Formatter.java revision 9820e5b27a8ac4ea426f8e3cddf06445a9e02840
1/*
2 * Copyright (c) 2003, 2011, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package java.util;
27
28import java.io.BufferedWriter;
29import java.io.Closeable;
30import java.io.IOException;
31import java.io.File;
32import java.io.FileOutputStream;
33import java.io.FileNotFoundException;
34import java.io.Flushable;
35import java.io.OutputStream;
36import java.io.OutputStreamWriter;
37import java.io.PrintStream;
38import java.io.UnsupportedEncodingException;
39import java.math.BigDecimal;
40import java.math.BigInteger;
41import java.math.MathContext;
42import java.math.RoundingMode;
43import java.nio.charset.Charset;
44import java.nio.charset.IllegalCharsetNameException;
45import java.nio.charset.UnsupportedCharsetException;
46import java.text.DateFormatSymbols;
47import java.text.DecimalFormat;
48import java.text.DecimalFormatSymbols;
49import java.text.NumberFormat;
50
51import sun.misc.FpUtils;
52import sun.misc.DoubleConsts;
53import sun.misc.FormattedFloatingDecimal;
54
55/**
56 * An interpreter for printf-style format strings.  This class provides support
57 * for layout justification and alignment, common formats for numeric, string,
58 * and date/time data, and locale-specific output.  Common Java types such as
59 * {@code byte}, {@link java.math.BigDecimal BigDecimal}, and {@link Calendar}
60 * are supported.  Limited formatting customization for arbitrary user types is
61 * provided through the {@link Formattable} interface.
62 *
63 * <p> Formatters are not necessarily safe for multithreaded access.  Thread
64 * safety is optional and is the responsibility of users of methods in this
65 * class.
66 *
67 * <p> Formatted printing for the Java language is heavily inspired by C's
68 * {@code printf}.  Although the format strings are similar to C, some
69 * customizations have been made to accommodate the Java language and exploit
70 * some of its features.  Also, Java formatting is more strict than C's; for
71 * example, if a conversion is incompatible with a flag, an exception will be
72 * thrown.  In C inapplicable flags are silently ignored.  The format strings
73 * are thus intended to be recognizable to C programmers but not necessarily
74 * completely compatible with those in C.
75 *
76 * <p> Examples of expected usage:
77 *
78 * <blockquote><pre>
79 *   StringBuilder sb = new StringBuilder();
80 *   // Send all output to the Appendable object sb
81 *   Formatter formatter = new Formatter(sb, Locale.US);
82 *
83 *   // Explicit argument indices may be used to re-order output.
84 *   formatter.format("%4$2s %3$2s %2$2s %1$2s", "a", "b", "c", "d")
85 *   // -&gt; " d  c  b  a"
86 *
87 *   // Optional locale as the first argument can be used to get
88 *   // locale-specific formatting of numbers.  The precision and width can be
89 *   // given to round and align the value.
90 *   formatter.format(Locale.FRANCE, "e = %+10.4f", Math.E);
91 *   // -&gt; "e =    +2,7183"
92 *
93 *   // The '(' numeric flag may be used to format negative numbers with
94 *   // parentheses rather than a minus sign.  Group separators are
95 *   // automatically inserted.
96 *   formatter.format("Amount gained or lost since last statement: $ %(,.2f",
97 *                    balanceDelta);
98 *   // -&gt; "Amount gained or lost since last statement: $ (6,217.58)"
99 * </pre></blockquote>
100 *
101 * <p> Convenience methods for common formatting requests exist as illustrated
102 * by the following invocations:
103 *
104 * <blockquote><pre>
105 *   // Writes a formatted string to System.out.
106 *   System.out.format("Local time: %tT", Calendar.getInstance());
107 *   // -&gt; "Local time: 13:34:18"
108 *
109 *   // Writes formatted output to System.err.
110 *   System.err.printf("Unable to open file '%1$s': %2$s",
111 *                     fileName, exception.getMessage());
112 *   // -&gt; "Unable to open file 'food': No such file or directory"
113 * </pre></blockquote>
114 *
115 * <p> Like C's {@code sprintf(3)}, Strings may be formatted using the static
116 * method {@link String#format(String,Object...) String.format}:
117 *
118 * <blockquote><pre>
119 *   // Format a string containing a date.
120 *   import java.util.Calendar;
121 *   import java.util.GregorianCalendar;
122 *   import static java.util.Calendar.*;
123 *
124 *   Calendar c = new GregorianCalendar(1995, MAY, 23);
125 *   String s = String.format("Duke's Birthday: %1$tm %1$te,%1$tY", c);
126 *   // -&gt; s == "Duke's Birthday: May 23, 1995"
127 * </pre></blockquote>
128 *
129 * <h3><a name="org">Organization</a></h3>
130 *
131 * <p> This specification is divided into two sections.  The first section, <a
132 * href="#summary">Summary</a>, covers the basic formatting concepts.  This
133 * section is intended for users who want to get started quickly and are
134 * familiar with formatted printing in other programming languages.  The second
135 * section, <a href="#detail">Details</a>, covers the specific implementation
136 * details.  It is intended for users who want more precise specification of
137 * formatting behavior.
138 *
139 * <h3><a name="summary">Summary</a></h3>
140 *
141 * <p> This section is intended to provide a brief overview of formatting
142 * concepts.  For precise behavioral details, refer to the <a
143 * href="#detail">Details</a> section.
144 *
145 * <h4><a name="syntax">Format String Syntax</a></h4>
146 *
147 * <p> Every method which produces formatted output requires a <i>format
148 * string</i> and an <i>argument list</i>.  The format string is a {@link
149 * String} which may contain fixed text and one or more embedded <i>format
150 * specifiers</i>.  Consider the following example:
151 *
152 * <blockquote><pre>
153 *   Calendar c = ...;
154 *   String s = String.format("Duke's Birthday: %1$tm %1$te,%1$tY", c);
155 * </pre></blockquote>
156 *
157 * This format string is the first argument to the {@code format} method.  It
158 * contains three format specifiers "{@code %1$tm}", "{@code %1$te}", and
159 * "{@code %1$tY}" which indicate how the arguments should be processed and
160 * where they should be inserted in the text.  The remaining portions of the
161 * format string are fixed text including {@code "Dukes Birthday: "} and any
162 * other spaces or punctuation.
163 *
164 * The argument list consists of all arguments passed to the method after the
165 * format string.  In the above example, the argument list is of size one and
166 * consists of the {@link java.util.Calendar Calendar} object {@code c}.
167 *
168 * <ul>
169 *
170 * <li> The format specifiers for general, character, and numeric types have
171 * the following syntax:
172 *
173 * <blockquote><pre>
174 *   %[argument_index$][flags][width][.precision]conversion
175 * </pre></blockquote>
176 *
177 * <p> The optional <i>argument_index</i> is a decimal integer indicating the
178 * position of the argument in the argument list.  The first argument is
179 * referenced by "{@code 1$}", the second by "{@code 2$}", etc.
180 *
181 * <p> The optional <i>flags</i> is a set of characters that modify the output
182 * format.  The set of valid flags depends on the conversion.
183 *
184 * <p> The optional <i>width</i> is a non-negative decimal integer indicating
185 * the minimum number of characters to be written to the output.
186 *
187 * <p> The optional <i>precision</i> is a non-negative decimal integer usually
188 * used to restrict the number of characters.  The specific behavior depends on
189 * the conversion.
190 *
191 * <p> The required <i>conversion</i> is a character indicating how the
192 * argument should be formatted.  The set of valid conversions for a given
193 * argument depends on the argument's data type.
194 *
195 * <li> The format specifiers for types which are used to represents dates and
196 * times have the following syntax:
197 *
198 * <blockquote><pre>
199 *   %[argument_index$][flags][width]conversion
200 * </pre></blockquote>
201 *
202 * <p> The optional <i>argument_index</i>, <i>flags</i> and <i>width</i> are
203 * defined as above.
204 *
205 * <p> The required <i>conversion</i> is a two character sequence.  The first
206 * character is {@code 't'} or {@code 'T'}.  The second character indicates
207 * the format to be used.  These characters are similar to but not completely
208 * identical to those defined by GNU {@code date} and POSIX
209 * {@code strftime(3c)}.
210 *
211 * <li> The format specifiers which do not correspond to arguments have the
212 * following syntax:
213 *
214 * <blockquote><pre>
215 *   %[flags][width]conversion
216 * </pre></blockquote>
217 *
218 * <p> The optional <i>flags</i> and <i>width</i> is defined as above.
219 *
220 * <p> The required <i>conversion</i> is a character indicating content to be
221 * inserted in the output.
222 *
223 * </ul>
224 *
225 * <h4> Conversions </h4>
226 *
227 * <p> Conversions are divided into the following categories:
228 *
229 * <ol>
230 *
231 * <li> <b>General</b> - may be applied to any argument
232 * type
233 *
234 * <li> <b>Character</b> - may be applied to basic types which represent
235 * Unicode characters: {@code char}, {@link Character}, {@code byte}, {@link
236 * Byte}, {@code short}, and {@link Short}. This conversion may also be
237 * applied to the types {@code int} and {@link Integer} when {@link
238 * Character#isValidCodePoint} returns {@code true}
239 *
240 * <li> <b>Numeric</b>
241 *
242 * <ol>
243 *
244 * <li> <b>Integral</b> - may be applied to Java integral types: {@code byte},
245 * {@link Byte}, {@code short}, {@link Short}, {@code int} and {@link
246 * Integer}, {@code long}, {@link Long}, and {@link java.math.BigInteger
247 * BigInteger}
248 *
249 * <li><b>Floating Point</b> - may be applied to Java floating-point types:
250 * {@code float}, {@link Float}, {@code double}, {@link Double}, and {@link
251 * java.math.BigDecimal BigDecimal}
252 *
253 * </ol>
254 *
255 * <li> <b>Date/Time</b> - may be applied to Java types which are capable of
256 * encoding a date or time: {@code long}, {@link Long}, {@link Calendar}, and
257 * {@link Date}.
258 *
259 * <li> <b>Percent</b> - produces a literal {@code '%'}
260 * (<tt>'&#92;u0025'</tt>)
261 *
262 * <li> <b>Line Separator</b> - produces the platform-specific line separator
263 *
264 * </ol>
265 *
266 * <p> The following table summarizes the supported conversions.  Conversions
267 * denoted by an upper-case character (i.e. {@code 'B'}, {@code 'H'},
268 * {@code 'S'}, {@code 'C'}, {@code 'X'}, {@code 'E'}, {@code 'G'},
269 * {@code 'A'}, and {@code 'T'}) are the same as those for the corresponding
270 * lower-case conversion characters except that the result is converted to
271 * upper case according to the rules of the prevailing {@link java.util.Locale
272 * Locale}.  The result is equivalent to the following invocation of {@link
273 * String#toUpperCase()}
274 *
275 * <pre>
276 *    out.toUpperCase() </pre>
277 *
278 * <table cellpadding=5 summary="genConv">
279 *
280 * <tr><th valign="bottom"> Conversion
281 *     <th valign="bottom"> Argument Category
282 *     <th valign="bottom"> Description
283 *
284 * <tr><td valign="top"> {@code 'b'}, {@code 'B'}
285 *     <td valign="top"> general
286 *     <td> If the argument <i>arg</i> is {@code null}, then the result is
287 *     "{@code false}".  If <i>arg</i> is a {@code boolean} or {@link
288 *     Boolean}, then the result is the string returned by {@link
289 *     String#valueOf(boolean) String.valueOf(arg)}.  Otherwise, the result is
290 *     "true".
291 *
292 * <tr><td valign="top"> {@code 'h'}, {@code 'H'}
293 *     <td valign="top"> general
294 *     <td> If the argument <i>arg</i> is {@code null}, then the result is
295 *     "{@code null}".  Otherwise, the result is obtained by invoking
296 *     {@code Integer.toHexString(arg.hashCode())}.
297 *
298 * <tr><td valign="top"> {@code 's'}, {@code 'S'}
299 *     <td valign="top"> general
300 *     <td> If the argument <i>arg</i> is {@code null}, then the result is
301 *     "{@code null}".  If <i>arg</i> implements {@link Formattable}, then
302 *     {@link Formattable#formatTo arg.formatTo} is invoked. Otherwise, the
303 *     result is obtained by invoking {@code arg.toString()}.
304 *
305 * <tr><td valign="top">{@code 'c'}, {@code 'C'}
306 *     <td valign="top"> character
307 *     <td> The result is a Unicode character
308 *
309 * <tr><td valign="top">{@code 'd'}
310 *     <td valign="top"> integral
311 *     <td> The result is formatted as a decimal integer
312 *
313 * <tr><td valign="top">{@code 'o'}
314 *     <td valign="top"> integral
315 *     <td> The result is formatted as an octal integer
316 *
317 * <tr><td valign="top">{@code 'x'}, {@code 'X'}
318 *     <td valign="top"> integral
319 *     <td> The result is formatted as a hexadecimal integer
320 *
321 * <tr><td valign="top">{@code 'e'}, {@code 'E'}
322 *     <td valign="top"> floating point
323 *     <td> The result is formatted as a decimal number in computerized
324 *     scientific notation
325 *
326 * <tr><td valign="top">{@code 'f'}
327 *     <td valign="top"> floating point
328 *     <td> The result is formatted as a decimal number
329 *
330 * <tr><td valign="top">{@code 'g'}, {@code 'G'}
331 *     <td valign="top"> floating point
332 *     <td> The result is formatted using computerized scientific notation or
333 *     decimal format, depending on the precision and the value after rounding.
334 *
335 * <tr><td valign="top">{@code 'a'}, {@code 'A'}
336 *     <td valign="top"> floating point
337 *     <td> The result is formatted as a hexadecimal floating-point number with
338 *     a significand and an exponent
339 *
340 * <tr><td valign="top">{@code 't'}, {@code 'T'}
341 *     <td valign="top"> date/time
342 *     <td> Prefix for date and time conversion characters.  See <a
343 *     href="#dt">Date/Time Conversions</a>.
344 *
345 * <tr><td valign="top">{@code '%'}
346 *     <td valign="top"> percent
347 *     <td> The result is a literal {@code '%'} (<tt>'&#92;u0025'</tt>)
348 *
349 * <tr><td valign="top">{@code 'n'}
350 *     <td valign="top"> line separator
351 *     <td> The result is the platform-specific line separator
352 *
353 * </table>
354 *
355 * <p> Any characters not explicitly defined as conversions are illegal and are
356 * reserved for future extensions.
357 *
358 * <h4><a name="dt">Date/Time Conversions</a></h4>
359 *
360 * <p> The following date and time conversion suffix characters are defined for
361 * the {@code 't'} and {@code 'T'} conversions.  The types are similar to but
362 * not completely identical to those defined by GNU {@code date} and POSIX
363 * {@code strftime(3c)}.  Additional conversion types are provided to access
364 * Java-specific functionality (e.g. {@code 'L'} for milliseconds within the
365 * second).
366 *
367 * <p> The following conversion characters are used for formatting times:
368 *
369 * <table cellpadding=5 summary="time">
370 *
371 * <tr><td valign="top"> {@code 'H'}
372 *     <td> Hour of the day for the 24-hour clock, formatted as two digits with
373 *     a leading zero as necessary i.e. {@code 00 - 23}.
374 *
375 * <tr><td valign="top">{@code 'I'}
376 *     <td> Hour for the 12-hour clock, formatted as two digits with a leading
377 *     zero as necessary, i.e.  {@code 01 - 12}.
378 *
379 * <tr><td valign="top">{@code 'k'}
380 *     <td> Hour of the day for the 24-hour clock, i.e. {@code 0 - 23}.
381 *
382 * <tr><td valign="top">{@code 'l'}
383 *     <td> Hour for the 12-hour clock, i.e. {@code 1 - 12}.
384 *
385 * <tr><td valign="top">{@code 'M'}
386 *     <td> Minute within the hour formatted as two digits with a leading zero
387 *     as necessary, i.e.  {@code 00 - 59}.
388 *
389 * <tr><td valign="top">{@code 'S'}
390 *     <td> Seconds within the minute, formatted as two digits with a leading
391 *     zero as necessary, i.e. {@code 00 - 60} ("{@code 60}" is a special
392 *     value required to support leap seconds).
393 *
394 * <tr><td valign="top">{@code 'L'}
395 *     <td> Millisecond within the second formatted as three digits with
396 *     leading zeros as necessary, i.e. {@code 000 - 999}.
397 *
398 * <tr><td valign="top">{@code 'N'}
399 *     <td> Nanosecond within the second, formatted as nine digits with leading
400 *     zeros as necessary, i.e. {@code 000000000 - 999999999}.
401 *
402 * <tr><td valign="top">{@code 'p'}
403 *     <td> Locale-specific {@linkplain
404 *     java.text.DateFormatSymbols#getAmPmStrings morning or afternoon} marker
405 *     in lower case, e.g."{@code am}" or "{@code pm}". Use of the conversion
406 *     prefix {@code 'T'} forces this output to upper case.
407 *
408 * <tr><td valign="top">{@code 'z'}
409 *     <td> <a href="http://www.ietf.org/rfc/rfc0822.txt">RFC&nbsp;822</a>
410 *     style numeric time zone offset from GMT, e.g. {@code -0800}.  This
411 *     value will be adjusted as necessary for Daylight Saving Time.  For
412 *     {@code long}, {@link Long}, and {@link Date} the time zone used is
413 *     the {@linkplain TimeZone#getDefault() default time zone} for this
414 *     instance of the Java virtual machine.
415 *
416 * <tr><td valign="top">{@code 'Z'}
417 *     <td> A string representing the abbreviation for the time zone.  This
418 *     value will be adjusted as necessary for Daylight Saving Time.  For
419 *     {@code long}, {@link Long}, and {@link Date} the  time zone used is
420 *     the {@linkplain TimeZone#getDefault() default time zone} for this
421 *     instance of the Java virtual machine.  The Formatter's locale will
422 *     supersede the locale of the argument (if any).
423 *
424 * <tr><td valign="top">{@code 's'}
425 *     <td> Seconds since the beginning of the epoch starting at 1 January 1970
426 *     {@code 00:00:00} UTC, i.e. {@code Long.MIN_VALUE/1000} to
427 *     {@code Long.MAX_VALUE/1000}.
428 *
429 * <tr><td valign="top">{@code 'Q'}
430 *     <td> Milliseconds since the beginning of the epoch starting at 1 January
431 *     1970 {@code 00:00:00} UTC, i.e. {@code Long.MIN_VALUE} to
432 *     {@code Long.MAX_VALUE}.
433 *
434 * </table>
435 *
436 * <p> The following conversion characters are used for formatting dates:
437 *
438 * <table cellpadding=5 summary="date">
439 *
440 * <tr><td valign="top">{@code 'B'}
441 *     <td> Locale-specific {@linkplain java.text.DateFormatSymbols#getMonths
442 *     full month name}, e.g. {@code "January"}, {@code "February"}.
443 *
444 * <tr><td valign="top">{@code 'b'}
445 *     <td> Locale-specific {@linkplain
446 *     java.text.DateFormatSymbols#getShortMonths abbreviated month name},
447 *     e.g. {@code "Jan"}, {@code "Feb"}.
448 *
449 * <tr><td valign="top">{@code 'h'}
450 *     <td> Same as {@code 'b'}.
451 *
452 * <tr><td valign="top">{@code 'A'}
453 *     <td> Locale-specific full name of the {@linkplain
454 *     java.text.DateFormatSymbols#getWeekdays day of the week},
455 *     e.g. {@code "Sunday"}, {@code "Monday"}
456 *
457 * <tr><td valign="top">{@code 'a'}
458 *     <td> Locale-specific short name of the {@linkplain
459 *     java.text.DateFormatSymbols#getShortWeekdays day of the week},
460 *     e.g. {@code "Sun"}, {@code "Mon"}
461 *
462 * <tr><td valign="top">{@code 'C'}
463 *     <td> Four-digit year divided by {@code 100}, formatted as two digits
464 *     with leading zero as necessary, i.e. {@code 00 - 99}
465 *
466 * <tr><td valign="top">{@code 'Y'}
467 *     <td> Year, formatted as at least four digits with leading zeros as
468 *     necessary, e.g. {@code 0092} equals {@code 92} CE for the Gregorian
469 *     calendar.
470 *
471 * <tr><td valign="top">{@code 'y'}
472 *     <td> Last two digits of the year, formatted with leading zeros as
473 *     necessary, i.e. {@code 00 - 99}.
474 *
475 * <tr><td valign="top">{@code 'j'}
476 *     <td> Day of year, formatted as three digits with leading zeros as
477 *     necessary, e.g. {@code 001 - 366} for the Gregorian calendar.
478 *
479 * <tr><td valign="top">{@code 'm'}
480 *     <td> Month, formatted as two digits with leading zeros as necessary,
481 *     i.e. {@code 01 - 13}.
482 *
483 * <tr><td valign="top">{@code 'd'}
484 *     <td> Day of month, formatted as two digits with leading zeros as
485 *     necessary, i.e. {@code 01 - 31}
486 *
487 * <tr><td valign="top">{@code 'e'}
488 *     <td> Day of month, formatted as two digits, i.e. {@code 1 - 31}.
489 *
490 * </table>
491 *
492 * <p> The following conversion characters are used for formatting common
493 * date/time compositions.
494 *
495 * <table cellpadding=5 summary="composites">
496 *
497 * <tr><td valign="top">{@code 'R'}
498 *     <td> Time formatted for the 24-hour clock as {@code "%tH:%tM"}
499 *
500 * <tr><td valign="top">{@code 'T'}
501 *     <td> Time formatted for the 24-hour clock as {@code "%tH:%tM:%tS"}.
502 *
503 * <tr><td valign="top">{@code 'r'}
504 *     <td> Time formatted for the 12-hour clock as {@code "%tI:%tM:%tS %Tp"}.
505 *     The location of the morning or afternoon marker ({@code '%Tp'}) may be
506 *     locale-dependent.
507 *
508 * <tr><td valign="top">{@code 'D'}
509 *     <td> Date formatted as {@code "%tm/%td/%ty"}.
510 *
511 * <tr><td valign="top">{@code 'F'}
512 *     <td> <a href="http://www.w3.org/TR/NOTE-datetime">ISO&nbsp;8601</a>
513 *     complete date formatted as {@code "%tY-%tm-%td"}.
514 *
515 * <tr><td valign="top">{@code 'c'}
516 *     <td> Date and time formatted as {@code "%ta %tb %td %tT %tZ %tY"},
517 *     e.g. {@code "Sun Jul 20 16:17:00 EDT 1969"}.
518 *
519 * </table>
520 *
521 * <p> Any characters not explicitly defined as date/time conversion suffixes
522 * are illegal and are reserved for future extensions.
523 *
524 * <h4> Flags </h4>
525 *
526 * <p> The following table summarizes the supported flags.  <i>y</i> means the
527 * flag is supported for the indicated argument types.
528 *
529 * <table cellpadding=5 summary="genConv">
530 *
531 * <tr><th valign="bottom"> Flag <th valign="bottom"> General
532 *     <th valign="bottom"> Character <th valign="bottom"> Integral
533 *     <th valign="bottom"> Floating Point
534 *     <th valign="bottom"> Date/Time
535 *     <th valign="bottom"> Description
536 *
537 * <tr><td> '-' <td align="center" valign="top"> y
538 *     <td align="center" valign="top"> y
539 *     <td align="center" valign="top"> y
540 *     <td align="center" valign="top"> y
541 *     <td align="center" valign="top"> y
542 *     <td> The result will be left-justified.
