td align="center" valign="top"> -
572 *     <td> The result will be zero-padded
573 *
574 * <tr><td> ',' <td align="center" valign="top"> -
575 *     <td align="center" valign="top"> -
576 *     <td align="center" valign="top"> y<sup>2</sup>
577 *     <td align="center" valign="top"> y<sup>5</sup>
578 *     <td align="center" valign="top"> -
579 *     <td> The result will include locale-specific {@linkplain
580 *     java.text.DecimalFormatSymbols#getGroupingSeparator grouping separators}
581 *
582 * <tr><td> '(' <td align="center" valign="top"> -
583 *     <td align="center" valign="top"> -
584 *     <td align="center" valign="top"> y<sup>4</sup>
585 *     <td align="center" valign="top"> y<sup>5</sup>
586 *     <td align="center"> -
587 *     <td> The result will enclose negative numbers in parentheses
588 *
589 * </table>
590 *
591 * <p> <sup>1</sup> Depends on the definition of {@link Formattable}.
592 *
593 * <p> <sup>2</sup> For {@code 'd'} conversion only.
594 *
595 * <p> <sup>3</sup> For {@code 'o'}, {@code 'x'}, and {@code 'X'}
596 * conversions only.
597 *
598 * <p> <sup>4</sup> For {@code 'd'}, {@code 'o'}, {@code 'x'}, and
599 * {@code 'X'} conversions applied to {@link java.math.BigInteger BigInteger}
600 * or {@code 'd'} applied to {@code byte}, {@link Byte}, {@code short}, {@link
601 * Short}, {@code int} and {@link Integer}, {@code long}, and {@link Long}.
602 *
603 * <p> <sup>5</sup> For {@code 'e'}, {@code 'E'}, {@code 'f'},
604 * {@code 'g'}, and {@code 'G'} conversions only.
605 *
606 * <p> Any characters not explicitly defined as flags are illegal and are
607 * reserved for future extensions.
608 *
609 * <h4> Width </h4>
610 *
611 * <p> The width is the minimum number of characters to be written to the
612 * output.  For the line separator conversion, width is not applicable; if it
613 * is provided, an exception will be thrown.
614 *
615 * <h4> Precision </h4>
616 *
617 * <p> For general argument types, the precision is the maximum number of
618 * characters to be written to the output.
619 *
620 * <p> For the floating-point conversions {@code 'e'}, {@code 'E'}, and
621 * {@code 'f'} the precision is the number of digits after the decimal
622 * separator.  If the conversion is {@code 'g'} or {@code 'G'}, then the
623 * precision is the total number of digits in the resulting magnitude after
624 * rounding.  If the conversion is {@code 'a'} or {@code 'A'}, then the
625 * precision must not be specified.
626 *
627 * <p> For character, integral, and date/time argument types and the percent
628 * and line separator conversions, the precision is not applicable; if a
629 * precision is provided, an exception will be thrown.
630 *
631 * <h4> Argument Index </h4>
632 *
633 * <p> The argument index is a decimal integer indicating the position of the
634 * argument in the argument list.  The first argument is referenced by
635 * "{@code 1$}", the second by "{@code 2$}", etc.
636 *
637 * <p> Another way to reference arguments by position is to use the
638 * {@code '<'} (<tt>'&#92;u003c'</tt>) flag, which causes the argument for
639 * the previous format specifier to be re-used.  For example, the following two
640 * statements would produce identical strings:
641 *
642 * <blockquote><pre>
643 *   Calendar c = ...;
644 *   String s1 = String.format("Duke's Birthday: %1$tm %1$te,%1$tY", c);
645 *
646 *   String s2 = String.format("Duke's Birthday: %1$tm %&lt;te,%&lt;tY", c);
647 * </pre></blockquote>
648 *
649 * <hr>
650 * <h3><a name="detail">Details</a></h3>
651 *
652 * <p> This section is intended to provide behavioral details for formatting,
653 * including conditions and exceptions, supported data types, localization, and
654 * interactions between flags, conversions, and data types.  For an overview of
655 * formatting concepts, refer to the <a href="#summary">Summary</a>
656 *
657 * <p> Any characters not explicitly defined as conversions, date/time
658 * conversion suffixes, or flags are illegal and are reserved for
659 * future extensions.  Use of such a character in a format string will
660 * cause an {@link UnknownFormatConversionException} or {@link
661 * UnknownFormatFlagsException} to be thrown.
662 *
663 * <p> If the format specifier contains a width or precision with an invalid
664 * value or which is otherwise unsupported, then a {@link
665 * IllegalFormatWidthException} or {@link IllegalFormatPrecisionException}
666 * respectively will be thrown.
667 *
668 * <p> If a format specifier contains a conversion character that is not
669 * applicable to the corresponding argument, then an {@link
670 * IllegalFormatConversionException} will be thrown.
671 *
672 * <p> All specified exceptions may be thrown by any of the {@code format}
673 * methods of {@code Formatter} as well as by any {@code format} convenience
674 * methods such as {@link String#format(String,Object...) String.format} and
675 * {@link java.io.PrintStream#printf(String,Object...) PrintStream.printf}.
676 *
677 * <p> Conversions denoted by an upper-case character (i.e. {@code 'B'},
678 * {@code 'H'}, {@code 'S'}, {@code 'C'}, {@code 'X'}, {@code 'E'},
679 * {@code 'G'}, {@code 'A'}, and {@code 'T'}) are the same as those for the
680 * corresponding lower-case conversion characters except that the result is
681 * converted to upper case according to the rules of the prevailing {@link
682 * java.util.Locale Locale}.  The result is equivalent to the following
683 * invocation of {@link String#toUpperCase()}
684 *
685 * <pre>
686 *    out.toUpperCase() </pre>
687 *
688 * <h4><a name="dgen">General</a></h4>
689 *
690 * <p> The following general conversions may be applied to any argument type:
691 *
692 * <table cellpadding=5 summary="dgConv">
693 *
694 * <tr><td valign="top"> {@code 'b'}
695 *     <td valign="top"> <tt>'&#92;u0062'</tt>
696 *     <td> Produces either "{@code true}" or "{@code false}" as returned by
697 *     {@link Boolean#toString(boolean)}.
698 *
699 *     <p> If the argument is {@code null}, then the result is
700 *     "{@code false}".  If the argument is a {@code boolean} or {@link
701 *     Boolean}, then the result is the string returned by {@link
702 *     String#valueOf(boolean) String.valueOf()}.  Otherwise, the result is
703 *     "{@code true}".
704 *
705 *     <p> If the {@code '#'} flag is given, then a {@link
706 *     FormatFlagsConversionMismatchException} will be thrown.
707 *
708 * <tr><td valign="top"> {@code 'B'}
709 *     <td valign="top"> <tt>'&#92;u0042'</tt>
710 *     <td> The upper-case variant of {@code 'b'}.
711 *
712 * <tr><td valign="top"> {@code 'h'}
713 *     <td valign="top"> <tt>'&#92;u0068'</tt>
714 *     <td> Produces a string representing the hash code value of the object.
715 *
716 *     <p> If the argument, <i>arg</i> is {@code null}, then the
717 *     result is "{@code null}".  Otherwise, the result is obtained
718 *     by invoking {@code Integer.toHexString(arg.hashCode())}.
719 *
720 *     <p> If the {@code '#'} flag is given, then a {@link
721 *     FormatFlagsConversionMismatchException} will be thrown.
722 *
723 * <tr><td valign="top"> {@code 'H'}
724 *     <td valign="top"> <tt>'&#92;u0048'</tt>
725 *     <td> The upper-case variant of {@code 'h'}.
726 *
727 * <tr><td valign="top"> {@code 's'}
728 *     <td valign="top"> <tt>'&#92;u0073'</tt>
729 *     <td> Produces a string.
730 *
731 *     <p> If the argument is {@code null}, then the result is
732 *     "{@code null}".  If the argument implements {@link Formattable}, then
733 *     its {@link Formattable#formatTo formatTo} method is invoked.
734 *     Otherwise, the result is obtained by invoking the argument's
735 *     {@code toString()} method.
736 *
737 *     <p> If the {@code '#'} flag is given and the argument is not a {@link
738 *     Formattable} , then a {@link FormatFlagsConversionMismatchException}
739 *     will be thrown.
740 *
741 * <tr><td valign="top"> {@code 'S'}
742 *     <td valign="top"> <tt>'&#92;u0053'</tt>
743 *     <td> The upper-case variant of {@code 's'}.
744 *
745 * </table>
746 *
747 * <p> The following <a name="dFlags">flags</a> apply to general conversions:
748 *
749 * <table cellpadding=5 summary="dFlags">
750 *
751 * <tr><td valign="top"> {@code '-'}
752 *     <td valign="top"> <tt>'&#92;u002d'</tt>
753 *     <td> Left justifies the output.  Spaces (<tt>'&#92;u0020'</tt>) will be
754 *     added at the end of the converted value as required to fill the minimum
755 *     width of the field.  If the width is not provided, then a {@link
756 *     MissingFormatWidthException} will be thrown.  If this flag is not given
757 *     then the output will be right-justified.
758 *
759 * <tr><td valign="top"> {@code '#'}
760 *     <td valign="top"> <tt>'&#92;u0023'</tt>
761 *     <td> Requires the output use an alternate form.  The definition of the
762 *     form is specified by the conversion.
763 *
764 * </table>
765 *
766 * <p> The <a name="genWidth">width</a> is the minimum number of characters to
767 * be written to the
768 * output.  If the length of the converted value is less than the width then
769 * the output will be padded by <tt>'&nbsp;&nbsp;'</tt> (<tt>'&#92;u0020'</tt>)
770 * until the total number of characters equals the width.  The padding is on
771 * the left by default.  If the {@code '-'} flag is given, then the padding
772 * will be on the right.  If the width is not specified then there is no
773 * minimum.
774 *
775 * <p> The precision is the maximum number of characters to be written to the
776 * output.  The precision is applied before the width, thus the output will be
777 * truncated to {@code precision} characters even if the width is greater than
778 * the precision.  If the precision is not specified then there is no explicit
779 * limit on the number of characters.
780 *
781 * <h4><a name="dchar">Character</a></h4>
782 *
783 * This conversion may be applied to {@code char} and {@link Character}.  It
784 * may also be applied to the types {@code byte}, {@link Byte},
785 * {@code short}, and {@link Short}, {@code int} and {@link Integer} when
786 * {@link Character#isValidCodePoint} returns {@code true}.  If it returns
787 * {@code false} then an {@link IllegalFormatCodePointException} will be
788 * thrown.
789 *
790 * <table cellpadding=5 summary="charConv">
791 *
792 * <tr><td valign="top"> {@code 'c'}
793 *     <td valign="top"> <tt>'&#92;u0063'</tt>
794 *     <td> Formats the argument as a Unicode character as described in <a
795 *     href="../lang/Character.html#unicode">Unicode Character
796 *     Representation</a>.  This may be more than one 16-bit {@code char} in
797 *     the case where the argument represents a supplementary character.
798 *
799 *     <p> If the {@code '#'} flag is given, then a {@link
800 *     FormatFlagsConversionMismatchException} will be thrown.
801 *
802 * <tr><td valign="top"> {@code 'C'}
803 *     <td valign="top"> <tt>'&#92;u0043'</tt>
804 *     <td> The upper-case variant of {@code 'c'}.
805 *
806 * </table>
807 *
808 * <p> The {@code '-'} flag defined for <a href="#dFlags">General
809 * conversions</a> applies.  If the {@code '#'} flag is given, then a {@link
810 * FormatFlagsConversionMismatchException} will be thrown.
811 *
812 * <p> The width is defined as for <a href="#genWidth">General conversions</a>.
813 *
814 * <p> The precision is not applicable.  If the precision is specified then an
815 * {@link IllegalFormatPrecisionException} will be thrown.
816 *
817 * <h4><a name="dnum">Numeric</a></h4>
818 *
819 * <p> Numeric conversions are divided into the following categories:
820 *
821 * <ol>
822 *
823 * <li> <a href="#dnint"><b>Byte, Short, Integer, and Long</b></a>
824 *
825 * <li> <a href="#dnbint"><b>BigInteger</b></a>
826 *
827 * <li> <a href="#dndec"><b>Float and Double</b></a>
828 *
829 * <li> <a href="#dnbdec"><b>BigDecimal</b></a>
830 *
831 * </ol>
832 *
833 * <p> Numeric types will be formatted according to the following algorithm:
834 *
835 * <p><b><a name="l10n algorithm"> Number Localization Algorithm</a></b>
836 *
837 * <p> After digits are obtained for the integer part, fractional part, and
838 * exponent (as appropriate for the data type), the following transformation
839 * is applied:
840 *
841 * <ol>
842 *
843 * <li> Each digit character <i>d</i> in the string is replaced by a
844 * locale-specific digit computed relative to the current locale's
845 * {@linkplain java.text.DecimalFormatSymbols#getZeroDigit() zero digit}
846 * <i>z</i>; that is <i>d&nbsp;-&nbsp;</i> {@code '0'}
847 * <i>&nbsp;+&nbsp;z</i>.
848 *
849 * <li> If a decimal separator is present, a locale-specific {@linkplain
850 * java.text.DecimalFormatSymbols#getDecimalSeparator decimal separator} is
851 * substituted.
852 *
853 * <li> If the {@code ','} (<tt>'&#92;u002c'</tt>)
854 * <a name="l10n group">flag</a> is given, then the locale-specific {@linkplain
855 * java.text.DecimalFormatSymbols#getGroupingSeparator grouping separator} is
856 * inserted by scanning the integer part of the string from least significant
857 * to most significant digits and inserting a separator at intervals defined by
858 * the locale's {@linkplain java.text.DecimalFormat#getGroupingSize() grouping
859 * size}.
860 *
861 * <li> If the {@code '0'} flag is given, then the locale-specific {@linkplain
862 * java.text.DecimalFormatSymbols#getZeroDigit() zero digits} are inserted
863 * after the sign character, if any, and before the first non-zero digit, until
864 * the length of the string is equal to the requested field width.
865 *
866 * <li> If the value is negative and the {@code '('} flag is given, then a
867 * {@code '('} (<tt>'&#92;u0028'</tt>) is prepended and a {@code ')'}
868 * (<tt>'&#92;u0029'</tt>) is appended.
869 *
870 * <li> If the value is negative (or floating-point negative zero) and
871 * {@code '('} flag is not given, then a {@code '-'} (<tt>'&#92;u002d'</tt>)
872 * is prepended.
873 *
874 * <li> If the {@code '+'} flag is given and the value is positive or zero (or
875 * floating-point positive zero), then a {@code '+'} (<tt>'&#92;u002b'</tt>)
876 * will be prepended.
877 *
878 * </ol>
879 *
880 * <p> If the value is NaN or positive infinity the literal strings "NaN" or
881 * "Infinity" respectively, will be output.  If the value is negative infinity,
882 * then the output will be "(Infinity)" if the {@code '('} flag is given
883 * otherwise the output will be "-Infinity".  These values are not localized.
884 *
885 * <p><a name="dnint"><b> Byte, Short, Integer, and Long </b></a>
886 *
887 * <p> The following conversions may be applied to {@code byte}, {@link Byte},
888 * {@code short}, {@link Short}, {@code int} and {@link Integer},
889 * {@code long}, and {@link Long}.
890 *
891 * <table cellpadding=5 summary="IntConv">
892 *
893 * <tr><td valign="top"> {@code 'd'}
894 *     <td valign="top"> <tt>'&#92;u0054'</tt>
895 *     <td> Formats the argument as a decimal integer. The <a
896 *     href="#l10n algorithm">localization algorithm</a> is applied.
897 *
898 *     <p> If the {@code '0'} flag is given and the value is negative, then
899 *     the zero padding will occur after the sign.
900 *
901 *     <p> If the {@code '#'} flag is given then a {@link
902 *     FormatFlagsConversionMismatchException} will be thrown.
903 *
904 * <tr><td valign="top"> {@code 'o'}
905 *     <td valign="top"> <tt>'&#92;u006f'</tt>
906 *     <td> Formats the argument as an integer in base eight.  No localization
907 *     is applied.
908 *
909 *     <p> If <i>x</i> is negative then the result will be an unsigned value
910 *     generated by adding 2<sup>n</sup> to the value where {@code n} is the
911 *     number of bits in the type as returned by the static {@code SIZE} field
912 *     in the {@linkplain Byte#SIZE Byte}, {@linkplain Short#SIZE Short},
913 *     {@linkplain Integer#SIZE Integer}, or {@linkplain Long#SIZE Long}
914 *     classes as appropriate.
915 *
916 *     <p> If the {@code '#'} flag is given then the output will always begin
917 *     with the radix indicator {@code '0'}.
918 *
919 *     <p> If the {@code '0'} flag is given then the output will be padded
920 *     with leading zeros to the field width following any indication of sign.
921 *
922 *     <p> If {@code '('}, {@code '+'}, '&nbsp&nbsp;', or {@code ','} flags
923 *     are given then a {@link FormatFlagsConversionMismatchException} will be
924 *     thrown.
925 *
926 * <tr><td valign="top"> {@code 'x'}
927 *     <td valign="top"> <tt>'&#92;u0078'</tt>
928 *     <td> Formats the argument as an integer in base sixteen. No
929 *     localization is applied.
930 *
931 *     <p> If <i>x</i> is negative then the result will be an unsigned value
932 *     generated by adding 2<sup>n</sup> to the value where {@code n} is the
933 *     number of bits in the type as returned by the static {@code SIZE} field
934 *     in the {@linkplain Byte#SIZE Byte}, {@linkplain Short#SIZE Short},
935 *     {@linkplain Integer#SIZE Integer}, or {@linkplain Long#SIZE Long}
936 *     classes as appropriate.
937 *
938 *     <p> If the {@code '#'} flag is given then the output will always begin
939 *     with the radix indicator {@code "0x"}.
940 *
941 *     <p> If the {@code '0'} flag is given then the output will be padded to
942 *     the field width with leading zeros after the radix indicator or sign (if
943 *     present).
944 *
945 *     <p> If {@code '('}, <tt>'&nbsp;&nbsp;'</tt>, {@code '+'}, or
946 *     {@code ','} flags are given then a {@link
947 *     FormatFlagsConversionMismatchException} will be thrown.
948 *
949 * <tr><td valign="top"> {@code 'X'}
950 *     <td valign="top"> <tt>'&#92;u0058'</tt>
951 *     <td> The upper-case variant of {@code 'x'}.  The entire string
952 *     representing the number will be converted to {@linkplain
953 *     String#toUpperCase upper case} including the {@code 'x'} (if any) and
954 *     all hexadecimal digits {@code 'a'} - {@code 'f'}
955 *     (<tt>'&#92;u0061'</tt> -  <tt>'&#92;u0066'</tt>).
956 *
957 * </table>
958 *
959 * <p> If the conversion is {@code 'o'}, {@code 'x'}, or {@code 'X'} and
960 * both the {@code '#'} and the {@code '0'} flags are given, then result will
961 * contain the radix indicator ({@code '0'} for octal and {@code "0x"} or
962 * {@code "0X"} for hexadecimal), some number of zeros (based on the width),
963 * and the value.
964 *
965 * <p> If the {@code '-'} flag is not given, then the space padding will occur
966 * before the sign.
967 *
968 * <p> The following <a name="intFlags">flags</a> apply to numeric integral
969 * conversions:
970 *
971 * <table cellpadding=5 summary="intFlags">
972 *
973 * <tr><td valign="top"> {@code '+'}
974 *     <td valign="top"> <tt>'&#92;u002b'</tt>
975 *     <td> Requires the output to include a positive sign for all positive
976 *     numbers.  If this flag is not given then only negative values will
977 *     include a sign.
978 *
979 *     <p> If both the {@code '+'} and <tt>'&nbsp;&nbsp;'</tt> flags are given
980 *     then an {@link IllegalFormatFlagsException} will be thrown.
981 *
982 * <tr><td valign="top"> <tt>'&nbsp;&nbsp;'</tt>
983 *     <td valign="top"> <tt>'&#92;u0020'</tt>
984 *     <td> Requires the output to include a single extra space
985 *     (<tt>'&#92;u0020'</tt>) for non-negative values.
986 *
987 *     <p> If both the {@code '+'} and <tt>'&nbsp;&nbsp;'</tt> flags are given
988 *     then an {@link IllegalFormatFlagsException} will be thrown.
989 *
990 * <tr><td valign="top"> {@code '0'}
991 *     <td valign="top"> <tt>'&#92;u0030'</tt>
992 *     <td> Requires the output to be padded with leading {@linkplain
993 *     java.text.DecimalFormatSymbols#getZeroDigit zeros} to the minimum field
994 *     width following any sign or radix indicator except when converting NaN
995 *     or infinity.  If the width is not provided, then a {@link
996 *     MissingFormatWidthException} will be thrown.