543 *
544 * <tr><td> '#' <td align="center" valign="top"> y<sup>1</sup>
545 *     <td align="center" valign="top"> -
546 *     <td align="center" valign="top"> y<sup>3</sup>
547 *     <td align="center" valign="top"> y
548 *     <td align="center" valign="top"> -
549 *     <td> The result should use a conversion-dependent alternate form
550 *
551 * <tr><td> '+' <td align="center" valign="top"> -
552 *     <td align="center" valign="top"> -
553 *     <td align="center" valign="top"> y<sup>4</sup>
554 *     <td align="center" valign="top"> y
555 *     <td align="center" valign="top"> -
556 *     <td> The result will always include a sign
557 *
558 * <tr><td> '&nbsp;&nbsp;' <td align="center" valign="top"> -
559 *     <td align="center" valign="top"> -
560 *     <td align="center" valign="top"> y<sup>4</sup>
561 *     <td align="center" valign="top"> y
562 *     <td align="center" valign="top"> -
563 *     <td> The result will include a leading space for positive values
564 *
565 * <tr><td> '0' <td align="center" valign="top"> -
566 *     <td align="center" valign="top"> -
567 *     <td align="center" valign="top"> y
568 *     <td align="center" valign="top"> y
569 *     <td align="center" valign="top"> -
570 *     <td> The result will be zero-padded
571 *
572 * <tr><td> ',' <td align="center" valign="top"> -
573 *     <td align="center" valign="top"> -
574 *     <td align="center" valign="top"> y<sup>2</sup>
575 *     <td align="center" valign="top"> y<sup>5</sup>
576 *     <td align="center" valign="top"> -
577 *     <td> The result will include locale-specific {@linkplain
578 *     java.text.DecimalFormatSymbols#getGroupingSeparator grouping separators}
579 *
580 * <tr><td> '(' <td align="center" valign="top"> -
581 *     <td align="center" valign="top"> -
582 *     <td align="center" valign="top"> y<sup>4</sup>
583 *     <td align="center" valign="top"> y<sup>5</sup>
584 *     <td align="center"> -
585 *     <td> The result will enclose negative numbers in parentheses
586 *
587 * </table>
588 *
589 * <p> <sup>1</sup> Depends on the definition of {@link Formattable}.
590 *
591 * <p> <sup>2</sup> For {@code 'd'} conversion only.
592 *
593 * <p> <sup>3</sup> For {@code 'o'}, {@code 'x'}, and {@code 'X'}
594 * conversions only.
595 *
596 * <p> <sup>4</sup> For {@code 'd'}, {@code 'o'}, {@code 'x'}, and
597 * {@code 'X'} conversions applied to {@link java.math.BigInteger BigInteger}
598 * or {@code 'd'} applied to {@code byte}, {@link Byte}, {@code short}, {@link
599 * Short}, {@code int} and {@link Integer}, {@code long}, and {@link Long}.
600 *
601 * <p> <sup>5</sup> For {@code 'e'}, {@code 'E'}, {@code 'f'},
602 * {@code 'g'}, and {@code 'G'} conversions only.
603 *
604 * <p> Any characters not explicitly defined as flags are illegal and are
605 * reserved for future extensions.
606 *
607 * <h4> Width </h4>
608 *
609 * <p> The width is the minimum number of characters to be written to the
610 * output.  For the line separator conversion, width is not applicable; if it
611 * is provided, an exception will be thrown.
612 *
613 * <h4> Precision </h4>
614 *
615 * <p> For general argument types, the precision is the maximum number of
616 * characters to be written to the output.
617 *
618 * <p> For the floating-point conversions {@code 'e'}, {@code 'E'}, and
619 * {@code 'f'} the precision is the number of digits after the decimal
620 * separator.  If the conversion is {@code 'g'} or {@code 'G'}, then the
621 * precision is the total number of digits in the resulting magnitude after
622 * rounding.  If the conversion is {@code 'a'} or {@code 'A'}, then the
623 * precision must not be specified.
624 *
625 * <p> For character, integral, and date/time argument types and the percent
626 * and line separator conversions, the precision is not applicable; if a
627 * precision is provided, an exception will be thrown.
628 *
629 * <h4> Argument Index </h4>
630 *
631 * <p> The argument index is a decimal integer indicating the position of the
632 * argument in the argument list.  The first argument is referenced by
633 * "{@code 1$}", the second by "{@code 2$}", etc.
634 *
635 * <p> Another way to reference arguments by position is to use the
636 * {@code '<'} (<tt>'&#92;u003c'</tt>) flag, which causes the argument for
637 * the previous format specifier to be re-used.  For example, the following two
638 * statements would produce identical strings:
639 *
640 * <blockquote><pre>
641 *   Calendar c = ...;
642 *   String s1 = String.format("Duke's Birthday: %1$tm %1$te,%1$tY", c);
643 *
644 *   String s2 = String.format("Duke's Birthday: %1$tm %&lt;te,%&lt;tY", c);
645 * </pre></blockquote>
646 *
647 * <hr>
648 * <h3><a name="detail">Details</a></h3>
649 *
650 * <p> This section is intended to provide behavioral details for formatting,
651 * including conditions and exceptions, supported data types, localization, and
652 * interactions between flags, conversions, and data types.  For an overview of
653 * formatting concepts, refer to the <a href="#summary">Summary</a>
654 *
655 * <p> Any characters not explicitly defined as conversions, date/time
656 * conversion suffixes, or flags are illegal and are reserved for
657 * future extensions.  Use of such a character in a format string will
658 * cause an {@link UnknownFormatConversionException} or {@link
659 * UnknownFormatFlagsException} to be thrown.
660 *
661 * <p> If the format specifier contains a width or precision with an invalid
662 * value or which is otherwise unsupported, then a {@link
663 * IllegalFormatWidthException} or {@link IllegalFormatPrecisionException}
664 * respectively will be thrown.
665 *
666 * <p> If a format specifier contains a conversion character that is not
667 * applicable to the corresponding argument, then an {@link
668 * IllegalFormatConversionException} will be thrown.
669 *
670 * <p> All specified exceptions may be thrown by any of the {@code format}
671 * methods of {@code Formatter} as well as by any {@code format} convenience
672 * methods such as {@link String#format(String,Object...) String.format} and
673 * {@link java.io.PrintStream#printf(String,Object...) PrintStream.printf}.
674 *
675 * <p> Conversions denoted by an upper-case character (i.e. {@code 'B'},
676 * {@code 'H'}, {@code 'S'}, {@code 'C'}, {@code 'X'}, {@code 'E'},
677 * {@code 'G'}, {@code 'A'}, and {@code 'T'}) are the same as those for the
678 * corresponding lower-case conversion characters except that the result is
679 * converted to upper case according to the rules of the prevailing {@link
680 * java.util.Locale Locale}.  The result is equivalent to the following
681 * invocation of {@link String#toUpperCase()}
682 *
683 * <pre>
684 *    out.toUpperCase() </pre>
685 *
686 * <h4><a name="dgen">General</a></h4>
687 *
688 * <p> The following general conversions may be applied to any argument type:
689 *
690 * <table cellpadding=5 summary="dgConv">
691 *
692 * <tr><td valign="top"> {@code 'b'}
693 *     <td valign="top"> <tt>'&#92;u0062'</tt>
694 *     <td> Produces either "{@code true}" or "{@code false}" as returned by
695 *     {@link Boolean#toString(boolean)}.
696 *
697 *     <p> If the argument is {@code null}, then the result is
698 *     "{@code false}".  If the argument is a {@code boolean} or {@link
699 *     Boolean}, then the result is the string returned by {@link
700 *     String#valueOf(boolean) String.valueOf()}.  Otherwise, the result is
701 *     "{@code true}".
702 *
703 *     <p> If the {@code '#'} flag is given, then a {@link
704 *     FormatFlagsConversionMismatchException} will be thrown.
705 *
706 * <tr><td valign="top"> {@code 'B'}
707 *     <td valign="top"> <tt>'&#92;u0042'</tt>
708 *     <td> The upper-case variant of {@code 'b'}.
709 *
710 * <tr><td valign="top"> {@code 'h'}
711 *     <td valign="top"> <tt>'&#92;u0068'</tt>
712 *     <td> Produces a string representing the hash code value of the object.
713 *
714 *     <p> If the argument, <i>arg</i> is {@code null}, then the
715 *     result is "{@code null}".  Otherwise, the result is obtained
716 *     by invoking {@code Integer.toHexString(arg.hashCode())}.
717 *
718 *     <p> If the {@code '#'} flag is given, then a {@link
719 *     FormatFlagsConversionMismatchException} will be thrown.
720 *
721 * <tr><td valign="top"> {@code 'H'}
722 *     <td valign="top"> <tt>'&#92;u0048'</tt>
723 *     <td> The upper-case variant of {@code 'h'}.
724 *
725 * <tr><td valign="top"> {@code 's'}
726 *     <td valign="top"> <tt>'&#92;u0073'</tt>
727 *     <td> Produces a string.
728 *
729 *     <p> If the argument is {@code null}, then the result is
730 *     "{@code null}".  If the argument implements {@link Formattable}, then
731 *     its {@link Formattable#formatTo formatTo} method is invoked.
732 *     Otherwise, the result is obtained by invoking the argument's
733 *     {@code toString()} method.
734 *
735 *     <p> If the {@code '#'} flag is given and the argument is not a {@link
736 *     Formattable} , then a {@link FormatFlagsConversionMismatchException}
737 *     will be thrown.
738 *
739 * <tr><td valign="top"> {@code 'S'}
740 *     <td valign="top"> <tt>'&#92;u0053'</tt>
741 *     <td> The upper-case variant of {@code 's'}.
742 *
743 * </table>
744 *
745 * <p> The following <a name="dFlags">flags</a> apply to general conversions:
746 *
747 * <table cellpadding=5 summary="dFlags">
748 *
749 * <tr><td valign="top"> {@code '-'}
750 *     <td valign="top"> <tt>'&#92;u002d'</tt>
751 *     <td> Left justifies the output.  Spaces (<tt>'&#92;u0020'</tt>) will be
752 *     added at the end of the converted value as required to fill the minimum
753 *     width of the field.  If the width is not provided, then a {@link
754 *     MissingFormatWidthException} will be thrown.  If this flag is not given
755 *     then the output will be right-justified.
756 *
757 * <tr><td valign="top"> {@code '#'}
758 *     <td valign="top"> <tt>'&#92;u0023'</tt>
759 *     <td> Requires the output use an alternate form.  The definition of the
760 *     form is specified by the conversion.
761 *
762 * </table>
763 *
764 * <p> The <a name="genWidth">width</a> is the minimum number of characters to
765 * be written to the
766 * output.  If the length of the converted value is less than the width then
767 * the output will be padded by <tt>'&nbsp;&nbsp;'</tt> (<tt>'&#92;u0020'</tt>)
768 * until the total number of characters equals the width.  The padding is on
769 * the left by default.  If the {@code '-'} flag is given, then the padding
770 * will be on the right.  If the width is not specified then there is no
771 * minimum.
772 *
773 * <p> The precision is the maximum number of characters to be written to the
774 * output.  The precision is applied before the width, thus the output will be
775 * truncated to {@code precision} characters even if the width is greater than
776 * the precision.  If the precision is not specified then there is no explicit
777 * limit on the number of characters.
778 *
779 * <h4><a name="dchar">Character</a></h4>
780 *
781 * This conversion may be applied to {@code char} and {@link Character}.  It
782 * may also be applied to the types {@code byte}, {@link Byte},
783 * {@code short}, and {@link Short}, {@code int} and {@link Integer} when
784 * {@link Character#isValidCodePoint} returns {@code true}.  If it returns
785 * {@code false} then an {@link IllegalFormatCodePointException} will be
786 * thrown.
787 *
788 * <table cellpadding=5 summary="charConv">
789 *
790 * <tr><td valign="top"> {@code 'c'}
791 *     <td valign="top"> <tt>'&#92;u0063'</tt>
792 *     <td> Formats the argument as a Unicode character as described in <a
793 *     href="../lang/Character.html#unicode">Unicode Character
794 *     Representation</a>.  This may be more than one 16-bit {@code char} in
795 *     the case where the argument represents a supplementary character.
796 *
797 *     <p> If the {@code '#'} flag is given, then a {@link
798 *     FormatFlagsConversionMismatchException} will be thrown.
799 *
800 * <tr><td valign="top"> {@code 'C'}
801 *     <td valign="top"> <tt>'&#92;u0043'</tt>
802 *     <td> The upper-case variant of {@code 'c'}.
803 *
804 * </table>
805 *
806 * <p> The {@code '-'} flag defined for <a href="#dFlags">General
807 * conversions</a> applies.  If the {@code '#'} flag is given, then a {@link
808 * FormatFlagsConversionMismatchException} will be thrown.
809 *
810 * <p> The width is defined as for <a href="#genWidth">General conversions</a>.
811 *
812 * <p> The precision is not applicable.  If the precision is specified then an
813 * {@link IllegalFormatPrecisionException} will be thrown.
814 *
815 * <h4><a name="dnum">Numeric</a></h4>
816 *
817 * <p> Numeric conversions are divided into the following categories:
818 *
819 * <ol>
820 *
821 * <li> <a href="#dnint"><b>Byte, Short, Integer, and Long</b></a>
822 *
823 * <li> <a href="#dnbint"><b>BigInteger</b></a>
824 *
825 * <li> <a href="#dndec"><b>Float and Double</b></a>
826 *
827 * <li> <a href="#dnbdec"><b>BigDecimal</b></a>
828 *
829 * </ol>
830 *
831 * <p> Numeric types will be formatted according to the following algorithm:
832 *
833 * <p><b><a name="l10n algorithm"> Number Localization Algorithm</a></b>
834 *
835 * <p> After digits are obtained for the integer part, fractional part, and
836 * exponent (as appropriate for the data type), the following transformation
837 * is applied:
838 *
839 * <ol>
840 *
841 * <li> Each digit character <i>d</i> in the string is replaced by a
842 * locale-specific digit computed relative to the current locale's
843 * {@linkplain java.text.DecimalFormatSymbols#getZeroDigit() zero digit}
844 * <i>z</i>; that is <i>d&nbsp;-&nbsp;</i> {@code '0'}
845 * <i>&nbsp;+&nbsp;z</i>.
846 *
847 * <li> If a decimal separator is present, a locale-specific {@linkplain
848 * java.text.DecimalFormatSymbols#getDecimalSeparator decimal separator} is
849 * substituted.
850 *
851 * <li> If the {@code ','} (<tt>'&#92;u002c'</tt>)
852 * <a name="l10n group">flag</a> is given, then the locale-specific {@linkplain
853 * java.text.DecimalFormatSymbols#getGroupingSeparator grouping separator} is
854 * inserted by scanning the integer part of the string from least significant
855 * to most significant digits and inserting a separator at intervals defined by
856 * the locale's {@linkplain java.text.DecimalFormat#getGroupingSize() grouping
857 * size}.
858 *
859 * <li> If the {@code '0'} flag is given, then the locale-specific {@linkplain
860 * java.text.DecimalFormatSymbols#getZeroDigit() zero digits} are inserted
861 * after the sign character, if any, and before the first non-zero digit, until
862 * the length of the string is equal to the requested field width.
863 *
864 * <li> If the value is negative and the {@code '('} flag is given, then a
865 * {@code '('} (<tt>'&#92;u0028'</tt>) is prepended and a {@code ')'}
866 * (<tt>'&#92;u0029'</tt>) is appended.
867 *
868 * <li> If the value is negative (or floating-point negative zero) and
869 * {@code '('} flag is not given, then a {@code '-'} (<tt>'&#92;u002d'</tt>)
870 * is prepended.
871 *
872 * <li> If the {@code '+'} flag is given and the value is positive or zero (or
873 * floating-point positive zero), then a {@code '+'} (<tt>'&#92;u002b'</tt>)
874 * will be prepended.
875 *
876 * </ol>
877 *
878 * <p> If the value is NaN or positive infinity the literal strings "NaN" or
879 * "Infinity" respectively, will be output.  If the value is negative infinity,
880 * then the output will be "(Infinity)" if the {@code '('} flag is given
881 * otherwise the output will be "-Infinity".  These values are not localized.
882 *
883 * <p><a name="dnint"><b> Byte, Short, Integer, and Long </b></a>
884 *
885 * <p> The following conversions may be applied to {@code byte}, {@link Byte},
886 * {@code short}, {@link Short}, {@code int} and {@link Integer},
887 * {@code long}, and {@link Long}.
888 *
889 * <table cellpadding=5 summary="IntConv">
890 *
891 * <tr><td valign="top"> {@code 'd'}
892 *     <td valign="top"> <tt>'&#92;u0054'</tt>
893 *     <td> Formats the argument as a decimal integer. The <a
894 *     href="#l10n algorithm">localization algorithm</a> is applied.
895 *
896 *     <p> If the {@code '0'} flag is given and the value is negative, then
897 *     the zero padding will occur after the sign.
898 *
899 *     <p> If the {@code '#'} flag is given then a {@link
900 *     FormatFlagsConversionMismatchException} will be thrown.
901 *
902 * <tr><td valign="top"> {@code 'o'}
903 *     <td valign="top"> <tt>'&#92;u006f'</tt>
904 *     <td> Formats the argument as an integer in base eight.  No localization
905 *     is applied.
906 *
907 *     <p> If <i>x</i> is negative then the result will be an unsigned value
908 *     generated by adding 2<sup>n</sup> to the value where {@code n} is the
909 *     number of bits in the type as returned by the static {@code SIZE} field
910 *     in the {@linkplain Byte#SIZE Byte}, {@linkplain Short#SIZE Short},
911 *     {@linkplain Integer#SIZE Integer}, or {@linkplain Long#SIZE Long}
912 *     classes as appropriate.
913 *
914 *     <p> If the {@code '#'} flag is given then the output will always begin
915 *     with the radix indicator {@code '0'}.
916 *
917 *     <p> If the {@code '0'} flag is given then the output will be padded
918 *     with leading zeros to the field width following any indication of sign.
919 *
920 *     <p> If {@code '('}, {@code '+'}, '&nbsp&nbsp;', or {@code ','} flags
921 *     are given then a {@link FormatFlagsConversionMismatchException} will be
922 *     thrown.
923 *
924 * <tr><td valign="top"> {@code 'x'}
925 *     <td valign="top"> <tt>'&#92;u0078'</tt>
926 *     <td> Formats the argument as an integer in base sixteen. No
927 *     localization is applied.
928 *
929 *     <p> If <i>x</i> is negative then the result will be an unsigned value
930 *     generated by adding 2<sup>n</sup> to the value where {@code n} is the
931 *     number of bits in the type as returned by the static {@code SIZE} field
932 *     in the {@linkplain Byte#SIZE Byte}, {@linkplain Short#SIZE Short},
933 *     {@linkplain Integer#SIZE Integer}, or {@linkplain Long#SIZE Long}
934 *     classes as appropriate.
935 *
936 *     <p> If the {@code '#'} flag is given then the output will always begin
937 *     with the radix indicator {@code "0x"}.
938 *
939 *     <p> If the {@code '0'} flag is given then the output will be padded to
940 *     the field width with leading zeros after the radix indicator or sign (if
941 *     present).
942 *
943 *     <p> If {@code '('}, <tt>'&nbsp;&nbsp;'</tt>, {@code '+'}, or
944 *     {@code ','} flags are given then a {@link
945 *     FormatFlagsConversionMismatchException} will be thrown.
946 *
947 * <tr><td valign="top"> {@code 'X'}
948 *     <td valign="top"> <tt>'&#92;u0058'</tt>
949 *     <td> The upper-case variant of {@code 'x'}.  The entire string
950 *     representing the number will be converted to {@linkplain
951 *     String#toUpperCase upper case} including the {@code 'x'} (if any) and
952 *     all hexadecimal digits {@code 'a'} - {@code 'f'}
953 *     (<tt>'&#92;u0061'</tt> -  <tt>'&#92;u0066'</tt>).
954 *
955 * </table>
956 *
957 * <p> If the conversion is {@code 'o'}, {@code 'x'}, or {@code 'X'} and
958 * both the {@code '#'} and the {@code '0'} flags are given, then result will
959 * contain the radix indicator ({@code '0'} for octal and {@code "0x"} or
960 * {@code "0X"} for hexadecimal), some number of zeros (based on the width),
961 * and the value.
962 *
963 * <p> If the {@code '-'} flag is not given, then the space padding will occur
964 * before the sign.
965 *
966 * <p> The following <a name="intFlags">flags</a> apply to numeric integral
967 * conversions:
968 *
969 * <table cellpadding=5 summary="intFlags">
970 *
971 * <tr><td valign="top"> {@code '+'}
972 *     <td valign="top"> <tt>'&#92;u002b'</tt>
973 *     <td> Requires the output to include a positive sign for all positive
974 *     numbers.  If this flag is not given then only negative values will
975 *     include a sign.
976 *
977 *     <p> If both the {@code '+'} and <tt>'&nbsp;&nbsp;'</tt> flags are given
978 *     then an {@link IllegalFormatFlagsException} will be thrown.
979 *
980 * <tr><td valign="top"> <tt>'&nbsp;&nbsp;'</tt>
981 *     <td valign="top"> <tt>'&#92;u0020'</tt>
982 *     <td> Requires the output to include a single extra space
983 *     (<tt>'&#92;u0020'</tt>) for non-negative values.
984 *
985 *     <p> If both the {@code '+'} and <tt>'&nbsp;&nbsp;'</tt> flags are given
986 *     then an {@link IllegalFormatFlagsException} will be thrown.
987 *
988 * <tr><td valign="top"> {@code '0'}
989 *     <td valign="top"> <tt>'&#92;u0030'</tt>
990 *     <td> Requires the output to be padded with leading {@linkplain
991 *     java.text.DecimalFormatSymbols#getZeroDigit zeros} to the minimum field
992 *     width following any sign or radix indicator except when converting NaN
993 *     or infinity.  If the width is not provided, then a {@link
994 *     MissingFormatWidthException} will be thrown.
995 *
996 *     <p> If both the {@code '-'} and {@code '0'} flags are given then an
997 *     {@link IllegalFormatFlagsException} will be thrown.
998 *
999 * <tr><td valign="top"> {@code ','}
1000 *     <td valign="top"> <tt>'&#92;u002c'</tt>
1001 *     <td> Requires the output to include the locale-specific {@linkplain
1002 *     java.text.DecimalFormatSymbols#getGroupingSeparator group separators} as
1003 *     described in the <a href="#l10n group">"group" section</a> of the
1004 *     localization algorithm.
1005 *
1006 * <tr><td valign="top"> {@code '('}
1007 *     <td valign="top"> <tt>'&#92;u0028'</tt>
1008 *     <td> Requires the output to prepend a {@code '('}
1009 *     (<tt>'&#92;u0028'</tt>) and append a {@code ')'}
1010 *     (<tt>'&#92;u0029'</tt>) to negative values.
1011 *
1012 * </table>
1013 *
1014 * <p> If no <a name="intdFlags">flags</a> are given the default formatting is
1015 * as follows:
1016 *
1017 * <ul>
1018 *
1019 * <li> The output is right-justified within the {@code width}
1020 *
1021 * <li> Negative numbers begin with a {@code '-'} (<tt>'&#92;u002d'</tt>)
1022 *
1023 * <li> Positive numbers and zero do not include a sign or extra leading
1024 * space
1025 *
1026 * <li> No grouping separators are included
1027 *
1028 * </ul>
1029 *
1030 * <p> The <a name="intWidth">width</a> is the minimum number of characters to
1031 * be written to the output.  This includes any signs, digits, grouping
1032 * separators, radix indicator, and parentheses.  If the length of the
1033 * converted value is less than the width then the output will be padded by
1034 * spaces (<tt>'&#92;u0020'</tt>) until the total number of characters equals
1035 * width.  The padding is on the left by default.  If {@code '-'} flag is
1036 * given then the padding will be on the right.  If width is not specified then
1037 * there is no minimum.
1038 *
1039 * <p> The precision is not applicable.  If precision is specified then an
1040 * {@link IllegalFormatPrecisionException} will be thrown.
1041 *
1042 * <p><a name="dnbint"><b> BigInteger </b></a>
1043 *
1044 * <p> The following conversions may be applied to {@link
1045 * java.math.BigInteger}.
1046 *
1047 * <table cellpadding=5 summary="BIntConv">
1048 *
1049 * <tr><td valign="top"> {@code 'd'}
1050 *     <td valign="top"> <tt>'&#92;u0054'</tt>
1051 *     <td> Requires the output to be formatted as a decimal integer. The <a
1052 *     href="#l10n algorithm">localization algorithm</a> is applied.
1053 *
1054 *     <p> If the {@code '#'} flag is given {@link
1055 *     FormatFlagsConversionMismatchException} will be thrown.
1056 *
1057 * <tr><td valign="top"> {@code 'o'}
1058 *     <td valign="top"> <tt>'&#92;u006f'</tt>
1059 *     <td> Requires the output to be formatted as an integer in base eight.
1060 *     No localization is applied.
1061 *
1062 *     <p> If <i>x</i> is negative then the result will be a signed value
1063 *     beginning with {@code '-'} (<tt>'&#92;u002d'</tt>).  Signed output is
1064 *     allowed for this type because unlike the primitive types it is not
1065 *     possible to create an unsigned equivalent without assuming an explicit
1066 *     data-type size.
1067 *
1068 *     <p> If <i>x</i> is positive or zero and the {@code '+'} flag is given
1069 *     then the result will begin with {@code '+'} (<tt>'&#92;u002b'</tt>).
1070 *
1071 *     <p> If the {@code '#'} flag is given then the output will always begin
1072 *     with {@code '0'} prefix.
1073 *
1074 *     <p> If the {@code '0'} flag is given then the output will be padded
1075 *     with leading zeros to the field width following any indication of sign.
1076 *
1077 *     <p> If the {@code ','} flag is given then a {@link
1078 *     FormatFlagsConversionMismatchException} will be thrown.
1079 *
1080 * <tr><td valign="top"> {@code 'x'}
1081 *     <td valign="top"> <tt>'&#92;u0078'</tt>
1082 *     <td> Requires the output to be formatted as an integer in base
1083 *     sixteen.  No localization is applied.
1084 *
1085 *     <p> If <i>x</i> is negative then the result will be a signed value
1086 *     beginning with {@code '-'} (<tt>'&#92;u002d'</tt>).  Signed output is
1087 *     allowed for this type because unlike the primitive types it is not
1088 *     possible to create an unsigned equivalent without assuming an explicit
1089 *     data-type size.
1090 *
1091 *     <p> If <i>x</i> is positive or zero and the {@code '+'} flag is given
1092 *     then the result will begin with {@code '+'} (<tt>'&#92;u002b'</tt>).
1093 *
1094 *     <p> If the {@code '#'} flag is given then the output will always begin
1095 *     with the radix indicator {@code "0x"}.
1096 *
1097 *     <p> If the {@code '0'} flag is given then the output will be padded to
1098 *     the field width with leading zeros after the radix indicator or sign (if
1099 *     present).
1100 *
1101 *     <p> If the {@code ','} flag is given then a {@link
1102 *     FormatFlagsConversionMismatchException} will be thrown.
1103 *
1104 * <tr><td valign="top"> {@code 'X'}
1105 *     <td valign="top"> <tt>'&#92;u0058'</tt>
1106 *     <td> The upper-case variant of {@code 'x'}.  The entire string
1107 *     representing the number will be converted to {@linkplain
1108 *     String#toUpperCase upper case} including the {@code 'x'} (if any) and
1109 *     all hexadecimal digits {@code 'a'} - {@code 'f'}
1110 *     (<tt>'&#92;u0061'</tt> - <tt>'&#92;u0066'</tt>).
1111 *
1112 * </table>
1113 *
1114 * <p> If the conversion is {@code 'o'}, {@code 'x'}, or {@code 'X'} and
1115 * both the {@code '#'} and the {@code '0'} flags are given, then result will
1116 * contain the base indicator ({@code '0'} for octal and {@code "0x"} or
1117 * {@code "0X"} for hexadecimal), some number of zeros (based on the width),
1118 * and the value.
1119 *
1120 * <p> If the {@code '0'} flag is given and the value is negative, then the
1121 * zero padding will occur after the sign.
1122 *
1123 * <p> If the {@code '-'} flag is not given, then the space padding will occur
1124 * before the sign.
1125 *
1126 * <p> All <a href="#intFlags">flags</a> defined for Byte, Short, Integer, and
1127 * Long apply.  The <a href="#intdFlags">default behavior</a> when no flags are
1128 * given is the same as for Byte, Short, Integer, and Long.
1129 *
1130 * <p> The specification of <a href="#intWidth">width</a> is the same as
1131 * defined for Byte, Short, Integer, and Long.
1132 *
1133 * <p> The precision is not applicable.  If precision is specified then an
1134 * {@link IllegalFormatPrecisionException} will be thrown.
1135 *
1136 * <p><a name="dndec"><b> Float and Double</b></a>
1137 *
1138 * <p> The following conversions may be applied to {@code float}, {@link
1139 * Float}, {@code double} and {@link Double}.
1140 *
1141 * <table cellpadding=5 summary="floatConv">
1142 *
1143 * <tr><td valign="top"> {@code 'e'}
1144 *     <td valign="top"> <tt>'&#92;u0065'</tt>
1145 *     <td> Requires the output to be formatted using <a
1146 *     name="scientific">computerized scientific notation</a>.  The <a
1147 *     href="#l10n algorithm">localization algorithm</a> is applied.
1148 *
1149 *     <p> The formatting of the magnitude <i>m</i> depends upon its value.
1150 *
1151 *     <p> If <i>m</i> is NaN or infinite, the literal strings "NaN" or
1152 *     "Infinity", respectively, will be output.  These values are not
1153 *     localized.
1154 *
1155 *     <p> If <i>m</i> is positive-zero or negative-zero, then the exponent
1156 *     will be {@code "+00"}.
1157 *
1158 *     <p> Otherwise, the result is a string that represents the sign and
1159 *     magnitude (absolute value) of the argument.  The formatting of the sign
1160 *     is described in the <a href="#l10n algorithm">localization
1161 *     algorithm</a>. The formatting of the magnitude <i>m</i> depends upon its
1162 *     value.
1163 *
1164 *     <p> Let <i>n</i> be the unique integer such that 10<sup><i>n</i></sup>
1165 *     &lt;= <i>m</i> &lt; 10<sup><i>n</i>+1</sup>; then let <i>a</i> be the
1166 *     mathematically exact quotient of <i>m</i> and 10<sup><i>n</i></sup> so
1167 *     that 1 &lt;= <i>a</i> &lt; 10. The magnitude is then represented as the
1168 *     integer part of <i>a</i>, as a single decimal digit, followed by the
1169 *     decimal separator followed by decimal digits representing the fractional
1170 *     part of <i>a</i>, followed by the exponent symbol {@code 'e'}
1171 *     (<tt>'&#92;u0065'</tt>), followed by the sign of the exponent, followed
1172 *     by a representation of <i>n</i> as a decimal integer, as produced by the
1173 *     method {@link Long#toString(long, int)}, and zero-padded to include at
1174 *     least two digits.
1175 *
1176 *     <p> The number of digits in the result for the fractional part of
1177 *     <i>m</i> or <i>a</i> is equal to the precision.  If the precision is not
1178 *     specified then the default value is {@code 6}. If the precision is less
1179 *     than the number of digits which would appear after the decimal point in
1180 *     the string returned by {@link Float#toString(float)} or {@link
1181 *     Double#toString(double)} respectively, then the value will be rounded
1182 *     using the {@linkplain java.math.BigDecimal#ROUND_HALF_UP round half up
1183 *     algorithm}.  Otherwise, zeros may be appended to reach the precision.
1184 *     For a canonical representation of the value, use {@link
1185 *     Float#toString(float)} or {@link Double#toString(double)} as
1186 *     appropriate.
1187 *
1188 *     <p>If the {@code ','} flag is given, then an {@link
1189 *     FormatFlagsConversionMismatchException} will be thrown.
1190 *
1191 * <tr><td valign="top"> {@code 'E'}
1192 *     <td valign="top"> <tt>'&#92;u0045'</tt>
1193 *     <td> The upper-case variant of {@code 'e'}.  The exponent symbol
1194 *     will be {@code 'E'} (<tt>'&#92;u0045'</tt>).
1195 *
1196 * <tr><td valign="top"> {@code 'g'}
1197 *     <td valign="top"> <tt>'&#92;u0067'</tt>
1198 *     <td> Requires the output to be formatted in general scientific notation
1199 *     as described below. The <a href="#l10n algorithm">localization
1200 *     algorithm</a> is applied.
1201 *
1202 *     <p> After rounding for the precision, the formatting of the resulting
1203 *     magnitude <i>m</i> depends on its value.
1204 *
1205 *     <p> If <i>m</i> is greater than or equal to 10<sup>-4</sup> but less
1206 *     than 10<sup>precision</sup> then it is represented in <i><a
1207 *     href="#decimal">decimal format</a></i>.
1208 *
1209 *     <p> If <i>m</i> is less than 10<sup>-4</sup> or greater than or equal to
1210 *     10<sup>precision</sup>, then it is represented in <i><a
1211 *     href="#scientific">computerized scientific notation</a></i>.
1212 *
1213 *     <p> The total number of significant digits in <i>m</i> is equal to the
1214 *     precision.  If the precision is not specified, then the default value is
1215 *     {@code 6}.  If the precision is {@code 0}, then it is taken to be
1216 *     {@code 1}.
1217 *
1218 *     <p> If the {@code '#'} flag is given then an {@link
1219 *     FormatFlagsConversionMismatchException} will be thrown.
1220 *
1221 * <tr><td valign="top"> {@code 'G'}
1222 *     <td valign="top"> <tt>'&#92;u0047'</tt>
1223 *     <td> The upper-case variant of {@code 'g'}.
1224 *
1225 * <tr><td valign="top"> {@code 'f'}
1226 *     <td valign="top"> <tt>'&#92;u0066'</tt>
1227 *     <td> Requires the output to be formatted using <a name="decimal">decimal
1228 *     format</a>.  The <a href="#l10n algorithm">localization algorithm</a> is
1229 *     applied.
1230 *
1231 *     <p> The result is a string that represents the sign and magnitude
1232 *     (absolute value) of the argument.  The formatting of the sign is
1233 *     described in the <a href="#l10n algorithm">localization
1234 *     algorithm</a>. The formatting of the magnitude <i>m</i> depends upon its
1235 *     value.
1236 *
1237 *     <p> If <i>m</i> NaN or infinite, the literal strings "NaN" or
1238 *     "Infinity", respectively, will be output.  These values are not
1239 *     localized.
1240 *
1241 *     <p> The magnitude is formatted as the integer part of <i>m</i>, with no
1242 *     leading zeroes, followed by the decimal separator followed by one or
1243 *     more decimal digits representing the fractional part of <i>m</i>.
1244 *
1245 *     <p> The number of digits in the result for the fractional part of
1246 *     <i>m</i> or <i>a</i> is equal to the precision.  If the precision is not
1247 *     specified then the default value is {@code 6}. If the precision is less
1248 *     than the number of digits which would appear after the decimal point in
1249 *     the string returned by {@link Float#toString(float)} or {@link
1250 *     Double#toString(double)} respectively, then the value will be rounded
1251 *     using the {@linkplain java.math.BigDecimal#ROUND_HALF_UP round half up
1252 *     algorithm}.  Otherwise, zeros may be appended to reach the precision.
1253 *     For a canonical representation of the value, use {@link
1254 *     Float#toString(float)} or {@link Double#toString(double)} as
1255 *     appropriate.
1256 *
1257 * <tr><td valign="top"> {@code 'a'}
1258 *     <td valign="top"> <tt>'&#92;u0061'</tt>
1259 *     <td> Requires the output to be formatted in hexadecimal exponential
1260 *     form.  No localization is applied.
1261 *
1262 *     <p> The result is a string that represents the sign and magnitude
1263 *     (absolute value) of the argument <i>x</i>.
1264 *
1265 *     <p> If <i>x</i> is negative or a negative-zero value then the result
1266 *     will begin with {@code '-'} (<tt>'&#92;u002d'</tt>).
1267 *
1268 *     <p> If <i>x</i> is positive or a positive-zero value and the
1269 *     {@code '+'} flag is given then the result will begin with {@code '+'}
1270 *     (<tt>'&#92;u002b'</tt>).
1271 *
1272 *     <p> The formatting of the magnitude <i>m</i> depends upon its value.
1273 *
1274 *     <ul>
1275 *
1276 *     <li> If the value is NaN or infinite, the literal strings "NaN" or
1277 *     "Infinity", respectively, will be output.
1278 *
1279 *     <li> If <i>m</i> is zero then it is represented by the string
1280 *     {@code "0x0.0p0"}.
1281 *
1282 *     <li> If <i>m</i> is a {@code double} value with a normalized
1283 *     representation then substrings are used to represent the significand and
1284 *     exponent fields.  The significand is represented by the characters
1285 *     {@code "0x1."} followed by the hexadecimal representation of the rest
1286 *     of the significand as a fraction.  The exponent is represented by
1287 *     {@code 'p'} (<tt>'&#92;u0070'</tt>) followed by a decimal string of the
1288 *     unbiased exponent as if produced by invoking {@link
1289 *     Integer#toString(int) Integer.toString} on the exponent value.
1290 *
1291 *     <li> If <i>m</i> is a {@code double} value with a subnormal
1292 *     representation then the significand is represented by the characters
1293 *     {@code '0x0.'} followed by the hexadecimal representation of the rest
1294 *     of the significand as a fraction.  The exponent is represented by
1295 *     {@code 'p-1022'}.  Note that there must be at least one nonzero digit
1296 *     in a subnormal significand.
1297 *
1298 *     </ul>
1299 *
1300 *     <p> If the {@code '('} or {@code ','} flags are given, then a {@link
1301 *     FormatFlagsConversionMismatchException} will be thrown.
1302 *
1303 * <tr><td valign="top"> {@code 'A'}
1304 *     <td valign="top"> <tt>'&#92;u0041'</tt>
1305 *     <td> The upper-case variant of {@code 'a'}.  The entire string
1306 *     representing the number will be converted to upper case including the
1307 *     {@code 'x'} (<tt>'&#92;u0078'</tt>) and {@code 'p'}
1308 *     (<tt>'&#92;u0070'</tt> and all hexadecimal digits {@code 'a'} -
1309 *     {@code 'f'} (<tt>'&#92;u0061'</tt> - <tt>'&#92;u0066'</tt>).
1310 *
1311 * </table>
1312 *
1313 * <p> All <a href="#intFlags">flags</a> defined for Byte, Short, Integer, and
1314 * Long apply.
1315 *
1316 * <p> If the {@code '#'} flag is given, then the decimal separator will
1317 * always be present.
1318 *
1319 * <p> If no <a name="floatdFlags">flags</a> are given the default formatting
1320 * is as follows:
1321 *
1322 * <ul>
1323 *
1324 * <li> The output is right-justified within the {@code width}
1325 *
1326 * <li> Negative numbers begin with a {@code '-'}
1327 *
1328 * <li> Positive numbers and positive zero do not include a sign or extra
1329 * leading space
1330 *
1331 * <li> No grouping separators are included
1332 *
1333 * <li> The decimal separator will only appear if a digit follows it
1334 *
1335 * </ul>
1336 *
1337 * <p> The <a name="floatDWidth">width</a> is the minimum number of characters
1338 * to be written to the output.  This includes any signs, digits, grouping
1339 * separators, decimal separators, exponential symbol, radix indicator,
1340 * parentheses, and strings representing infinity and NaN as applicable.  If
1341 * the length of the converted value is less than the width then the output
1342 * will be padded by spaces (<tt>'&#92;u0020'</tt>) until the total number of
1343 * characters equals width.  The padding is on the left by default.  If the
1344 * {@code '-'} flag is given then the padding will be on the right.  If width
1345 * is not specified then there is no minimum.
1346 *
1347 * <p> If the <a name="floatDPrec">conversion</a> is {@code 'e'},
1348 * {@code 'E'} or {@code 'f'}, then the precision is the number of digits
1349 * after the decimal separator.  If the precision is not specified, then it is
1350 * assumed to be {@code 6}.
1351 *
1352 * <p> If the conversion is {@code 'g'} or {@code 'G'}, then the precision is
1353 * the total number of significant digits in the resulting magnitude after
1354 * rounding.  If the precision is not specified, then the default value is
1355 * {@code 6}.  If the precision is {@code 0}, then it is taken to be
1356 * {@code 1}.
1357 *
1358 * <p> If the conversion is {@code 'a'} or {@code 'A'}, then the precision
1359 * is the number of hexadecimal digits after the decimal separator.  If the
1360 * precision is not provided, then all of the digits as returned by {@link
1361 * Double#toHexString(double)} will be output.
1362 *
1363 * <p><a name="dnbdec"><b> BigDecimal </b></a>
1364 *
1365 * <p> The following conversions may be applied {@link java.math.BigDecimal
1366 * BigDecimal}.
1367 *
1368 * <table cellpadding=5 summary="floatConv">
1369 *
1370 * <tr><td valign="top"> {@code 'e'}
1371 *     <td valign="top"> <tt>'&#92;u0065'</tt>
1372 *     <td> Requires the output to be formatted using <a
1373 *     name="bscientific">computerized scientific notation</a>.  The <a
1374 *     href="#l10n algorithm">localization algorithm</a> is applied.
1375 *
1376 *     <p> The formatting of the magnitude <i>m</i> depends upon its value.
1377 *
1378 *     <p> If <i>m</i> is positive-zero or negative-zero, then the exponent
1379 *     will be {@code "+00"}.
1380 *
1381 *     <p> Otherwise, the result is a string that represents the sign and
1382 *     magnitude (absolute value) of the argument.  The formatting of the sign
1383 *     is described in the <a href="#l10n algorithm">localization
1384 *     algorithm</a>. The formatting of the magnitude <i>m</i> depends upon its
1385 *     value.
1386 *
1387 *     <p> Let <i>n</i> be the unique integer such that 10<sup><i>n</i></sup>
1388 *     &lt;= <i>m</i> &lt; 10<sup><i>n</i>+1</sup>; then let <i>a</i> be the
1389 *     mathematically exact quotient of <i>m</i> and 10<sup><i>n</i></sup> so
1390 *     that 1 &lt;= <i>a</i> &lt; 10. The magnitude is then represented as the
1391 *     integer part of <i>a</i>, as a single decimal digit, followed by the
1392 *     decimal separator followed by decimal digits representing the fractional
1393 *     part of <i>a</i>, followed by the exponent symbol {@code 'e'}
1394 *     (<tt>'&#92;u0065'</tt>), followed by the sign of the exponent, followed
1395 *     by a representation of <i>n</i> as a decimal integer, as produced by the
1396 *     method {@link Long#toString(long, int)}, and zero-padded to include at
1397 *     least two digits.
1398 *
1399 *     <p> The number of digits in the result for the fractional part of
1400 *     <i>m</i> or <i>a</i> is equal to the precision.  If the precision is not
1401 *     specified then the default value is {@code 6}.  If the precision is
1402 *     less than the number of digits to the right of the decimal point then
1403 *     the value will be rounded using the
1404 *     {@linkplain java.math.BigDecimal#ROUND_HALF_UP round half up
1405 *     algorithm}.  Otherwise, zeros may be appended to reach the precision.
1406 *     For a canonical representation of the value, use {@link
1407 *     BigDecimal#toString()}.
1408 *
1409 *     <p> If the {@code ','} flag is given, then an {@link
1410 *     FormatFlagsConversionMismatchException} will be thrown.
1411 *
1412 * <tr><td valign="top"> {@code 'E'}
1413 *     <td valign="top"> <tt>'&#92;u0045'</tt>
1414 *     <td> The upper-case variant of {@code 'e'}.  The exponent symbol
1415 *     will be {@code 'E'} (<tt>'&#92;u0045'</tt>).
1416 *
1417 * <tr><td valign="top"> {@code 'g'}
1418 *     <td valign="top"> <tt>'&#92;u0067'</tt>
1419 *     <td> Requires the output to be formatted in general scientific notation
1420 *     as described below. The <a href="#l10n algorithm">localization
1421 *     algorithm</a> is applied.
1422 *
1423 *     <p> After rounding for the precision, the formatting of the resulting
1424 *     magnitude <i>m</i> depends on its value.
1425 *
1426 *     <p> If <i>m</i> is greater than or equal to 10<sup>-4</sup> but less
1427 *     than 10<sup>precision</sup> then it is represented in <i><a
1428 *     href="#bdecimal">decimal format</a></i>.
1429 *
1430 *     <p> If <i>m</i> is less than 10<sup>-4</sup> or greater than or equal to
1431 *     10<sup>precision</sup>, then it is represented in <i><a
1432 *     href="#bscientific">computerized scientific notation</a></i>.
1433 *
1434 *     <p> The total number of significant digits in <i>m</i> is equal to the
1435 *     precision.  If the precision is not specified, then the default value is
1436 *     {@code 6}.  If the precision is {@code 0}, then it is taken to be
1437 *     {@code 1}.
1438 *
1439 *     <p> If the {@code '#'} flag is given then an {@link
1440 *     FormatFlagsConversionMismatchException} will be thrown.
1441 *
1442 * <tr><td valign="top"> {@code 'G'}
1443 *     <td valign="top"> <tt>'&#92;u0047'</tt>
1444 *     <td> The upper-case variant of {@code 'g'}.
1445 *
1446 * <tr><td valign="top"> {@code 'f'}
1447 *     <td valign="top"> <tt>'&#92;u0066'</tt>
1448 *     <td> Requires the output to be formatted using <a name="bdecimal">decimal
1449 *     format</a>.  The <a href="#l10n algorithm">localization algorithm</a> is
1450 *     applied.
1451 *
1452 *     <p> The result is a string that represents the sign and magnitude
1453 *     (absolute value) of the argument.  The formatting of the sign is
1454 *     described in the <a href="#l10n algorithm">localization
1455 *     algorithm</a>. The formatting of the magnitude <i>m</i> depends upon its
1456 *     value.
1457 *
1458 *     <p> The magnitude is formatted as the integer part of <i>m</i>, with no
1459 *     leading zeroes, followed by the decimal separator followed by one or
1460 *     more decimal digits representing the fractional part of <i>m</i>.
1461 *
1462 *     <p> The number of digits in the result for the fractional part of
1463 *     <i>m</i> or <i>a</i> is equal to the precision. If the precision is not
1464 *     specified then the default value is {@code 6}.  If the precision is
1465 *     less than the number of digits to the right of the decimal point
1466 *     then the value will be rounded using the
1467 *     {@linkplain java.math.BigDecimal#ROUND_HALF_UP round half up
1468 *     algorithm}.  Otherwise, zeros may be appended to reach the precision.
1469 *     For a canonical representation of the value, use {@link
1470 *     BigDecimal#toString()}.
1471 *
1472 * </table>
1473 *
1474 * <p> All <a href="#intFlags">flags</a> defined for Byte, Short, Integer, and
1475 * Long apply.
1476 *
1477 * <p> If the {@code '#'} flag is given, then the decimal separator will
1478 * always be present.
1479 *
1480 * <p> The <a href="#floatdFlags">default behavior</a> when no flags are
1481 * given is the same as for Float and Double.