997 *
998 *     <p> If both the {@code '-'} and {@code '0'} flags are given then an
999 *     {@link IllegalFormatFlagsException} will be thrown.
1000 *
1001 * <tr><td valign="top"> {@code ','}
1002 *     <td valign="top"> <tt>'&#92;u002c'</tt>
1003 *     <td> Requires the output to include the locale-specific {@linkplain
1004 *     java.text.DecimalFormatSymbols#getGroupingSeparator group separators} as
1005 *     described in the <a href="#l10n group">"group" section</a> of the
1006 *     localization algorithm.
1007 *
1008 * <tr><td valign="top"> {@code '('}
1009 *     <td valign="top"> <tt>'&#92;u0028'</tt>
1010 *     <td> Requires the output to prepend a {@code '('}
1011 *     (<tt>'&#92;u0028'</tt>) and append a {@code ')'}
1012 *     (<tt>'&#92;u0029'</tt>) to negative values.
1013 *
1014 * </table>
1015 *
1016 * <p> If no <a name="intdFlags">flags</a> are given the default formatting is
1017 * as follows:
1018 *
1019 * <ul>
1020 *
1021 * <li> The output is right-justified within the {@code width}
1022 *
1023 * <li> Negative numbers begin with a {@code '-'} (<tt>'&#92;u002d'</tt>)
1024 *
1025 * <li> Positive numbers and zero do not include a sign or extra leading
1026 * space
1027 *
1028 * <li> No grouping separators are included
1029 *
1030 * </ul>
1031 *
1032 * <p> The <a name="intWidth">width</a> is the minimum number of characters to
1033 * be written to the output.  This includes any signs, digits, grouping
1034 * separators, radix indicator, and parentheses.  If the length of the
1035 * converted value is less than the width then the output will be padded by
1036 * spaces (<tt>'&#92;u0020'</tt>) until the total number of characters equals
1037 * width.  The padding is on the left by default.  If {@code '-'} flag is
1038 * given then the padding will be on the right.  If width is not specified then
1039 * there is no minimum.
1040 *
1041 * <p> The precision is not applicable.  If precision is specified then an
1042 * {@link IllegalFormatPrecisionException} will be thrown.
1043 *
1044 * <p><a name="dnbint"><b> BigInteger </b></a>
1045 *
1046 * <p> The following conversions may be applied to {@link
1047 * java.math.BigInteger}.
1048 *
1049 * <table cellpadding=5 summary="BIntConv">
1050 *
1051 * <tr><td valign="top"> {@code 'd'}
1052 *     <td valign="top"> <tt>'&#92;u0054'</tt>
1053 *     <td> Requires the output to be formatted as a decimal integer. The <a
1054 *     href="#l10n algorithm">localization algorithm</a> is applied.
1055 *
1056 *     <p> If the {@code '#'} flag is given {@link
1057 *     FormatFlagsConversionMismatchException} will be thrown.
1058 *
1059 * <tr><td valign="top"> {@code 'o'}
1060 *     <td valign="top"> <tt>'&#92;u006f'</tt>
1061 *     <td> Requires the output to be formatted as an integer in base eight.
1062 *     No localization is applied.
1063 *
1064 *     <p> If <i>x</i> is negative then the result will be a signed value
1065 *     beginning with {@code '-'} (<tt>'&#92;u002d'</tt>).  Signed output is
1066 *     allowed for this type because unlike the primitive types it is not
1067 *     possible to create an unsigned equivalent without assuming an explicit
1068 *     data-type size.
1069 *
1070 *     <p> If <i>x</i> is positive or zero and the {@code '+'} flag is given
1071 *     then the result will begin with {@code '+'} (<tt>'&#92;u002b'</tt>).
1072 *
1073 *     <p> If the {@code '#'} flag is given then the output will always begin
1074 *     with {@code '0'} prefix.
1075 *
1076 *     <p> If the {@code '0'} flag is given then the output will be padded
1077 *     with leading zeros to the field width following any indication of sign.
1078 *
1079 *     <p> If the {@code ','} flag is given then a {@link
1080 *     FormatFlagsConversionMismatchException} will be thrown.
1081 *
1082 * <tr><td valign="top"> {@code 'x'}
1083 *     <td valign="top"> <tt>'&#92;u0078'</tt>
1084 *     <td> Requires the output to be formatted as an integer in base
1085 *     sixteen.  No localization is applied.
1086 *
1087 *     <p> If <i>x</i> is negative then the result will be a signed value
1088 *     beginning with {@code '-'} (<tt>'&#92;u002d'</tt>).  Signed output is
1089 *     allowed for this type because unlike the primitive types it is not
1090 *     possible to create an unsigned equivalent without assuming an explicit
1091 *     data-type size.
1092 *
1093 *     <p> If <i>x</i> is positive or zero and the {@code '+'} flag is given
1094 *     then the result will begin with {@code '+'} (<tt>'&#92;u002b'</tt>).
1095 *
1096 *     <p> If the {@code '#'} flag is given then the output will always begin
1097 *     with the radix indicator {@code "0x"}.
1098 *
1099 *     <p> If the {@code '0'} flag is given then the output will be padded to
1100 *     the field width with leading zeros after the radix indicator or sign (if
1101 *     present).
1102 *
1103 *     <p> If the {@code ','} flag is given then a {@link
1104 *     FormatFlagsConversionMismatchException} will be thrown.
1105 *
1106 * <tr><td valign="top"> {@code 'X'}
1107 *     <td valign="top"> <tt>'&#92;u0058'</tt>
1108 *     <td> The upper-case variant of {@code 'x'}.  The entire string
1109 *     representing the number will be converted to {@linkplain
1110 *     String#toUpperCase upper case} including the {@code 'x'} (if any) and
1111 *     all hexadecimal digits {@code 'a'} - {@code 'f'}
1112 *     (<tt>'&#92;u0061'</tt> - <tt>'&#92;u0066'</tt>).
1113 *
1114 * </table>
1115 *
1116 * <p> If the conversion is {@code 'o'}, {@code 'x'}, or {@code 'X'} and
1117 * both the {@code '#'} and the {@code '0'} flags are given, then result will
1118 * contain the base indicator ({@code '0'} for octal and {@code "0x"} or
1119 * {@code "0X"} for hexadecimal), some number of zeros (based on the width),
1120 * and the value.
1121 *
1122 * <p> If the {@code '0'} flag is given and the value is negative, then the
1123 * zero padding will occur after the sign.
1124 *
1125 * <p> If the {@code '-'} flag is not given, then the space padding will occur
1126 * before the sign.
1127 *
1128 * <p> All <a href="#intFlags">flags</a> defined for Byte, Short, Integer, and
1129 * Long apply.  The <a href="#intdFlags">default behavior</a> when no flags are
1130 * given is the same as for Byte, Short, Integer, and Long.
1131 *
1132 * <p> The specification of <a href="#intWidth">width</a> is the same as
1133 * defined for Byte, Short, Integer, and Long.
1134 *
1135 * <p> The precision is not applicable.  If precision is specified then an
1136 * {@link IllegalFormatPrecisionException} will be thrown.
1137 *
1138 * <p><a name="dndec"><b> Float and Double</b></a>
1139 *
1140 * <p> The following conversions may be applied to {@code float}, {@link
1141 * Float}, {@code double} and {@link Double}.
1142 *
1143 * <table cellpadding=5 summary="floatConv">
1144 *
1145 * <tr><td valign="top"> {@code 'e'}
1146 *     <td valign="top"> <tt>'&#92;u0065'</tt>
1147 *     <td> Requires the output to be formatted using <a
1148 *     name="scientific">computerized scientific notation</a>.  The <a
1149 *     href="#l10n algorithm">localization algorithm</a> is applied.
1150 *
1151 *     <p> The formatting of the magnitude <i>m</i> depends upon its value.
1152 *
1153 *     <p> If <i>m</i> is NaN or infinite, the literal strings "NaN" or
1154 *     "Infinity", respectively, will be output.  These values are not
1155 *     localized.
1156 *
1157 *     <p> If <i>m</i> is positive-zero or negative-zero, then the exponent
1158 *     will be {@code "+00"}.
1159 *
1160 *     <p> Otherwise, the result is a string that represents the sign and
1161 *     magnitude (absolute value) of the argument.  The formatting of the sign
1162 *     is described in the <a href="#l10n algorithm">localization
1163 *     algorithm</a>. The formatting of the magnitude <i>m</i> depends upon its
1164 *     value.
1165 *
1166 *     <p> Let <i>n</i> be the unique integer such that 10<sup><i>n</i></sup>
1167 *     &lt;= <i>m</i> &lt; 10<sup><i>n</i>+1</sup>; then let <i>a</i> be the
1168 *     mathematically exact quotient of <i>m</i> and 10<sup><i>n</i></sup> so
1169 *     that 1 &lt;= <i>a</i> &lt; 10. The magnitude is then represented as the
1170 *     integer part of <i>a</i>, as a single decimal digit, followed by the
1171 *     decimal separator followed by decimal digits representing the fractional
1172 *     part of <i>a</i>, followed by the lower-case locale-specific {@linkplain
1173 *     java.text.DecimalFormatSymbols#getExponentSeparator exponent separator}
1174 *     (e.g. {@code 'e'}), followed by the sign of the exponent, followed
1175 *     by a representation of <i>n</i> as a decimal integer, as produced by the
1176 *     method {@link Long#toString(long, int)}, and zero-padded to include at
1177 *     least two digits.
1178 *
1179 *     <p> The number of digits in the result for the fractional part of
1180 *     <i>m</i> or <i>a</i> is equal to the precision.  If the precision is not
1181 *     specified then the default value is {@code 6}. If the precision is less
1182 *     than the number of digits which would appear after the decimal point in
1183 *     the string returned by {@link Float#toString(float)} or {@link
1184 *     Double#toString(double)} respectively, then the value will be rounded
1185 *     using the {@linkplain java.math.BigDecimal#ROUND_HALF_UP round half up
1186 *     algorithm}.  Otherwise, zeros may be appended to reach the precision.
1187 *     For a canonical representation of the value, use {@link
1188 *     Float#toString(float)} or {@link Double#toString(double)} as
1189 *     appropriate.
1190 *
1191 *     <p>If the {@code ','} flag is given, then an {@link
1192 *     FormatFlagsConversionMismatchException} will be thrown.
1193 *
1194 * <tr><td valign="top"> {@code 'E'}
1195 *     <td valign="top"> <tt>'&#92;u0045'</tt>
1196 *     <td> The upper-case variant of {@code 'e'}.  The exponent symbol
1197 *     will be the upper-case locale-specific {@linkplain
1198 *     java.text.DecimalFormatSymbols#getExponentSeparator exponent separator}
1199 *     (e.g. {@code 'E'}).
1200 *
1201 * <tr><td valign="top"> {@code 'g'}
1202 *     <td valign="top"> <tt>'&#92;u0067'</tt>
1203 *     <td> Requires the output to be formatted in general scientific notation
1204 *     as described below. The <a href="#l10n algorithm">localization
1205 *     algorithm</a> is applied.
1206 *
1207 *     <p> After rounding for the precision, the formatting of the resulting
1208 *     magnitude <i>m</i> depends on its value.
1209 *
1210 *     <p> If <i>m</i> is greater than or equal to 10<sup>-4</sup> but less
1211 *     than 10<sup>precision</sup> then it is represented in <i><a
1212 *     href="#decimal">decimal format</a></i>.
1213 *
1214 *     <p> If <i>m</i> is less than 10<sup>-4</sup> or greater than or equal to
1215 *     10<sup>precision</sup>, then it is represented in <i><a
1216 *     href="#scientific">computerized scientific notation</a></i>.
1217 *
1218 *     <p> The total number of significant digits in <i>m</i> is equal to the
1219 *     precision.  If the precision is not specified, then the default value is
1220 *     {@code 6}.  If the precision is {@code 0}, then it is taken to be
1221 *     {@code 1}.
1222 *
1223 *     <p> If the {@code '#'} flag is given then an {@link
1224 *     FormatFlagsConversionMismatchException} will be thrown.
1225 *
1226 * <tr><td valign="top"> {@code 'G'}
1227 *     <td valign="top"> <tt>'&#92;u0047'</tt>
1228 *     <td> The upper-case variant of {@code 'g'}.
1229 *
1230 * <tr><td valign="top"> {@code 'f'}
1231 *     <td valign="top"> <tt>'&#92;u0066'</tt>
1232 *     <td> Requires the output to be formatted using <a name="decimal">decimal
1233 *     format</a>.  The <a href="#l10n algorithm">localization algorithm</a> is
1234 *     applied.
1235 *
1236 *     <p> The result is a string that represents the sign and magnitude
1237 *     (absolute value) of the argument.  The formatting of the sign is
1238 *     described in the <a href="#l10n algorithm">localization
1239 *     algorithm</a>. The formatting of the magnitude <i>m</i> depends upon its
1240 *     value.
1241 *
1242 *     <p> If <i>m</i> NaN or infinite, the literal strings "NaN" or
1243 *     "Infinity", respectively, will be output.  These values are not
1244 *     localized.
1245 *
1246 *     <p> The magnitude is formatted as the integer part of <i>m</i>, with no
1247 *     leading zeroes, followed by the decimal separator followed by one or
1248 *     more decimal digits representing the fractional part of <i>m</i>.
1249 *
1250 *     <p> The number of digits in the result for the fractional part of
1251 *     <i>m</i> or <i>a</i> is equal to the precision.  If the precision is not
1252 *     specified then the default value is {@code 6}. If the precision is less
1253 *     than the number of digits which would appear after the decimal point in
1254 *     the string returned by {@link Float#toString(float)} or {@link
1255 *     Double#toString(double)} respectively, then the value will be rounded
1256 *     using the {@linkplain java.math.BigDecimal#ROUND_HALF_UP round half up
1257 *     algorithm}.  Otherwise, zeros may be appended to reach the precision.
1258 *     For a canonical representation of the value, use {@link
1259 *     Float#toString(float)} or {@link Double#toString(double)} as
1260 *     appropriate.
1261 *
1262 * <tr><td valign="top"> {@code 'a'}
1263 *     <td valign="top"> <tt>'&#92;u0061'</tt>
1264 *     <td> Requires the output to be formatted in hexadecimal exponential
1265 *     form.  No localization is applied.
1266 *
1267 *     <p> The result is a string that represents the sign and magnitude
1268 *     (absolute value) of the argument <i>x</i>.
1269 *
1270 *     <p> If <i>x</i> is negative or a negative-zero value then the result
1271 *     will begin with {@code '-'} (<tt>'&#92;u002d'</tt>).
1272 *
1273 *     <p> If <i>x</i> is positive or a positive-zero value and the
1274 *     {@code '+'} flag is given then the result will begin with {@code '+'}
1275 *     (<tt>'&#92;u002b'</tt>).
1276 *
1277 *     <p> The formatting of the magnitude <i>m</i> depends upon its value.
1278 *
1279 *     <ul>
1280 *
1281 *     <li> If the value is NaN or infinite, the literal strings "NaN" or
1282 *     "Infinity", respectively, will be output.
1283 *
1284 *     <li> If <i>m</i> is zero then it is represented by the string
1285 *     {@code "0x0.0p0"}.
1286 *
1287 *     <li> If <i>m</i> is a {@code double} value with a normalized
1288 *     representation then substrings are used to represent the significand and
1289 *     exponent fields.  The significand is represented by the characters
1290 *     {@code "0x1."} followed by the hexadecimal representation of the rest
1291 *     of the significand as a fraction.  The exponent is represented by
1292 *     {@code 'p'} (<tt>'&#92;u0070'</tt>) followed by a decimal string of the
1293 *     unbiased exponent as if produced by invoking {@link
1294 *     Integer#toString(int) Integer.toString} on the exponent value.
1295 *
1296 *     <li> If <i>m</i> is a {@code double} value with a subnormal
1297 *     representation then the significand is represented by the characters
1298 *     {@code '0x0.'} followed by the hexadecimal representation of the rest
1299 *     of the significand as a fraction.  The exponent is represented by
1300 *     {@code 'p-1022'}.  Note that there must be at least one nonzero digit
1301 *     in a subnormal significand.
1302 *
1303 *     </ul>
1304 *
1305 *     <p> If the {@code '('} or {@code ','} flags are given, then a {@link
1306 *     FormatFlagsConversionMismatchException} will be thrown.
1307 *
1308 * <tr><td valign="top"> {@code 'A'}
1309 *     <td valign="top"> <tt>'&#92;u0041'</tt>
1310 *     <td> The upper-case variant of {@code 'a'}.  The entire string
1311 *     representing the number will be converted to upper case including the
1312 *     {@code 'x'} (<tt>'&#92;u0078'</tt>) and {@code 'p'}
1313 *     (<tt>'&#92;u0070'</tt> and all hexadecimal digits {@code 'a'} -
1314 *     {@code 'f'} (<tt>'&#92;u0061'</tt> - <tt>'&#92;u0066'</tt>).
1315 *
1316 * </table>
1317 *
1318 * <p> All <a href="#intFlags">flags</a> defined for Byte, Short, Integer, and
1319 * Long apply.
1320 *
1321 * <p> If the {@code '#'} flag is given, then the decimal separator will
1322 * always be present.
1323 *
1324 * <p> If no <a name="floatdFlags">flags</a> are given the default formatting
1325 * is as follows:
1326 *
1327 * <ul>
1328 *
1329 * <li> The output is right-justified within the {@code width}
1330 *
1331 * <li> Negative numbers begin with a {@code '-'}
1332 *
1333 * <li> Positive numbers and positive zero do not include a sign or extra
1334 * leading space
1335 *
1336 * <li> No grouping separators are included
1337 *
1338 * <li> The decimal separator will only appear if a digit follows it
1339 *
1340 * </ul>
1341 *
1342 * <p> The <a name="floatDWidth">width</a> is the minimum number of characters
1343 * to be written to the output.  This includes any signs, digits, grouping
1344 * separators, decimal separators, exponential symbol, radix indicator,
1345 * parentheses, and strings representing infinity and NaN as applicable.  If
1346 * the length of the converted value is less than the width then the output
1347 * will be padded by spaces (<tt>'&#92;u0020'</tt>) until the total number of
1348 * characters equals width.  The padding is on the left by default.  If the
1349 * {@code '-'} flag is given then the padding will be on the right.  If width
1350 * is not specified then there is no minimum.
1351 *
1352 * <p> If the <a name="floatDPrec">conversion</a> is {@code 'e'},
1353 * {@code 'E'} or {@code 'f'}, then the precision is the number of digits
1354 * after the decimal separator.  If the precision is not specified, then it is
1355 * assumed to be {@code 6}.
1356 *
1357 * <p> If the conversion is {@code 'g'} or {@code 'G'}, then the precision is
1358 * the total number of significant digits in the resulting magnitude after
1359 * rounding.  If the precision is not specified, then the default value is
1360 * {@code 6}.  If the precision is {@code 0}, then it is taken to be
1361 * {@code 1}.
1362 *
1363 * <p> If the conversion is {@code 'a'} or {@code 'A'}, then the precision
1364 * is the number of hexadecimal digits after the decimal separator.  If the
1365 * precision is not provided, then all of the digits as returned by {@link
1366 * Double#toHexString(double)} will be output.
1367 *
1368 * <p><a name="dnbdec"><b> BigDecimal </b></a>
1369 *
1370 * <p> The following conversions may be applied {@link java.math.BigDecimal
1371 * BigDecimal}.
1372 *
1373 * <table cellpadding=5 summary="floatConv">
1374 *
1375 * <tr><td valign="top"> {@code 'e'}
1376 *     <td valign="top"> <tt>'&#92;u0065'</tt>
1377 *     <td> Requires the output to be formatted using <a
1378 *     name="bscientific">computerized scientific notation</a>.  The <a
1379 *     href="#l10n algorithm">localization algorithm</a> is applied.
1380 *
1381 *     <p> The formatting of the magnitude <i>m</i> depends upon its value.
1382 *
1383 *     <p> If <i>m</i> is positive-zero or negative-zero, then the exponent
1384 *     will be {@code "+00"}.
1385 *
1386 *     <p> Otherwise, the result is a string that represents the sign and
1387 *     magnitude (absolute value) of the argument.  The formatting of the sign
1388 *     is described in the <a href="#l10n algorithm">localization
1389 *     algorithm</a>. The formatting of the magnitude <i>m</i> depends upon its
1390 *     value.
1391 *
1392 *     <p> Let <i>n</i> be the unique integer such that 10<sup><i>n</i></sup>
1393 *     &lt;= <i>m</i> &lt; 10<sup><i>n</i>+1</sup>; then let <i>a</i> be the
1394 *     mathematically exact quotient of <i>m</i> and 10<sup><i>n</i></sup> so
1395 *     that 1 &lt;= <i>a</i> &lt; 10. The magnitude is then represented as the
1396 *     integer part of <i>a</i>, as a single decimal digit, followed by the
1397 *     decimal separator followed by decimal digits representing the fractional
1398 *     part of <i>a</i>, followed by the exponent symbol {@code 'e'}
1399 *     (<tt>'&#92;u0065'</tt>), followed by the sign of the exponent, followed
1400 *     by a representation of <i>n</i> as a decimal integer, as produced by the
1401 *     method {@link Long#toString(long, int)}, and zero-padded to include at
1402 *     least two digits.
1403 *
1404 *     <p> The number of digits in the result for the fractional part of
1405 *     <i>m</i> or <i>a</i> is equal to the precision.  If the precision is not
1406 *     specified then the default value is {@code 6}.  If the precision is
1407 *     less than the number of digits to the right of the decimal point then
1408 *     the value will be rounded using the
1409 *     {@linkplain java.math.BigDecimal#ROUND_HALF_UP round half up
1410 *     algorithm}.  Otherwise, zeros may be appended to reach the precision.
1411 *     For a canonical representation of the value, use {@link
1412 *     BigDecimal#toString()}.
1413 *
1414 *     <p> If the {@code ','} flag is given, then an {@link
1415 *     FormatFlagsConversionMismatchException} will be thrown.
1416 *
1417 * <tr><td valign="top"> {@code 'E'}
1418 *     <td valign="top"> <tt>'&#92;u0045'</tt>
1419 *     <td> The upper-case variant of {@code 'e'}.  The exponent symbol
1420 *     will be {@code 'E'} (<tt>'&#92;u0045'</tt>).
1421 *
1422 * <tr><td valign="top"> {@code 'g'}
1423 *     <td valign="top"> <tt>'&#92;u0067'</tt>
1424 *     <td> Requires the output to be formatted in general scientific notation
1425 *     as described below. The <a href="#l10n algorithm">localization
1426 *     algorithm</a> is applied.
1427 *
1428 *     <p> After rounding for the precision, the formatting of the resulting
1429 *     magnitude <i>m</i> depends on its value.
1430 *
1431 *     <p> If <i>m</i> is greater than or equal to 10<sup>-4</sup> but less
1432 *     than 10<sup>precision</sup> then it is represented in <i><a
1433 *     href="#bdecimal">decimal format</a></i>.
1434 *
1435 *     <p> If <i>m</i> is less than 10<sup>-4</sup> or greater than or equal to
1436 *     10<sup>precision</sup>, then it is represented in <i><a
1437 *     href="#bscientific">computerized scientific notation</a></i>.
1438 *
1439 *     <p> The total number of significant digits in <i>m</i> is equal to the
1440 *     precision.  If the precision is not specified, then the default value is
1441 *     {@code 6}.  If the precision is {@code 0}, then it is taken to be
1442 *     {@code 1}.
1443 *
1444 *     <p> If the {@code '#'} flag is given then an {@link
1445 *     FormatFlagsConversionMismatchException} will be thrown.
1446 *
1447 * <tr><td valign="top"> {@code 'G'}
1448 *     <td valign="top"> <tt>'&#92;u0047'</tt>
1449 *     <td> The upper-case variant of {@code 'g'}.
1450 *
1451 * <tr><td valign="top"> {@code 'f'}
1452 *     <td valign="top"> <tt>'&#92;u0066'</tt>
1453 *     <td> Requires the output to be formatted using <a name="bdecimal">decimal
1454 *     format</a>.  The <a href="#l10n algorithm">localization algorithm</a> is
1455 *     applied.
1456 *
1457 *     <p> The result is a string that represents the sign and magnitude
1458 *     (absolute value) of the argument.  The formatting of the sign is
1459 *     described in the <a href="#l10n algorithm">localization
1460 *     algorithm</a>. The formatting of the magnitude <i>m</i> depends upon its
1461 *     value.
1462 *
1463 *     <p> The magnitude is formatted as the integer part of <i>m</i>, with no
1464 *     leading zeroes, followed by the decimal separator followed by one or
1465 *     more decimal digits representing the fractional part of <i>m</i>.
1466 *
1467 *     <p> The number of digits in the result for the fractional part of
1468 *     <i>m</i> or <i>a</i> is equal to the precision. If the precision is not
1469 *     specified then the default value is {@code 6}.  If the precision is
1470 *     less than the number of digits to the right of the decimal point
1471 *     then the value will be rounded using the
1472 *     {@linkplain java.math.BigDecimal#ROUND_HALF_UP round half up
1473 *     algorithm}.  Otherwise, zeros may be appended to reach the precision.
1474 *     For a canonical representation of the value, use {@link
1475 *     BigDecimal#toString()}.
1476 *
1477 * </table>
1478 *
1479 * <p> All <a href="#intFlags">flags</a> defined for Byte, Short, Integer, and
1480 * Long apply.
1481 *
1482 * <p> If the {@code '#'} flag is given, then the decimal separator will
1483 * always be present.
1484 *
1485 * <p> The <a href="#floatdFlags">default behavior</a> when no flags are
1486 * given is the same as for Float and Double.
1487 *
1488 * <p> The specification of <a href="#floatDWidth">width</a> and <a
1489 * href="#floatDPrec">precision</a> is the same as defined for Float and
1490 * Double.
1491 *
1492 * <h4><a name="ddt">Date/Time</a></h4>
1493 *
1494 * <p> This conversion may be applied to {@code long}, {@link Long}, {@link
1495 * Calendar}, and {@link Date}.
1496 *
1497 * <table cellpadding=5 summary="DTConv">
1498 *
1499 * <tr><td valign="top"> {@code 't'}
1500 *     <td valign="top"> <tt>'&#92;u0074'</tt>
1501 *     <td> Prefix for date and time conversion characters.
1502 * <tr><td valign="top"> {@code 'T'}
1503 *     <td valign="top"> <tt>'&#92;u0054'</tt>
1504 *     <td> The upper-case variant of {@code 't'}.
1505 *
1506 * </table>
1507 *
1508 * <p> The following date and time conversion character suffixes are defined
1509 * for the {@code 't'} and {@code 'T'} conversions.  The types are similar to
1510 * but not completely identical to those defined by GNU {@code date} and
1511 * POSIX {@code strftime(3c)}.  Additional conversion types are provided to
1512 * access Java-specific functionality (e.g. {@code 'L'} for milliseconds
1513 * within the second).
1514 *
1515 * <p> The following conversion characters are used for formatting times:
1516 *
1517 * <table cellpadding=5 summary="time">
1518 *
1519 * <tr><td valign="top"> {@code 'H'}
1520 *     <td valign="top"> <tt>'&#92;u0048'</tt>
1521 *     <td> Hour of the day for the 24-hour clock, formatted as two digits with
1522 *     a leading zero as necessary i.e. {@code 00 - 23}. {@code 00}
1523 *     corresponds to midnight.
1524 *
1525 * <tr><td valign="top">{@code 'I'}
1526 *     <td valign="top"> <tt>'&#92;u0049'</tt>
1527 *     <td> Hour for the 12-hour clock, formatted as two digits with a leading
1528 *     zero as necessary, i.e.  {@code 01 - 12}.  {@code 01} corresponds to
1529 *     one o'clock (either morning or afternoon).
1530 *
1531 * <tr><td valign="top">{@code 'k'}
1532 *     <td valign="top"> <tt>'&#92;u006b'</tt>
1533 *     <td> Hour of the day for the 24-hour clock, i.e. {@code 0 - 23}.
1534 *     {@code 0} corresponds to midnight.
1535 *
1536 * <tr><td valign="top">{@code 'l'}
1537 *     <td valign="top"> <tt>'&#92;u006c'</tt>
1538 *     <td> Hour for the 12-hour clock, i.e. {@code 1 - 12}.  {@code 1}
1539 *     corresponds to one o'clock (either morning or afternoon).
1540 *
1541 * <tr><td valign="top">{@code 'M'}
1542 *     <td valign="top"> <tt>'&#92;u004d'</tt>
1543 *     <td> Minute within the hour formatted as two digits with a leading zero
1544 *     as necessary, i.e.  {@code 00 - 59}.
1545 *
1546 * <tr><td valign="top">{@code 'S'}
1547 *     <td valign="top"> <tt>'&#92;u0053'</tt>
1548 *     <td> Seconds within the minute, formatted as two digits with a leading
1549 *     zero as necessary, i.e. {@code 00 - 60} ("{@code 60}" is a special
1550 *     value required to support leap seconds).
1551 *
1552 * <tr><td valign="top">{@code 'L'}
1553 *     <td valign="top"> <tt>'&#92;u004c'</tt>
1554 *     <td> Millisecond within the second formatted as three digits with
1555 *     leading zeros as necessary, i.e. {@code 000 - 999}.
1556 *
1557 * <tr><td valign="top">{@code 'N'}
1558 *     <td valign="top"> <tt>'&#92;u004e'</tt>
1559 *     <td> Nanosecond within the second, formatted as nine digits with leading
1560 *     zeros as necessary, i.e. {@code 000000000 - 999999999}.  The precision
1561 *     of this value is limited by the resolution of the underlying operating
1562 *     system or hardware.
1563 *
1564 * <tr><td valign="top">{@code 'p'}
1565 *     <td valign="top"> <tt>'&#92;u0070'</tt>
1566 *     <td> Locale-specific {@linkplain
1567 *     java.text.DateFormatSymbols#getAmPmStrings morning or afternoon} marker
1568 *     in lower case, e.g."{@code am}" or "{@code pm}".  Use of the
1569 *     conversion prefix {@code 'T'} forces this output to upper case.  (Note
1570 *     that {@code 'p'} produces lower-case output.  This is different from
1571 *     GNU {@code date} and POSIX {@code strftime(3c)} which produce
1572 *     upper-case output.)
1573 *
1574 * <tr><td valign="top">{@code 'z'}
1575 *     <td valign="top"> <tt>'&#92;u007a'</tt>
1576 *     <td> <a href="http://www.ietf.org/rfc/rfc0822.txt">RFC&nbsp;822</a>
1577 *     style numeric time zone offset from GMT, e.g. {@code -0800}.  This
1578 *     value will be adjusted as necessary for Daylight Saving Time.  For
1579 *     {@code long}, {@link Long}, and {@link Date} the time zone used is
1580 *     the {@linkplain TimeZone#getDefault() default time zone} for this
1581 *     instance of the Java virtual machine.
1582 *
1583 * <tr><td valign="top">{@code 'Z'}
1584 *     <td valign="top"> <tt>'&#92;u005a'</tt>
1585 *     <td> A string representing the abbreviation for the time zone.  This
1586 *     value will be adjusted as necessary for Daylight Saving Time.  For
1587 *     {@code long}, {@link Long}, and {@link Date} the time zone used is
1588 *     the {@linkplain TimeZone#getDefault() default time zone} for this
1589 *     instance of the Java virtual machine.  The Formatter's locale will
1590 *     supersede the locale of the argument (if any).
1591 *
1592 * <tr><td valign="top">{@code 's'}
1593 *     <td valign="top"> <tt>'&#92;u0073'</tt>
1594 *     <td> Seconds since the beginning of the epoch starting at 1 January 1970
1595 *     {@code 00:00:00} UTC, i.e. {@code Long.MIN_VALUE/1000} to
1596 *     {@code Long.MAX_VALUE/1000}.
1597 *
1598 * <tr><td valign="top">{@code 'Q'}
1599 *     <td valign="top"> <tt>'&#92;u004f'</tt>
1600 *     <td> Milliseconds since the beginning of the epoch starting at 1 January
1601 *     1970 {@code 00:00:00} UTC, i.e. {@code Long.MIN_VALUE} to
1602 *     {@code Long.MAX_VALUE}. The precision of this value is limited by
1603 *     the resolution of the underlying operating system or hardware.
1604 *
1605 * </table>
1606 *
1607 * <p> The following conversion characters are used for formatting dates:
1608 *
1609 * <table cellpadding=5 summary="date">
1610 *
1611 * <tr><td valign="top">{@code 'B'}
1612 *     <td valign="top"> <tt>'&#92;u0042'</tt>
1613 *     <td> Locale-specific {@linkplain java.text.DateFormatSymbols#getMonths
1614 *     full month name}, e.g. {@code "January"}, {@code "February"}.
1615 *
1616 * <tr><td valign="top">{@code 'b'}
1617 *     <td valign="top"> <tt>'&#92;u0062'</tt>
1618 *     <td> Locale-specific {@linkplain
1619 *     java.text.DateFormatSymbols#getShortMonths abbreviated month name},
1620 *     e.g. {@code "Jan"}, {@code "Feb"}.
1621 *
1622 * <tr><td valign="top">{@code 'h'}
1623 *     <td valign="top"> <tt>'&#92;u0068'</tt>
1624 *     <td> Same as {@code 'b'}.
1625 *
1626 * <tr><td valign="top">{@code 'A'}
1627 *     <td valign="top"> <tt>'&#92;u0041'</tt>
1628 *     <td> Locale-specific full name of the {@linkplain
1629 *     java.text.DateFormatSymbols#getWeekdays day of the week},
1630 *     e.g. {@code "Sunday"}, {@code "Monday"}
1631 *
1632 * <tr><td valign="top">{@code 'a'}
1633 *     <td valign="top"> <tt>'&#92;u0061'</tt>
1634 *     <td> Locale-specific short name of the {@linkplain
1635 *     java.text.DateFormatSymbols#getShortWeekdays day of the week},
1636 *     e.g. {@code "Sun"}, {@code "Mon"}
1637 *
1638 * <tr><td valign="top">{@code 'C'}
1639 *     <td valign="top"> <tt>'&#92;u0043'</tt>
1640 *     <td> Four-digit year divided by {@code 100}, formatted as two digits
1641 *     with leading zero as necessary, i.e. {@code 00 - 99}
1642 *
1643 * <tr><td valign="top">{@code 'Y'}
1644 *     <td valign="top"> <tt>'&#92;u0059'</tt> <td> Year, formatted to at least
1645 *     four digits with leading zeros as necessary, e.g. {@code 0092} equals
1646 *     {@code 92} CE for the Gregorian calendar.
1647 *
1648 * <tr><td valign="top">{@code 'y'}
1649 *     <td valign="top"> <tt>'&#92;u0079'</tt>
1650 *     <td> Last two digits of the year, formatted with leading zeros as
1651 *     necessary, i.e. {@code 00 - 99}.
1652 *
1653 * <tr><td valign="top">{@code 'j'}
1654 *     <td valign="top"> <tt>'&#92;u006a'</tt>
1655 *     <td> Day of year, formatted as three digits with leading zeros as
1656 *     necessary, e.g. {@code 001 - 366} for the Gregorian calendar.
1657 *     {@code 001} corresponds to the first day of the year.
1658 *
1659 * <tr><td valign="top">{@code 'm'}
1660 *     <td valign="top"> <tt>'&#92;u006d'</tt>
1661 *     <td> Month, formatted as two digits with leading zeros as necessary,
1662 *     i.e. {@code 01 - 13}, where "{@code 01}" is the first month of the
1663 *     year and ("{@code 13}" is a special value required to support lunar
1664 *     calendars).
1665 *
1666 * <tr><td valign="top">{@code 'd'}
1667 *     <td valign="top"> <tt>'&#92;u0064'</tt>
1668 *     <td> Day of month, formatted as two digits with leading zeros as
1669 *     necessary, i.e. {@code 01 - 31}, where "{@code 01}" is the first day
1670 *     of the month.
1671 *
1672 * <tr><td valign="top">{@code 'e'}
1673 *     <td valign="top"> <tt>'&#92;u0065'</tt>
1674 *     <td> Day of month, formatted as two digits, i.e. {@code 1 - 31} where
1675 *     "{@code 1}" is the first day of the month.
1676 *
1677 * </table>
1678 *
1679 * <p> The following conversion characters are used for formatting common
1680 * date/time compositions.
1681 *
1682 * <table cellpadding=5 summary="composites">
1683 *
1684 * <tr><td valign="top">{@code 'R'}
1685 *     <td valign="top"> <tt>'&#92;u0052'</tt>
1686 *     <td> Time formatted for the 24-hour clock as {@code "%tH:%tM"}
1687 *
1688 * <tr><td valign="top">{@code 'T'}
1689 *     <td valign="top"> <tt>'&#92;u0054'</tt>
1690 *     <td> Time formatted for the 24-hour clock as {@code "%tH:%tM:%tS"}.
1691 *
1692 * <tr><td valign="top">{@code 'r'}
1693 *     <td valign="top"> <tt>'&#92;u0072'</tt>
1694 *     <td> Time formatted for the 12-hour clock as {@code "%tI:%tM:%tS
1695 *     %Tp"}.  The location of the morning or afternoon marker
1696 *     ({@code '%Tp'}) may be locale-dependent.
1697 *
1698 * <tr><td valign="top">{@code 'D'}
1699 *     <td valign="top"> <tt>'&#92;u0044'</tt>
1700 *     <td> Date formatted as {@code "%tm/%td/%ty"}.
1701 *
1702 * <tr><td valign="top">{@code 'F'}
1703 *     <td valign="top"> <tt>'&#92;u0046'</tt>
1704 *     <td> <a href="http://www.w3.org/TR/NOTE-datetime">ISO&nbsp;8601</a>
1705 *     complete date formatted as {@code "%tY-%tm-%td"}.
1706 *
1707 * <tr><td valign="top">{@code 'c'}
1708 *     <td valign="top"> <tt>'&#92;u0063'</tt>
1709 *     <td> Date and time formatted as {@code "%ta %tb %td %tT %tZ %tY"},
1710 *     e.g. {@code "Sun Jul 20 16:17:00 EDT 1969"}.
1711 *
1712 * </table>
1713 *
1714 * <p> The {@code '-'} flag defined for <a href="#dFlags">General
1715 * conversions</a> applies.  If the {@code '#'} flag is given, then a {@link
1716 * FormatFlagsConversionMismatchException} will be thrown.
1717 *
1718 * <p> The <a name="dtWidth">width</a> is the minimum number of characters to
1719 * be written to the output.  If the length of the converted value is less than
1720 * the {@code width} then the output will be padded by spaces
1721 * (<tt>'&#92;u0020'</tt>) until the total number of characters equals width.
1722 * The padding is on the left by default.  If the {@code '-'} flag is given
1723 * then the padding will be on the right.  If width is not specified then there
1724 * is no minimum.
1725 *
1726 * <p> The precision is not applicable.  If the precision is specified then an
1727 * {@link IllegalFormatPrecisionException} will be thrown.
1728 *
1729 * <h4><a name="dper">Percent</a></h4>
1730 *
1731 * <p> The conversion does not correspond to any argument.
1732 *
1733 * <table cellpadding=5 summary="DTConv">
1734 *
1735 * <tr><td valign="top">{@code '%'}
1736 *     <td> The result is a literal {@code '%'} (<tt>'&#92;u0025'</tt>)
1737 *
1738 * <p> The <a name="dtWidth">width</a> is the minimum number of characters to
1739 * be written to the output including the {@code '%'}.  If the length of the
1740 * converted value is less than the {@code width} then the output will be
1741 * padded by spaces (<tt>'&#92;u0020'</tt>) until the total number of
1742 * characters equals width.  The padding is on the left.  If width is not
1743 * specified then just the {@code '%'} is output.
1744 *
1745 * <p> The {@code '-'} flag defined for <a href="#dFlags">General
1746 * conversions</a> applies.  If any other flags are provided, then a
1747 * {@link FormatFlagsConversionMismatchException} will be thrown.
1748 *
1749 * <p> The precision is not applicable.  If the precision is specified an
1750 * {@link IllegalFormatPrecisionException} will be thrown.
1751 *
1752 * </table>
1753 *
1754 * <h4><a name="dls">Line Separator</a></h4>
1755 *
1756 * <p> The conversion does not correspond to any argument.
1757 *
1758 * <table cellpadding=5 summary="DTConv">
1759 *
1760 * <tr><td valign="top">{@code 'n'}
1761 *     <td> the platform-specific line separator as returned by {@link
1762 *     System#getProperty System.getProperty("line.separator")}.
1763 *
1764 * </table>
1765 *
1766 * <p> Flags, width, and precision are not applicable.  If any are provided an
1767 * {@link IllegalFormatFlagsException}, {@link IllegalFormatWidthException},
1768 * and {@link IllegalFormatPrecisionException}, respectively will be thrown.