1482 *
1483 * <p> The specification of <a href="#floatDWidth">width</a> and <a
1484 * href="#floatDPrec">precision</a> is the same as defined for Float and
1485 * Double.
1486 *
1487 * <h4><a name="ddt">Date/Time</a></h4>
1488 *
1489 * <p> This conversion may be applied to {@code long}, {@link Long}, {@link
1490 * Calendar}, and {@link Date}.
1491 *
1492 * <table cellpadding=5 summary="DTConv">
1493 *
1494 * <tr><td valign="top"> {@code 't'}
1495 *     <td valign="top"> <tt>'&#92;u0074'</tt>
1496 *     <td> Prefix for date and time conversion characters.
1497 * <tr><td valign="top"> {@code 'T'}
1498 *     <td valign="top"> <tt>'&#92;u0054'</tt>
1499 *     <td> The upper-case variant of {@code 't'}.
1500 *
1501 * </table>
1502 *
1503 * <p> The following date and time conversion character suffixes are defined
1504 * for the {@code 't'} and {@code 'T'} conversions.  The types are similar to
1505 * but not completely identical to those defined by GNU {@code date} and
1506 * POSIX {@code strftime(3c)}.  Additional conversion types are provided to
1507 * access Java-specific functionality (e.g. {@code 'L'} for milliseconds
1508 * within the second).
1509 *
1510 * <p> The following conversion characters are used for formatting times:
1511 *
1512 * <table cellpadding=5 summary="time">
1513 *
1514 * <tr><td valign="top"> {@code 'H'}
1515 *     <td valign="top"> <tt>'&#92;u0048'</tt>
1516 *     <td> Hour of the day for the 24-hour clock, formatted as two digits with
1517 *     a leading zero as necessary i.e. {@code 00 - 23}. {@code 00}
1518 *     corresponds to midnight.
1519 *
1520 * <tr><td valign="top">{@code 'I'}
1521 *     <td valign="top"> <tt>'&#92;u0049'</tt>
1522 *     <td> Hour for the 12-hour clock, formatted as two digits with a leading
1523 *     zero as necessary, i.e.  {@code 01 - 12}.  {@code 01} corresponds to
1524 *     one o'clock (either morning or afternoon).
1525 *
1526 * <tr><td valign="top">{@code 'k'}
1527 *     <td valign="top"> <tt>'&#92;u006b'</tt>
1528 *     <td> Hour of the day for the 24-hour clock, i.e. {@code 0 - 23}.
1529 *     {@code 0} corresponds to midnight.
1530 *
1531 * <tr><td valign="top">{@code 'l'}
1532 *     <td valign="top"> <tt>'&#92;u006c'</tt>
1533 *     <td> Hour for the 12-hour clock, i.e. {@code 1 - 12}.  {@code 1}
1534 *     corresponds to one o'clock (either morning or afternoon).
1535 *
1536 * <tr><td valign="top">{@code 'M'}
1537 *     <td valign="top"> <tt>'&#92;u004d'</tt>
1538 *     <td> Minute within the hour formatted as two digits with a leading zero
1539 *     as necessary, i.e.  {@code 00 - 59}.
1540 *
1541 * <tr><td valign="top">{@code 'S'}
1542 *     <td valign="top"> <tt>'&#92;u0053'</tt>
1543 *     <td> Seconds within the minute, formatted as two digits with a leading
1544 *     zero as necessary, i.e. {@code 00 - 60} ("{@code 60}" is a special
1545 *     value required to support leap seconds).
1546 *
1547 * <tr><td valign="top">{@code 'L'}
1548 *     <td valign="top"> <tt>'&#92;u004c'</tt>
1549 *     <td> Millisecond within the second formatted as three digits with
1550 *     leading zeros as necessary, i.e. {@code 000 - 999}.
1551 *
1552 * <tr><td valign="top">{@code 'N'}
1553 *     <td valign="top"> <tt>'&#92;u004e'</tt>
1554 *     <td> Nanosecond within the second, formatted as nine digits with leading
1555 *     zeros as necessary, i.e. {@code 000000000 - 999999999}.  The precision
1556 *     of this value is limited by the resolution of the underlying operating
1557 *     system or hardware.
1558 *
1559 * <tr><td valign="top">{@code 'p'}
1560 *     <td valign="top"> <tt>'&#92;u0070'</tt>
1561 *     <td> Locale-specific {@linkplain
1562 *     java.text.DateFormatSymbols#getAmPmStrings morning or afternoon} marker
1563 *     in lower case, e.g."{@code am}" or "{@code pm}".  Use of the
1564 *     conversion prefix {@code 'T'} forces this output to upper case.  (Note
1565 *     that {@code 'p'} produces lower-case output.  This is different from
1566 *     GNU {@code date} and POSIX {@code strftime(3c)} which produce
1567 *     upper-case output.)
1568 *
1569 * <tr><td valign="top">{@code 'z'}
1570 *     <td valign="top"> <tt>'&#92;u007a'</tt>
1571 *     <td> <a href="http://www.ietf.org/rfc/rfc0822.txt">RFC&nbsp;822</a>
1572 *     style numeric time zone offset from GMT, e.g. {@code -0800}.  This
1573 *     value will be adjusted as necessary for Daylight Saving Time.  For
1574 *     {@code long}, {@link Long}, and {@link Date} the time zone used is
1575 *     the {@linkplain TimeZone#getDefault() default time zone} for this
1576 *     instance of the Java virtual machine.
1577 *
1578 * <tr><td valign="top">{@code 'Z'}
1579 *     <td valign="top"> <tt>'&#92;u005a'</tt>
1580 *     <td> A string representing the abbreviation for the time zone.  This
1581 *     value will be adjusted as necessary for Daylight Saving Time.  For
1582 *     {@code long}, {@link Long}, and {@link Date} the time zone used is
1583 *     the {@linkplain TimeZone#getDefault() default time zone} for this
1584 *     instance of the Java virtual machine.  The Formatter's locale will
1585 *     supersede the locale of the argument (if any).
1586 *
1587 * <tr><td valign="top">{@code 's'}
1588 *     <td valign="top"> <tt>'&#92;u0073'</tt>
1589 *     <td> Seconds since the beginning of the epoch starting at 1 January 1970
1590 *     {@code 00:00:00} UTC, i.e. {@code Long.MIN_VALUE/1000} to
1591 *     {@code Long.MAX_VALUE/1000}.
1592 *
1593 * <tr><td valign="top">{@code 'Q'}
1594 *     <td valign="top"> <tt>'&#92;u004f'</tt>
1595 *     <td> Milliseconds since the beginning of the epoch starting at 1 January
1596 *     1970 {@code 00:00:00} UTC, i.e. {@code Long.MIN_VALUE} to
1597 *     {@code Long.MAX_VALUE}. The precision of this value is limited by
1598 *     the resolution of the underlying operating system or hardware.
1599 *
1600 * </table>
1601 *
1602 * <p> The following conversion characters are used for formatting dates:
1603 *
1604 * <table cellpadding=5 summary="date">
1605 *
1606 * <tr><td valign="top">{@code 'B'}
1607 *     <td valign="top"> <tt>'&#92;u0042'</tt>
1608 *     <td> Locale-specific {@linkplain java.text.DateFormatSymbols#getMonths
1609 *     full month name}, e.g. {@code "January"}, {@code "February"}.
1610 *
1611 * <tr><td valign="top">{@code 'b'}
1612 *     <td valign="top"> <tt>'&#92;u0062'</tt>
1613 *     <td> Locale-specific {@linkplain
1614 *     java.text.DateFormatSymbols#getShortMonths abbreviated month name},
1615 *     e.g. {@code "Jan"}, {@code "Feb"}.
1616 *
1617 * <tr><td valign="top">{@code 'h'}
1618 *     <td valign="top"> <tt>'&#92;u0068'</tt>
1619 *     <td> Same as {@code 'b'}.
1620 *
1621 * <tr><td valign="top">{@code 'A'}
1622 *     <td valign="top"> <tt>'&#92;u0041'</tt>
1623 *     <td> Locale-specific full name of the {@linkplain
1624 *     java.text.DateFormatSymbols#getWeekdays day of the week},
1625 *     e.g. {@code "Sunday"}, {@code "Monday"}
1626 *
1627 * <tr><td valign="top">{@code 'a'}
1628 *     <td valign="top"> <tt>'&#92;u0061'</tt>
1629 *     <td> Locale-specific short name of the {@linkplain
1630 *     java.text.DateFormatSymbols#getShortWeekdays day of the week},
1631 *     e.g. {@code "Sun"}, {@code "Mon"}
1632 *
1633 * <tr><td valign="top">{@code 'C'}
1634 *     <td valign="top"> <tt>'&#92;u0043'</tt>
1635 *     <td> Four-digit year divided by {@code 100}, formatted as two digits
1636 *     with leading zero as necessary, i.e. {@code 00 - 99}
1637 *
1638 * <tr><td valign="top">{@code 'Y'}
1639 *     <td valign="top"> <tt>'&#92;u0059'</tt> <td> Year, formatted to at least
1640 *     four digits with leading zeros as necessary, e.g. {@code 0092} equals
1641 *     {@code 92} CE for the Gregorian calendar.
1642 *
1643 * <tr><td valign="top">{@code 'y'}
1644 *     <td valign="top"> <tt>'&#92;u0079'</tt>
1645 *     <td> Last two digits of the year, formatted with leading zeros as
1646 *     necessary, i.e. {@code 00 - 99}.
1647 *
1648 * <tr><td valign="top">{@code 'j'}
1649 *     <td valign="top"> <tt>'&#92;u006a'</tt>
1650 *     <td> Day of year, formatted as three digits with leading zeros as
1651 *     necessary, e.g. {@code 001 - 366} for the Gregorian calendar.
1652 *     {@code 001} corresponds to the first day of the year.
1653 *
1654 * <tr><td valign="top">{@code 'm'}
1655 *     <td valign="top"> <tt>'&#92;u006d'</tt>
1656 *     <td> Month, formatted as two digits with leading zeros as necessary,
1657 *     i.e. {@code 01 - 13}, where "{@code 01}" is the first month of the
1658 *     year and ("{@code 13}" is a special value required to support lunar
1659 *     calendars).
1660 *
1661 * <tr><td valign="top">{@code 'd'}
1662 *     <td valign="top"> <tt>'&#92;u0064'</tt>
1663 *     <td> Day of month, formatted as two digits with leading zeros as
1664 *     necessary, i.e. {@code 01 - 31}, where "{@code 01}" is the first day
1665 *     of the month.
1666 *
1667 * <tr><td valign="top">{@code 'e'}
1668 *     <td valign="top"> <tt>'&#92;u0065'</tt>
1669 *     <td> Day of month, formatted as two digits, i.e. {@code 1 - 31} where
1670 *     "{@code 1}" is the first day of the month.
1671 *
1672 * </table>
1673 *
1674 * <p> The following conversion characters are used for formatting common
1675 * date/time compositions.
1676 *
1677 * <table cellpadding=5 summary="composites">
1678 *
1679 * <tr><td valign="top">{@code 'R'}
1680 *     <td valign="top"> <tt>'&#92;u0052'</tt>
1681 *     <td> Time formatted for the 24-hour clock as {@code "%tH:%tM"}
1682 *
1683 * <tr><td valign="top">{@code 'T'}
1684 *     <td valign="top"> <tt>'&#92;u0054'</tt>
1685 *     <td> Time formatted for the 24-hour clock as {@code "%tH:%tM:%tS"}.
1686 *
1687 * <tr><td valign="top">{@code 'r'}
1688 *     <td valign="top"> <tt>'&#92;u0072'</tt>
1689 *     <td> Time formatted for the 12-hour clock as {@code "%tI:%tM:%tS
1690 *     %Tp"}.  The location of the morning or afternoon marker
1691 *     ({@code '%Tp'}) may be locale-dependent.
1692 *
1693 * <tr><td valign="top">{@code 'D'}
1694 *     <td valign="top"> <tt>'&#92;u0044'</tt>
1695 *     <td> Date formatted as {@code "%tm/%td/%ty"}.
1696 *
1697 * <tr><td valign="top">{@code 'F'}
1698 *     <td valign="top"> <tt>'&#92;u0046'</tt>
1699 *     <td> <a href="http://www.w3.org/TR/NOTE-datetime">ISO&nbsp;8601</a>
1700 *     complete date formatted as {@code "%tY-%tm-%td"}.
1701 *
1702 * <tr><td valign="top">{@code 'c'}
1703 *     <td valign="top"> <tt>'&#92;u0063'</tt>
1704 *     <td> Date and time formatted as {@code "%ta %tb %td %tT %tZ %tY"},
1705 *     e.g. {@code "Sun Jul 20 16:17:00 EDT 1969"}.
1706 *
1707 * </table>
1708 *
1709 * <p> The {@code '-'} flag defined for <a href="#dFlags">General
1710 * conversions</a> applies.  If the {@code '#'} flag is given, then a {@link
1711 * FormatFlagsConversionMismatchException} will be thrown.
1712 *
1713 * <p> The <a name="dtWidth">width</a> is the minimum number of characters to
1714 * be written to the output.  If the length of the converted value is less than
1715 * the {@code width} then the output will be padded by spaces
1716 * (<tt>'&#92;u0020'</tt>) until the total number of characters equals width.
1717 * The padding is on the left by default.  If the {@code '-'} flag is given
1718 * then the padding will be on the right.  If width is not specified then there
1719 * is no minimum.
1720 *
1721 * <p> The precision is not applicable.  If the precision is specified then an
1722 * {@link IllegalFormatPrecisionException} will be thrown.
1723 *
1724 * <h4><a name="dper">Percent</a></h4>
1725 *
1726 * <p> The conversion does not correspond to any argument.
1727 *
1728 * <table cellpadding=5 summary="DTConv">
1729 *
1730 * <tr><td valign="top">{@code '%'}
1731 *     <td> The result is a literal {@code '%'} (<tt>'&#92;u0025'</tt>)
1732 *
1733 * <p> The <a name="dtWidth">width</a> is the minimum number of characters to
1734 * be written to the output including the {@code '%'}.  If the length of the
1735 * converted value is less than the {@code width} then the output will be
1736 * padded by spaces (<tt>'&#92;u0020'</tt>) until the total number of
1737 * characters equals width.  The padding is on the left.  If width is not
1738 * specified then just the {@code '%'} is output.
1739 *
1740 * <p> The {@code '-'} flag defined for <a href="#dFlags">General
1741 * conversions</a> applies.  If any other flags are provided, then a
1742 * {@link FormatFlagsConversionMismatchException} will be thrown.
1743 *
1744 * <p> The precision is not applicable.  If the precision is specified an
1745 * {@link IllegalFormatPrecisionException} will be thrown.
1746 *
1747 * </table>
1748 *
1749 * <h4><a name="dls">Line Separator</a></h4>
1750 *
1751 * <p> The conversion does not correspond to any argument.
1752 *
1753 * <table cellpadding=5 summary="DTConv">
1754 *
1755 * <tr><td valign="top">{@code 'n'}
1756 *     <td> the platform-specific line separator as returned by {@link
1757 *     System#getProperty System.getProperty("line.separator")}.
1758 *
1759 * </table>
1760 *
1761 * <p> Flags, width, and precision are not applicable.  If any are provided an
1762 * {@link IllegalFormatFlagsException}, {@link IllegalFormatWidthException},
1763 * and {@link IllegalFormatPrecisionException}, respectively will be thrown.
1764 *
1765 * <h4><a name="dpos">Argument Index</a></h4>
1766 *
1767 * <p> Format specifiers can reference arguments in three ways:
1768 *
1769 * <ul>
1770 *
1771 * <li> <i>Explicit indexing</i> is used when the format specifier contains an
1772 * argument index.  The argument index is a decimal integer indicating the
1773 * position of the argument in the argument list.  The first argument is
1774 * referenced by "{@code 1$}", the second by "{@code 2$}", etc.  An argument
1775 * may be referenced more than once.
1776 *
1777 * <p> For example:
1778 *
1779 * <blockquote><pre>
1780 *   formatter.format("%4$s %3$s %2$s %1$s %4$s %3$s %2$s %1$s",
1781 *                    "a", "b", "c", "d")
1782 *   // -&gt; "d c b a d c b a"
1783 * </pre></blockquote>
1784 *
1785 * <li> <i>Relative indexing</i> is used when the format specifier contains a
1786 * {@code '<'} (<tt>'&#92;u003c'</tt>) flag which causes the argument for
1787 * the previous format specifier to be re-used.  If there is no previous
1788 * argument, then a {@link MissingFormatArgumentException} is thrown.
1789 *
1790 * <blockquote><pre>
1791 *    formatter.format("%s %s %&lt;s %&lt;s", "a", "b", "c", "d")
1792 *    // -&gt; "a b b b"
1793 *    // "c" and "d" are ignored because they are not referenced
1794 * </pre></blockquote>
1795 *
1796 * <li> <i>Ordinary indexing</i> is used when the format specifier contains
1797 * neither an argument index nor a {@code '<'} flag.  Each format specifier
1798 * which uses ordinary indexing is assigned a sequential implicit index into
1799 * argument list which is independent of the indices used by explicit or
1800 * relative indexing.
1801 *
1802 * <blockquote><pre>
1803 *   formatter.format("%s %s %s %s", "a", "b", "c", "d")
1804 *   // -&gt; "a b c d"
1805 * </pre></blockquote>
1806 *
1807 * </ul>
1808 *
1809 * <p> It is possible to have a format string which uses all forms of indexing,
1810 * for example:
1811 *
1812 * <blockquote><pre>
1813 *   formatter.format("%2$s %s %&lt;s %s", "a", "b", "c", "d")
1814 *   // -&gt; "b a a b"
1815 *   // "c" and "d" are ignored because they are not referenced
1816 * </pre></blockquote>
1817 *
1818 * <p> The maximum number of arguments is limited by the maximum dimension of a
1819 * Java array as defined by
1820 * <cite>The Java&trade; Virtual Machine Specification</cite>.
1821 * If the argument index is does not correspond to an
1822 * available argument, then a {@link MissingFormatArgumentException} is thrown.
1823 *
1824 * <p> If there are more arguments than format specifiers, the extra arguments
1825 * are ignored.
1826 *
1827 * <p> Unless otherwise specified, passing a {@code null} argument to any
1828 * method or constructor in this class will cause a {@link
1829 * NullPointerException} to be thrown.
1830 *
1831 * @author  Iris Clark
1832 * @since 1.5
1833 */
1834public final class Formatter implements Closeable, Flushable {
1835    private Appendable a;
1836    private final Locale l;
1837
1838    private IOException lastException;
1839
1840    private final char zero;
1841    private static double scaleUp;
1842
1843    // 1 (sign) + 19 (max # sig digits) + 1 ('.') + 1 ('e') + 1 (sign)
1844    // + 3 (max # exp digits) + 4 (error) = 30
1845    private static final int MAX_FD_CHARS = 30;
1846
1847    /**
1848     * Returns a charset object for the given charset name.
1849     * @throws NullPointerException          is csn is null
1850     * @throws UnsupportedEncodingException  if the charset is not supported
1851     */
1852    private static Charset toCharset(String csn)
1853        throws UnsupportedEncodingException
1854    {
1855        Objects.requireNonNull(csn, "charsetName");
1856        try {
1857            return Charset.forName(csn);
1858        } catch (IllegalCharsetNameException|UnsupportedCharsetException unused) {
1859            // UnsupportedEncodingException should be thrown
1860            throw new UnsupportedEncodingException(csn);
1861        }
1862    }
1863
1864    private static final Appendable nonNullAppendable(Appendable a) {
1865        if (a == null)
1866            return new StringBuilder();
1867
1868        return a;
1869    }
1870
1871    /* Private constructors */
1872    private Formatter(Locale l, Appendable a) {
1873        this.a = a;
1874        this.l = l;
1875        this.zero = getZero(l);
1876    }
1877
1878    private Formatter(Charset charset, Locale l, File file)
1879        throws FileNotFoundException
1880    {
1881        this(l,
1882             new BufferedWriter(new OutputStreamWriter(new FileOutputStream(file), charset)));
1883    }
1884
1885    /**
1886     * Constructs a new formatter.
1887     *
1888     * <p> The destination of the formatted output is a {@link StringBuilder}
1889     * which may be retrieved by invoking {@link #out out()} and whose
1890     * current content may be converted into a string by invoking {@link
1891     * #toString toString()}.  The locale used is the {@linkplain
1892     * Locale#getDefault() default locale} for this instance of the Java
1893     * virtual machine.
1894     */
1895    public Formatter() {
1896        this(Locale.getDefault(Locale.Category.FORMAT), new StringBuilder());
1897    }
1898
1899    /**
1900     * Constructs a new formatter with the specified destination.
1901     *
1902     * <p> The locale used is the {@linkplain Locale#getDefault() default
1903     * locale} for this instance of the Java virtual machine.
1904     *
1905     * @param  a
1906     *         Destination for the formatted output.  If {@code a} is
1907     *         {@code null} then a {@link StringBuilder} will be created.
1908     */
1909    public Formatter(Appendable a) {
1910        this(Locale.getDefault(Locale.Category.FORMAT), nonNullAppendable(a));
1911    }
1912
1913    /**
1914     * Constructs a new formatter with the specified locale.
1915     *
1916     * <p> The destination of the formatted output is a {@link StringBuilder}
1917     * which may be retrieved by invoking {@link #out out()} and whose current
1918     * content may be converted into a string by invoking {@link #toString
1919     * toString()}.
1920     *
1921     * @param  l
1922     *         The {@linkplain java.util.Locale locale} to apply during
1923     *         formatting.  If {@code l} is {@code null} then no localization
1924     *         is applied.
1925     */
1926    public Formatter(Locale l) {
1927        this(l, new StringBuilder());
1928    }
1929
1930    /**
1931     * Constructs a new formatter with the specified destination and locale.
1932     *
1933     * @param  a
1934     *         Destination for the formatted output.  If {@code a} is
1935     *         {@code null} then a {@link StringBuilder} will be created.
1936     *
1937     * @param  l
1938     *         The {@linkplain java.util.Locale locale} to apply during
1939     *         formatting.  If {@code l} is {@code null} then no localization
1940     *         is applied.
1941     */
1942    public Formatter(Appendable a, Locale l) {
1943        this(l, nonNullAppendable(a));
1944    }
1945
1946    /**
1947     * Constructs a new formatter with the specified file name.
1948     *
1949     * <p> The charset used is the {@linkplain
1950     * java.nio.charset.Charset#defaultCharset() default charset} for this
1951     * instance of the Java virtual machine.
1952     *
1953     * <p> The locale used is the {@linkplain Locale#getDefault() default
1954     * locale} for this instance of the Java virtual machine.
1955     *
1956     * @param  fileName
1957     *         The name of the file to use as the destination of this
1958     *         formatter.  If the file exists then it will be truncated to
1959     *         zero size; otherwise, a new file will be created.  The output
1960     *         will be written to the file and is buffered.
1961     *
1962     * @throws  SecurityException
1963     *          If a security manager is present and {@link
1964     *          SecurityManager#checkWrite checkWrite(fileName)} denies write
1965     *          access to the file
1966     *
1967     * @throws  FileNotFoundException
1968     *          If the given file name does not denote an existing, writable
1969     *          regular file and a new regular file of that name cannot be
1970     *          created, or if some other error occurs while opening or
1971     *          creating the file
1972     */
1973    public Formatter(String fileName) throws FileNotFoundException {
1974        this(Locale.getDefault(Locale.Category.FORMAT),
1975             new BufferedWriter(new OutputStreamWriter(new FileOutputStream(fileName))));
1976    }
1977
1978    /**
1979     * Constructs a new formatter with the specified file name and charset.
1980     *
1981     * <p> The locale used is the {@linkplain Locale#getDefault default
1982     * locale} for this instance of the Java virtual machine.