1769 *
1770 * <h4><a name="dpos">Argument Index</a></h4>
1771 *
1772 * <p> Format specifiers can reference arguments in three ways:
1773 *
1774 * <ul>
1775 *
1776 * <li> <i>Explicit indexing</i> is used when the format specifier contains an
1777 * argument index.  The argument index is a decimal integer indicating the
1778 * position of the argument in the argument list.  The first argument is
1779 * referenced by "{@code 1$}", the second by "{@code 2$}", etc.  An argument
1780 * may be referenced more than once.
1781 *
1782 * <p> For example:
1783 *
1784 * <blockquote><pre>
1785 *   formatter.format("%4$s %3$s %2$s %1$s %4$s %3$s %2$s %1$s",
1786 *                    "a", "b", "c", "d")
1787 *   // -&gt; "d c b a d c b a"
1788 * </pre></blockquote>
1789 *
1790 * <li> <i>Relative indexing</i> is used when the format specifier contains a
1791 * {@code '<'} (<tt>'&#92;u003c'</tt>) flag which causes the argument for
1792 * the previous format specifier to be re-used.  If there is no previous
1793 * argument, then a {@link MissingFormatArgumentException} is thrown.
1794 *
1795 * <blockquote><pre>
1796 *    formatter.format("%s %s %&lt;s %&lt;s", "a", "b", "c", "d")
1797 *    // -&gt; "a b b b"
1798 *    // "c" and "d" are ignored because they are not referenced
1799 * </pre></blockquote>
1800 *
1801 * <li> <i>Ordinary indexing</i> is used when the format specifier contains
1802 * neither an argument index nor a {@code '<'} flag.  Each format specifier
1803 * which uses ordinary indexing is assigned a sequential implicit index into
1804 * argument list which is independent of the indices used by explicit or
1805 * relative indexing.
1806 *
1807 * <blockquote><pre>
1808 *   formatter.format("%s %s %s %s", "a", "b", "c", "d")
1809 *   // -&gt; "a b c d"
1810 * </pre></blockquote>
1811 *
1812 * </ul>
1813 *
1814 * <p> It is possible to have a format string which uses all forms of indexing,
1815 * for example:
1816 *
1817 * <blockquote><pre>
1818 *   formatter.format("%2$s %s %&lt;s %s", "a", "b", "c", "d")
1819 *   // -&gt; "b a a b"
1820 *   // "c" and "d" are ignored because they are not referenced
1821 * </pre></blockquote>
1822 *
1823 * <p> The maximum number of arguments is limited by the maximum dimension of a
1824 * Java array as defined by
1825 * <cite>The Java&trade; Virtual Machine Specification</cite>.
1826 * If the argument index is does not correspond to an
1827 * available argument, then a {@link MissingFormatArgumentException} is thrown.
1828 *
1829 * <p> If there are more arguments than format specifiers, the extra arguments
1830 * are ignored.
1831 *
1832 * <p> Unless otherwise specified, passing a {@code null} argument to any
1833 * method or constructor in this class will cause a {@link
1834 * NullPointerException} to be thrown.
1835 *
1836 * @author  Iris Clark
1837 * @since 1.5
1838 */
1839public final class Formatter implements Closeable, Flushable {
1840    private Appendable a;
1841    private final Locale l;
1842
1843    private IOException lastException;
1844
1845    private final char zero;
1846    private static double scaleUp;
1847
1848    // 1 (sign) + 19 (max # sig digits) + 1 ('.') + 1 ('e') + 1 (sign)
1849    // + 3 (max # exp digits) + 4 (error) = 30
1850    private static final int MAX_FD_CHARS = 30;
1851
1852    /**
1853     * Returns a charset object for the given charset name.
1854     * @throws NullPointerException          is csn is null
1855     * @throws UnsupportedEncodingException  if the charset is not supported
1856     */
1857    private static Charset toCharset(String csn)
1858        throws UnsupportedEncodingException
1859    {
1860        Objects.requireNonNull(csn, "charsetName");
1861        try {
1862            return Charset.forName(csn);
1863        } catch (IllegalCharsetNameException|UnsupportedCharsetException unused) {
1864            // UnsupportedEncodingException should be thrown
1865            throw new UnsupportedEncodingException(csn);
1866        }
1867    }
1868
1869    private static final Appendable nonNullAppendable(Appendable a) {
1870        if (a == null)
1871            return new StringBuilder();
1872
1873        return a;
1874    }
1875
1876    /* Private constructors */
1877    private Formatter(Locale l, Appendable a) {
1878        this.a = a;
1879        this.l = l;
1880        this.zero = getZero(l);
1881    }
1882
1883    private Formatter(Charset charset, Locale l, File file)
1884        throws FileNotFoundException
1885    {
1886        this(l,
1887             new BufferedWriter(new OutputStreamWriter(new FileOutputStream(file), charset)));
1888    }
1889
1890    /**
1891     * Constructs a new formatter.
1892     *
1893     * <p> The destination of the formatted output is a {@link StringBuilder}
1894     * which may be retrieved by invoking {@link #out out()} and whose
1895     * current content may be converted into a string by invoking {@link
1896     * #toString toString()}.  The locale used is the {@linkplain
1897     * Locale#getDefault() default locale} for this instance of the Java
1898     * virtual machine.
1899     */
1900    public Formatter() {
1901        this(Locale.getDefault(Locale.Category.FORMAT), new StringBuilder());
1902    }
1903
1904    /**
1905     * Constructs a new formatter with the specified destination.
1906     *
1907     * <p> The locale used is the {@linkplain Locale#getDefault() default
1908     * locale} for this instance of the Java virtual machine.
1909     *
1910     * @param  a
1911     *         Destination for the formatted output.  If {@code a} is
1912     *         {@code null} then a {@link StringBuilder} will be created.
1913     */
1914    public Formatter(Appendable a) {
1915        this(Locale.getDefault(Locale.Category.FORMAT), nonNullAppendable(a));
1916    }
1917
1918    /**
1919     * Constructs a new formatter with the specified locale.
1920     *
1921     * <p> The destination of the formatted output is a {@link StringBuilder}
1922     * which may be retrieved by invoking {@link #out out()} and whose current
1923     * content may be converted into a string by invoking {@link #toString
1924     * toString()}.
1925     *
1926     * @param  l
1927     *         The {@linkplain java.util.Locale locale} to apply during
1928     *         formatting.  If {@code l} is {@code null} then no localization
1929     *         is applied.
1930     */
1931    public Formatter(Locale l) {
1932        this(l, new StringBuilder());
1933    }
1934
1935    /**
1936     * Constructs a new formatter with the specified destination and locale.
1937     *
1938     * @param  a
1939     *         Destination for the formatted output.  If {@code a} is
1940     *         {@code null} then a {@link StringBuilder} will be created.
1941     *
1942     * @param  l
1943     *         The {@linkplain java.util.Locale locale} to apply during
1944     *         formatting.  If {@code l} is {@code null} then no localization
1945     *         is applied.
1946     */
1947    public Formatter(Appendable a, Locale l) {
1948        this(l, nonNullAppendable(a));
1949    }
1950
1951    /**
1952     * Constructs a new formatter with the specified file name.
1953     *
1954     * <p> The charset used is the {@linkplain
1955     * java.nio.charset.Charset#defaultCharset() default charset} for this
1956     * instance of the Java virtual machine.
1957     *
1958     * <p> The locale used is the {@linkplain Locale#getDefault() default
1959     * locale} for this instance of the Java virtual machine.
1960     *
1961     * @param  fileName
1962     *         The name of the file to use as the destination of this
1963     *         formatter.  If the file exists then it will be truncated to
1964     *         zero size; otherwise, a new file will be created.  The output
1965     *         will be written to the file and is buffered.
1966     *
1967     * @throws  SecurityException
1968     *          If a security manager is present and {@link
1969     *          SecurityManager#checkWrite checkWrite(fileName)} denies write
1970     *          access to the file
1971     *
1972     * @throws  FileNotFoundException
1973     *          If the given file name does not denote an existing, writable
1974     *          regular file and a new regular file of that name cannot be
1975     *          created, or if some other error occurs while opening or
1976     *          creating the file
1977     */
1978    public Formatter(String fileName) throws FileNotFoundException {
1979        this(Locale.getDefault(Locale.Category.FORMAT),
1980             new BufferedWriter(new OutputStreamWriter(new FileOutputStream(fileName))));
1981    }
1982
1983    /**
1984     * Constructs a new formatter with the specified file name and charset.
1985     *
1986     * <p> The locale used is the {@linkplain Locale#getDefault default
1987     * locale} for this instance of the Java virtual machine.
1988     *
1989     * @param  fileName
1990     *         The name of the file to use as the destination of this
1991     *         formatter.  If the file exists then it will be truncated to
1992     *         zero size; otherwise, a new file will be created.  The output
1993     *         will be written to the file and is buffered.
1994     *
1995     * @param  csn
1996     *         The name of a supported {@linkplain java.nio.charset.Charset
1997     *         charset}
1998     *
1999     * @throws  FileNotFoundException
2000     *          If the given file name does not denote an existing, writable
2001     *          regular file and a new regular file of that name cannot be
2002     *          created, or if some other error occurs while opening or
2003     *          creating the file
2004     *
2005     * @throws  SecurityException
2006     *          If a security manager is present and {@link
2007     *          SecurityManager#checkWrite checkWrite(fileName)} denies write
2008     *          access to the file
2009     *
2010     * @throws  UnsupportedEncodingException
2011     *          If the named charset is not supported
2012     */
2013    public Formatter(String fileName, String csn)
2014        throws FileNotFoundException, UnsupportedEncodingException
2015    {
2016        this(fileName, csn, Locale.getDefault(Locale.Category.FORMAT));
2017    }
2018
2019    /**
2020     * Constructs a new formatter with the specified file name, charset, and
2021     * locale.
2022     *
2023     * @param  fileName
2024     *         The name of the file to use as the destination of this
2025     *         formatter.  If the file exists then it will be truncated to
2026     *         zero size; otherwise, a new file will be created.  The output
2027     *         will be written to the file and is buffered.
2028     *
2029     * @param  csn
2030     *         The name of a supported {@linkplain java.nio.charset.Charset
2031     *         charset}
2032     *
2033     * @param  l
2034     *         The {@linkplain java.util.Locale locale} to apply during
2035     *         formatting.  If {@code l} is {@code null} then no localization
2036     *         is applied.
2037     *
2038     * @throws  FileNotFoundException
2039     *          If the given file name does not denote an existing, writable
2040     *          regular file and a new regular file of that name cannot be
2041     *          created, or if some other error occurs while opening or
2042     *          creating the file
2043     *
2044     * @throws  SecurityException
2045     *          If a security manager is present and {@link
2046     *          SecurityManager#checkWrite checkWrite(fileName)} denies write
2047     *          access to the file
2048     *
2049     * @throws  UnsupportedEncodingException
2050     *          If the named charset is not supported
2051     */
2052    public Formatter(String fileName, String csn, Locale l)
2053        throws FileNotFoundException, UnsupportedEncodingException
2054    {
2055        this(toCharset(csn), l, new File(fileName));
2056    }
2057
2058    /**
2059     * Constructs a new formatter with the specified file.
2060     *
2061     * <p> The charset used is the {@linkplain
2062     * java.nio.charset.Charset#defaultCharset() default charset} for this
2063     * instance of the Java virtual machine.
2064     *
2065     * <p> The locale used is the {@linkplain Locale#getDefault() default
2066     * locale} for this instance of the Java virtual machine.
2067     *
2068     * @param  file
2069     *         The file to use as the destination of this formatter.  If the
2070     *         file exists then it will be truncated to zero size; otherwise,
2071     *         a new file will be created.  The output will be written to the
2072     *         file and is buffered.
2073     *
2074     * @throws  SecurityException
2075     *          If a security manager is present and {@link
2076     *          SecurityManager#checkWrite checkWrite(file.getPath())} denies
2077     *          write access to the file
2078     *
2079     * @throws  FileNotFoundException
2080     *          If the given file object does not denote an existing, writable
2081     *          regular file and a new regular file of that name cannot be
2082     *          created, or if some other error occurs while opening or
2083     *          creating the file
2084     */
2085    public Formatter(File file) throws FileNotFoundException {
2086        this(Locale.getDefault(Locale.Category.FORMAT),
2087             new BufferedWriter(new OutputStreamWriter(new FileOutputStream(file))));
2088    }
2089
2090    /**
2091     * Constructs a new formatter with the specified file and charset.
2092     *
2093     * <p> The locale used is the {@linkplain Locale#getDefault default
2094     * locale} for this instance of the Java virtual machine.
2095     *
2096     * @param  file
2097     *         The file to use as the destination of this formatter.  If the
2098     *         file exists then it will be truncated to zero size; otherwise,
2099     *         a new file will be created.  The output will be written to the
2100     *         file and is buffered.
2101     *
2102     * @param  csn
2103     *         The name of a supported {@linkplain java.nio.charset.Charset
2104     *         charset}
2105     *
2106     * @throws  FileNotFoundException
2107     *          If the given file object does not denote an existing, writable
2108     *          regular file and a new regular file of that name cannot be
2109     *          created, or if some other error occurs while opening or
2110     *          creating the file
2111     *
2112     * @throws  SecurityException
2113     *          If a security manager is present and {@link
2114     *          SecurityManager#checkWrite checkWrite(file.getPath())} denies
2115     *          write access to the file
2116     *
2117     * @throws  UnsupportedEncodingException
2118     *          If the named charset is not supported
2119     */
2120    public Formatter(File file, String csn)
2121        throws FileNotFoundException, UnsupportedEncodingException
2122    {
2123        this(file, csn, Locale.getDefault(Locale.Category.FORMAT));
2124    }
2125
2126    /**
2127     * Constructs a new formatter with the specified file, charset, and
2128     * locale.
2129     *
2130     * @param  file
2131     *         The file to use as the destination of this formatter.  If the
2132     *         file exists then it will be truncated to zero size; otherwise,
2133     *         a new file will be created.  The output will be written to the
2134     *         file and is buffered.
2135     *
2136     * @param  csn
2137     *         The name of a supported {@linkplain java.nio.charset.Charset
2138     *         charset}
2139     *
2140     * @param  l
2141     *         The {@linkplain java.util.Locale locale} to apply during
2142     *         formatting.  If {@code l} is {@code null} then no localization
2143     *         is applied.
2144     *
2145     * @throws  FileNotFoundException
2146     *          If the given file object does not denote an existing, writable
2147     *          regular file and a new regular file of that name cannot be
2148     *          created, or if some other error occurs while opening or
2149     *          creating the file
2150     *
2151     * @throws  SecurityException
2152     *          If a security manager is present and {@link
2153     *          SecurityManager#checkWrite checkWrite(file.getPath())} denies
2154     *          write access to the file
2155     *
2156     * @throws  UnsupportedEncodingException
2157     *          If the named charset is not supported
2158     */
2159    public Formatter(File file, String csn, Locale l)
2160        throws FileNotFoundException, UnsupportedEncodingException
2161    {
2162        this(toCharset(csn), l, file);
2163    }
2164
2165    /**
2166     * Constructs a new formatter with the specified print stream.
2167     *
2168     * <p> The locale used is the {@linkplain Locale#getDefault() default
2169     * locale} for this instance of the Java virtual machine.
2170     *
2171     * <p> Characters are written to the given {@link java.io.PrintStream
2172     * PrintStream} object and are therefore encoded using that object's
2173     * charset.
2174     *
2175     * @param  ps
2176     *         The stream to use as the destination of this formatter.
2177     */
2178    public Formatter(PrintStream ps) {
2179        this(Locale.getDefault(Locale.Category.FORMAT),
2180             (Appendable)Objects.requireNonNull(ps));
2181    }
2182
2183    /**
2184     * Constructs a new formatter with the specified output stream.
2185     *
2186     * <p> The charset used is the {@linkplain
2187     * java.nio.charset.Charset#defaultCharset() default charset} for this
2188     * instance of the Java virtual machine.
2189     *
2190     * <p> The locale used is the {@linkplain Locale#getDefault() default
2191     * locale} for this instance of the Java virtual machine.
2192     *
2193     * @param  os
2194     *         The output stream to use as the destination of this formatter.
2195     *         The output will be buffered.
2196     */
2197    public Formatter(OutputStream os) {
2198        this(Locale.getDefault(Locale.Category.FORMAT),
2199             new BufferedWriter(new OutputStreamWriter(os)));
2200    }
2201
2202    /**
2203     * Constructs a new formatter with the specified output stream and
2204     * charset.
2205     *
2206     * <p> The locale used is the {@linkplain Locale#getDefault default
2207     * locale} for this instance of the Java virtual machine.
2208     *
2209     * @param  os
2210     *         The output stream to use as the destination of this formatter.
2211     *         The output will be buffered.
2212     *
2213     * @param  csn
2214     *         The name of a supported {@linkplain java.nio.charset.Charset
2215     *         charset}
2216     *
2217     * @throws  UnsupportedEncodingException
2218     *          If the named charset is not supported
2219     */
2220    public Formatter(OutputStream os, String csn)
2221        throws UnsupportedEncodingException
2222    {
2223        this(os, csn, Locale.getDefault(Locale.Category.FORMAT));
2224    }
2225
2226    /**
2227     * Constructs a new formatter with the specified output stream, charset,
2228     * and locale.
2229     *
2230     * @param  os
2231     *         The output stream to use as the destination of this formatter.
2232     *         The output will be buffered.
2233     *
2234     * @param  csn
2235     *         The name of a supported {@linkplain java.nio.charset.Charset
2236     *         charset}
2237     *
2238     * @param  l
2239     *         The {@linkplain java.util.Locale locale} to apply during
2240     *         formatting.  If {@code l} is {@code null} then no localization
2241     *         is applied.
2242     *
2243     * @throws  UnsupportedEncodingException
2244     *          If the named charset is not supported
2245     */
2246    public Formatter(OutputStream os, String csn, Locale l)
2247        throws UnsupportedEncodingException
2248    {
2249        this(l, new BufferedWriter(new OutputStreamWriter(os, csn)));
2250    }
2251
2252    private static char getZero(Locale l) {
2253        if ((l != null) && !l.equals(Locale.US)) {
2254            DecimalFormatSymbols dfs = DecimalFormatSymbols.getInstance(l);
2255            return dfs.getZeroDigit();
2256        } else {
2257            return '0';
2258        }
2259    }
2260
2261    /**
2262     * Returns the locale set by the construction of this formatter.
2263     *
2264     * <p> The {@link #format(java.util.Locale,String,Object...) format} method
2265     * for this object which has a locale argument does not change this value.
2266     *
2267     * @return  {@code null} if no localization is applied, otherwise a
2268     *          locale
2269     *
2270     * @throws  FormatterClosedException
2271     *          If this formatter has been closed by invoking its {@link
2272     *          #close()} method
2273     */
2274    public Locale locale() {
2275        ensureOpen();
2276        return l;
2277    }
2278
2279    /**
2280     * Returns the destination for the output.
2281     *
2282     * @return  The destination for the output
2283     *
2284     * @throws  FormatterClosedException
2285     *          If this formatter has been closed by invoking its {@link
2286     *          #close()} method
2287     */
2288    public Appendable out() {
2289        ensureOpen();
2290        return a;
2291    }
2292
2293    /**
2294     * Returns the result of invoking {@code toString()} on the destination
2295     * for the output.  For example, the following code formats text into a
2296     * {@link StringBuilder} then retrieves the resultant string:
2297     *
2298     * <blockquote><pre>
2299     *   Formatter f = new Formatter();
2300     *   f.format("Last reboot at %tc", lastRebootDate);
2301     *   String s = f.toString();
2302     *   // -&gt; s == "Last reboot at Sat Jan 01 00:00:00 PST 2000"
2303     * </pre></blockquote>
2304     *
2305     * <p> An invocation of this method behaves in exactly the same way as the
2306     * invocation
2307     *
2308     * <pre>
2309     *     out().toString() </pre>
2310     *
2311     * <p> Depending on the specification of {@code toString} for the {@link
2312     * Appendable}, the returned string may or may not contain the characters
2313     * written to the destination.  For instance, buffers typically return
2314     * their contents in {@code toString()}, but streams cannot since the
2315     * data is discarded.
2316     *
2317     * @return  The result of invoking {@code toString()} on the destination
2318     *          for the output
2319     *
2320     * @throws  FormatterClosedException
2321     *          If this formatter has been closed by invoking its {@link
2322     *          #close()} method
2323     */
2324    public String toString() {
2325        ensureOpen();
2326        return a.toString();
2327    }
2328
2329    /**
2330     * Flushes this formatter.  If the destination implements the {@link
2331     * java.io.Flushable} interface, its {@code flush} method will be invoked.
2332     *
2333     * <p> Flushing a formatter writes any buffered output in the destination
2334     * to the underlying stream.
2335     *
2336     * @throws  FormatterClosedException
2337     *          If this formatter has been closed by invoking its {@link
2338     *          #close()} method
2339     */
2340    public void flush() {
2341        ensureOpen();
2342        if (a instanceof Flushable) {
2343            try {
2344                ((Flushable)a).flush();
2345            } catch (IOException ioe) {
2346                lastException = ioe;
2347            }
2348        }
2349    }
2350
2351    /**
2352     * Closes this formatter.  If the destination implements the {@link
2353     * java.io.Closeable} interface, its {@code close} method will be invoked.
2354     *
2355     * <p> Closing a formatter allows it to release resources it may be holding
2356     * (such as open files).  If the formatter is already closed, then invoking
2357     * this method has no effect.
2358     *
2359     * <p> Attempting to invoke any methods except {@link #ioException()} in
2360     * this formatter after it has been closed will result in a {@link
2361     * FormatterClosedException}.
2362     */
2363    public void close() {
2364        if (a == null)
2365            return;
2366        try {
2367            if (a instanceof Closeable)
2368                ((Closeable)a).close();
2369        } catch (IOException ioe) {
2370            lastException = ioe;
2371        } finally {
2372            a = null;
2373        }
2374    }
2375
2376    private void ensureOpen() {
2377        if (a == null)
2378            throw new FormatterClosedException();
2379    }
2380
2381    /**
2382     * Returns the {@code IOException} last thrown by this formatter's {@link
2383     * Appendable}.
2384     *
2385     * <p> If the destination's {@code append()} method never throws
2386     * {@code IOException}, then this method will always return {@code null}.
2387     *
2388     * @return  The last exception thrown by the Appendable or {@code null} if
2389     *          no such exception exists.
2390     */
2391    public IOException ioException() {
2392        return lastException;
2393    }
2394
2395    /**
2396     * Writes a formatted string to this object's destination using the
2397     * specified format string and arguments.  The locale used is the one
2398     * defined during the construction of this formatter.
2399     *
2400     * @param  format
2401     *         A format string as described in <a href="#syntax">Format string
2402     *         syntax</a>.
2403     *
2404     * @param  args
2405     *         Arguments referenced by the format specifiers in the format
2406     *         string.  If there are more arguments than format specifiers, the
2407     *         extra arguments are ignored.  The maximum number of arguments is
2408     *         limited by the maximum dimension of a Java array as defined by
2409     *         <cite>The Java&trade; Virtual Machine Specification</cite>.
2410     *
2411     * @throws  IllegalFormatException
2412     *          If a format string contains an illegal syntax, a format
2413     *          specifier that is incompatible with the given arguments,
2414     *          insufficient arguments given the format string, or other
2415     *          illegal conditions.  For specification of all possible
2416     *          formatting errors, see the <a href="#detail">Details</a>
2417     *          section of the formatter class specification.
2418     *
2419     * @throws  FormatterClosedException
2420     *          If this formatter has been closed by invoking its {@link
2421     *          #close()} method
2422     *
2423     * @return  This formatter
2424     */
2425    public Formatter format(String format, Object ... args) {
2426        return format(l, format, args);
2427    }
2428
2429    /**
2430     * Writes a formatted string to this object's destination using the
2431     * specified locale, format string, and arguments.
2432     *
2433     * @param  l
2434     *         The {@linkplain java.util.Locale locale} to apply during
2435     *         formatting.  If {@code l} is {@code null} then no localization
2436     *         is applied.  This does not change this object's locale that was
2437     *         set during construction.
2438     *
2439     * @param  format
2440     *         A format string as described in <a href="#syntax">Format string
2441     *         syntax</a>
2442     *
2443     * @param  args
2444     *         Arguments referenced by the format specifiers in the format
2445     *         string.  If there are more arguments than format specifiers, the
2446     *         extra arguments are ignored.  The maximum number of arguments is
2447     *         limited by the maximum dimension of a Java array as defined by
2448     *         <cite>The Java&trade; Virtual Machine Specification</cite>.
2449     *
2450     * @throws  IllegalFormatException
2451     *          If a format string contains an illegal syntax, a format
2452     *          specifier that is incompatible with the given arguments,
2453     *          insufficient arguments given the format string, or other
2454     *          illegal conditions.  For specification of all possible
2455     *          formatting errors, see the <a href="#detail">Details</a>
2456     *          section of the formatter class specification.
2457     *
2458     * @throws  FormatterClosedException
2459     *          If this formatter has been closed by invoking its {@link
2460     *          #close()} method
2461     *
2462     * @return  This formatter
2463     */
2464    public Formatter format(Locale l, String format, Object ... args) {
2465        ensureOpen();
2466
2467        // index of last argument referenced
2468        int last = -1;
2469        // last ordinary index
2470        int lasto = -1;
2471
2472        FormatString[] fsa = parse(format);
2473        for (int i = 0; i < fsa.length; i++) {
2474            FormatString fs = fsa[i];
2475            int index = fs.index();
2476            try {
2477                switch (index) {
2478                case -2:  // fixed string, "%n", or "%%"
2479                    fs.print(null, l);
2480                    break;
2481                case -1:  // relative index
2482                    if (last < 0 || (args != null && last > args.length - 1))
2483                        throw new MissingFormatArgumentException(fs.toString());
2484                    fs.print((args == null ? null : args[last]), l);
2485                    break;
2486                case 0:  // ordinary index
2487                    lasto++;
2488                    last = lasto;
2489                    if (args != null && lasto > args.length - 1)
2490                        throw new MissingFormatArgumentException(fs.toString());
2491                    fs.print((args == null ? null : args[lasto]), l);
2492                    break;
2493                default:  // explicit index
2494                    last = index - 1;
2495                    if (args != null && last > args.length - 1)
2496                        throw new MissingFormatArgumentException(fs.toString());
2497                    fs.print((args == null ? null : args[last]), l);
2498                    break;
2499                }
2500            } catch (IOException x) {
2501                lastException = x;
2502            }
2503        }
2504        return this;
2505    }
2506
2507    /**
2508     * Finds format specifiers in the format string.
2509     */
2510    private FormatString[] parse(String s) {
2511        ArrayList<FormatString> al = new ArrayList<>();
2512        for (int i = 0, len = s.length(); i < len; ) {
2513            int nextPercent = s.indexOf('%', i);
2514            if (s.charAt(i) != '%') {
2515                // This is plain-text part, find the maximal plain-text
2516                // sequence and store it.
2517                int plainTextStart = i;
2518                int plainTextEnd = (nextPercent == -1) ? len: nextPercent;
2519                al.add(new FixedString(s.substring(plainTextStart,
2520                                                   plainTextEnd)));
2521                i = plainTextEnd;
2522            } else {
2523                // We have a format specifier
2524                FormatSpecifierParser fsp = new FormatSpecifierParser(s, i + 1);
2525                al.add(fsp.getFormatSpecifier());
2526                i = fsp.getEndIdx();
2527            }
2528        }
2529        return al.toArray(new FormatString[al.size()]);
2530    }
2531
2532    /**
2533     * Parses the format specifier.
2534     * %[argument_index$][flags][width][.precision][t]conversion
2535     */
2536    private class FormatSpecifierParser {
2537        private final String format;
2538        private int cursor;
2539        private FormatSpecifier fs;
2540
2541        private String index;
2542        private String flags;
2543        private String width;
2544        private String precision;
2545        private String tT;
2546        private String conv;
2547
2548        private static final String FLAGS = ",-(+# 0<";
2549
2550        public FormatSpecifierParser(String format, int startIdx) {
2551            this.format = format;
2552            cursor = startIdx;
2553            // Index
2554            if (nextIsInt()) {
2555                String nint = nextInt();
2556                if (peek() == '$') {
2557                    index = nint;
2558                    advance();
2559                } else if (nint.charAt(0) == '0') {
2560                    // This is a flag, skip to parsing flags.
2561                    back(nint.length());
2562                } else {
2563                    // This is the width, skip to parsing precision.
2564                    width = nint;
2565                }
2566            }
2567            // Flags
2568            flags = "";
2569            while (width == null && FLAGS.indexOf(peek()) >= 0) {
2570                flags += advance();
2571            }
2572            // Width
2573            if (width == null && nextIsInt()) {
2574                width = nextInt();
2575            }
2576            // Precision
2577            if (peek() == '.') {
2578                advance();
2579                if (!nextIsInt()) {
2580                    throw new IllegalFormatPrecisionException(peek());
2581                }
2582                precision = nextInt();
2583            }
2584            // tT
2585            if (peek() == 't' || peek() == 'T') {
2586                tT = String.valueOf(advance());
2587            }
2588            // Conversion
2589            conv = String.valueOf(advance());
2590
2591            fs = new FormatSpecifier(index, flags, width, precision, tT, conv);
2592        }
2593
2594        private String nextInt() {
2595            int strBegin = cursor;
2596            while (nextIsInt()) {
2597                advance();
2598            }
2599            return format.substring(strBegin, cursor);
2600        }
2601
2602        private boolean nextIsInt() {
2603            return !isEnd() && Character.isDigit(peek());
2604        }
2605
2606        private char peek() {
2607            if (isEnd()) {
2608                throw new UnknownFormatConversionException("End of String");
2609            }
2610            return format.charAt(cursor);
2611        }
2612
2613        private char advance() {
2614            if (isEnd()) {
2615                throw new UnknownFormatConversionException("End of String");
2616            }
2617            return format.charAt(cursor++);
2618        }
2619
2620        private void back(int len) {
2621            cursor -= len;
2622        }
2623
2624        private boolean isEnd() {
2625            return cursor == format.length();
2626        }
2627
2628        public FormatSpecifier getFormatSpecifier() {
2629            return fs;
2630        }
2631
2632        public int getEndIdx() {
2633            return cursor;
2634        }
2635    }
2636
2637    private interface FormatString {
2638        int index();
2639        void print(Object arg, Locale l) throws IOException;
2640        String toString();
2641    }
2642
2643    private class FixedString implements FormatString {
2644        private String s;
2645        FixedString(String s) { this.s = s; }
2646        public int index() { return -2; }
2647        public void print(Object arg, Locale l)
2648            throws IOException { a.append(s); }
2649        public String toString() { return s; }
2650    }
2651
2652    public enum BigDecimalLayoutForm { SCIENTIFIC, DECIMAL_FLOAT };
2653
2654    private class FormatSpecifier implements FormatString {
2655        private int index = -1;
2656        private Flags f = Flags.NONE;
2657        private int width;
2658        private int precision;
2659        private boolean dt = false;
2660        private char c;
2661
2662        private int index(String s) {
2663            if (s != null) {
2664                try {
2665                    index = Integer.parseInt(s);
2666                } catch (NumberFormatException x) {
2667                    assert(false);
2668                }
2669            } else {
2670                index = 0;
2671            }
2672            return index;
2673        }
2674
2675        public int index() {
2676            return index;
2677        }
2678
2679        private Flags flags(String s) {
2680            f = Flags.parse(s);
2681            if (f.contains(Flags.PREVIOUS))
2682                index = -1;
2683            return f;
2684        }
2685
2686        Flags flags() {
2687            return f;
2688        }
2689
2690        private int width(String s) {
2691            width = -1;
2692            if (s != null) {
2693                try {
2694                    width  = Integer.parseInt(s);
2695                    if (width < 0)
2696                        throw new IllegalFormatWidthException(width);
2697                } catch (NumberFormatException x) {
2698                    assert(false);
2699                }
2700            }
2701            return width;
2702        }
2703
2704        int width() {
2705            return width;
2706        }
2707
2708        private int precision(String s) {
2709            precision = -1;
2710            if (s != null) {
2711                try {
2712                    precision = Integer.parseInt(s);
2713                    if (precision < 0)
2714                        throw new IllegalFormatPrecisionException(precision);
2715                } catch (NumberFormatException x) {
2716                    assert(false);
2717                }
2718            }
2719            return precision;
2720        }
2721
2722        int precision() {
2723            return precision;
2724        }
2725
2726        private char conversion(String s) {
2727            c = s.charAt(0);
2728            if (!dt) {
2729                if (!Conversion.isValid(c))
2730                    throw new UnknownFormatConversionException(String.valueOf(c));
2731                if (Character.isUpperCase(c))
2732                    f.add(Flags.UPPERCASE);
2733                c = Character.toLowerCase(c);
2734                if (Conversion.isText(c))
2735                    index = -2;
2736            }
2737            return c;
2738        }
2739
2740        private char conversion() {
2741            return c;
2742        }
2743
2744        FormatSpecifier(String indexStr, String flagsStr, String widthStr,
2745                        String precisionStr, String tTStr, String convStr) {
2746            int idx = 1;
2747
2748            index(indexStr);
2749            flags(flagsStr);
2750            width(widthStr);
2751            precision(precisionStr);
2752
2753            if (tTStr != null) {
2754                dt = true;
2755                if (tTStr.equals("T"))
2756                    f.add(Flags.UPPERCASE);
2757            }
2758
2759            conversion(convStr);
2760
2761            if (dt)
2762                checkDateTime();
2763            else if (Conversion.isGeneral(c))
2764                checkGeneral();
2765            else if (Conversion.isCharacter(c))
2766                checkCharacter();
2767            else if (Conversion.isInteger(c))
2768                checkInteger();
2769            else if (Conversion.isFloat(c))
2770                checkFloat();
2771            else if (Conversion.isText(c))
2772                checkText();
2773            else
2774                throw new UnknownFormatConversionException(String.valueOf(c));
2775        }
2776
2777        public void print(Object arg, Locale l) throws IOException {
2778            if (dt) {
2779                printDateTime(arg, l);
2780                return;
2781            }
2782            switch(c) {
2783            case Conversion.DECIMAL_INTEGER:
2784            case Conversion.OCTAL_INTEGER:
2785            case Conversion.HEXADECIMAL_INTEGER:
2786                printInteger(arg, l);
2787                break;
2788            case Conversion.SCIENTIFIC:
2789            case Conversion.GENERAL:
2790            case Conversion.DECIMAL_FLOAT:
2791            case Conversion.HEXADECIMAL_FLOAT:
2792                printFloat(arg, l);
2793                break;
2794            case Conversion.CHARACTER:
2795            case Conversion.CHARACTER_UPPER:
2796                printCharacter(arg);
2797                break;
2798            case Conversion.BOOLEAN:
2799                printBoolean(arg);
2800                break;
2801            case Conversion.STRING:
2802                printString(arg, l);
2803                break;
2804            case Conversion.HASHCODE:
2805                printHashCode(arg);
2806                break;
2807            case Conversion.LINE_SEPARATOR:
2808                a.append(System.lineSeparator());
2809                break;
2810            case Conversion.PERCENT_SIGN:
2811                a.append('%');
2812                break;
2813            default:
2814                assert false;
2815            }
2816        }
2817
2818        private void printInteger(Object arg, Locale l) throws IOException {
2819            if (arg == null)
2820                print("null");
2821            else if (arg instanceof Byte)
2822                print(((Byte)arg).byteValue(), l);
2823            else if (arg instanceof Short)
2824                print(((Short)arg).shortValue(), l);
2825            else if (arg instanceof Integer)
2826                print(((Integer)arg).intValue(), l);
2827            else if (arg instanceof Long)
2828                print(((Long)arg).longValue(), l);
2829            else if (arg instanceof BigInteger)
2830                print(((BigInteger)arg), l);
2831            else
2832                failConversion(c, arg);
2833        }
2834
2835        private void printFloat(Object arg, Locale l) throws IOException {
2836            if (arg == null)
2837                print("null");
2838            else if (arg instanceof Float)
2839                print(((Float)arg).floatValue(), l);
2840            else if (arg instanceof Double)
2841                print(((Double)arg).doubleValue(), l);
2842            else if (arg instanceof BigDecimal)
2843                print(((BigDecimal)arg), l);
2844            else
2845                failConversion(c, arg);
2846        }
2847
2848        private void printDateTime(Object arg, Locale l) throws IOException {
2849            if (arg == null) {
2850                print("null");
2851                return;
2852            }
2853            Calendar cal = null;
2854
2855            // Instead of Calendar.setLenient(true), perhaps we should
2856            // wrap the IllegalArgumentException that might be thrown?
2857            if (arg instanceof Long) {
2858                // Note that the following method uses an instance of the
2859                // default time zone (TimeZone.getDefaultRef().
2860                cal = Calendar.getInstance(l == null ? Locale.US : l);
2861                cal.setTimeInMillis((Long)arg);
2862            } else if (arg instanceof Date) {
2863                // Note that the following method uses an instance of the
2864                // default time zone (TimeZone.getDefaultRef().
2865                cal = Calendar.getInstance(l == null ? Locale.US : l);
2866                cal.setTime((Date)arg);
2867            } else if (arg instanceof Calendar) {
2868                cal = (Calendar) ((Calendar)arg).clone();
2869                cal.setLenient(true);
2870            } else {
2871                failConversion(c, arg);
2872            }
2873            // Use the provided locale so that invocations of
2874            // localizedMagnitude() use optimizations for null.
2875            print(cal, c, l);
2876        }
2877
2878        private void printCharacter(Object arg) throws IOException {
2879            if (arg == null) {
2880                print("null");
2881                return;
2882            }
2883            String s = null;
2884            if (arg instanceof Character) {
2885                s = ((Character)arg).toString();
2886            } else if (arg instanceof Byte) {
2887                byte i = ((Byte)arg).byteValue();
2888                if (Character.isValidCodePoint(i))
2889                    s = new String(Character.toChars(i));
2890                else
2891                    throw new IllegalFormatCodePointException(i);
2892            } else if (arg instanceof Short) {
2893                short i = ((Short)arg).shortValue();
2894                if (Character.isValidCodePoint(i))
2895                    s = new String(Character.toChars(i));
2896                else
2897                    throw new IllegalFormatCodePointException(i);
2898            } else if (arg instanceof Integer) {
2899                int i = ((Integer)arg).intValue();
2900                if (Character.isValidCodePoint(i))
2901                    s = new String(Character.toChars(i));
2902                else
2903                    throw new IllegalFormatCodePointException(i);
2904            } else {
2905                failConversion(c, arg);
2906            }
2907            print(s);
2908        }
2909
2910        private void printString(Object arg, Locale l) throws IOException {
2911            if (arg instanceof Formattable) {
2912                Formatter fmt = Formatter.this;
2913                if (fmt.locale() != l)
2914                    fmt = new Formatter(fmt.out(), l);
2915                ((Formattable)arg).formatTo(fmt, f.valueOf(), width, precision);
2916            } else {
2917                if (f.contains(Flags.ALTERNATE))
2918                    failMismatch(Flags.ALTERNATE, 's');
2919                if (arg == null)
2920                    print("null");
2921                else
2922                    print(arg.toString());
2923            }
2924        }
2925
2926        private void printBoolean(Object arg) throws IOException {
2927            String s;
2928            if (arg != null)
2929                s = ((arg instanceof Boolean)
2930                     ? ((Boolean)arg).toString()
2931                     : Boolean.toString(true));
2932            else
2933                s = Boolean.toString(false);
2934            print(s);
2935        }
2936
2937        private void printHashCode(Object arg) throws IOException {
2938            String s = (arg == null
2939                        ? "null"
2940                        : Integer.toHexString(arg.hashCode()));
2941            print(s);
2942        }
2943
2944        private void print(String s) throws IOException {
2945            if (precision != -1 && precision < s.length())
2946                s = s.substring(0, precision);
2947            if (f.contains(Flags.UPPERCASE)) {
2948                // Always uppercase strings according to the provided locale.
2949                s = s.toUpperCase(l != null ? l : Locale.getDefault());
2950            }
2951            a.append(justify(s));
2952        }
2953
2954        private String justify(String s) {
2955            if (width == -1)
2956                return s;
2957            StringBuilder sb = new StringBuilder();
2958            boolean pad = f.contains(Flags.LEFT_JUSTIFY);
2959            int sp = width - s.length();
2960            if (!pad)
2961                for (int i = 0; i < sp; i++) sb.append(' ');
2962            sb.append(s);
2963            if (pad)
2964                for (int i = 0; i < sp; i++) sb.append(' ');
2965            return sb.toString();
2966        }
2967
2968        public String toString() {
2969            StringBuilder sb = new StringBuilder("%");
2970            // Flags.UPPERCASE is set internally for legal conversions.