1983     *
1984     * @param  fileName
1985     *         The name of the file to use as the destination of this
1986     *         formatter.  If the file exists then it will be truncated to
1987     *         zero size; otherwise, a new file will be created.  The output
1988     *         will be written to the file and is buffered.
1989     *
1990     * @param  csn
1991     *         The name of a supported {@linkplain java.nio.charset.Charset
1992     *         charset}
1993     *
1994     * @throws  FileNotFoundException
1995     *          If the given file name does not denote an existing, writable
1996     *          regular file and a new regular file of that name cannot be
1997     *          created, or if some other error occurs while opening or
1998     *          creating the file
1999     *
2000     * @throws  SecurityException
2001     *          If a security manager is present and {@link
2002     *          SecurityManager#checkWrite checkWrite(fileName)} denies write
2003     *          access to the file
2004     *
2005     * @throws  UnsupportedEncodingException
2006     *          If the named charset is not supported
2007     */
2008    public Formatter(String fileName, String csn)
2009        throws FileNotFoundException, UnsupportedEncodingException
2010    {
2011        this(fileName, csn, Locale.getDefault(Locale.Category.FORMAT));
2012    }
2013
2014    /**
2015     * Constructs a new formatter with the specified file name, charset, and
2016     * locale.
2017     *
2018     * @param  fileName
2019     *         The name of the file to use as the destination of this
2020     *         formatter.  If the file exists then it will be truncated to
2021     *         zero size; otherwise, a new file will be created.  The output
2022     *         will be written to the file and is buffered.
2023     *
2024     * @param  csn
2025     *         The name of a supported {@linkplain java.nio.charset.Charset
2026     *         charset}
2027     *
2028     * @param  l
2029     *         The {@linkplain java.util.Locale locale} to apply during
2030     *         formatting.  If {@code l} is {@code null} then no localization
2031     *         is applied.
2032     *
2033     * @throws  FileNotFoundException
2034     *          If the given file name does not denote an existing, writable
2035     *          regular file and a new regular file of that name cannot be
2036     *          created, or if some other error occurs while opening or
2037     *          creating the file
2038     *
2039     * @throws  SecurityException
2040     *          If a security manager is present and {@link
2041     *          SecurityManager#checkWrite checkWrite(fileName)} denies write
2042     *          access to the file
2043     *
2044     * @throws  UnsupportedEncodingException
2045     *          If the named charset is not supported
2046     */
2047    public Formatter(String fileName, String csn, Locale l)
2048        throws FileNotFoundException, UnsupportedEncodingException
2049    {
2050        this(toCharset(csn), l, new File(fileName));
2051    }
2052
2053    /**
2054     * Constructs a new formatter with the specified file.
2055     *
2056     * <p> The charset used is the {@linkplain
2057     * java.nio.charset.Charset#defaultCharset() default charset} for this
2058     * instance of the Java virtual machine.
2059     *
2060     * <p> The locale used is the {@linkplain Locale#getDefault() default
2061     * locale} for this instance of the Java virtual machine.
2062     *
2063     * @param  file
2064     *         The file to use as the destination of this formatter.  If the
2065     *         file exists then it will be truncated to zero size; otherwise,
2066     *         a new file will be created.  The output will be written to the
2067     *         file and is buffered.
2068     *
2069     * @throws  SecurityException
2070     *          If a security manager is present and {@link
2071     *          SecurityManager#checkWrite checkWrite(file.getPath())} denies
2072     *          write access to the file
2073     *
2074     * @throws  FileNotFoundException
2075     *          If the given file object does not denote an existing, writable
2076     *          regular file and a new regular file of that name cannot be
2077     *          created, or if some other error occurs while opening or
2078     *          creating the file
2079     */
2080    public Formatter(File file) throws FileNotFoundException {
2081        this(Locale.getDefault(Locale.Category.FORMAT),
2082             new BufferedWriter(new OutputStreamWriter(new FileOutputStream(file))));
2083    }
2084
2085    /**
2086     * Constructs a new formatter with the specified file and charset.
2087     *
2088     * <p> The locale used is the {@linkplain Locale#getDefault default
2089     * locale} for this instance of the Java virtual machine.
2090     *
2091     * @param  file
2092     *         The file to use as the destination of this formatter.  If the
2093     *         file exists then it will be truncated to zero size; otherwise,
2094     *         a new file will be created.  The output will be written to the
2095     *         file and is buffered.
2096     *
2097     * @param  csn
2098     *         The name of a supported {@linkplain java.nio.charset.Charset
2099     *         charset}
2100     *
2101     * @throws  FileNotFoundException
2102     *          If the given file object does not denote an existing, writable
2103     *          regular file and a new regular file of that name cannot be
2104     *          created, or if some other error occurs while opening or
2105     *          creating the file
2106     *
2107     * @throws  SecurityException
2108     *          If a security manager is present and {@link
2109     *          SecurityManager#checkWrite checkWrite(file.getPath())} denies
2110     *          write access to the file
2111     *
2112     * @throws  UnsupportedEncodingException
2113     *          If the named charset is not supported
2114     */
2115    public Formatter(File file, String csn)
2116        throws FileNotFoundException, UnsupportedEncodingException
2117    {
2118        this(file, csn, Locale.getDefault(Locale.Category.FORMAT));
2119    }
2120
2121    /**
2122     * Constructs a new formatter with the specified file, charset, and
2123     * locale.
2124     *
2125     * @param  file
2126     *         The file to use as the destination of this formatter.  If the
2127     *         file exists then it will be truncated to zero size; otherwise,
2128     *         a new file will be created.  The output will be written to the
2129     *         file and is buffered.
2130     *
2131     * @param  csn
2132     *         The name of a supported {@linkplain java.nio.charset.Charset
2133     *         charset}
2134     *
2135     * @param  l
2136     *         The {@linkplain java.util.Locale locale} to apply during
2137     *         formatting.  If {@code l} is {@code null} then no localization
2138     *         is applied.
2139     *
2140     * @throws  FileNotFoundException
2141     *          If the given file object does not denote an existing, writable
2142     *          regular file and a new regular file of that name cannot be
2143     *          created, or if some other error occurs while opening or
2144     *          creating the file
2145     *
2146     * @throws  SecurityException
2147     *          If a security manager is present and {@link
2148     *          SecurityManager#checkWrite checkWrite(file.getPath())} denies
2149     *          write access to the file
2150     *
2151     * @throws  UnsupportedEncodingException
2152     *          If the named charset is not supported
2153     */
2154    public Formatter(File file, String csn, Locale l)
2155        throws FileNotFoundException, UnsupportedEncodingException
2156    {
2157        this(toCharset(csn), l, file);
2158    }
2159
2160    /**
2161     * Constructs a new formatter with the specified print stream.
2162     *
2163     * <p> The locale used is the {@linkplain Locale#getDefault() default
2164     * locale} for this instance of the Java virtual machine.
2165     *
2166     * <p> Characters are written to the given {@link java.io.PrintStream
2167     * PrintStream} object and are therefore encoded using that object's
2168     * charset.
2169     *
2170     * @param  ps
2171     *         The stream to use as the destination of this formatter.
2172     */
2173    public Formatter(PrintStream ps) {
2174        this(Locale.getDefault(Locale.Category.FORMAT),
2175             (Appendable)Objects.requireNonNull(ps));
2176    }
2177
2178    /**
2179     * Constructs a new formatter with the specified output stream.
2180     *
2181     * <p> The charset used is the {@linkplain
2182     * java.nio.charset.Charset#defaultCharset() default charset} for this
2183     * instance of the Java virtual machine.
2184     *
2185     * <p> The locale used is the {@linkplain Locale#getDefault() default
2186     * locale} for this instance of the Java virtual machine.
2187     *
2188     * @param  os
2189     *         The output stream to use as the destination of this formatter.
2190     *         The output will be buffered.
2191     */
2192    public Formatter(OutputStream os) {
2193        this(Locale.getDefault(Locale.Category.FORMAT),
2194             new BufferedWriter(new OutputStreamWriter(os)));
2195    }
2196
2197    /**
2198     * Constructs a new formatter with the specified output stream and
2199     * charset.
2200     *
2201     * <p> The locale used is the {@linkplain Locale#getDefault default
2202     * locale} for this instance of the Java virtual machine.
2203     *
2204     * @param  os
2205     *         The output stream to use as the destination of this formatter.
2206     *         The output will be buffered.
2207     *
2208     * @param  csn
2209     *         The name of a supported {@linkplain java.nio.charset.Charset
2210     *         charset}
2211     *
2212     * @throws  UnsupportedEncodingException
2213     *          If the named charset is not supported
2214     */
2215    public Formatter(OutputStream os, String csn)
2216        throws UnsupportedEncodingException
2217    {
2218        this(os, csn, Locale.getDefault(Locale.Category.FORMAT));
2219    }
2220
2221    /**
2222     * Constructs a new formatter with the specified output stream, charset,
2223     * and locale.
2224     *
2225     * @param  os
2226     *         The output stream to use as the destination of this formatter.
2227     *         The output will be buffered.
2228     *
2229     * @param  csn
2230     *         The name of a supported {@linkplain java.nio.charset.Charset
2231     *         charset}
2232     *
2233     * @param  l
2234     *         The {@linkplain java.util.Locale locale} to apply during
2235     *         formatting.  If {@code l} is {@code null} then no localization
2236     *         is applied.
2237     *
2238     * @throws  UnsupportedEncodingException
2239     *          If the named charset is not supported
2240     */
2241    public Formatter(OutputStream os, String csn, Locale l)
2242        throws UnsupportedEncodingException
2243    {
2244        this(l, new BufferedWriter(new OutputStreamWriter(os, csn)));
2245    }
2246
2247    private static char getZero(Locale l) {
2248        if ((l != null) && !l.equals(Locale.US)) {
2249            DecimalFormatSymbols dfs = DecimalFormatSymbols.getInstance(l);
2250            return dfs.getZeroDigit();
2251        } else {
2252            return '0';
2253        }
2254    }
2255
2256    /**
2257     * Returns the locale set by the construction of this formatter.
2258     *
2259     * <p> The {@link #format(java.util.Locale,String,Object...) format} method
2260     * for this object which has a locale argument does not change this value.
2261     *
2262     * @return  {@code null} if no localization is applied, otherwise a
2263     *          locale
2264     *
2265     * @throws  FormatterClosedException
2266     *          If this formatter has been closed by invoking its {@link
2267     *          #close()} method
2268     */
2269    public Locale locale() {
2270        ensureOpen();
2271        return l;
2272    }
2273
2274    /**
2275     * Returns the destination for the output.
2276     *
2277     * @return  The destination for the output
2278     *
2279     * @throws  FormatterClosedException
2280     *          If this formatter has been closed by invoking its {@link
2281     *          #close()} method
2282     */
2283    public Appendable out() {
2284        ensureOpen();
2285        return a;
2286    }
2287
2288    /**
2289     * Returns the result of invoking {@code toString()} on the destination
2290     * for the output.  For example, the following code formats text into a
2291     * {@link StringBuilder} then retrieves the resultant string:
2292     *
2293     * <blockquote><pre>
2294     *   Formatter f = new Formatter();
2295     *   f.format("Last reboot at %tc", lastRebootDate);
2296     *   String s = f.toString();
2297     *   // -&gt; s == "Last reboot at Sat Jan 01 00:00:00 PST 2000"
2298     * </pre></blockquote>
2299     *
2300     * <p> An invocation of this method behaves in exactly the same way as the
2301     * invocation
2302     *
2303     * <pre>
2304     *     out().toString() </pre>
2305     *
2306     * <p> Depending on the specification of {@code toString} for the {@link
2307     * Appendable}, the returned string may or may not contain the characters
2308     * written to the destination.  For instance, buffers typically return
2309     * their contents in {@code toString()}, but streams cannot since the
2310     * data is discarded.
2311     *
2312     * @return  The result of invoking {@code toString()} on the destination
2313     *          for the output
2314     *
2315     * @throws  FormatterClosedException
2316     *          If this formatter has been closed by invoking its {@link
2317     *          #close()} method
2318     */
2319    public String toString() {
2320        ensureOpen();
2321        return a.toString();
2322    }
2323
2324    /**
2325     * Flushes this formatter.  If the destination implements the {@link
2326     * java.io.Flushable} interface, its {@code flush} method will be invoked.
2327     *
2328     * <p> Flushing a formatter writes any buffered output in the destination
2329     * to the underlying stream.
2330     *
2331     * @throws  FormatterClosedException
2332     *          If this formatter has been closed by invoking its {@link
2333     *          #close()} method
2334     */
2335    public void flush() {
2336        ensureOpen();
2337        if (a instanceof Flushable) {
2338            try {
2339                ((Flushable)a).flush();
2340            } catch (IOException ioe) {
2341                lastException = ioe;
2342            }
2343        }
2344    }
2345
2346    /**
2347     * Closes this formatter.  If the destination implements the {@link
2348     * java.io.Closeable} interface, its {@code close} method will be invoked.
2349     *
2350     * <p> Closing a formatter allows it to release resources it may be holding
2351     * (such as open files).  If the formatter is already closed, then invoking
2352     * this method has no effect.
2353     *
2354     * <p> Attempting to invoke any methods except {@link #ioException()} in
2355     * this formatter after it has been closed will result in a {@link
2356     * FormatterClosedException}.
2357     */
2358    public void close() {
2359        if (a == null)
2360            return;
2361        try {
2362            if (a instanceof Closeable)
2363                ((Closeable)a).close();
2364        } catch (IOException ioe) {
2365            lastException = ioe;
2366        } finally {
2367            a = null;
2368        }
2369    }
2370
2371    private void ensureOpen() {
2372        if (a == null)
2373            throw new FormatterClosedException();
2374    }
2375
2376    /**
2377     * Returns the {@code IOException} last thrown by this formatter's {@link
2378     * Appendable}.
2379     *
2380     * <p> If the destination's {@code append()} method never throws
2381     * {@code IOException}, then this method will always return {@code null}.
2382     *
2383     * @return  The last exception thrown by the Appendable or {@code null} if
2384     *          no such exception exists.
2385     */
2386    public IOException ioException() {
2387        return lastException;
2388    }
2389
2390    /**
2391     * Writes a formatted string to this object's destination using the
2392     * specified format string and arguments.  The locale used is the one
2393     * defined during the construction of this formatter.
2394     *
2395     * @param  format
2396     *         A format string as described in <a href="#syntax">Format string
2397     *         syntax</a>.
2398     *
2399     * @param  args
2400     *         Arguments referenced by the format specifiers in the format
2401     *         string.  If there are more arguments than format specifiers, the
2402     *         extra arguments are ignored.  The maximum number of arguments is
2403     *         limited by the maximum dimension of a Java array as defined by
2404     *         <cite>The Java&trade; Virtual Machine Specification</cite>.
2405     *
2406     * @throws  IllegalFormatException
2407     *          If a format string contains an illegal syntax, a format
2408     *          specifier that is incompatible with the given arguments,
2409     *          insufficient arguments given the format string, or other
2410     *          illegal conditions.  For specification of all possible
2411     *          formatting errors, see the <a href="#detail">Details</a>
2412     *          section of the formatter class specification.
2413     *
2414     * @throws  FormatterClosedException
2415     *          If this formatter has been closed by invoking its {@link
2416     *          #close()} method
2417     *
2418     * @return  This formatter
2419     */
2420    public Formatter format(String format, Object ... args) {
2421        return format(l, format, args);
2422    }
2423
2424    /**
2425     * Writes a formatted string to this object's destination using the
2426     * specified locale, format string, and arguments.
2427     *
2428     * @param  l
2429     *         The {@linkplain java.util.Locale locale} to apply during
2430     *         formatting.  If {@code l} is {@code null} then no localization
2431     *         is applied.  This does not change this object's locale that was
2432     *         set during construction.
2433     *
2434     * @param  format
2435     *         A format string as described in <a href="#syntax">Format string
2436     *         syntax</a>
2437     *
2438     * @param  args
2439     *         Arguments referenced by the format specifiers in the format
2440     *         string.  If there are more arguments than format specifiers, the
2441     *         extra arguments are ignored.  The maximum number of arguments is
2442     *         limited by the maximum dimension of a Java array as defined by
2443     *         <cite>The Java&trade; Virtual Machine Specification</cite>.
2444     *
2445     * @throws  IllegalFormatException
2446     *          If a format string contains an illegal syntax, a format
2447     *          specifier that is incompatible with the given arguments,
2448     *          insufficient arguments given the format string, or other
2449     *          illegal conditions.  For specification of all possible
2450     *          formatting errors, see the <a href="#detail">Details</a>
2451     *          section of the formatter class specification.
2452     *
2453     * @throws  FormatterClosedException
2454     *          If this formatter has been closed by invoking its {@link
2455     *          #close()} method
2456     *
2457     * @return  This formatter
2458     */
2459    public Formatter format(Locale l, String format, Object ... args) {
2460        ensureOpen();
2461
2462        // index of last argument referenced
2463        int last = -1;
2464        // last ordinary index
2465        int lasto = -1;
2466
2467        FormatString[] fsa = parse(format);
2468        for (int i = 0; i < fsa.length; i++) {
2469            FormatString fs = fsa[i];
2470            int index = fs.index();
2471            try {
2472                switch (index) {
2473                case -2:  // fixed string, "%n", or "%%"
2474                    fs.print(null, l);
2475                    break;
2476                case -1:  // relative index
2477                    if (last < 0 || (args != null && last > args.length - 1))
2478                        throw new MissingFormatArgumentException(fs.toString());
2479                    fs.print((args == null ? null : args[last]), l);
2480                    break;
2481                case 0:  // ordinary index
2482                    lasto++;
2483                    last = lasto;
2484                    if (args != null && lasto > args.length - 1)
2485                        throw new MissingFormatArgumentException(fs.toString());
2486                    fs.print((args == null ? null : args[lasto]), l);
2487                    break;
2488                default:  // explicit index
2489                    last = index - 1;
2490                    if (args != null && last > args.length - 1)
2491                        throw new MissingFormatArgumentException(fs.toString());
2492                    fs.print((args == null ? null : args[last]), l);
2493                    break;
2494                }
2495            } catch (IOException x) {
2496                lastException = x;
2497            }
2498        }
2499        return this;
2500    }
2501
2502    /**
2503     * Finds format specifiers in the format string.
2504     */
2505    private FormatString[] parse(String s) {
2506        ArrayList<FormatString> al = new ArrayList<>();
2507        for (int i = 0, len = s.length(); i < len; ) {
2508            int nextPercent = s.indexOf('%', i);
2509            if (s.charAt(i) != '%') {
2510                // This is plain-text part, find the maximal plain-text
2511                // sequence and store it.
2512                int plainTextStart = i;
2513                int plainTextEnd = (nextPercent == -1) ? len: nextPercent;
2514                al.add(new FixedString(s.substring(plainTextStart,
2515                                                   plainTextEnd)));
2516                i = plainTextEnd;
2517            } else {
2518                // We have a format specifier
2519                FormatSpecifierParser fsp = new FormatSpecifierParser(s, i + 1);
2520                al.add(fsp.getFormatSpecifier());
2521                i = fsp.getEndIdx();
2522            }
2523        }
2524        return al.toArray(new FormatString[al.size()]);
2525    }
2526
2527    /**
2528     * Parses the format specifier.
2529     * %[argument_index$][flags][width][.precision][t]conversion
2530     */
2531    private class FormatSpecifierParser {
2532        private final String format;
2533        private int cursor;
2534        private FormatSpecifier fs;
2535
2536        private String index;
2537        private String flags;
2538        private String width;
2539        private String precision;
2540        private String tT;
2541        private String conv;
2542
2543        private static final String FLAGS = ",-(+# 0<";
2544
2545        public FormatSpecifierParser(String format, int startIdx) {
2546            this.format = format;
2547            cursor = startIdx;
2548            // Index
2549            if (nextIsInt()) {
2550                String nint = nextInt();
2551                if (peek() == '$') {
2552                    index = nint;
2553                    advance();
2554                } else if (nint.charAt(0) == '0') {
2555                    // This is a flag, skip to parsing flags.
2556                    back(nint.length());
2557                } else {
2558                    // This is the width, skip to parsing precision.