2971            Flags dupf = f.dup().remove(Flags.UPPERCASE);
2972            sb.append(dupf.toString());
2973            if (index > 0)
2974                sb.append(index).append('$');
2975            if (width != -1)
2976                sb.append(width);
2977            if (precision != -1)
2978                sb.append('.').append(precision);
2979            if (dt)
2980                sb.append(f.contains(Flags.UPPERCASE) ? 'T' : 't');
2981            sb.append(f.contains(Flags.UPPERCASE)
2982                      ? Character.toUpperCase(c) : c);
2983            return sb.toString();
2984        }
2985
2986        private void checkGeneral() {
2987            if ((c == Conversion.BOOLEAN || c == Conversion.HASHCODE)
2988                && f.contains(Flags.ALTERNATE))
2989                failMismatch(Flags.ALTERNATE, c);
2990            // '-' requires a width
2991            if (width == -1 && f.contains(Flags.LEFT_JUSTIFY))
2992                throw new MissingFormatWidthException(toString());
2993            checkBadFlags(Flags.PLUS, Flags.LEADING_SPACE, Flags.ZERO_PAD,
2994                          Flags.GROUP, Flags.PARENTHESES);
2995        }
2996
2997        private void checkDateTime() {
2998            if (precision != -1)
2999                throw new IllegalFormatPrecisionException(precision);
3000            if (!DateTime.isValid(c))
3001                throw new UnknownFormatConversionException("t" + c);
3002            checkBadFlags(Flags.ALTERNATE, Flags.PLUS, Flags.LEADING_SPACE,
3003                          Flags.ZERO_PAD, Flags.GROUP, Flags.PARENTHESES);
3004            // '-' requires a width
3005            if (width == -1 && f.contains(Flags.LEFT_JUSTIFY))
3006                throw new MissingFormatWidthException(toString());
3007        }
3008
3009        private void checkCharacter() {
3010            if (precision != -1)
3011                throw new IllegalFormatPrecisionException(precision);
3012            checkBadFlags(Flags.ALTERNATE, Flags.PLUS, Flags.LEADING_SPACE,
3013                          Flags.ZERO_PAD, Flags.GROUP, Flags.PARENTHESES);
3014            // '-' requires a width
3015            if (width == -1 && f.contains(Flags.LEFT_JUSTIFY))
3016                throw new MissingFormatWidthException(toString());
3017        }
3018
3019        private void checkInteger() {
3020            checkNumeric();
3021            if (precision != -1)
3022                throw new IllegalFormatPrecisionException(precision);
3023
3024            if (c == Conversion.DECIMAL_INTEGER)
3025                checkBadFlags(Flags.ALTERNATE);
3026            else if (c == Conversion.OCTAL_INTEGER)
3027                checkBadFlags(Flags.GROUP);
3028            else
3029                checkBadFlags(Flags.GROUP);
3030        }
3031
3032        private void checkBadFlags(Flags ... badFlags) {
3033            for (int i = 0; i < badFlags.length; i++)
3034                if (f.contains(badFlags[i]))
3035                    failMismatch(badFlags[i], c);
3036        }
3037
3038        private void checkFloat() {
3039            checkNumeric();
3040            if (c == Conversion.DECIMAL_FLOAT) {
3041            } else if (c == Conversion.HEXADECIMAL_FLOAT) {
3042                checkBadFlags(Flags.PARENTHESES, Flags.GROUP);
3043            } else if (c == Conversion.SCIENTIFIC) {
3044                checkBadFlags(Flags.GROUP);
3045            } else if (c == Conversion.GENERAL) {
3046                checkBadFlags(Flags.ALTERNATE);
3047            }
3048        }
3049
3050        private void checkNumeric() {
3051            if (width != -1 && width < 0)
3052                throw new IllegalFormatWidthException(width);
3053
3054            if (precision != -1 && precision < 0)
3055                throw new IllegalFormatPrecisionException(precision);
3056
3057            // '-' and '0' require a width
3058            if (width == -1
3059                && (f.contains(Flags.LEFT_JUSTIFY) || f.contains(Flags.ZERO_PAD)))
3060                throw new MissingFormatWidthException(toString());
3061
3062            // bad combination
3063            if ((f.contains(Flags.PLUS) && f.contains(Flags.LEADING_SPACE))
3064                || (f.contains(Flags.LEFT_JUSTIFY) && f.contains(Flags.ZERO_PAD)))
3065                throw new IllegalFormatFlagsException(f.toString());
3066        }
3067
3068        private void checkText() {
3069            if (precision != -1)
3070                throw new IllegalFormatPrecisionException(precision);
3071            switch (c) {
3072            case Conversion.PERCENT_SIGN:
3073                if (f.valueOf() != Flags.LEFT_JUSTIFY.valueOf()
3074                    && f.valueOf() != Flags.NONE.valueOf())
3075                    throw new IllegalFormatFlagsException(f.toString());
3076                // '-' requires a width
3077                if (width == -1 && f.contains(Flags.LEFT_JUSTIFY))
3078                    throw new MissingFormatWidthException(toString());
3079                break;
3080            case Conversion.LINE_SEPARATOR:
3081                if (width != -1)
3082                    throw new IllegalFormatWidthException(width);
3083                if (f.valueOf() != Flags.NONE.valueOf())
3084                    throw new IllegalFormatFlagsException(f.toString());
3085                break;
3086            default:
3087                assert false;
3088            }
3089        }
3090
3091        private void print(byte value, Locale l) throws IOException {
3092            long v = value;
3093            if (value < 0
3094                && (c == Conversion.OCTAL_INTEGER
3095                    || c == Conversion.HEXADECIMAL_INTEGER)) {
3096                v += (1L << 8);
3097                assert v >= 0 : v;
3098            }
3099            print(v, l);
3100        }
3101
3102        private void print(short value, Locale l) throws IOException {
3103            long v = value;
3104            if (value < 0
3105                && (c == Conversion.OCTAL_INTEGER
3106                    || c == Conversion.HEXADECIMAL_INTEGER)) {
3107                v += (1L << 16);
3108                assert v >= 0 : v;
3109            }
3110            print(v, l);
3111        }
3112
3113        private void print(int value, Locale l) throws IOException {
3114            long v = value;
3115            if (value < 0
3116                && (c == Conversion.OCTAL_INTEGER
3117                    || c == Conversion.HEXADECIMAL_INTEGER)) {
3118                v += (1L << 32);
3119                assert v >= 0 : v;
3120            }
3121            print(v, l);
3122        }
3123
3124        private void print(long value, Locale l) throws IOException {
3125
3126            StringBuilder sb = new StringBuilder();
3127
3128            if (c == Conversion.DECIMAL_INTEGER) {
3129                boolean neg = value < 0;
3130                char[] va;
3131                if (value < 0)
3132                    va = Long.toString(value, 10).substring(1).toCharArray();
3133                else
3134                    va = Long.toString(value, 10).toCharArray();
3135
3136                // leading sign indicator
3137                leadingSign(sb, neg);
3138
3139                // the value
3140                localizedMagnitude(sb, va, f, adjustWidth(width, f, neg), l);
3141
3142                // trailing sign indicator
3143                trailingSign(sb, neg);
3144            } else if (c == Conversion.OCTAL_INTEGER) {
3145                checkBadFlags(Flags.PARENTHESES, Flags.LEADING_SPACE,
3146                              Flags.PLUS);
3147                String s = Long.toOctalString(value);
3148                int len = (f.contains(Flags.ALTERNATE)
3149                           ? s.length() + 1
3150                           : s.length());
3151
3152                // apply ALTERNATE (radix indicator for octal) before ZERO_PAD
3153                if (f.contains(Flags.ALTERNATE))
3154                    sb.append('0');
3155                if (f.contains(Flags.ZERO_PAD))
3156                    for (int i = 0; i < width - len; i++) sb.append('0');
3157                sb.append(s);
3158            } else if (c == Conversion.HEXADECIMAL_INTEGER) {
3159                checkBadFlags(Flags.PARENTHESES, Flags.LEADING_SPACE,
3160                              Flags.PLUS);
3161                String s = Long.toHexString(value);
3162                int len = (f.contains(Flags.ALTERNATE)
3163                           ? s.length() + 2
3164                           : s.length());
3165
3166                // apply ALTERNATE (radix indicator for hex) before ZERO_PAD
3167                if (f.contains(Flags.ALTERNATE))
3168                    sb.append(f.contains(Flags.UPPERCASE) ? "0X" : "0x");
3169                if (f.contains(Flags.ZERO_PAD))
3170                    for (int i = 0; i < width - len; i++) sb.append('0');
3171                if (f.contains(Flags.UPPERCASE))
3172                    s = s.toUpperCase();
3173                sb.append(s);
3174            }
3175
3176            // justify based on width
3177            a.append(justify(sb.toString()));
3178        }
3179
3180        // neg := val < 0
3181        private StringBuilder leadingSign(StringBuilder sb, boolean neg) {
3182            if (!neg) {
3183                if (f.contains(Flags.PLUS)) {
3184                    sb.append('+');
3185                } else if (f.contains(Flags.LEADING_SPACE)) {
3186                    sb.append(' ');
3187                }
3188            } else {
3189                if (f.contains(Flags.PARENTHESES))
3190                    sb.append('(');
3191                else
3192                    sb.append('-');
3193            }
3194            return sb;
3195        }
3196
3197        // neg := val < 0
3198        private StringBuilder trailingSign(StringBuilder sb, boolean neg) {
3199            if (neg && f.contains(Flags.PARENTHESES))
3200                sb.append(')');
3201            return sb;
3202        }
3203
3204        private void print(BigInteger value, Locale l) throws IOException {
3205            StringBuilder sb = new StringBuilder();
3206            boolean neg = value.signum() == -1;
3207            BigInteger v = value.abs();
3208
3209            // leading sign indicator
3210            leadingSign(sb, neg);
3211
3212            // the value
3213            if (c == Conversion.DECIMAL_INTEGER) {
3214                char[] va = v.toString().toCharArray();
3215                localizedMagnitude(sb, va, f, adjustWidth(width, f, neg), l);
3216            } else if (c == Conversion.OCTAL_INTEGER) {
3217                String s = v.toString(8);
3218
3219                int len = s.length() + sb.length();
3220                if (neg && f.contains(Flags.PARENTHESES))
3221                    len++;
3222
3223                // apply ALTERNATE (radix indicator for octal) before ZERO_PAD
3224                if (f.contains(Flags.ALTERNATE)) {
3225                    len++;
3226                    sb.append('0');
3227                }
3228                if (f.contains(Flags.ZERO_PAD)) {
3229                    for (int i = 0; i < width - len; i++)
3230                        sb.append('0');
3231                }
3232                sb.append(s);
3233            } else if (c == Conversion.HEXADECIMAL_INTEGER) {
3234                String s = v.toString(16);
3235
3236                int len = s.length() + sb.length();
3237                if (neg && f.contains(Flags.PARENTHESES))
3238                    len++;
3239
3240                // apply ALTERNATE (radix indicator for hex) before ZERO_PAD
3241                if (f.contains(Flags.ALTERNATE)) {
3242                    len += 2;
3243                    sb.append(f.contains(Flags.UPPERCASE) ? "0X" : "0x");
3244                }
3245                if (f.contains(Flags.ZERO_PAD))
3246                    for (int i = 0; i < width - len; i++)
3247                        sb.append('0');
3248                if (f.contains(Flags.UPPERCASE))
3249                    s = s.toUpperCase();
3250                sb.append(s);
3251            }
3252
3253            // trailing sign indicator
3254            trailingSign(sb, (value.signum() == -1));
3255
3256            // justify based on width
3257            a.append(justify(sb.toString()));
3258        }
3259
3260        private void print(float value, Locale l) throws IOException {
3261            print((double) value, l);
3262        }
3263
3264        private void print(double value, Locale l) throws IOException {
3265            StringBuilder sb = new StringBuilder();
3266            boolean neg = Double.compare(value, 0.0) == -1;
3267
3268            if (!Double.isNaN(value)) {
3269                double v = Math.abs(value);
3270
3271                // leading sign indicator
3272                leadingSign(sb, neg);
3273
3274                // the value
3275                if (!Double.isInfinite(v))
3276                    print(sb, v, l, f, c, precision, neg);
3277                else
3278                    sb.append(f.contains(Flags.UPPERCASE)
3279                              ? "INFINITY" : "Infinity");
3280
3281                // trailing sign indicator
3282                trailingSign(sb, neg);
3283            } else {
3284                sb.append(f.contains(Flags.UPPERCASE) ? "NAN" : "NaN");
3285            }
3286
3287            // justify based on width
3288            a.append(justify(sb.toString()));
3289        }
3290
3291        // !Double.isInfinite(value) && !Double.isNaN(value)
3292        private void print(StringBuilder sb, double value, Locale l,
3293                           Flags f, char c, int precision, boolean neg)
3294            throws IOException
3295        {
3296            if (c == Conversion.SCIENTIFIC) {
3297                // Create a new FormattedFloatingDecimal with the desired
3298                // precision.
3299                int prec = (precision == -1 ? 6 : precision);
3300
3301                FormattedFloatingDecimal fd
3302                    = FormattedFloatingDecimal.valueOf(value, prec,
3303                        FormattedFloatingDecimal.Form.SCIENTIFIC);
3304
3305                char[] mant = addZeros(fd.getMantissa(), prec);
3306
3307                // If the precision is zero and the '#' flag is set, add the
3308                // requested decimal point.
3309                if (f.contains(Flags.ALTERNATE) && (prec == 0))
3310                    mant = addDot(mant);
3311
3312                char[] exp = (value == 0.0)
3313                    ? new char[] {'+','0','0'} : fd.getExponent();
3314
3315                int newW = width;
3316                if (width != -1)
3317                    newW = adjustWidth(width - exp.length - 1, f, neg);
3318                localizedMagnitude(sb, mant, f, newW, l);
3319
3320                Locale separatorLocale = (l != null) ? l : Locale.getDefault();
3321                LocaleData localeData = LocaleData.get(separatorLocale);
3322                sb.append(f.contains(Flags.UPPERCASE) ?
3323                        localeData.exponentSeparator.toUpperCase(separatorLocale) :
3324                        localeData.exponentSeparator.toLowerCase(separatorLocale));
3325
3326                Flags flags = f.dup().remove(Flags.GROUP);
3327                char sign = exp[0];
3328                assert(sign == '+' || sign == '-');
3329                sb.append(sign);
3330
3331                char[] tmp = new char[exp.length - 1];
3332                System.arraycopy(exp, 1, tmp, 0, exp.length - 1);
3333                sb.append(localizedMagnitude(null, tmp, flags, -1, l));
3334            } else if (c == Conversion.DECIMAL_FLOAT) {
3335                // Create a new FormattedFloatingDecimal with the desired
3336                // precision.
3337                int prec = (precision == -1 ? 6 : precision);
3338
3339                FormattedFloatingDecimal fd
3340                        = FormattedFloatingDecimal.valueOf(value, prec,
3341                          FormattedFloatingDecimal.Form.DECIMAL_FLOAT);
3342
3343                char[] mant = addZeros(fd.getMantissa(), prec);
3344
3345                // If the precision is zero and the '#' flag is set, add the
3346                // requested decimal point.
3347                if (f.contains(Flags.ALTERNATE) && (prec == 0))
3348                    mant = addDot(mant);
3349
3350                int newW = width;
3351                if (width != -1)
3352                    newW = adjustWidth(width, f, neg);
3353                localizedMagnitude(sb, mant, f, newW, l);
3354            } else if (c == Conversion.GENERAL) {
3355                int prec = precision;
3356                if (precision == -1)
3357                    prec = 6;
3358                else if (precision == 0)
3359                    prec = 1;
3360
3361                char[] exp;
3362                char[] mant;
3363                int expRounded;
3364                if (value == 0.0) {
3365                    exp = null;
3366                    mant = new char[] {'0'};
3367                    expRounded = 0;
3368                } else {
3369                    FormattedFloatingDecimal fd
3370                        = FormattedFloatingDecimal.valueOf(value, prec,
3371                          FormattedFloatingDecimal.Form.GENERAL);
3372                    exp = fd.getExponent();
3373                    mant = fd.getMantissa();
3374                    expRounded = fd.getExponentRounded();
3375                }
3376
3377                if (exp != null) {
3378                    prec -= 1;
3379                } else {
3380                    prec -= expRounded + 1;
3381                }
3382
3383                mant = addZeros(mant, prec);
3384                // If the precision is zero and the '#' flag is set, add the
3385                // requested decimal point.
3386                if (f.contains(Flags.ALTERNATE) && (prec == 0))
3387                    mant = addDot(mant);
3388
3389                int newW = width;
3390                if (width != -1) {
3391                    if (exp != null)
3392                        newW = adjustWidth(width - exp.length - 1, f, neg);
3393                    else
3394                        newW = adjustWidth(width, f, neg);
3395                }
3396                localizedMagnitude(sb, mant, f, newW, l);
3397
3398                if (exp != null) {
3399                    sb.append(f.contains(Flags.UPPERCASE) ? 'E' : 'e');
3400
3401                    Flags flags = f.dup().remove(Flags.GROUP);
3402                    char sign = exp[0];
3403                    assert(sign == '+' || sign == '-');
3404                    sb.append(sign);
3405
3406                    char[] tmp = new char[exp.length - 1];
3407                    System.arraycopy(exp, 1, tmp, 0, exp.length - 1);
3408                    sb.append(localizedMagnitude(null, tmp, flags, -1, l));
3409                }
3410            } else if (c == Conversion.HEXADECIMAL_FLOAT) {
3411                int prec = precision;
3412                if (precision == -1)
3413                    // assume that we want all of the digits
3414                    prec = 0;
3415                else if (precision == 0)
3416                    prec = 1;
3417
3418                String s = hexDouble(value, prec);
3419
3420                char[] va;
3421                boolean upper = f.contains(Flags.UPPERCASE);
3422                sb.append(upper ? "0X" : "0x");
3423
3424                if (f.contains(Flags.ZERO_PAD))
3425                    for (int i = 0; i < width - s.length() - 2; i++)
3426                        sb.append('0');
3427
3428                int idx = s.indexOf('p');
3429                va = s.substring(0, idx).toCharArray();
3430                if (upper) {
3431                    String tmp = new String(va);
3432                    // don't localize hex
3433                    tmp = tmp.toUpperCase(Locale.US);
3434                    va = tmp.toCharArray();
3435                }
3436                sb.append(prec != 0 ? addZeros(va, prec) : va);
3437                sb.append(upper ? 'P' : 'p');
3438                sb.append(s.substring(idx+1));
3439            }
3440        }
3441
3442        private char[] mantissa(char[] v, int len) {
3443            int i;
3444            for (i = 0; i < len; i++) {
3445                if (v[i] == 'e')
3446                    break;
3447            }
3448            char[] tmp = new char[i];
3449            System.arraycopy(v, 0, tmp, 0, i);
3450            return tmp;
3451        }
3452
3453        private char[] exponent(char[] v, int len) {
3454            int i;
3455            for (i = len - 1; i >= 0; i--) {
3456                if (v[i] == 'e')
3457                    break;
3458            }
3459            if (i == -1)
3460                return null;
3461            char[] tmp = new char[len - i - 1];
3462            System.arraycopy(v, i + 1, tmp, 0, len - i - 1);
3463            return tmp;
3464        }
3465
3466        // Add zeros to the requested precision.
3467        private char[] addZeros(char[] v, int prec) {
3468            // Look for the dot.  If we don't find one, the we'll need to add
3469            // it before we add the zeros.
3470            int i;
3471            for (i = 0; i < v.length; i++) {
3472                if (v[i] == '.')
3473                    break;
3474            }
3475            boolean needDot = false;
3476            if (i == v.length) {
3477                needDot = true;
3478            }
3479
3480            // Determine existing precision.
3481            int outPrec = v.length - i - (needDot ? 0 : 1);
3482            assert (outPrec <= prec);
3483            if (outPrec == prec)
3484                return v;
3485
3486            // Create new array with existing contents.
3487            char[] tmp
3488                = new char[v.length + prec - outPrec + (needDot ? 1 : 0)];
3489            System.arraycopy(v, 0, tmp, 0, v.length);
3490
3491            // Add dot if previously determined to be necessary.
3492            int start = v.length;
3493            if (needDot) {
3494                tmp[v.length] = '.';
3495                start++;
3496            }
3497
3498            // Add zeros.
3499            for (int j = start; j < tmp.length; j++)
3500                tmp[j] = '0';
3501
3502            return tmp;
3503        }
3504
3505        // Method assumes that d > 0.
3506        private String hexDouble(double d, int prec) {
3507            // Let Double.toHexString handle simple cases
3508            if(!FpUtils.isFinite(d) || d == 0.0 || prec == 0 || prec >= 13)
3509                // remove "0x"
3510                return Double.toHexString(d).substring(2);
3511            else {
3512                assert(prec >= 1 && prec <= 12);
3513
3514                int exponent  = FpUtils.getExponent(d);
3515                boolean subnormal
3516                    = (exponent == DoubleConsts.MIN_EXPONENT - 1);
3517
3518                // If this is subnormal input so normalize (could be faster to
3519                // do as integer operation).
3520                if (subnormal) {
3521                    scaleUp = FpUtils.scalb(1.0, 54);
3522                    d *= scaleUp;
3523                    // Calculate the exponent.  This is not just exponent + 54
3524                    // since the former is not the normalized exponent.
3525                    exponent = FpUtils.getExponent(d);
3526                    assert exponent >= DoubleConsts.MIN_EXPONENT &&
3527                        exponent <= DoubleConsts.MAX_EXPONENT: exponent;
3528                }
3529
3530                int precision = 1 + prec*4;
3531                int shiftDistance
3532                    =  DoubleConsts.SIGNIFICAND_WIDTH - precision;
3533                assert(shiftDistance >= 1 && shiftDistance < DoubleConsts.SIGNIFICAND_WIDTH);
3534
3535                long doppel = Double.doubleToLongBits(d);
3536                // Deterime the number of bits to keep.
3537                long newSignif
3538                    = (doppel & (DoubleConsts.EXP_BIT_MASK
3539                                 | DoubleConsts.SIGNIF_BIT_MASK))
3540                                     >> shiftDistance;
3541                // Bits to round away.
3542                long roundingBits = doppel & ~(~0L << shiftDistance);
3543
3544                // To decide how to round, look at the low-order bit of the
3545                // working significand, the highest order discarded bit (the
3546                // round bit) and whether any of the lower order discarded bits
3547                // are nonzero (the sticky bit).
3548
3549                boolean leastZero = (newSignif & 0x1L) == 0L;
3550                boolean round
3551                    = ((1L << (shiftDistance - 1) ) & roundingBits) != 0L;
3552                boolean sticky  = shiftDistance > 1 &&
3553                    (~(1L<< (shiftDistance - 1)) & roundingBits) != 0;
3554                if((leastZero && round && sticky) || (!leastZero && round)) {
3555                    newSignif++;
3556                }
3557
3558                long signBit = doppel & DoubleConsts.SIGN_BIT_MASK;
3559                newSignif = signBit | (newSignif << shiftDistance);
3560                double result = Double.longBitsToDouble(newSignif);
3561
3562                if (Double.isInfinite(result) ) {
3563                    // Infinite result generated by rounding
3564                    return "1.0p1024";
3565                } else {
3566                    String res = Double.toHexString(result).substring(2);
3567                    if (!subnormal)
3568                        return res;
3569                    else {
3570                        // Create a normalized subnormal string.
3571                        int idx = res.indexOf('p');
3572                        if (idx == -1) {
3573                            // No 'p' character in hex string.
3574                            assert false;
3575                            return null;
3576                        } else {
3577                            // Get exponent and append at the end.
3578                            String exp = res.substring(idx + 1);
3579                            int iexp = Integer.parseInt(exp) -54;
3580                            return res.substring(0, idx) + "p"
3581                                + Integer.toString(iexp);
3582                        }
3583                    }
3584                }
3585            }
3586        }
3587
3588        private void print(BigDecimal value, Locale l) throws IOException {
3589            if (c == Conversion.HEXADECIMAL_FLOAT)
3590                failConversion(c, value);
3591            StringBuilder sb = new StringBuilder();
3592            boolean neg = value.signum() == -1;
3593            BigDecimal v = value.abs();
3594            // leading sign indicator
3595            leadingSign(sb, neg);
3596
3597            // the value
3598            print(sb, v, l, f, c, precision, neg);
3599
3600            // trailing sign indicator
3601            trailingSign(sb, neg);
3602
3603            // justify based on width
3604            a.append(justify(sb.toString()));
3605        }
3606
3607        // value > 0
3608        private void print(StringBuilder sb, BigDecimal value, Locale l,
3609                           Flags f, char c, int precision, boolean neg)
3610            throws IOException
3611        {
3612            if (c == Conversion.SCIENTIFIC) {
3613                // Create a new BigDecimal with the desired precision.
3614                int prec = (precision == -1 ? 6 : precision);
3615                int scale = value.scale();
3616                int origPrec = value.precision();
3617                int nzeros = 0;
3618                int compPrec;
3619
3620                if (prec > origPrec - 1) {
3621                    compPrec = origPrec;
3622                    nzeros = prec - (origPrec - 1);
3623                } else {
3624                    compPrec = prec + 1;
3625                }
3626
3627                MathContext mc = new MathContext(compPrec);
3628                BigDecimal v
3629                    = new BigDecimal(value.unscaledValue(), scale, mc);
3630
3631                BigDecimalLayout bdl
3632                    = new BigDecimalLayout(v.unscaledValue(), v.scale(),
3633                                           BigDecimalLayoutForm.SCIENTIFIC);
3634
3635                char[] mant = bdl.mantissa();
3636
3637                // Add a decimal point if necessary.  The mantissa may not
3638                // contain a decimal point if the scale is zero (the internal
3639                // representation has no fractional part) or the original
3640                // precision is one. Append a decimal point if '#' is set or if
3641                // we require zero padding to get to the requested precision.
3642                if ((origPrec == 1 || !bdl.hasDot())
3643                    && (nzeros > 0 || (f.contains(Flags.ALTERNATE))))
3644                    mant = addDot(mant);
3645
3646                // Add trailing zeros in the case precision is greater than
3647                // the number of available digits after the decimal separator.
3648                mant = trailingZeros(mant, nzeros);
3649
3650                char[] exp = bdl.exponent();
3651                int newW = width;
3652                if (width != -1)
3653                    newW = adjustWidth(width - exp.length - 1, f, neg);
3654                localizedMagnitude(sb, mant, f, newW, l);
3655
3656                sb.append(f.contains(Flags.UPPERCASE) ? 'E' : 'e');
3657
3658                Flags flags = f.dup().remove(Flags.GROUP);
3659                char sign = exp[0];
3660                assert(sign == '+' || sign == '-');
3661                sb.append(exp[0]);
3662
3663                char[] tmp = new char[exp.length - 1];
3664                System.arraycopy(exp, 1, tmp, 0, exp.length - 1);
3665                sb.append(localizedMagnitude(null, tmp, flags, -1, l));
3666            } else if (c == Conversion.DECIMAL_FLOAT) {
3667                // Create a new BigDecimal with the desired precision.
3668                int prec = (precision == -1 ? 6 : precision);
3669                int scale = value.scale();
3670
3671                if (scale > prec) {
3672                    // more "scale" digits than the requested "precision"
3673                    int compPrec = value.precision();
3674                    if (compPrec <= scale) {
3675                        // case of 0.xxxxxx
3676                        value = value.setScale(prec, RoundingMode.HALF_UP);
3677                    } else {
3678                        compPrec -= (scale - prec);
3679                        value = new BigDecimal(value.unscaledValue(),
3680                                               scale,
3681                                               new MathContext(compPrec));
3682                    }
3683                }
3684                BigDecimalLayout bdl = new BigDecimalLayout(
3685                                           value.unscaledValue(),
3686                                           value.scale(),
3687                                           BigDecimalLayoutForm.DECIMAL_FLOAT);
3688
3689                char mant[] = bdl.mantissa();
3690                int nzeros = (bdl.scale() < prec ? prec - bdl.scale() : 0);
3691
3692                // Add a decimal point if necessary.  The mantissa may not
3693                // contain a decimal point if the scale is zero (the internal
3694                // representation has no fractional part).  Append a decimal
3695                // point if '#' is set or we require zero padding to get to the
3696                // requested precision.
3697                if (bdl.scale() == 0 && (f.contains(Flags.ALTERNATE) || nzeros > 0))
3698                    mant = addDot(bdl.mantissa());
3699
3700                // Add trailing zeros if the precision is greater than the
3701                // number of available digits after the decimal separator.
3702                mant = trailingZeros(mant, nzeros);
3703
3704                localizedMagnitude(sb, mant, f, adjustWidth(width, f, neg), l);
3705            } else if (c == Conversion.GENERAL) {
3706                int prec = precision;
3707                if (precision == -1)
3708                    prec = 6;
3709                else if (precision == 0)
3710                    prec = 1;
3711
3712                BigDecimal tenToTheNegFour = BigDecimal.valueOf(1, 4);
3713                BigDecimal tenToThePrec = BigDecimal.valueOf(1, -prec);
3714                if ((value.equals(BigDecimal.ZERO))
3715                    || ((value.compareTo(tenToTheNegFour) != -1)
3716                        && (value.compareTo(tenToThePrec) == -1))) {
3717
3718                    int e = - value.scale()
3719                        + (value.unscaledValue().toString().length() - 1);
3720
3721                    // xxx.yyy
3722                    //   g precision (# sig digits) = #x + #y
3723                    //   f precision = #y
3724                    //   exponent = #x - 1
3725                    // => f precision = g precision - exponent - 1
3726                    // 0.000zzz
3727                    //   g precision (# sig digits) = #z
3728                    //   f precision = #0 (after '.') + #z
3729                    //   exponent = - #0 (after '.') - 1
3730                    // => f precision = g precision - exponent - 1
3731                    prec = prec - e - 1;
3732
3733                    print(sb, value, l, f, Conversion.DECIMAL_FLOAT, prec,
3734                          neg);
3735                } else {
3736                    print(sb, value, l, f, Conversion.SCIENTIFIC, prec - 1, neg);
3737                }
3738            } else if (c == Conversion.HEXADECIMAL_FLOAT) {
3739                // This conversion isn't supported.  The error should be
3740                // reported earlier.
3741                assert false;
3742            }
3743        }
3744
3745        private class BigDecimalLayout {
3746            private StringBuilder mant;
3747            private StringBuilder exp;
3748            private boolean dot = false;
3749            private int scale;
3750
3751            public BigDecimalLayout(BigInteger intVal, int scale, BigDecimalLayoutForm form) {
3752                layout(intVal, scale, form);
3753            }
3754
3755            public boolean hasDot() {
3756                return dot;
3757            }
3758
3759            public int scale() {
3760                return scale;
3761            }
3762
3763            // char[] with canonical string representation
3764            public char[] layoutChars() {
3765                StringBuilder sb = new StringBuilder(mant);
3766                if (exp != null) {
3767                    sb.append('E');
3768                    sb.append(exp);
3769                }
3770                return toCharArray(sb);
3771            }
3772
3773            public char[] mantissa() {
3774                return toCharArray(mant);
3775            }
3776
3777            // The exponent will be formatted as a sign ('+' or '-') followed
3778            // by the exponent zero-padded to include at least two digits.
3779            public char[] exponent() {
3780                return toCharArray(exp);
3781            }
3782
3783            private char[] toCharArray(StringBuilder sb) {
3784                if (sb == null)
3785                    return null;
3786                char[] result = new char[sb.length()];
3787                sb.getChars(0, result.length, result, 0);
3788                return result;
3789            }
3790
3791            private void layout(BigInteger intVal, int scale, BigDecimalLayoutForm form) {
3792                char coeff[] = intVal.toString().toCharArray();
3793                this.scale = scale;
3794
3795                // Construct a buffer, with sufficient capacity for all cases.
3796                // If E-notation is needed, length will be: +1 if negative, +1
3797                // if '.' needed, +2 for "E+", + up to 10 for adjusted
3798                // exponent.  Otherwise it could have +1 if negative, plus
3799                // leading "0.00000"
3800                mant = new StringBuilder(coeff.length + 14);
3801
3802                if (scale == 0) {
3803                    int len = coeff.length;
3804                    if (len > 1) {
3805                        mant.append(coeff[0]);
3806                        if (form == BigDecimalLayoutForm.SCIENTIFIC) {
3807                            mant.append('.');
3808                            dot = true;
3809                            mant.append(coeff, 1, len - 1);
3810                            exp = new StringBuilder("+");
3811                            if (len < 10)
3812                                exp.append("0").append(len - 1);
3813                            else
3814                                exp.append(len - 1);
3815                        } else {
3816                            mant.append(coeff, 1, len - 1);
3817                        }
3818                    } else {
3819                        mant.append(coeff);
3820                        if (form == BigDecimalLayoutForm.SCIENTIFIC)
3821                            exp = new StringBuilder("+00");
3822                    }
3823                    return;
3824                }
3825                long adjusted = -(long) scale + (coeff.length - 1);
3826                if (form == BigDecimalLayoutForm.DECIMAL_FLOAT) {
3827                    // count of padding zeros
3828                    int pad = scale - coeff.length;
3829                    if (pad >= 0) {
3830                        // 0.xxx form
3831                        mant.append("0.");
3832                        dot = true;
3833                        for (; pad > 0 ; pad--) mant.append('0');
3834                        mant.append(coeff);
3835                    } else {
3836                        if (-pad < coeff.length) {
3837                            // xx.xx form
3838                            mant.append(coeff, 0, -pad);
3839                            mant.append('.');
3840                            dot = true;
3841                            mant.append(coeff, -pad, scale);
3842                        } else {
3843                            // xx form
3844                            mant.append(coeff, 0, coeff.length);
3845                            for (int i = 0; i < -scale; i++)
3846                                mant.append('0');
3847                            this.scale = 0;
3848                        }
3849                    }
3850                } else {
3851                    // x.xxx form
3852                    mant.append(coeff[0]);
3853                    if (coeff.length > 1) {
3854                        mant.append('.');
3855                        dot = true;
3856                        mant.append(coeff, 1, coeff.length-1);
3857                    }
3858                    exp = new StringBuilder();
3859                    if (adjusted != 0) {
3860                        long abs = Math.abs(adjusted);
3861                        // require sign
3862                        exp.append(adjusted < 0 ? '-' : '+');
3863                        if (abs < 10)
3864                            exp.append('0');
3865                        exp.append(abs);
3866                    } else {
3867                        exp.append("+00");
3868                    }
3869                }
3870            }
3871        }
3872
3873        private int adjustWidth(int width, Flags f, boolean neg) {
3874            int newW = width;
3875            if (newW != -1 && neg && f.contains(Flags.PARENTHESES))
3876                newW--;
3877            return newW;
3878        }
3879
3880        // Add a '.' to th mantissa if required
3881        private char[] addDot(char[] mant) {
3882            char[] tmp = mant;
3883            tmp = new char[mant.length + 1];
3884            System.arraycopy(mant, 0, tmp, 0, mant.length);
3885            tmp[tmp.length - 1] = '.';
3886            return tmp;
3887        }
3888
3889        // Add trailing zeros in the case precision is greater than the number
3890        // of available digits after the decimal separator.
3891        private char[] trailingZeros(char[] mant, int nzeros) {
3892            char[] tmp = mant;
3893            if (nzeros > 0) {
3894                tmp = new char[mant.length + nzeros];
3895                System.arraycopy(mant, 0, tmp, 0, mant.length);
3896                for (int i = mant.length; i < tmp.length; i++)
3897                    tmp[i] = '0';
3898            }
3899            return tmp;
3900        }
3901
3902        private void print(Calendar t, char c, Locale l)  throws IOException
3903        {
3904            StringBuilder sb = new StringBuilder();
3905            print(sb, t, c, l);
3906
3907            // justify based on width
3908            String s = justify(sb.toString());
3909            if (f.contains(Flags.UPPERCASE))
3910                s = s.toUpperCase();
3911
3912            a.append(s);
3913        }
3914
3915        private Appendable print(StringBuilder sb, Calendar t, char c,
3916                                 Locale l)
3917            throws IOException
3918        {
3919            assert(width == -1);
3920            if (sb == null)
3921                sb = new StringBuilder();
3922            switch (c) {
3923            case DateTime.HOUR_OF_DAY_0: // 'H' (00 - 23)
3924            case DateTime.HOUR_0:        // 'I' (01 - 12)
3925            case DateTime.HOUR_OF_DAY:   // 'k' (0 - 23) -- like H
3926            case DateTime.HOUR:        { // 'l' (1 - 12) -- like I
3927                int i = t.get(Calendar.HOUR_OF_DAY);
3928                if (c == DateTime.HOUR_0 || c == DateTime.HOUR)
3929                    i = (i == 0 || i == 12 ? 12 : i % 12);
3930                Flags flags = (c == DateTime.HOUR_OF_DAY_0
3931                               || c == DateTime.HOUR_0
3932                               ? Flags.ZERO_PAD
3933                               : Flags.NONE);
3934                sb.append(localizedMagnitude(null, i, flags, 2, l));
3935                break;
3936            }
3937            case DateTime.MINUTE:      { // 'M' (00 - 59)
3938                int i = t.get(Calendar.MINUTE);
3939                Flags flags = Flags.ZERO_PAD;
3940                sb.append(localizedMagnitude(null, i, flags, 2, l));
3941                break;
3942            }
3943            case DateTime.NANOSECOND:  { // 'N' (000000000 - 999999999)
3944                int i = t.get(Calendar.MILLISECOND) * 1000000;
3945                Flags flags = Flags.ZERO_PAD;
3946                sb.append(localizedMagnitude(null, i, flags, 9, l));
3947                break;
3948            }
3949            case DateTime.MILLISECOND: { // 'L' (000 - 999)
3950                int i = t.get(Calendar.MILLISECOND);
3951                Flags flags = Flags.ZERO_PAD;
3952                sb.append(localizedMagnitude(null, i, flags, 3, l));
3953                break;
3954            }
3955            case DateTime.MILLISECOND_SINCE_EPOCH: { // 'Q' (0 - 99...?)
3956                long i = t.getTimeInMillis();
3957                Flags flags = Flags.NONE;
3958                sb.append(localizedMagnitude(null, i, flags, width, l));
3959                break;
3960            }
3961            case DateTime.AM_PM:       { // 'p' (am or pm)
3962                // Calendar.AM = 0, Calendar.PM = 1, LocaleElements defines upper
3963                String[] ampm = { "AM", "PM" };
3964                if (l != null && l != Locale.US) {
3965                    DateFormatSymbols dfs = DateFormatSymbols.getInstance(l);
3966                    ampm = dfs.getAmPmStrings();
3967                }
3968                String s = ampm[t.get(Calendar.AM_PM)];
3969                sb.append(s.toLowerCase(l != null ? l : Locale.US));
3970                break;
3971            }
3972            case DateTime.SECONDS_SINCE_EPOCH: { // 's' (0 - 99...?)
3973                long i = t.getTimeInMillis() / 1000;
3974                Flags flags = Flags.NONE;
3975                sb.append(localizedMagnitude(null, i, flags, width, l));
3976                break;
3977            }
3978            case DateTime.SECOND:      { // 'S' (00 - 60 - leap second)
3979                int i = t.get(Calendar.SECOND);
3980                Flags flags = Flags.ZERO_PAD;
3981                sb.append(localizedMagnitude(null, i, flags, 2, l));
3982                break;
3983            }
3984            case DateTime.ZONE_NUMERIC: { // 'z' ({-|+}####) - ls minus?