2559                    width = nint;
2560                }
2561            }
2562            // Flags
2563            flags = "";
2564            while (width == null && FLAGS.indexOf(peek()) >= 0) {
2565                flags += advance();
2566            }
2567            // Width
2568            if (width == null && nextIsInt()) {
2569                width = nextInt();
2570            }
2571            // Precision
2572            if (peek() == '.') {
2573                advance();
2574                if (!nextIsInt()) {
2575                    throw new IllegalFormatPrecisionException(peek());
2576                }
2577                precision = nextInt();
2578            }
2579            // tT
2580            if (peek() == 't' || peek() == 'T') {
2581                tT = String.valueOf(advance());
2582            }
2583            // Conversion
2584            conv = String.valueOf(advance());
2585
2586            fs = new FormatSpecifier(index, flags, width, precision, tT, conv);
2587        }
2588
2589        private String nextInt() {
2590            int strBegin = cursor;
2591            while (nextIsInt()) {
2592                advance();
2593            }
2594            return format.substring(strBegin, cursor);
2595        }
2596
2597        private boolean nextIsInt() {
2598            return !isEnd() && Character.isDigit(peek());
2599        }
2600
2601        private char peek() {
2602            if (isEnd()) {
2603                throw new UnknownFormatConversionException("End of String");
2604            }
2605            return format.charAt(cursor);
2606        }
2607
2608        private char advance() {
2609            if (isEnd()) {
2610                throw new UnknownFormatConversionException("End of String");
2611            }
2612            return format.charAt(cursor++);
2613        }
2614
2615        private void back(int len) {
2616            cursor -= len;
2617        }
2618
2619        private boolean isEnd() {
2620            return cursor == format.length();
2621        }
2622
2623        public FormatSpecifier getFormatSpecifier() {
2624            return fs;
2625        }
2626
2627        public int getEndIdx() {
2628            return cursor;
2629        }
2630    }
2631
2632    private interface FormatString {
2633        int index();
2634        void print(Object arg, Locale l) throws IOException;
2635        String toString();
2636    }
2637
2638    private class FixedString implements FormatString {
2639        private String s;
2640        FixedString(String s) { this.s = s; }
2641        public int index() { return -2; }
2642        public void print(Object arg, Locale l)
2643            throws IOException { a.append(s); }
2644        public String toString() { return s; }
2645    }
2646
2647    public enum BigDecimalLayoutForm { SCIENTIFIC, DECIMAL_FLOAT };
2648
2649    private class FormatSpecifier implements FormatString {
2650        private int index = -1;
2651        private Flags f = Flags.NONE;
2652        private int width;
2653        private int precision;
2654        private boolean dt = false;
2655        private char c;
2656
2657        private int index(String s) {
2658            if (s != null) {
2659                try {
2660                    index = Integer.parseInt(s);
2661                } catch (NumberFormatException x) {
2662                    assert(false);
2663                }
2664            } else {
2665                index = 0;
2666            }
2667            return index;
2668        }
2669
2670        public int index() {
2671            return index;
2672        }
2673
2674        private Flags flags(String s) {
2675            f = Flags.parse(s);
2676            if (f.contains(Flags.PREVIOUS))
2677                index = -1;
2678            return f;
2679        }
2680
2681        Flags flags() {
2682            return f;
2683        }
2684
2685        private int width(String s) {
2686            width = -1;
2687            if (s != null) {
2688                try {
2689                    width  = Integer.parseInt(s);
2690                    if (width < 0)
2691                        throw new IllegalFormatWidthException(width);
2692                } catch (NumberFormatException x) {
2693                    assert(false);
2694                }
2695            }
2696            return width;
2697        }
2698
2699        int width() {
2700            return width;
2701        }
2702
2703        private int precision(String s) {
2704            precision = -1;
2705            if (s != null) {
2706                try {
2707                    precision = Integer.parseInt(s);
2708                    if (precision < 0)
2709                        throw new IllegalFormatPrecisionException(precision);
2710                } catch (NumberFormatException x) {
2711                    assert(false);
2712                }
2713            }
2714            return precision;
2715        }
2716
2717        int precision() {
2718            return precision;
2719        }
2720
2721        private char conversion(String s) {
2722            c = s.charAt(0);
2723            if (!dt) {
2724                if (!Conversion.isValid(c))
2725                    throw new UnknownFormatConversionException(String.valueOf(c));
2726                if (Character.isUpperCase(c))
2727                    f.add(Flags.UPPERCASE);
2728                c = Character.toLowerCase(c);
2729                if (Conversion.isText(c))
2730                    index = -2;
2731            }
2732            return c;
2733        }
2734
2735        private char conversion() {
2736            return c;
2737        }
2738
2739        FormatSpecifier(String indexStr, String flagsStr, String widthStr,
2740                        String precisionStr, String tTStr, String convStr) {
2741            int idx = 1;
2742
2743            index(indexStr);
2744            flags(flagsStr);
2745            width(widthStr);
2746            precision(precisionStr);
2747
2748            if (tTStr != null) {
2749                dt = true;
2750                if (tTStr.equals("T"))
2751                    f.add(Flags.UPPERCASE);
2752            }
2753
2754            conversion(convStr);
2755
2756            if (dt)
2757                checkDateTime();
2758            else if (Conversion.isGeneral(c))
2759                checkGeneral();
2760            else if (Conversion.isCharacter(c))
2761                checkCharacter();
2762            else if (Conversion.isInteger(c))
2763                checkInteger();
2764            else if (Conversion.isFloat(c))
2765                checkFloat();
2766            else if (Conversion.isText(c))
2767                checkText();
2768            else
2769                throw new UnknownFormatConversionException(String.valueOf(c));
2770        }
2771
2772        public void print(Object arg, Locale l) throws IOException {
2773            if (dt) {
2774                printDateTime(arg, l);
2775                return;
2776            }
2777            switch(c) {
2778            case Conversion.DECIMAL_INTEGER:
2779            case Conversion.OCTAL_INTEGER:
2780            case Conversion.HEXADECIMAL_INTEGER:
2781                printInteger(arg, l);
2782                break;
2783            case Conversion.SCIENTIFIC:
2784            case Conversion.GENERAL:
2785            case Conversion.DECIMAL_FLOAT:
2786            case Conversion.HEXADECIMAL_FLOAT:
2787                printFloat(arg, l);
2788                break;
2789            case Conversion.CHARACTER:
2790            case Conversion.CHARACTER_UPPER:
2791                printCharacter(arg);
2792                break;
2793            case Conversion.BOOLEAN:
2794                printBoolean(arg);
2795                break;
2796            case Conversion.STRING:
2797                printString(arg, l);
2798                break;
2799            case Conversion.HASHCODE:
2800                printHashCode(arg);
2801                break;
2802            case Conversion.LINE_SEPARATOR:
2803                a.append(System.lineSeparator());
2804                break;
2805            case Conversion.PERCENT_SIGN:
2806                a.append('%');
2807                break;
2808            default:
2809                assert false;
2810            }
2811        }
2812
2813        private void printInteger(Object arg, Locale l) throws IOException {
2814            if (arg == null)
2815                print("null");
2816            else if (arg instanceof Byte)
2817                print(((Byte)arg).byteValue(), l);
2818            else if (arg instanceof Short)
2819                print(((Short)arg).shortValue(), l);
2820            else if (arg instanceof Integer)
2821                print(((Integer)arg).intValue(), l);
2822            else if (arg instanceof Long)
2823                print(((Long)arg).longValue(), l);
2824            else if (arg instanceof BigInteger)
2825                print(((BigInteger)arg), l);
2826            else
2827                failConversion(c, arg);
2828        }
2829
2830        private void printFloat(Object arg, Locale l) throws IOException {
2831            if (arg == null)
2832                print("null");
2833            else if (arg instanceof Float)
2834                print(((Float)arg).floatValue(), l);
2835            else if (arg instanceof Double)
2836                print(((Double)arg).doubleValue(), l);
2837            else if (arg instanceof BigDecimal)
2838                print(((BigDecimal)arg), l);
2839            else
2840                failConversion(c, arg);
2841        }
2842
2843        private void printDateTime(Object arg, Locale l) throws IOException {
2844            if (arg == null) {
2845                print("null");
2846                return;
2847            }
2848            Calendar cal = null;
2849
2850            // Instead of Calendar.setLenient(true), perhaps we should
2851            // wrap the IllegalArgumentException that might be thrown?
2852            if (arg instanceof Long) {
2853                // Note that the following method uses an instance of the
2854                // default time zone (TimeZone.getDefaultRef().
2855                cal = Calendar.getInstance(l == null ? Locale.US : l);
2856                cal.setTimeInMillis((Long)arg);
2857            } else if (arg instanceof Date) {
2858                // Note that the following method uses an instance of the
2859                // default time zone (TimeZone.getDefaultRef().
2860                cal = Calendar.getInstance(l == null ? Locale.US : l);
2861                cal.setTime((Date)arg);
2862            } else if (arg instanceof Calendar) {
2863                cal = (Calendar) ((Calendar)arg).clone();
2864                cal.setLenient(true);
2865            } else {
2866                failConversion(c, arg);
2867            }
2868            // Use the provided locale so that invocations of
2869            // localizedMagnitude() use optimizations for null.
2870            print(cal, c, l);
2871        }
2872
2873        private void printCharacter(Object arg) throws IOException {
2874            if (arg == null) {
2875                print("null");
2876                return;
2877            }
2878            String s = null;
2879            if (arg instanceof Character) {
2880                s = ((Character)arg).toString();
2881            } else if (arg instanceof Byte) {
2882                byte i = ((Byte)arg).byteValue();
2883                if (Character.isValidCodePoint(i))
2884                    s = new String(Character.toChars(i));
2885                else
2886                    throw new IllegalFormatCodePointException(i);
2887            } else if (arg instanceof Short) {
2888                short i = ((Short)arg).shortValue();
2889                if (Character.isValidCodePoint(i))
2890                    s = new String(Character.toChars(i));
2891                else
2892                    throw new IllegalFormatCodePointException(i);
2893            } else if (arg instanceof Integer) {
2894                int i = ((Integer)arg).intValue();
2895                if (Character.isValidCodePoint(i))
2896                    s = new String(Character.toChars(i));
2897                else
2898                    throw new IllegalFormatCodePointException(i);
2899            } else {
2900                failConversion(c, arg);
2901            }
2902            print(s);
2903        }
2904
2905        private void printString(Object arg, Locale l) throws IOException {
2906            if (arg instanceof Formattable) {
2907                Formatter fmt = Formatter.this;
2908                if (fmt.locale() != l)
2909                    fmt = new Formatter(fmt.out(), l);
2910                ((Formattable)arg).formatTo(fmt, f.valueOf(), width, precision);
2911            } else {
2912                if (f.contains(Flags.ALTERNATE))
2913                    failMismatch(Flags.ALTERNATE, 's');
2914                if (arg == null)
2915                    print("null");
2916                else
2917                    print(arg.toString());
2918            }
2919        }
2920
2921        private void printBoolean(Object arg) throws IOException {
2922            String s;
2923            if (arg != null)
2924                s = ((arg instanceof Boolean)
2925                     ? ((Boolean)arg).toString()
2926                     : Boolean.toString(true));
2927            else
2928                s = Boolean.toString(false);
2929            print(s);
2930        }
2931
2932        private void printHashCode(Object arg) throws IOException {
2933            String s = (arg == null
2934                        ? "null"
2935                        : Integer.toHexString(arg.hashCode()));
2936            print(s);
2937        }
2938
2939        private void print(String s) throws IOException {
2940            if (precision != -1 && precision < s.length())
2941                s = s.substring(0, precision);
2942            if (f.contains(Flags.UPPERCASE))
2943                s = s.toUpperCase();
2944            a.append(justify(s));
2945        }
2946
2947        private String justify(String s) {
2948            if (width == -1)
2949                return s;
2950            StringBuilder sb = new StringBuilder();
2951            boolean pad = f.contains(Flags.LEFT_JUSTIFY);
2952            int sp = width - s.length();
2953            if (!pad)
2954                for (int i = 0; i < sp; i++) sb.append(' ');
2955            sb.append(s);
2956            if (pad)
2957                for (int i = 0; i < sp; i++) sb.append(' ');
2958            return sb.toString();
2959        }
2960
2961        public String toString() {
2962            StringBuilder sb = new StringBuilder('%');
2963            // Flags.UPPERCASE is set internally for legal conversions.
2964            Flags dupf = f.dup().remove(Flags.UPPERCASE);
2965            sb.append(dupf.toString());
2966            if (index > 0)
2967                sb.append(index).append('$');
2968            if (width != -1)
2969                sb.append(width);
2970            if (precision != -1)
2971                sb.append('.').append(precision);
2972            if (dt)
2973                sb.append(f.contains(Flags.UPPERCASE) ? 'T' : 't');
2974            sb.append(f.contains(Flags.UPPERCASE)
2975                      ? Character.toUpperCase(c) : c);
2976            return sb.toString();
2977        }
2978
2979        private void checkGeneral() {
2980            if ((c == Conversion.BOOLEAN || c == Conversion.HASHCODE)
2981                && f.contains(Flags.ALTERNATE))
2982                failMismatch(Flags.ALTERNATE, c);
2983            // '-' requires a width
2984            if (width == -1 && f.contains(Flags.LEFT_JUSTIFY))
2985                throw new MissingFormatWidthException(toString());
2986            checkBadFlags(Flags.PLUS, Flags.LEADING_SPACE, Flags.ZERO_PAD,
2987                          Flags.GROUP, Flags.PARENTHESES);
2988        }
2989
2990        private void checkDateTime() {
2991            if (precision != -1)
2992                throw new IllegalFormatPrecisionException(precision);
2993            if (!DateTime.isValid(c))
2994                throw new UnknownFormatConversionException("t" + c);
2995            checkBadFlags(Flags.ALTERNATE, Flags.PLUS, Flags.LEADING_SPACE,
2996                          Flags.ZERO_PAD, Flags.GROUP, Flags.PARENTHESES);
2997            // '-' requires a width
2998            if (width == -1 && f.contains(Flags.LEFT_JUSTIFY))
2999                throw new MissingFormatWidthException(toString());
3000        }
3001
3002        private void checkCharacter() {
3003            if (precision != -1)
3004                throw new IllegalFormatPrecisionException(precision);
3005            checkBadFlags(Flags.ALTERNATE, Flags.PLUS, Flags.LEADING_SPACE,
3006                          Flags.ZERO_PAD, Flags.GROUP, Flags.PARENTHESES);
3007            // '-' requires a width
3008            if (width == -1 && f.contains(Flags.LEFT_JUSTIFY))
3009                throw new MissingFormatWidthException(toString());
3010        }
3011
3012        private void checkInteger() {
3013            checkNumeric();
3014            if (precision != -1)
3015                throw new IllegalFormatPrecisionException(precision);
3016
3017            if (c == Conversion.DECIMAL_INTEGER)
3018                checkBadFlags(Flags.ALTERNATE);
3019            else if (c == Conversion.OCTAL_INTEGER)
3020                checkBadFlags(Flags.GROUP);
3021            else
3022                checkBadFlags(Flags.GROUP);
3023        }
3024
3025        private void checkBadFlags(Flags ... badFlags) {
3026            for (int i = 0; i < badFlags.length; i++)
3027                if (f.contains(badFlags[i]))
3028                    failMismatch(badFlags[i], c);
3029        }
3030
3031        private void checkFloat() {
3032            checkNumeric();
3033            if (c == Conversion.DECIMAL_FLOAT) {
3034            } else if (c == Conversion.HEXADECIMAL_FLOAT) {
3035                checkBadFlags(Flags.PARENTHESES, Flags.GROUP);
3036            } else if (c == Conversion.SCIENTIFIC) {
3037                checkBadFlags(Flags.GROUP);
3038            } else if (c == Conversion.GENERAL) {
3039                checkBadFlags(Flags.ALTERNATE);
3040            }
3041        }
3042
3043        private void checkNumeric() {
3044            if (width != -1 && width < 0)
3045                throw new IllegalFormatWidthException(width);
3046
3047            if (precision != -1 && precision < 0)
3048                throw new IllegalFormatPrecisionException(precision);
3049
3050            // '-' and '0' require a width
3051            if (width == -1
3052                && (f.contains(Flags.LEFT_JUSTIFY) || f.contains(Flags.ZERO_PAD)))
3053                throw new MissingFormatWidthException(toString());
3054
3055            // bad combination
3056            if ((f.contains(Flags.PLUS) && f.contains(Flags.LEADING_SPACE))
3057                || (f.contains(Flags.LEFT_JUSTIFY) && f.contains(Flags.ZERO_PAD)))
3058                throw new IllegalFormatFlagsException(f.toString());
3059        }
3060
3061        private void checkText() {
3062            if (precision != -1)
3063                throw new IllegalFormatPrecisionException(precision);
3064            switch (c) {
3065            case Conversion.PERCENT_SIGN:
3066                if (f.valueOf() != Flags.LEFT_JUSTIFY.valueOf()
3067                    && f.valueOf() != Flags.NONE.valueOf())
3068                    throw new IllegalFormatFlagsException(f.toString());
3069                // '-' requires a width
3070                if (width == -1 && f.contains(Flags.LEFT_JUSTIFY))
3071                    throw new MissingFormatWidthException(toString());
3072                break;
3073            case Conversion.LINE_SEPARATOR:
3074                if (width != -1)
3075                    throw new IllegalFormatWidthException(width);
3076                if (f.valueOf() != Flags.NONE.valueOf())
3077                    throw new IllegalFormatFlagsException(f.toString());
3078                break;
3079            default:
3080                assert false;
3081            }
3082        }
3083
3084        private void print(byte value, Locale l) throws IOException {
3085            long v = value;
3086            if (value < 0
3087                && (c == Conversion.OCTAL_INTEGER
3088                    || c == Conversion.HEXADECIMAL_INTEGER)) {
3089                v += (1L << 8);
3090                assert v >= 0 : v;
3091            }
3092            print(v, l);
3093        }
3094
3095        private void print(short value, Locale l) throws IOException {
3096            long v = value;
3097            if (value < 0
3098                && (c == Conversion.OCTAL_INTEGER
3099                    || c == Conversion.HEXADECIMAL_INTEGER)) {
3100                v += (1L << 16);
3101                assert v >= 0 : v;
3102            }
3103            print(v, l);
3104        }
3105
3106        private void print(int value, Locale l) throws IOException {
3107            long v = value;
3108            if (value < 0
3109                && (c == Conversion.OCTAL_INTEGER
3110                    || c == Conversion.HEXADECIMAL_INTEGER)) {
3111                v += (1L << 32);
3112                assert v >= 0 : v;
3113            }
3114            print(v, l);
3115        }
3116
3117        private void print(long value, Locale l) throws IOException {
3118
3119            StringBuilder sb = new StringBuilder();
3120
3121            if (c == Conversion.DECIMAL_INTEGER) {
3122                boolean neg = value < 0;
3123                char[] va;
3124                if (value < 0)
3125                    va = Long.toString(value, 10).substring(1).toCharArray();
3126                else
3127                    va = Long.toString(value, 10).toCharArray();
3128
3129                // leading sign indicator
3130                leadingSign(sb, neg);
3131
3132                // the value
3133                localizedMagnitude(sb, va, f, adjustWidth(width, f, neg), l);
3134
3135                // trailing sign indicator
3136                trailingSign(sb, neg);
3137            } else if (c == Conversion.OCTAL_INTEGER) {
3138                checkBadFlags(Flags.PARENTHESES, Flags.LEADING_SPACE,
3139                              Flags.PLUS);
3140                String s = Long.toOctalString(value);
3141                int len = (f.contains(Flags.ALTERNATE)
3142                           ? s.length() + 1
3143                           : s.length());
3144
3145                // apply ALTERNATE (radix indicator for octal) before ZERO_PAD
3146                if (f.contains(Flags.ALTERNATE))
3147                    sb.append('0');
3148                if (f.contains(Flags.ZERO_PAD))
3149                    for (int i = 0; i < width - len; i++) sb.append('0');
3150                sb.append(s);
3151            } else if (c == Conversion.HEXADECIMAL_INTEGER) {
3152                checkBadFlags(Flags.PARENTHESES, Flags.LEADING_SPACE,
3153                              Flags.PLUS);
3154                String s = Long.toHexString(value);
3155                int len = (f.contains(Flags.ALTERNATE)
3156                           ? s.length() + 2
3157                           : s.length());
3158
3159                // apply ALTERNATE (radix indicator for hex) before ZERO_PAD
3160                if (f.contains(Flags.ALTERNATE))
3161                    sb.append(f.contains(Flags.UPPERCASE) ? "0X" : "0x");
3162                if (f.contains(Flags.ZERO_PAD))
3163                    for (int i = 0; i < width - len; i++) sb.append('0');
3164                if (f.contains(Flags.UPPERCASE))
3165                    s = s.toUpperCase();
3166                sb.append(s);
3167            }
3168
3169            // justify based on width
3170            a.append(justify(sb.toString()));
3171        }
3172
3173        // neg := val < 0
3174        private StringBuilder leadingSign(StringBuilder sb, boolean neg) {
3175            if (!neg) {
3176                if (f.contains(Flags.PLUS)) {
3177                    sb.append('+');
3178                } else if (f.contains(Flags.LEADING_SPACE)) {
3179                    sb.append(' ');
3180                }
3181            } else {
3182                if (f.contains(Flags.PARENTHESES))
3183                    sb.append('(');
3184                else
3185                    sb.append('-');
3186            }
3187            return sb;
3188        }
3189
3190        // neg := val < 0
3191        private StringBuilder trailingSign(StringBuilder sb, boolean neg) {
3192            if (neg && f.contains(Flags.PARENTHESES))
3193                sb.append(')');
3194            return sb;
3195        }
3196
3197        private void print(BigInteger value, Locale l) throws IOException {
3198            StringBuilder sb = new StringBuilder();
3199            boolean neg = value.signum() == -1;
3200            BigInteger v = value.abs();
3201
3202            // leading sign indicator
3203            leadingSign(sb, neg);
3204
3205            // the value
3206            if (c == Conversion.DECIMAL_INTEGER) {
3207                char[] va = v.toString().toCharArray();
3208                localizedMagnitude(sb, va, f, adjustWidth(width, f, neg), l);
3209            } else if (c == Conversion.OCTAL_INTEGER) {
3210                String s = v.toString(8);
3211
3212                int len = s.length() + sb.length();
3213                if (neg && f.contains(Flags.PARENTHESES))
3214                    len++;
3215
3216                // apply ALTERNATE (radix indicator for octal) before ZERO_PAD
3217                if (f.contains(Flags.ALTERNATE)) {
3218                    len++;
3219                    sb.append('0');
3220                }
3221                if (f.contains(Flags.ZERO_PAD)) {
3222                    for (int i = 0; i < width - len; i++)
3223                        sb.append('0');
3224                }
3225                sb.append(s);
3226            } else if (c == Conversion.HEXADECIMAL_INTEGER) {
3227                String s = v.toString(16);
3228
3229                int len = s.length() + sb.length();
3230                if (neg && f.contains(Flags.PARENTHESES))
3231                    len++;
3232
3233                // apply ALTERNATE (radix indicator for hex) before ZERO_PAD
3234                if (f.contains(Flags.ALTERNATE)) {
3235                    len += 2;
3236                    sb.append(f.contains(Flags.UPPERCASE) ? "0X" : "0x");
3237                }
3238                if (f.contains(Flags.ZERO_PAD))
3239                    for (int i = 0; i < width - len; i++)
3240                        sb.append('0');
3241                if (f.contains(Flags.UPPERCASE))
3242                    s = s.toUpperCase();
3243                sb.append(s);
3244            }
3245
3246            // trailing sign indicator
3247            trailingSign(sb, (value.signum() == -1));
3248
3249            // justify based on width
3250            a.append(justify(sb.toString()));
3251        }
3252
3253        private void print(float value, Locale l) throws IOException {
3254            print((double) value, l);
3255        }
3256
3257        private void print(double value, Locale l) throws IOException {
3258            StringBuilder sb = new StringBuilder();
3259            boolean neg = Double.compare(value, 0.0) == -1;
3260
3261            if (!Double.isNaN(value)) {
3262                double v = Math.abs(value);
3263
3264                // leading sign indicator
3265                leadingSign(sb, neg);
3266
3267                // the value
3268                if (!Double.isInfinite(v))
3269                    print(sb, v, l, f, c, precision, neg);
3270                else
3271                    sb.append(f.contains(Flags.UPPERCASE)
3272                              ? "INFINITY" : "Infinity");
3273
3274                // trailing sign indicator
3275                trailingSign(sb, neg);
3276            } else {
3277                sb.append(f.contains(Flags.UPPERCASE) ? "NAN" : "NaN");
3278            }
3279
3280            // justify based on width
3281            a.append(justify(sb.toString()));
3282        }
3283
3284        // !Double.isInfinite(value) && !Double.isNaN(value)
3285        private void print(StringBuilder sb, double value, Locale l,
3286                           Flags f, char c, int precision, boolean neg)
3287            throws IOException
3288        {
3289            if (c == Conversion.SCIENTIFIC) {
3290                // Create a new FormattedFloatingDecimal with the desired
3291                // precision.
3292                int prec = (precision == -1 ? 6 : precision);
3293
3294                FormattedFloatingDecimal fd
3295                    = new FormattedFloatingDecimal(value, prec,
3296                        FormattedFloatingDecimal.Form.SCIENTIFIC);
3297
3298                char[] v = new char[MAX_FD_CHARS];
3299                int len = fd.getChars(v);
3300
3301                char[] mant = addZeros(mantissa(v, len), prec);
3302
3303                // If the precision is zero and the '#' flag is set, add the
3304                // requested decimal point.
3305                if (f.contains(Flags.ALTERNATE) && (prec == 0))
3306                    mant = addDot(mant);
3307
3308                char[] exp = (value == 0.0)
3309                    ? new char[] {'+','0','0'} : exponent(v, len);
3310
3311                int newW = width;
3312                if (width != -1)
3313                    newW = adjustWidth(width - exp.length - 1, f, neg);
3314                localizedMagnitude(sb, mant, f, newW, l);
3315
3316                sb.append(f.contains(Flags.UPPERCASE) ? 'E' : 'e');
3317
3318                Flags flags = f.dup().remove(Flags.GROUP);
3319                char sign = exp[0];
3320                assert(sign == '+' || sign == '-');
3321                sb.append(sign);
3322
3323                char[] tmp = new char[exp.length - 1];
3324                System.arraycopy(exp, 1, tmp, 0, exp.length - 1);
3325                sb.append(localizedMagnitude(null, tmp, flags, -1, l));
3326            } else if (c == Conversion.DECIMAL_FLOAT) {
3327                // Create a new FormattedFloatingDecimal with the desired
3328                // precision.
3329                int prec = (precision == -1 ? 6 : precision);
3330
3331                FormattedFloatingDecimal fd
3332                    = new FormattedFloatingDecimal(value, prec,
3333                        FormattedFloatingDecimal.Form.DECIMAL_FLOAT);
3334
3335                // MAX_FD_CHARS + 1 (round?)