3985                int i = t.get(Calendar.ZONE_OFFSET) + t.get(Calendar.DST_OFFSET);
3986                boolean neg = i < 0;
3987                sb.append(neg ? '-' : '+');
3988                if (neg)
3989                    i = -i;
3990                int min = i / 60000;
3991                // combine minute and hour into a single integer
3992                int offset = (min / 60) * 100 + (min % 60);
3993                Flags flags = Flags.ZERO_PAD;
3994
3995                sb.append(localizedMagnitude(null, offset, flags, 4, l));
3996                break;
3997            }
3998            case DateTime.ZONE:        { // 'Z' (symbol)
3999                TimeZone tz = t.getTimeZone();
4000                sb.append(tz.getDisplayName((t.get(Calendar.DST_OFFSET) != 0),
4001                                           TimeZone.SHORT,
4002                                            (l == null) ? Locale.US : l));
4003                break;
4004            }
4005
4006            // Date
4007            case DateTime.NAME_OF_DAY_ABBREV:     // 'a'
4008            case DateTime.NAME_OF_DAY:          { // 'A'
4009                int i = t.get(Calendar.DAY_OF_WEEK);
4010                Locale lt = ((l == null) ? Locale.US : l);
4011                DateFormatSymbols dfs = DateFormatSymbols.getInstance(lt);
4012                if (c == DateTime.NAME_OF_DAY)
4013                    sb.append(dfs.getWeekdays()[i]);
4014                else
4015                    sb.append(dfs.getShortWeekdays()[i]);
4016                break;
4017            }
4018            case DateTime.NAME_OF_MONTH_ABBREV:   // 'b'
4019            case DateTime.NAME_OF_MONTH_ABBREV_X: // 'h' -- same b
4020            case DateTime.NAME_OF_MONTH:        { // 'B'
4021                int i = t.get(Calendar.MONTH);
4022                Locale lt = ((l == null) ? Locale.US : l);
4023                DateFormatSymbols dfs = DateFormatSymbols.getInstance(lt);
4024                if (c == DateTime.NAME_OF_MONTH)
4025                    sb.append(dfs.getMonths()[i]);
4026                else
4027                    sb.append(dfs.getShortMonths()[i]);
4028                break;
4029            }
4030            case DateTime.CENTURY:                // 'C' (00 - 99)
4031            case DateTime.YEAR_2:                 // 'y' (00 - 99)
4032            case DateTime.YEAR_4:               { // 'Y' (0000 - 9999)
4033                int i = t.get(Calendar.YEAR);
4034                int size = 2;
4035                switch (c) {
4036                case DateTime.CENTURY:
4037                    i /= 100;
4038                    break;
4039                case DateTime.YEAR_2:
4040                    i %= 100;
4041                    break;
4042                case DateTime.YEAR_4:
4043                    size = 4;
4044                    break;
4045                }
4046                Flags flags = Flags.ZERO_PAD;
4047                sb.append(localizedMagnitude(null, i, flags, size, l));
4048                break;
4049            }
4050            case DateTime.DAY_OF_MONTH_0:         // 'd' (01 - 31)
4051            case DateTime.DAY_OF_MONTH:         { // 'e' (1 - 31) -- like d
4052                int i = t.get(Calendar.DATE);
4053                Flags flags = (c == DateTime.DAY_OF_MONTH_0
4054                               ? Flags.ZERO_PAD
4055                               : Flags.NONE);
4056                sb.append(localizedMagnitude(null, i, flags, 2, l));
4057                break;
4058            }
4059            case DateTime.DAY_OF_YEAR:          { // 'j' (001 - 366)
4060                int i = t.get(Calendar.DAY_OF_YEAR);
4061                Flags flags = Flags.ZERO_PAD;
4062                sb.append(localizedMagnitude(null, i, flags, 3, l));
4063                break;
4064            }
4065            case DateTime.MONTH:                { // 'm' (01 - 12)
4066                int i = t.get(Calendar.MONTH) + 1;
4067                Flags flags = Flags.ZERO_PAD;
4068                sb.append(localizedMagnitude(null, i, flags, 2, l));
4069                break;
4070            }
4071
4072            // Composites
4073            case DateTime.TIME:         // 'T' (24 hour hh:mm:ss - %tH:%tM:%tS)
4074            case DateTime.TIME_24_HOUR:    { // 'R' (hh:mm same as %H:%M)
4075                char sep = ':';
4076                print(sb, t, DateTime.HOUR_OF_DAY_0, l).append(sep);
4077                print(sb, t, DateTime.MINUTE, l);
4078                if (c == DateTime.TIME) {
4079                    sb.append(sep);
4080                    print(sb, t, DateTime.SECOND, l);
4081                }
4082                break;
4083            }
4084            case DateTime.TIME_12_HOUR:    { // 'r' (hh:mm:ss [AP]M)
4085                char sep = ':';
4086                print(sb, t, DateTime.HOUR_0, l).append(sep);
4087                print(sb, t, DateTime.MINUTE, l).append(sep);
4088                print(sb, t, DateTime.SECOND, l).append(' ');
4089                // this may be in wrong place for some locales
4090                StringBuilder tsb = new StringBuilder();
4091                print(tsb, t, DateTime.AM_PM, l);
4092                sb.append(tsb.toString().toUpperCase(l != null ? l : Locale.US));
4093                break;
4094            }
4095            case DateTime.DATE_TIME:    { // 'c' (Sat Nov 04 12:02:33 EST 1999)
4096                char sep = ' ';
4097                print(sb, t, DateTime.NAME_OF_DAY_ABBREV, l).append(sep);
4098                print(sb, t, DateTime.NAME_OF_MONTH_ABBREV, l).append(sep);
4099                print(sb, t, DateTime.DAY_OF_MONTH_0, l).append(sep);
4100                print(sb, t, DateTime.TIME, l).append(sep);
4101                print(sb, t, DateTime.ZONE, l).append(sep);
4102                print(sb, t, DateTime.YEAR_4, l);
4103                break;
4104            }
4105            case DateTime.DATE:            { // 'D' (mm/dd/yy)
4106                char sep = '/';
4107                print(sb, t, DateTime.MONTH, l).append(sep);
4108                print(sb, t, DateTime.DAY_OF_MONTH_0, l).append(sep);
4109                print(sb, t, DateTime.YEAR_2, l);
4110                break;
4111            }
4112            case DateTime.ISO_STANDARD_DATE: { // 'F' (%Y-%m-%d)
4113                char sep = '-';
4114                print(sb, t, DateTime.YEAR_4, l).append(sep);
4115                print(sb, t, DateTime.MONTH, l).append(sep);
4116                print(sb, t, DateTime.DAY_OF_MONTH_0, l);
4117                break;
4118            }
4119            default:
4120                assert false;
4121            }
4122            return sb;
4123        }
4124
4125        // -- Methods to support throwing exceptions --
4126
4127        private void failMismatch(Flags f, char c) {
4128            String fs = f.toString();
4129            throw new FormatFlagsConversionMismatchException(fs, c);
4130        }
4131
4132        private void failConversion(char c, Object arg) {
4133            throw new IllegalFormatConversionException(c, arg.getClass());
4134        }
4135
4136        private char getZero(Locale l) {
4137            if ((l != null) &&  !l.equals(locale())) {
4138                DecimalFormatSymbols dfs = DecimalFormatSymbols.getInstance(l);
4139                return dfs.getZeroDigit();
4140            }
4141            return zero;
4142        }
4143
4144        private StringBuilder
4145            localizedMagnitude(StringBuilder sb, long value, Flags f,
4146                               int width, Locale l)
4147        {
4148            char[] va = Long.toString(value, 10).toCharArray();
4149            return localizedMagnitude(sb, va, f, width, l);
4150        }
4151
4152        private StringBuilder
4153            localizedMagnitude(StringBuilder sb, char[] value, Flags f,
4154                               int width, Locale l)
4155        {
4156            if (sb == null)
4157                sb = new StringBuilder();
4158            int begin = sb.length();
4159
4160            char zero = getZero(l);
4161
4162            // determine localized grouping separator and size
4163            char grpSep = '\0';
4164            int  grpSize = -1;
4165            char decSep = '\0';
4166
4167            int len = value.length;
4168            int dot = len;
4169            for (int j = 0; j < len; j++) {
4170                if (value[j] == '.') {
4171                    dot = j;
4172                    break;
4173                }
4174            }
4175
4176            if (dot < len) {
4177                if (l == null || l.equals(Locale.US)) {
4178                    decSep  = '.';
4179                } else {
4180                    DecimalFormatSymbols dfs = DecimalFormatSymbols.getInstance(l);
4181                    decSep  = dfs.getDecimalSeparator();
4182                }
4183            }
4184
4185            if (f.contains(Flags.GROUP)) {
4186                if (l == null || l.equals(Locale.US)) {
4187                    grpSep = ',';
4188                    grpSize = 3;
4189                } else {
4190                    DecimalFormatSymbols dfs = DecimalFormatSymbols.getInstance(l);
4191                    grpSep = dfs.getGroupingSeparator();
4192                    DecimalFormat df = (DecimalFormat) NumberFormat.getIntegerInstance(l);
4193                    grpSize = df.getGroupingSize();
4194                }
4195            }
4196
4197            // localize the digits inserting group separators as necessary
4198            for (int j = 0; j < len; j++) {
4199                if (j == dot) {
4200                    sb.append(decSep);
4201                    // no more group separators after the decimal separator
4202                    grpSep = '\0';
4203                    continue;
4204                }
4205
4206                char c = value[j];
4207                sb.append((char) ((c - '0') + zero));
4208                if (grpSep != '\0' && j != dot - 1 && ((dot - j) % grpSize == 1))
4209                    sb.append(grpSep);
4210            }
4211
4212            // apply zero padding
4213            len = sb.length();
4214            if (width != -1 && f.contains(Flags.ZERO_PAD))
4215                for (int k = 0; k < width - len; k++)
4216                    sb.insert(begin, zero);
4217
4218            return sb;
4219        }
4220    }
4221
4222    private static class Flags {
4223        private int flags;
4224
4225        static final Flags NONE          = new Flags(0);      // ''
4226
4227        // duplicate declarations from Formattable.java
4228        static final Flags LEFT_JUSTIFY  = new Flags(1<<0);   // '-'
4229        static final Flags UPPERCASE     = new Flags(1<<1);   // '^'
4230        static final Flags ALTERNATE     = new Flags(1<<2);   // '#'
4231
4232        // numerics
4233        static final Flags PLUS          = new Flags(1<<3);   // '+'
4234        static final Flags LEADING_SPACE = new Flags(1<<4);   // ' '
4235        static final Flags ZERO_PAD      = new Flags(1<<5);   // '0'
4236        static final Flags GROUP         = new Flags(1<<6);   // ','
4237        static final Flags PARENTHESES   = new Flags(1<<7);   // '('
4238
4239        // indexing
4240        static final Flags PREVIOUS      = new Flags(1<<8);   // '<'
4241
4242        private Flags(int f) {
4243            flags = f;
4244        }
4245
4246        public int valueOf() {
4247            return flags;
4248        }
4249
4250        public boolean contains(Flags f) {
4251            return (flags & f.valueOf()) == f.valueOf();
4252        }
4253
4254        public Flags dup() {
4255            return new Flags(flags);
4256        }
4257
4258        private Flags add(Flags f) {
4259            flags |= f.valueOf();
4260            return this;
4261        }
4262
4263        public Flags remove(Flags f) {
4264            flags &= ~f.valueOf();
4265            return this;
4266        }
4267
4268        public static Flags parse(String s) {
4269            char[] ca = s.toCharArray();
4270            Flags f = new Flags(0);
4271            for (int i = 0; i < ca.length; i++) {
4272                Flags v = parse(ca[i]);
4273                if (f.contains(v))
4274                    throw new DuplicateFormatFlagsException(v.toString());
4275                f.add(v);
4276            }
4277            return f;
4278        }
4279
4280        // parse those flags which may be provided by users
4281        private static Flags parse(char c) {
4282            switch (c) {
4283            case '-': return LEFT_JUSTIFY;
4284            case '#': return ALTERNATE;
4285            case '+': return PLUS;
4286            case ' ': return LEADING_SPACE;
4287            case '0': return ZERO_PAD;
4288            case ',': return GROUP;
4289            case '(': return PARENTHESES;
4290            case '<': return PREVIOUS;
4291            default:
4292                throw new UnknownFormatFlagsException(String.valueOf(c));
4293            }
4294        }
4295
4296        // Returns a string representation of the current {@code Flags}.
4297        public static String toString(Flags f) {
4298            return f.toString();
4299        }
4300
4301        public String toString() {
4302            StringBuilder sb = new StringBuilder();
4303            if (contains(LEFT_JUSTIFY))  sb.append('-');
4304            if (contains(UPPERCASE))     sb.append('^');
4305            if (contains(ALTERNATE))     sb.append('#');
4306            if (contains(PLUS))          sb.append('+');
4307            if (contains(LEADING_SPACE)) sb.append(' ');
4308            if (contains(ZERO_PAD))      sb.append('0');
4309            if (contains(GROUP))         sb.append(',');
4310            if (contains(PARENTHESES))   sb.append('(');
4311            if (contains(PREVIOUS))      sb.append('<');
4312            return sb.toString();
4313        }
4314    }
4315
4316    private static class Conversion {
4317        // Byte, Short, Integer, Long, BigInteger
4318        // (and associated primitives due to autoboxing)
4319        static final char DECIMAL_INTEGER     = 'd';
4320        static final char OCTAL_INTEGER       = 'o';
4321        static final char HEXADECIMAL_INTEGER = 'x';
4322        static final char HEXADECIMAL_INTEGER_UPPER = 'X';
4323
4324        // Float, Double, BigDecimal
4325        // (and associated primitives due to autoboxing)
4326        static final char SCIENTIFIC          = 'e';
4327        static final char SCIENTIFIC_UPPER    = 'E';
4328        static final char GENERAL             = 'g';
4329        static final char GENERAL_UPPER       = 'G';
4330        static final char DECIMAL_FLOAT       = 'f';
4331        static final char HEXADECIMAL_FLOAT   = 'a';
4332        static final char HEXADECIMAL_FLOAT_UPPER = 'A';
4333
4334        // Character, Byte, Short, Integer
4335        // (and associated primitives due to autoboxing)
4336        static final char CHARACTER           = 'c';
4337        static final char CHARACTER_UPPER     = 'C';
4338
4339        // java.util.Date, java.util.Calendar, long
4340        static final char DATE_TIME           = 't';
4341        static final char DATE_TIME_UPPER     = 'T';
4342
4343        // if (arg.TYPE != boolean) return boolean
4344        // if (arg != null) return true; else return false;
4345        static final char BOOLEAN             = 'b';
4346        static final char BOOLEAN_UPPER       = 'B';
4347        // if (arg instanceof Formattable) arg.formatTo()
4348        // else arg.toString();
4349        static final char STRING              = 's';
4350        static final char STRING_UPPER        = 'S';
4351        // arg.hashCode()
4352        static final char HASHCODE            = 'h';
4353        static final char HASHCODE_UPPER      = 'H';
4354
4355        static final char LINE_SEPARATOR      = 'n';
4356        static final char PERCENT_SIGN        = '%';
4357
4358        static boolean isValid(char c) {
4359            return (isGeneral(c) || isInteger(c) || isFloat(c) || isText(c)
4360                    || c == 't' || isCharacter(c));
4361        }
4362
4363        // Returns true iff the Conversion is applicable to all objects.
4364        static boolean isGeneral(char c) {
4365            switch (c) {
4366            case BOOLEAN:
4367            case BOOLEAN_UPPER:
4368            case STRING:
4369            case STRING_UPPER:
4370            case HASHCODE:
4371            case HASHCODE_UPPER:
4372                return true;
4373            default:
4374                return false;
4375            }
4376        }
4377
4378        // Returns true iff the Conversion is applicable to character.
4379        static boolean isCharacter(char c) {
4380            switch (c) {
4381            case CHARACTER:
4382            case CHARACTER_UPPER:
4383                return true;
4384            default:
4385                return false;
4386            }
4387        }
4388
4389        // Returns true iff the Conversion is an integer type.
4390        static boolean isInteger(char c) {
4391            switch (c) {
4392            case DECIMAL_INTEGER:
4393            case OCTAL_INTEGER:
4394            case HEXADECIMAL_INTEGER:
4395            case HEXADECIMAL_INTEGER_UPPER:
4396                return true;
4397            default:
4398                return false;
4399            }
4400        }
4401
4402        // Returns true iff the Conversion is a floating-point type.
4403        static boolean isFloat(char c) {
4404            switch (c) {
4405            case SCIENTIFIC:
4406            case SCIENTIFIC_UPPER:
4407            case GENERAL:
4408            case GENERAL_UPPER:
4409            case DECIMAL_FLOAT:
4410            case HEXADECIMAL_FLOAT:
4411            case HEXADECIMAL_FLOAT_UPPER:
4412                return true;
4413            default:
4414                return false;
4415            }
4416        }
4417
4418        // Returns true iff the Conversion does not require an argument
4419        static boolean isText(char c) {
4420            switch (c) {
4421            case LINE_SEPARATOR:
4422            case PERCENT_SIGN:
4423                return true;
4424            default:
4425                return false;
4426            }
4427        }
4428    }
4429
4430    private static class DateTime {
4431        static final char HOUR_OF_DAY_0 = 'H'; // (00 - 23)
4432        static final char HOUR_0        = 'I'; // (01 - 12)
4433        static final char HOUR_OF_DAY   = 'k'; // (0 - 23) -- like H
4434        static final char HOUR          = 'l'; // (1 - 12) -- like I
4435        static final char MINUTE        = 'M'; // (00 - 59)
4436        static final char NANOSECOND    = 'N'; // (000000000 - 999999999)
4437        static final char MILLISECOND   = 'L'; // jdk, not in gnu (000 - 999)
4438        static final char MILLISECOND_SINCE_EPOCH = 'Q'; // (0 - 99...?)
4439        static final char AM_PM         = 'p'; // (am or pm)
4440        static final char SECONDS_SINCE_EPOCH = 's'; // (0 - 99...?)
4441        static final char SECOND        = 'S'; // (00 - 60 - leap second)
4442        static final char TIME          = 'T'; // (24 hour hh:mm:ss)
4443        static final char ZONE_NUMERIC  = 'z'; // (-1200 - +1200) - ls minus?
4444        static final char ZONE          = 'Z'; // (symbol)
4445
4446        // Date
4447        static final char NAME_OF_DAY_ABBREV    = 'a'; // 'a'
4448        static final char NAME_OF_DAY           = 'A'; // 'A'
4449        static final char NAME_OF_MONTH_ABBREV  = 'b'; // 'b'
4450        static final char NAME_OF_MONTH         = 'B'; // 'B'
4451        static final char CENTURY               = 'C'; // (00 - 99)
4452        static final char DAY_OF_MONTH_0        = 'd'; // (01 - 31)
4453        static final char DAY_OF_MONTH          = 'e'; // (1 - 31) -- like d
4454// *    static final char ISO_WEEK_OF_YEAR_2    = 'g'; // cross %y %V
4455// *    static final char ISO_WEEK_OF_YEAR_4    = 'G'; // cross %Y %V
4456        static final char NAME_OF_MONTH_ABBREV_X  = 'h'; // -- same b
4457        static final char DAY_OF_YEAR           = 'j'; // (001 - 366)
4458        static final char MONTH                 = 'm'; // (01 - 12)
4459// *    static final char DAY_OF_WEEK_1         = 'u'; // (1 - 7) Monday
4460// *    static final char WEEK_OF_YEAR_SUNDAY   = 'U'; // (0 - 53) Sunday+
4461// *    static final char WEEK_OF_YEAR_MONDAY_01 = 'V'; // (01 - 53) Monday+
4462// *    static final char DAY_OF_WEEK_0         = 'w'; // (0 - 6) Sunday
4463// *    static final char WEEK_OF_YEAR_MONDAY   = 'W'; // (00 - 53) Monday
4464        static final char YEAR_2                = 'y'; // (00 - 99)
4465        static final char YEAR_4                = 'Y'; // (0000 - 9999)
4466
4467        // Composites
4468        static final char TIME_12_HOUR  = 'r'; // (hh:mm:ss [AP]M)
4469        static final char TIME_24_HOUR  = 'R'; // (hh:mm same as %H:%M)
4470// *    static final char LOCALE_TIME   = 'X'; // (%H:%M:%S) - parse format?
4471        static final char DATE_TIME             = 'c';
4472                                            // (Sat Nov 04 12:02:33 EST 1999)
4473        static final char DATE                  = 'D'; // (mm/dd/yy)
4474        static final char ISO_STANDARD_DATE     = 'F'; // (%Y-%m-%d)
4475// *    static final char LOCALE_DATE           = 'x'; // (mm/dd/yy)
4476
4477        static boolean isValid(char c) {
4478            switch (c) {
4479            case HOUR_OF_DAY_0:
4480            case HOUR_0:
4481            case HOUR_OF_DAY:
4482            case HOUR:
4483            case MINUTE:
4484            case NANOSECOND:
4485            case MILLISECOND:
4486            case MILLISECOND_SINCE_EPOCH:
4487            case AM_PM:
4488            case SECONDS_SINCE_EPOCH:
4489            case SECOND:
4490            case TIME:
4491            case ZONE_NUMERIC:
4492            case ZONE:
4493
4494            // Date
4495            case NAME_OF_DAY_ABBREV:
4496            case NAME_OF_DAY:
4497            case NAME_OF_MONTH_ABBREV:
4498            case NAME_OF_MONTH:
4499            case CENTURY:
4500            case DAY_OF_MONTH_0:
4501            case DAY_OF_MONTH:
4502// *        case ISO_WEEK_OF_YEAR_2:
4503// *        case ISO_WEEK_OF_YEAR_4:
4504            case NAME_OF_MONTH_ABBREV_X:
4505            case DAY_OF_YEAR:
4506            case MONTH:
4507// *        case DAY_OF_WEEK_1:
4508// *        case WEEK_OF_YEAR_SUNDAY:
4509// *        case WEEK_OF_YEAR_MONDAY_01:
4510// *        case DAY_OF_WEEK_0:
4511// *        case WEEK_OF_YEAR_MONDAY:
4512            case YEAR_2:
4513            case YEAR_4:
4514
4515            // Composites
4516            case TIME_12_HOUR:
4517            case TIME_24_HOUR:
4518// *        case LOCALE_TIME:
4519            case DATE_TIME:
4520            case DATE:
4521            case ISO_STANDARD_DATE:
4522// *        case LOCALE_DATE:
4523                return true;
4524            default:
4525                return false;
4526            }
4527        }
4528    }
4529}
4530