3336                char[] v = new char[MAX_FD_CHARS + 1
3337                                   + Math.abs(fd.getExponent())];
3338                int len = fd.getChars(v);
3339
3340                char[] mant = addZeros(mantissa(v, len), prec);
3341
3342                // If the precision is zero and the '#' flag is set, add the
3343                // requested decimal point.
3344                if (f.contains(Flags.ALTERNATE) && (prec == 0))
3345                    mant = addDot(mant);
3346
3347                int newW = width;
3348                if (width != -1)
3349                    newW = adjustWidth(width, f, neg);
3350                localizedMagnitude(sb, mant, f, newW, l);
3351            } else if (c == Conversion.GENERAL) {
3352                int prec = precision;
3353                if (precision == -1)
3354                    prec = 6;
3355                else if (precision == 0)
3356                    prec = 1;
3357
3358                FormattedFloatingDecimal fd
3359                    = new FormattedFloatingDecimal(value, prec,
3360                        FormattedFloatingDecimal.Form.GENERAL);
3361
3362                // MAX_FD_CHARS + 1 (round?)
3363                char[] v = new char[MAX_FD_CHARS + 1
3364                                   + Math.abs(fd.getExponent())];
3365                int len = fd.getChars(v);
3366
3367                char[] exp = exponent(v, len);
3368                if (exp != null) {
3369                    prec -= 1;
3370                } else {
3371                    prec = prec - (value == 0 ? 0 : fd.getExponentRounded()) - 1;
3372                }
3373
3374                char[] mant = addZeros(mantissa(v, len), prec);
3375                // If the precision is zero and the '#' flag is set, add the
3376                // requested decimal point.
3377                if (f.contains(Flags.ALTERNATE) && (prec == 0))
3378                    mant = addDot(mant);
3379
3380                int newW = width;
3381                if (width != -1) {
3382                    if (exp != null)
3383                        newW = adjustWidth(width - exp.length - 1, f, neg);
3384                    else
3385                        newW = adjustWidth(width, f, neg);
3386                }
3387                localizedMagnitude(sb, mant, f, newW, l);
3388
3389                if (exp != null) {
3390                    sb.append(f.contains(Flags.UPPERCASE) ? 'E' : 'e');
3391
3392                    Flags flags = f.dup().remove(Flags.GROUP);
3393                    char sign = exp[0];
3394                    assert(sign == '+' || sign == '-');
3395                    sb.append(sign);
3396
3397                    char[] tmp = new char[exp.length - 1];
3398                    System.arraycopy(exp, 1, tmp, 0, exp.length - 1);
3399                    sb.append(localizedMagnitude(null, tmp, flags, -1, l));
3400                }
3401            } else if (c == Conversion.HEXADECIMAL_FLOAT) {
3402                int prec = precision;
3403                if (precision == -1)
3404                    // assume that we want all of the digits
3405                    prec = 0;
3406                else if (precision == 0)
3407                    prec = 1;
3408
3409                String s = hexDouble(value, prec);
3410
3411                char[] va;
3412                boolean upper = f.contains(Flags.UPPERCASE);
3413                sb.append(upper ? "0X" : "0x");
3414
3415                if (f.contains(Flags.ZERO_PAD))
3416                    for (int i = 0; i < width - s.length() - 2; i++)
3417                        sb.append('0');
3418
3419                int idx = s.indexOf('p');
3420                va = s.substring(0, idx).toCharArray();
3421                if (upper) {
3422                    String tmp = new String(va);
3423                    // don't localize hex
3424                    tmp = tmp.toUpperCase(Locale.US);
3425                    va = tmp.toCharArray();
3426                }
3427                sb.append(prec != 0 ? addZeros(va, prec) : va);
3428                sb.append(upper ? 'P' : 'p');
3429                sb.append(s.substring(idx+1));
3430            }
3431        }
3432
3433        private char[] mantissa(char[] v, int len) {
3434            int i;
3435            for (i = 0; i < len; i++) {
3436                if (v[i] == 'e')
3437                    break;
3438            }
3439            char[] tmp = new char[i];
3440            System.arraycopy(v, 0, tmp, 0, i);
3441            return tmp;
3442        }
3443
3444        private char[] exponent(char[] v, int len) {
3445            int i;
3446            for (i = len - 1; i >= 0; i--) {
3447                if (v[i] == 'e')
3448                    break;
3449            }
3450            if (i == -1)
3451                return null;
3452            char[] tmp = new char[len - i - 1];
3453            System.arraycopy(v, i + 1, tmp, 0, len - i - 1);
3454            return tmp;
3455        }
3456
3457        // Add zeros to the requested precision.
3458        private char[] addZeros(char[] v, int prec) {
3459            // Look for the dot.  If we don't find one, the we'll need to add
3460            // it before we add the zeros.
3461            int i;
3462            for (i = 0; i < v.length; i++) {
3463                if (v[i] == '.')
3464                    break;
3465            }
3466            boolean needDot = false;
3467            if (i == v.length) {
3468                needDot = true;
3469            }
3470
3471            // Determine existing precision.
3472            int outPrec = v.length - i - (needDot ? 0 : 1);
3473            assert (outPrec <= prec);
3474            if (outPrec == prec)
3475                return v;
3476
3477            // Create new array with existing contents.
3478            char[] tmp
3479                = new char[v.length + prec - outPrec + (needDot ? 1 : 0)];
3480            System.arraycopy(v, 0, tmp, 0, v.length);
3481
3482            // Add dot if previously determined to be necessary.
3483            int start = v.length;
3484            if (needDot) {
3485                tmp[v.length] = '.';
3486                start++;
3487            }
3488
3489            // Add zeros.
3490            for (int j = start; j < tmp.length; j++)
3491                tmp[j] = '0';
3492
3493            return tmp;
3494        }
3495
3496        // Method assumes that d > 0.
3497        private String hexDouble(double d, int prec) {
3498            // Let Double.toHexString handle simple cases
3499            if(!FpUtils.isFinite(d) || d == 0.0 || prec == 0 || prec >= 13)
3500                // remove "0x"
3501                return Double.toHexString(d).substring(2);
3502            else {
3503                assert(prec >= 1 && prec <= 12);
3504
3505                int exponent  = FpUtils.getExponent(d);
3506                boolean subnormal
3507                    = (exponent == DoubleConsts.MIN_EXPONENT - 1);
3508
3509                // If this is subnormal input so normalize (could be faster to
3510                // do as integer operation).
3511                if (subnormal) {
3512                    scaleUp = FpUtils.scalb(1.0, 54);
3513                    d *= scaleUp;
3514                    // Calculate the exponent.  This is not just exponent + 54
3515                    // since the former is not the normalized exponent.
3516                    exponent = FpUtils.getExponent(d);
3517                    assert exponent >= DoubleConsts.MIN_EXPONENT &&
3518                        exponent <= DoubleConsts.MAX_EXPONENT: exponent;
3519                }
3520
3521                int precision = 1 + prec*4;
3522                int shiftDistance
3523                    =  DoubleConsts.SIGNIFICAND_WIDTH - precision;
3524                assert(shiftDistance >= 1 && shiftDistance < DoubleConsts.SIGNIFICAND_WIDTH);
3525
3526                long doppel = Double.doubleToLongBits(d);
3527                // Deterime the number of bits to keep.
3528                long newSignif
3529                    = (doppel & (DoubleConsts.EXP_BIT_MASK
3530                                 | DoubleConsts.SIGNIF_BIT_MASK))
3531                                     >> shiftDistance;
3532                // Bits to round away.
3533                long roundingBits = doppel & ~(~0L << shiftDistance);
3534
3535                // To decide how to round, look at the low-order bit of the
3536                // working significand, the highest order discarded bit (the
3537                // round bit) and whether any of the lower order discarded bits
3538                // are nonzero (the sticky bit).
3539
3540                boolean leastZero = (newSignif & 0x1L) == 0L;
3541                boolean round
3542                    = ((1L << (shiftDistance - 1) ) & roundingBits) != 0L;
3543                boolean sticky  = shiftDistance > 1 &&
3544                    (~(1L<< (shiftDistance - 1)) & roundingBits) != 0;
3545                if((leastZero && round && sticky) || (!leastZero && round)) {
3546                    newSignif++;
3547                }
3548
3549                long signBit = doppel & DoubleConsts.SIGN_BIT_MASK;
3550                newSignif = signBit | (newSignif << shiftDistance);
3551                double result = Double.longBitsToDouble(newSignif);
3552
3553                if (Double.isInfinite(result) ) {
3554                    // Infinite result generated by rounding
3555                    return "1.0p1024";
3556                } else {
3557                    String res = Double.toHexString(result).substring(2);
3558                    if (!subnormal)
3559                        return res;
3560                    else {
3561                        // Create a normalized subnormal string.
3562                        int idx = res.indexOf('p');
3563                        if (idx == -1) {
3564                            // No 'p' character in hex string.
3565                            assert false;
3566                            return null;
3567                        } else {
3568                            // Get exponent and append at the end.
3569                            String exp = res.substring(idx + 1);
3570                            int iexp = Integer.parseInt(exp) -54;
3571                            return res.substring(0, idx) + "p"
3572                                + Integer.toString(iexp);
3573                        }
3574                    }
3575                }
3576            }
3577        }
3578
3579        private void print(BigDecimal value, Locale l) throws IOException {
3580            if (c == Conversion.HEXADECIMAL_FLOAT)
3581                failConversion(c, value);
3582            StringBuilder sb = new StringBuilder();
3583            boolean neg = value.signum() == -1;
3584            BigDecimal v = value.abs();
3585            // leading sign indicator
3586            leadingSign(sb, neg);
3587
3588            // the value
3589            print(sb, v, l, f, c, precision, neg);
3590
3591            // trailing sign indicator
3592            trailingSign(sb, neg);
3593
3594            // justify based on width
3595            a.append(justify(sb.toString()));
3596        }
3597
3598        // value > 0
3599        private void print(StringBuilder sb, BigDecimal value, Locale l,
3600                           Flags f, char c, int precision, boolean neg)
3601            throws IOException
3602        {
3603            if (c == Conversion.SCIENTIFIC) {
3604                // Create a new BigDecimal with the desired precision.
3605                int prec = (precision == -1 ? 6 : precision);
3606                int scale = value.scale();
3607                int origPrec = value.precision();
3608                int nzeros = 0;
3609                int compPrec;
3610
3611                if (prec > origPrec - 1) {
3612                    compPrec = origPrec;
3613                    nzeros = prec - (origPrec - 1);
3614                } else {
3615                    compPrec = prec + 1;
3616                }
3617
3618                MathContext mc = new MathContext(compPrec);
3619                BigDecimal v
3620                    = new BigDecimal(value.unscaledValue(), scale, mc);
3621
3622                BigDecimalLayout bdl
3623                    = new BigDecimalLayout(v.unscaledValue(), v.scale(),
3624                                           BigDecimalLayoutForm.SCIENTIFIC);
3625
3626                char[] mant = bdl.mantissa();
3627
3628                // Add a decimal point if necessary.  The mantissa may not
3629                // contain a decimal point if the scale is zero (the internal
3630                // representation has no fractional part) or the original
3631                // precision is one. Append a decimal point if '#' is set or if
3632                // we require zero padding to get to the requested precision.
3633                if ((origPrec == 1 || !bdl.hasDot())
3634                    && (nzeros > 0 || (f.contains(Flags.ALTERNATE))))
3635                    mant = addDot(mant);
3636
3637                // Add trailing zeros in the case precision is greater than
3638                // the number of available digits after the decimal separator.
3639                mant = trailingZeros(mant, nzeros);
3640
3641                char[] exp = bdl.exponent();
3642                int newW = width;
3643                if (width != -1)
3644                    newW = adjustWidth(width - exp.length - 1, f, neg);
3645                localizedMagnitude(sb, mant, f, newW, l);
3646
3647                sb.append(f.contains(Flags.UPPERCASE) ? 'E' : 'e');
3648
3649                Flags flags = f.dup().remove(Flags.GROUP);
3650                char sign = exp[0];
3651                assert(sign == '+' || sign == '-');
3652                sb.append(exp[0]);
3653
3654                char[] tmp = new char[exp.length - 1];
3655                System.arraycopy(exp, 1, tmp, 0, exp.length - 1);
3656                sb.append(localizedMagnitude(null, tmp, flags, -1, l));
3657            } else if (c == Conversion.DECIMAL_FLOAT) {
3658                // Create a new BigDecimal with the desired precision.
3659                int prec = (precision == -1 ? 6 : precision);
3660                int scale = value.scale();
3661
3662                if (scale > prec) {
3663                    // more "scale" digits than the requested "precision"
3664                    int compPrec = value.precision();
3665                    if (compPrec <= scale) {
3666                        // case of 0.xxxxxx
3667                        value = value.setScale(prec, RoundingMode.HALF_UP);
3668                    } else {
3669                        compPrec -= (scale - prec);
3670                        value = new BigDecimal(value.unscaledValue(),
3671                                               scale,
3672                                               new MathContext(compPrec));
3673                    }
3674                }
3675                BigDecimalLayout bdl = new BigDecimalLayout(
3676                                           value.unscaledValue(),
3677                                           value.scale(),
3678                                           BigDecimalLayoutForm.DECIMAL_FLOAT);
3679
3680                char mant[] = bdl.mantissa();
3681                int nzeros = (bdl.scale() < prec ? prec - bdl.scale() : 0);
3682
3683                // Add a decimal point if necessary.  The mantissa may not
3684                // contain a decimal point if the scale is zero (the internal
3685                // representation has no fractional part).  Append a decimal
3686                // point if '#' is set or we require zero padding to get to the
3687                // requested precision.
3688                if (bdl.scale() == 0 && (f.contains(Flags.ALTERNATE) || nzeros > 0))
3689                    mant = addDot(bdl.mantissa());
3690
3691                // Add trailing zeros if the precision is greater than the
3692                // number of available digits after the decimal separator.
3693                mant = trailingZeros(mant, nzeros);
3694
3695                localizedMagnitude(sb, mant, f, adjustWidth(width, f, neg), l);
3696            } else if (c == Conversion.GENERAL) {
3697                int prec = precision;
3698                if (precision == -1)
3699                    prec = 6;
3700                else if (precision == 0)
3701                    prec = 1;
3702
3703                BigDecimal tenToTheNegFour = BigDecimal.valueOf(1, 4);
3704                BigDecimal tenToThePrec = BigDecimal.valueOf(1, -prec);
3705                if ((value.equals(BigDecimal.ZERO))
3706                    || ((value.compareTo(tenToTheNegFour) != -1)
3707                        && (value.compareTo(tenToThePrec) == -1))) {
3708
3709                    int e = - value.scale()
3710                        + (value.unscaledValue().toString().length() - 1);
3711
3712                    // xxx.yyy
3713                    //   g precision (# sig digits) = #x + #y
3714                    //   f precision = #y
3715                    //   exponent = #x - 1
3716                    // => f precision = g precision - exponent - 1
3717                    // 0.000zzz
3718                    //   g precision (# sig digits) = #z
3719                    //   f precision = #0 (after '.') + #z
3720                    //   exponent = - #0 (after '.') - 1
3721                    // => f precision = g precision - exponent - 1
3722                    prec = prec - e - 1;
3723
3724                    print(sb, value, l, f, Conversion.DECIMAL_FLOAT, prec,
3725                          neg);
3726                } else {
3727                    print(sb, value, l, f, Conversion.SCIENTIFIC, prec - 1, neg);
3728                }
3729            } else if (c == Conversion.HEXADECIMAL_FLOAT) {
3730                // This conversion isn't supported.  The error should be
3731                // reported earlier.
3732                assert false;
3733            }
3734        }
3735
3736        private class BigDecimalLayout {
3737            private StringBuilder mant;
3738            private StringBuilder exp;
3739            private boolean dot = false;
3740            private int scale;
3741
3742            public BigDecimalLayout(BigInteger intVal, int scale, BigDecimalLayoutForm form) {
3743                layout(intVal, scale, form);
3744            }
3745
3746            public boolean hasDot() {
3747                return dot;
3748            }
3749
3750            public int scale() {
3751                return scale;
3752            }
3753
3754            // char[] with canonical string representation
3755            public char[] layoutChars() {
3756                StringBuilder sb = new StringBuilder(mant);
3757                if (exp != null) {
3758                    sb.append('E');
3759                    sb.append(exp);
3760                }
3761                return toCharArray(sb);
3762            }
3763
3764            public char[] mantissa() {
3765                return toCharArray(mant);
3766            }
3767
3768            // The exponent will be formatted as a sign ('+' or '-') followed
3769            // by the exponent zero-padded to include at least two digits.
3770            public char[] exponent() {
3771                return toCharArray(exp);
3772            }
3773
3774            private char[] toCharArray(StringBuilder sb) {
3775                if (sb == null)
3776                    return null;
3777                char[] result = new char[sb.length()];
3778                sb.getChars(0, result.length, result, 0);
3779                return result;
3780            }
3781
3782            private void layout(BigInteger intVal, int scale, BigDecimalLayoutForm form) {
3783                char coeff[] = intVal.toString().toCharArray();
3784                this.scale = scale;
3785
3786                // Construct a buffer, with sufficient capacity for all cases.
3787                // If E-notation is needed, length will be: +1 if negative, +1
3788                // if '.' needed, +2 for "E+", + up to 10 for adjusted
3789                // exponent.  Otherwise it could have +1 if negative, plus
3790                // leading "0.00000"
3791                mant = new StringBuilder(coeff.length + 14);
3792
3793                if (scale == 0) {
3794                    int len = coeff.length;
3795                    if (len > 1) {
3796                        mant.append(coeff[0]);
3797                        if (form == BigDecimalLayoutForm.SCIENTIFIC) {
3798                            mant.append('.');
3799                            dot = true;
3800                            mant.append(coeff, 1, len - 1);
3801                            exp = new StringBuilder("+");
3802                            if (len < 10)
3803                                exp.append("0").append(len - 1);
3804                            else
3805                                exp.append(len - 1);
3806                        } else {
3807                            mant.append(coeff, 1, len - 1);
3808                        }
3809                    } else {
3810                        mant.append(coeff);
3811                        if (form == BigDecimalLayoutForm.SCIENTIFIC)
3812                            exp = new StringBuilder("+00");
3813                    }
3814                    return;
3815                }
3816                long adjusted = -(long) scale + (coeff.length - 1);
3817                if (form == BigDecimalLayoutForm.DECIMAL_FLOAT) {
3818                    // count of padding zeros
3819                    int pad = scale - coeff.length;
3820                    if (pad >= 0) {
3821                        // 0.xxx form
3822                        mant.append("0.");
3823                        dot = true;
3824                        for (; pad > 0 ; pad--) mant.append('0');
3825                        mant.append(coeff);
3826                    } else {
3827                        if (-pad < coeff.length) {
3828                            // xx.xx form
3829                            mant.append(coeff, 0, -pad);
3830                            mant.append('.');
3831                            dot = true;
3832                            mant.append(coeff, -pad, scale);
3833                        } else {
3834                            // xx form
3835                            mant.append(coeff, 0, coeff.length);
3836                            for (int i = 0; i < -scale; i++)
3837                                mant.append('0');
3838                            this.scale = 0;
3839                        }
3840                    }
3841                } else {
3842                    // x.xxx form
3843                    mant.append(coeff[0]);
3844                    if (coeff.length > 1) {
3845                        mant.append('.');
3846                        dot = true;
3847                        mant.append(coeff, 1, coeff.length-1);
3848                    }
3849                    exp = new StringBuilder();
3850                    if (adjusted != 0) {
3851                        long abs = Math.abs(adjusted);
3852                        // require sign
3853                        exp.append(adjusted < 0 ? '-' : '+');
3854                        if (abs < 10)
3855                            exp.append('0');
3856                        exp.append(abs);
3857                    } else {
3858                        exp.append("+00");
3859                    }
3860                }
3861            }
3862        }
3863
3864        private int adjustWidth(int width, Flags f, boolean neg) {
3865            int newW = width;
3866            if (newW != -1 && neg && f.contains(Flags.PARENTHESES))
3867                newW--;
3868            return newW;
3869        }
3870
3871        // Add a '.' to th mantissa if required
3872        private char[] addDot(char[] mant) {
3873            char[] tmp = mant;
3874            tmp = new char[mant.length + 1];
3875            System.arraycopy(mant, 0, tmp, 0, mant.length);
3876            tmp[tmp.length - 1] = '.';
3877            return tmp;
3878        }
3879
3880        // Add trailing zeros in the case precision is greater than the number
3881        // of available digits after the decimal separator.
3882        private char[] trailingZeros(char[] mant, int nzeros) {
3883            char[] tmp = mant;
3884            if (nzeros > 0) {
3885                tmp = new char[mant.length + nzeros];
3886                System.arraycopy(mant, 0, tmp, 0, mant.length);
3887                for (int i = mant.length; i < tmp.length; i++)
3888                    tmp[i] = '0';
3889            }
3890            return tmp;
3891        }
3892
3893        private void print(Calendar t, char c, Locale l)  throws IOException
3894        {
3895            StringBuilder sb = new StringBuilder();
3896            print(sb, t, c, l);
3897
3898            // justify based on width
3899            String s = justify(sb.toString());
3900            if (f.contains(Flags.UPPERCASE))
3901                s = s.toUpperCase();
3902
3903            a.append(s);
3904        }
3905
3906        private Appendable print(StringBuilder sb, Calendar t, char c,
3907                                 Locale l)
3908            throws IOException
3909        {
3910            assert(width == -1);
3911            if (sb == null)
3912                sb = new StringBuilder();
3913            switch (c) {
3914            case DateTime.HOUR_OF_DAY_0: // 'H' (00 - 23)
3915            case DateTime.HOUR_0:        // 'I' (01 - 12)
3916            case DateTime.HOUR_OF_DAY:   // 'k' (0 - 23) -- like H
3917            case DateTime.HOUR:        { // 'l' (1 - 12) -- like I
3918                int i = t.get(Calendar.HOUR_OF_DAY);
3919                if (c == DateTime.HOUR_0 || c == DateTime.HOUR)
3920                    i = (i == 0 || i == 12 ? 12 : i % 12);
3921                Flags flags = (c == DateTime.HOUR_OF_DAY_0
3922                               || c == DateTime.HOUR_0
3923                               ? Flags.ZERO_PAD
3924                               : Flags.NONE);
3925                sb.append(localizedMagnitude(null, i, flags, 2, l));
3926                break;
3927            }
3928            case DateTime.MINUTE:      { // 'M' (00 - 59)
3929                int i = t.get(Calendar.MINUTE);
3930                Flags flags = Flags.ZERO_PAD;
3931                sb.append(localizedMagnitude(null, i, flags, 2, l));
3932                break;
3933            }
3934            case DateTime.NANOSECOND:  { // 'N' (000000000 - 999999999)
3935                int i = t.get(Calendar.MILLISECOND) * 1000000;
3936                Flags flags = Flags.ZERO_PAD;
3937                sb.append(localizedMagnitude(null, i, flags, 9, l));
3938                break;
3939            }
3940            case DateTime.MILLISECOND: { // 'L' (000 - 999)
3941                int i = t.get(Calendar.MILLISECOND);
3942                Flags flags = Flags.ZERO_PAD;
3943                sb.append(localizedMagnitude(null, i, flags, 3, l));
3944                break;
3945            }
3946            case DateTime.MILLISECOND_SINCE_EPOCH: { // 'Q' (0 - 99...?)
3947                long i = t.getTimeInMillis();
3948                Flags flags = Flags.NONE;
3949                sb.append(localizedMagnitude(null, i, flags, width, l));
3950                break;
3951            }
3952            case DateTime.AM_PM:       { // 'p' (am or pm)
3953                // Calendar.AM = 0, Calendar.PM = 1, LocaleElements defines upper
3954                String[] ampm = { "AM", "PM" };
3955                if (l != null && l != Locale.US) {
3956                    DateFormatSymbols dfs = DateFormatSymbols.getInstance(l);
3957                    ampm = dfs.getAmPmStrings();
3958                }
3959                String s = ampm[t.get(Calendar.AM_PM)];
3960                sb.append(s.toLowerCase(l != null ? l : Locale.US));
3961                break;
3962            }
3963            case DateTime.SECONDS_SINCE_EPOCH: { // 's' (0 - 99...?)
3964                long i = t.getTimeInMillis() / 1000;
3965                Flags flags = Flags.NONE;
3966                sb.append(localizedMagnitude(null, i, flags, width, l));
3967                break;
3968            }
3969            case DateTime.SECOND:      { // 'S' (00 - 60 - leap second)
3970                int i = t.get(Calendar.SECOND);
3971                Flags flags = Flags.ZERO_PAD;
3972                sb.append(localizedMagnitude(null, i, flags, 2, l));
3973                break;
3974            }
3975            case DateTime.ZONE_NUMERIC: { // 'z' ({-|+}####) - ls minus?
3976                int i = t.get(Calendar.ZONE_OFFSET) + t.get(Calendar.DST_OFFSET);
3977                boolean neg = i < 0;
3978                sb.append(neg ? '-' : '+');
3979                if (neg)
3980                    i = -i;
3981                int min = i / 60000;
3982                // combine minute and hour into a single integer
3983                int offset = (min / 60) * 100 + (min % 60);
3984                Flags flags = Flags.ZERO_PAD;
3985
3986                sb.append(localizedMagnitude(null, offset, flags, 4, l));
3987                break;
3988            }
3989            case DateTime.ZONE:        { // 'Z' (symbol)
3990                TimeZone tz = t.getTimeZone();
3991                sb.append(tz.getDisplayName((t.get(Calendar.DST_OFFSET) != 0),
3992                                           TimeZone.SHORT,
3993                                            (l == null) ? Locale.US : l));
3994                break;
3995            }
3996
3997            // Date
3998            case DateTime.NAME_OF_DAY_ABBREV:     // 'a'
3999            case DateTime.NAME_OF_DAY:          { // 'A'
4000                int i = t.get(Calendar.DAY_OF_WEEK);
4001                Locale lt = ((l == null) ? Locale.US : l);
4002                DateFormatSymbols dfs = DateFormatSymbols.getInstance(lt);
4003                if (c == DateTime.NAME_OF_DAY)
4004                    sb.append(dfs.getWeekdays()[i]);
4005                else
4006                    sb.append(dfs.getShortWeekdays()[i]);
4007                break;
4008            }
4009            case DateTime.NAME_OF_MONTH_ABBREV:   // 'b'
4010            case DateTime.NAME_OF_MONTH_ABBREV_X: // 'h' -- same b
4011            case DateTime.NAME_OF_MONTH:        { // 'B'
4012                int i = t.get(Calendar.MONTH);
4013                Locale lt = ((l == null) ? Locale.US : l);
4014                DateFormatSymbols dfs = DateFormatSymbols.getInstance(lt);
4015                if (c == DateTime.NAME_OF_MONTH)
4016                    sb.append(dfs.getMonths()[i]);
4017                else
4018                    sb.append(dfs.getShortMonths()[i]);
4019                break;
4020            }
4021            case DateTime.CENTURY:                // 'C' (00 - 99)
4022            case DateTime.YEAR_2:                 // 'y' (00 - 99)
4023            case DateTime.YEAR_4:               { // 'Y' (0000 - 9999)
4024                int i = t.get(Calendar.YEAR);
4025                int size = 2;
4026                switch (c) {
4027                case DateTime.CENTURY:
4028                    i /= 100;
4029                    break;
4030                case DateTime.YEAR_2:
4031                    i %= 100;
4032                    break;
4033                case DateTime.YEAR_4:
4034                    size = 4;
4035                    break;
4036                }
4037                Flags flags = Flags.ZERO_PAD;
4038                sb.append(localizedMagnitude(null, i, flags, size, l));
4039                break;
4040            }
4041            case DateTime.DAY_OF_MONTH_0:         // 'd' (01 - 31)
4042            case DateTime.DAY_OF_MONTH:         { // 'e' (1 - 31) -- like d
4043                int i = t.get(Calendar.DATE);
4044                Flags flags = (c == DateTime.DAY_OF_MONTH_0
4045                               ? Flags.ZERO_PAD
4046                               : Flags.NONE);
4047                sb.append(localizedMagnitude(null, i, flags, 2, l));
4048                break;
4049            }
4050            case DateTime.DAY_OF_YEAR:          { // 'j' (001 - 366)
4051                int i = t.get(Calendar.DAY_OF_YEAR);
4052                Flags flags = Flags.ZERO_PAD;
4053                sb.append(localizedMagnitude(null, i, flags, 3, l));
4054                break;
4055            }
4056            case DateTime.MONTH:                { // 'm' (01 - 12)
4057                int i = t.get(Calendar.MONTH) + 1;
4058                Flags flags = Flags.ZERO_PAD;
4059                sb.append(localizedMagnitude(null, i, flags, 2, l));
4060                break;
4061            }
4062
4063            // Composites
4064            case DateTime.TIME:         // 'T' (24 hour hh:mm:ss - %tH:%tM:%tS)
4065            case DateTime.TIME_24_HOUR:    { // 'R' (hh:mm same as %H:%M)
4066                char sep = ':';
4067                print(sb, t, DateTime.HOUR_OF_DAY_0, l).append(sep);
4068                print(sb, t, DateTime.MINUTE, l);
4069                if (c == DateTime.TIME) {
4070                    sb.append(sep);
4071                    print(sb, t, DateTime.SECOND, l);
4072                }
4073                break;
4074            }
4075            case DateTime.TIME_12_HOUR:    { // 'r' (hh:mm:ss [AP]M)
4076                char sep = ':';
4077                print(sb, t, DateTime.HOUR_0, l).append(sep);
4078                print(sb, t, DateTime.MINUTE, l).append(sep);
4079                print(sb, t, DateTime.SECOND, l).append(' ');
4080                // this may be in wrong place for some locales
4081                StringBuilder tsb = new StringBuilder();
4082                print(tsb, t, DateTime.AM_PM, l);
4083                sb.append(tsb.toString().toUpperCase(l != null ? l : Locale.US));
4084                break;
4085            }
4086            case DateTime.DATE_TIME:    { // 'c' (Sat Nov 04 12:02:33 EST 1999)
4087                char sep = ' ';
4088                print(sb, t, DateTime.NAME_OF_DAY_ABBREV, l).append(sep);
4089                print(sb, t, DateTime.NAME_OF_MONTH_ABBREV, l).append(sep);
4090                print(sb, t, DateTime.DAY_OF_MONTH_0, l).append(sep);
4091                print(sb, t, DateTime.TIME, l).append(sep);
4092                print(sb, t, DateTime.ZONE, l).append(sep);
4093                print(sb, t, DateTime.YEAR_4, l);
4094                break;
4095            }
4096            case DateTime.DATE:            { // 'D' (mm/dd/yy)
4097                char sep = '/';
4098                print(sb, t, DateTime.MONTH, l).append(sep);
4099                print(sb, t, DateTime.DAY_OF_MONTH_0, l).append(sep);
4100                print(sb, t, DateTime.YEAR_2, l);
4101                break;
4102            }
4103            case DateTime.ISO_STANDARD_DATE: { // 'F' (%Y-%m-%d)
4104                char sep = '-';
4105                print(sb, t, DateTime.YEAR_4, l).append(sep);
4106                print(sb, t, DateTime.MONTH, l).append(sep);
4107                print(sb, t, DateTime.DAY_OF_MONTH_0, l);
4108                break;
4109            }
4110            default:
4111                assert false;
4112            }
4113            return sb;
4114        }
4115
4116        // -- Methods to support throwing exceptions --
4117
4118        private void failMismatch(Flags f, char c) {
4119            String fs = f.toString();
4120            throw new FormatFlagsConversionMismatchException(fs, c);
4121        }
4122
4123        private void failConversion(char c, Object arg) {
4124            throw new IllegalFormatConversionException(c, arg.getClass());
4125        }
4126
4127        private char getZero(Locale l) {
4128            if ((l != null) &&  !l.equals(locale())) {
4129                DecimalFormatSymbols dfs = DecimalFormatSymbols.getInstance(l);
4130                return dfs.getZeroDigit();
4131            }
4132            return zero;
4133        }
4134
4135        private StringBuilder
4136            localizedMagnitude(StringBuilder sb, long value, Flags f,
4137                               int width, Locale l)
4138        {
4139            char[] va = Long.toString(value, 10).toCharArray();
4140            return localizedMagnitude(sb, va, f, width, l);
4141        }
4142
4143        private StringBuilder
4144            localizedMagnitude(StringBuilder sb, char[] value, Flags f,
4145                               int width, Locale l)
4146        {
4147            if (sb == null)
4148                sb = new StringBuilder();
4149            int begin = sb.length();
4150
4151            char zero = getZero(l);
4152
4153            // determine localized grouping separator and size
4154            char grpSep = '\0';
4155            int  grpSize = -1;
4156            char decSep = '\0';
4157
4158            int len = value.length;
4159            int dot = len;
4160            for (int j = 0; j < len; j++) {
4161                if (value[j] == '.') {
4162                    dot = j;
4163                    break;
4164                }
4165            }
4166
4167            if (dot < len) {
4168                if (l == null || l.equals(Locale.US)) {
4169                    decSep  = '.';
4170                } else {
4171                    DecimalFormatSymbols dfs = DecimalFormatSymbols.getInstance(l);
4172                    decSep  = dfs.getDecimalSeparator();
4173                }
4174            }
4175
4176            if (f.contains(Flags.GROUP)) {
4177                if (l == null || l.equals(Locale.US)) {
4178                    grpSep = ',';
4179                    grpSize = 3;
4180                } else {
4181                    DecimalFormatSymbols dfs = DecimalFormatSymbols.getInstance(l);
4182                    grpSep = dfs.getGroupingSeparator();
4183                    DecimalFormat df = (DecimalFormat) NumberFormat.getIntegerInstance(l);
4184                    grpSize = df.getGroupingSize();
4185                }
4186            }
4187
4188            // localize the digits inserting group separators as necessary
4189            for (int j = 0; j < len; j++) {
4190                if (j == dot) {
4191                    sb.append(decSep);
4192                    // no more group separators after the decimal separator
4193                    grpSep = '\0';
4194                    continue;
4195                }
4196
4197                char c = value[j];
4198                sb.append((char) ((c - '0') + zero));
4199                if (grpSep != '\0' && j != dot - 1 && ((dot - j) % grpSize == 1))
4200                    sb.append(grpSep);
4201            }
4202
4203            // apply zero padding
4204            len = sb.length();
4205            if (width != -1 && f.contains(Flags.ZERO_PAD))
4206                for (int k = 0; k < width - len; k++)
4207                    sb.insert(begin, zero);
4208
4209            return sb;
4210        }
4211    }
4212
4213    private static class Flags {
4214        private int flags;
4215
4216        static final Flags NONE          = new Flags(0);      // ''
4217
4218        // duplicate declarations from Formattable.java
4219        static final Flags LEFT_JUSTIFY  = new Flags(1<<0);   // '-'
4220        static final Flags UPPERCASE     = new Flags(1<<1);   // '^'
4221        static final Flags ALTERNATE     = new Flags(1<<2);   // '#'
4222
4223        // numerics
4224        static final Flags PLUS          = new Flags(1<<3);   // '+'
4225        static final Flags LEADING_SPACE = new Flags(1<<4);   // ' '
4226        static final Flags ZERO_PAD      = new Flags(1<<5);   // '0'
4227        static final Flags GROUP         = new Flags(1<<6);   // ','
4228        static final Flags PARENTHESES   = new Flags(1<<7);   // '('
4229
4230        // indexing
4231        static final Flags PREVIOUS      = new Flags(1<<8);   // '<'
4232
4233        private Flags(int f) {
4234            flags = f;
4235        }
4236
4237        public int valueOf() {
4238            return flags;
4239        }
4240
4241        public boolean contains(Flags f) {
4242            return (flags & f.valueOf()) == f.valueOf();
4243        }
4244
4245        public Flags dup() {
4246            return new Flags(flags);
4247        }
4248
4249        private Flags add(Flags f) {
4250            flags |= f.valueOf();
4251            return this;
4252        }
4253
4254        public Flags remove(Flags f) {
4255            flags &= ~f.valueOf();
4256            return this;
4257        }
4258
4259        public static Flags parse(String s) {
4260            char[] ca = s.toCharArray();
4261            Flags f = new Flags(0);
4262            for (int i = 0; i < ca.length; i++) {
4263                Flags v = parse(ca[i]);
4264                if (f.contains(v))
4265                    throw new DuplicateFormatFlagsException(v.toString());
4266                f.add(v);
4267            }
4268            return f;
4269        }
4270
4271        // parse those flags which may be provided by users
4272        private static Flags parse(char c) {
4273            switch (c) {
4274            case '-': return LEFT_JUSTIFY;
4275            case '#': return ALTERNATE;
4276            case '+': return PLUS;
4277            case ' ': return LEADING_SPACE;
4278            case '0': return ZERO_PAD;
4279            case ',': return GROUP;
4280            case '(': return PARENTHESES;
4281            case '<': return PREVIOUS;
4282            default:
4283                throw new UnknownFormatFlagsException(String.valueOf(c));
4284            }
4285        }
4286
4287        // Returns a string representation of the current {@code Flags}.
4288        public static String toString(Flags f) {
4289            return f.toString();
4290        }
4291
4292        public String toString() {
4293            StringBuilder sb = new StringBuilder();
4294            if (contains(LEFT_JUSTIFY))  sb.append('-');
4295            if (contains(UPPERCASE))     sb.append('^');
4296            if (contains(ALTERNATE))     sb.append('#');
4297            if (contains(PLUS))          sb.append('+');
4298            if (contains(LEADING_SPACE)) sb.append(' ');
4299            if (contains(ZERO_PAD))      sb.append('0');
4300            if (contains(GROUP))         sb.append(',');
4301            if (contains(PARENTHESES))   sb.append('(');
4302            if (contains(PREVIOUS))      sb.append('<');
4303            return sb.toString();
4304        }
4305    }
4306
4307    private static class Conversion {
4308        // Byte, Short, Integer, Long, BigInteger
4309        // (and associated primitives due to autoboxing)
4310        static final char DECIMAL_INTEGER     = 'd';
4311        static final char OCTAL_INTEGER       = 'o';
4312        static final char HEXADECIMAL_INTEGER = 'x';
4313        static final char HEXADECIMAL_INTEGER_UPPER = 'X';
4314
4315        // Float, Double, BigDecimal
4316        // (and associated primitives due to autoboxing)
4317        static final char SCIENTIFIC          = 'e';
4318        static final char SCIENTIFIC_UPPER    = 'E';
4319        static final char GENERAL             = 'g';
4320        static final char GENERAL_UPPER       = 'G';
4321        static final char DECIMAL_FLOAT       = 'f';
4322        static final char HEXADECIMAL_FLOAT   = 'a';
4323        static final char HEXADECIMAL_FLOAT_UPPER = 'A';
4324
4325        // Character, Byte, Short, Integer
4326        // (and associated primitives due to autoboxing)
4327        static final char CHARACTER           = 'c';
4328        static final char CHARACTER_UPPER     = 'C';
4329
4330        // java.util.Date, java.util.Calendar, long
4331        static final char DATE_TIME           = 't';
4332        static final char DATE_TIME_UPPER     = 'T';
4333
4334        // if (arg.TYPE != boolean) return boolean
4335        // if (arg != null) return true; else return false;
4336        static final char BOOLEAN             = 'b';
4337        static final char BOOLEAN_UPPER       = 'B';
4338        // if (arg instanceof Formattable) arg.formatTo()
4339        // else arg.toString();
4340        static final char STRING              = 's';
4341        static final char STRING_UPPER        = 'S';
4342        // arg.hashCode()
4343        static final char HASHCODE            = 'h';
4344        static final char HASHCODE_UPPER      = 'H';
4345
4346        static final char LINE_SEPARATOR      = 'n';
4347        static final char PERCENT_SIGN        = '%';
4348
4349        static boolean isValid(char c) {
4350            return (isGeneral(c) || isInteger(c) || isFloat(c) || isText(c)
4351                    || c == 't' || isCharacter(c));
4352        }
4353
4354        // Returns true iff the Conversion is applicable to all objects.
4355        static boolean isGeneral(char c) {
4356            switch (c) {
4357            case BOOLEAN:
4358            case BOOLEAN_UPPER:
4359            case STRING:
4360            case STRING_UPPER:
4361            case HASHCODE:
4362            case HASHCODE_UPPER:
4363                return true;
4364            default:
4365                return false;
4366            }
4367        }
4368
4369        // Returns true iff the Conversion is applicable to character.
4370        static boolean isCharacter(char c) {
4371            switch (c) {
4372            case CHARACTER:
4373            case CHARACTER_UPPER:
4374                return true;
4375            default:
4376                return false;
4377            }
4378        }
4379
4380        // Returns true iff the Conversion is an integer type.
4381        static boolean isInteger(char c) {
4382            switch (c) {
4383            case DECIMAL_INTEGER:
4384            case OCTAL_INTEGER:
4385            case HEXADECIMAL_INTEGER:
4386            case HEXADECIMAL_INTEGER_UPPER:
4387                return true;
4388            default:
4389                return false;
4390            }
4391        }
4392
4393        // Returns true iff the Conversion is a floating-point type.
4394        static boolean isFloat(char c) {
4395            switch (c) {
4396            case SCIENTIFIC:
4397            case SCIENTIFIC_UPPER:
4398            case GENERAL:
4399            case GENERAL_UPPER:
4400            case DECIMAL_FLOAT:
4401            case HEXADECIMAL_FLOAT:
4402            case HEXADECIMAL_FLOAT_UPPER:
4403                return true;
4404            default:
4405                return false;
4406            }
4407        }
4408
4409        // Returns true iff the Conversion does not require an argument
4410        static boolean isText(char c) {
4411            switch (c) {
4412            case LINE_SEPARATOR:
4413            case PERCENT_SIGN:
4414                return true;
4415            default:
4416                return false;
4417            }
4418        }
4419    }
4420
4421    private static class DateTime {
4422        static final char HOUR_OF_DAY_0 = 'H'; // (00 - 23)
4423        static final char HOUR_0        = 'I'; // (01 - 12)
4424        static final char HOUR_OF_DAY   = 'k'; // (0 - 23) -- like H
4425        static final char HOUR          = 'l'; // (1 - 12) -- like I
4426        static final char MINUTE        = 'M'; // (00 - 59)
4427        static final char NANOSECOND    = 'N'; // (000000000 - 999999999)
4428        static final char MILLISECOND   = 'L'; // jdk, not in gnu (000 - 999)
4429        static final char MILLISECOND_SINCE_EPOCH = 'Q'; // (0 - 99...?)
4430        static final char AM_PM         = 'p'; // (am or pm)
4431        static final char SECONDS_SINCE_EPOCH = 's'; // (0 - 99...?)
4432        static final char SECOND        = 'S'; // (00 - 60 - leap second)
4433        static final char TIME          = 'T'; // (24 hour hh:mm:ss)
4434        static final char ZONE_NUMERIC  = 'z'; // (-1200 - +1200) - ls minus?
4435        static final char ZONE          = 'Z'; // (symbol)
4436
4437        // Date
4438        static final char NAME_OF_DAY_ABBREV    = 'a'; // 'a'
4439        static final char NAME_OF_DAY           = 'A'; // 'A'
4440        static final char NAME_OF_MONTH_ABBREV  = 'b'; // 'b'
4441        static final char NAME_OF_MONTH         = 'B'; // 'B'
4442        static final char CENTURY               = 'C'; // (00 - 99)
4443        static final char DAY_OF_MONTH_0        = 'd'; // (01 - 31)
4444        static final char DAY_OF_MONTH          = 'e'; // (1 - 31) -- like d
4445// *    static final char ISO_WEEK_OF_YEAR_2    = 'g'; // cross %y %V
4446// *    static final char ISO_WEEK_OF_YEAR_4    = 'G'; // cross %Y %V
4447        static final char NAME_OF_MONTH_ABBREV_X  = 'h'; // -- same b
4448        static final char DAY_OF_YEAR           = 'j'; // (001 - 366)
4449        static final char MONTH                 = 'm'; // (01 - 12)
4450// *    static final char DAY_OF_WEEK_1         = 'u'; // (1 - 7) Monday
4451// *    static final char WEEK_OF_YEAR_SUNDAY   = 'U'; // (0 - 53) Sunday+
4452// *    static final char WEEK_OF_YEAR_MONDAY_01 = 'V'; // (01 - 53) Monday+
4453// *    static final char DAY_OF_WEEK_0         = 'w'; // (0 - 6) Sunday
4454// *    static final char WEEK_OF_YEAR_MONDAY   = 'W'; // (00 - 53) Monday
4455        static final char YEAR_2                = 'y'; // (00 - 99)
4456        static final char YEAR_4                = 'Y'; // (0000 - 9999)
4457
4458        // Composites
4459        static final char TIME_12_HOUR  = 'r'; // (hh:mm:ss [AP]M)
4460        static final char TIME_24_HOUR  = 'R'; // (hh:mm same as %H:%M)
4461// *    static final char LOCALE_TIME   = 'X'; // (%H:%M:%S) - parse format?
4462        static final char DATE_TIME             = 'c';
4463                                            // (Sat Nov 04 12:02:33 EST 1999)
4464        static final char DATE                  = 'D'; // (mm/dd/yy)
4465        static final char ISO_STANDARD_DATE     = 'F'; // (%Y-%m-%d)
4466// *    static final char LOCALE_DATE           = 'x'; // (mm/dd/yy)
4467
4468        static boolean isValid(char c) {
4469            switch (c) {
4470            case HOUR_OF_DAY_0:
4471            case HOUR_0:
4472            case HOUR_OF_DAY:
4473            case HOUR:
4474            case MINUTE:
4475            case NANOSECOND:
4476            case MILLISECOND:
4477            case MILLISECOND_SINCE_EPOCH:
4478            case AM_PM:
4479            case SECONDS_SINCE_EPOCH:
4480            case SECOND:
4481            case TIME:
4482            case ZONE_NUMERIC:
4483            case ZONE:
4484
4485            // Date
4486            case NAME_OF_DAY_ABBREV:
4487            case NAME_OF_DAY:
4488            case NAME_OF_MONTH_ABBREV:
4489            case NAME_OF_MONTH:
4490            case CENTURY:
4491            case DAY_OF_MONTH_0:
4492            case DAY_OF_MONTH:
4493// *        case ISO_WEEK_OF_YEAR_2:
4494// *        case ISO_WEEK_OF_YEAR_4:
4495            case NAME_OF_MONTH_ABBREV_X:
4496            case DAY_OF_YEAR:
4497            case MONTH:
4498// *        case DAY_OF_WEEK_1:
4499// *        case WEEK_OF_YEAR_SUNDAY:
4500// *        case WEEK_OF_YEAR_MONDAY_01:
4501// *        case DAY_OF_WEEK_0:
4502// *        case WEEK_OF_YEAR_MONDAY:
4503            case YEAR_2:
4504            case YEAR_4:
4505
4506            // Composites
4507            case TIME_12_HOUR:
4508            case TIME_24_HOUR:
4509// *        case LOCALE_TIME:
4510            case DATE_TIME:
4511            case DATE:
4512            case ISO_STANDARD_DATE:
4513// *        case LOCALE_DATE:
4514                return true;
4515            default:
4516                return false;
4517            }
4518        }
4519    }
4520}
4521