GregorianCalendar.java revision d7928577b0cc656c1c6da16bfe281541fdd435ee
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 * Copyright (c) 1996, 2011, Oracle and/or its affiliates. All rights reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.  Oracle designates this
9 * particular file as subject to the "Classpath" exception as provided
10 * by Oracle in the LICENSE file that accompanied this code.
11 *
12 * This code is distributed in the hope that it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 * version 2 for more details (a copy is included in the LICENSE file that
16 * accompanied this code).
17 *
18 * You should have received a copy of the GNU General Public License version
19 * 2 along with this work; if not, write to the Free Software Foundation,
20 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
21 *
22 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
23 * or visit www.oracle.com if you need additional information or have any
24 * questions.
25 */
26
27/*
28 * (C) Copyright Taligent, Inc. 1996-1998 - All Rights Reserved
29 * (C) Copyright IBM Corp. 1996-1998 - All Rights Reserved
30 *
31 *   The original version of this source code and documentation is copyrighted
32 * and owned by Taligent, Inc., a wholly-owned subsidiary of IBM. These
33 * materials are provided under terms of a License Agreement between Taligent
34 * and Sun. This technology is protected by multiple US and International
35 * patents. This notice and attribution to Taligent may not be removed.
36 *   Taligent is a registered trademark of Taligent, Inc.
37 *
38 */
39
40package java.util;
41
42import java.io.IOException;
43import java.io.ObjectInputStream;
44import java.time.Instant;
45import java.time.ZonedDateTime;
46import java.time.temporal.ChronoField;
47import libcore.util.ZoneInfo;
48import sun.util.calendar.BaseCalendar;
49import sun.util.calendar.CalendarDate;
50import sun.util.calendar.CalendarSystem;
51import sun.util.calendar.CalendarUtils;
52import sun.util.calendar.Era;
53import sun.util.calendar.Gregorian;
54import sun.util.calendar.JulianCalendar;
55
56/**
57 * <code>GregorianCalendar</code> is a concrete subclass of
58 * <code>Calendar</code> and provides the standard calendar system
59 * used by most of the world.
60 *
61 * <p> <code>GregorianCalendar</code> is a hybrid calendar that
62 * supports both the Julian and Gregorian calendar systems with the
63 * support of a single discontinuity, which corresponds by default to
64 * the Gregorian date when the Gregorian calendar was instituted
65 * (October 15, 1582 in some countries, later in others).  The cutover
66 * date may be changed by the caller by calling {@link
67 * #setGregorianChange(Date) setGregorianChange()}.
68 *
69 * <p>
70 * Historically, in those countries which adopted the Gregorian calendar first,
71 * October 4, 1582 (Julian) was thus followed by October 15, 1582 (Gregorian). This calendar models
72 * this correctly.  Before the Gregorian cutover, <code>GregorianCalendar</code>
73 * implements the Julian calendar.  The only difference between the Gregorian
74 * and the Julian calendar is the leap year rule. The Julian calendar specifies
75 * leap years every four years, whereas the Gregorian calendar omits century
76 * years which are not divisible by 400.
77 *
78 * <p>
79 * <code>GregorianCalendar</code> implements <em>proleptic</em> Gregorian and
80 * Julian calendars. That is, dates are computed by extrapolating the current
81 * rules indefinitely far backward and forward in time. As a result,
82 * <code>GregorianCalendar</code> may be used for all years to generate
83 * meaningful and consistent results. However, dates obtained using
84 * <code>GregorianCalendar</code> are historically accurate only from March 1, 4
85 * AD onward, when modern Julian calendar rules were adopted.  Before this date,
86 * leap year rules were applied irregularly, and before 45 BC the Julian
87 * calendar did not even exist.
88 *
89 * <p>
90 * Prior to the institution of the Gregorian calendar, New Year's Day was
91 * March 25. To avoid confusion, this calendar always uses January 1. A manual
92 * adjustment may be made if desired for dates that are prior to the Gregorian
93 * changeover and which fall between January 1 and March 24.
94 *
95 * <h3><a name="week_and_year">Week Of Year and Week Year</a></h3>
96 *
97 * <p>Values calculated for the {@link Calendar#WEEK_OF_YEAR
98 * WEEK_OF_YEAR} field range from 1 to 53. The first week of a
99 * calendar year is the earliest seven day period starting on {@link
100 * Calendar#getFirstDayOfWeek() getFirstDayOfWeek()} that contains at
101 * least {@link Calendar#getMinimalDaysInFirstWeek()
102 * getMinimalDaysInFirstWeek()} days from that year. It thus depends
103 * on the values of {@code getMinimalDaysInFirstWeek()}, {@code
104 * getFirstDayOfWeek()}, and the day of the week of January 1. Weeks
105 * between week 1 of one year and week 1 of the following year
106 * (exclusive) are numbered sequentially from 2 to 52 or 53 (except
107 * for year(s) involved in the Julian-Gregorian transition).
108 *
109 * <p>The {@code getFirstDayOfWeek()} and {@code
110 * getMinimalDaysInFirstWeek()} values are initialized using
111 * locale-dependent resources when constructing a {@code
112 * GregorianCalendar}. <a name="iso8601_compatible_setting">The week
113 * determination is compatible</a> with the ISO 8601 standard when {@code
114 * getFirstDayOfWeek()} is {@code MONDAY} and {@code
115 * getMinimalDaysInFirstWeek()} is 4, which values are used in locales
116 * where the standard is preferred. These values can explicitly be set by
117 * calling {@link Calendar#setFirstDayOfWeek(int) setFirstDayOfWeek()} and
118 * {@link Calendar#setMinimalDaysInFirstWeek(int)
119 * setMinimalDaysInFirstWeek()}.
120 *
121 * <p>A <a name="week_year"><em>week year</em></a> is in sync with a
122 * {@code WEEK_OF_YEAR} cycle. All weeks between the first and last
123 * weeks (inclusive) have the same <em>week year</em> value.
124 * Therefore, the first and last days of a week year may have
125 * different calendar year values.
126 *
127 * <p>For example, January 1, 1998 is a Thursday. If {@code
128 * getFirstDayOfWeek()} is {@code MONDAY} and {@code
129 * getMinimalDaysInFirstWeek()} is 4 (ISO 8601 standard compatible
130 * setting), then week 1 of 1998 starts on December 29, 1997, and ends
131 * on January 4, 1998. The week year is 1998 for the last three days
132 * of calendar year 1997. If, however, {@code getFirstDayOfWeek()} is
133 * {@code SUNDAY}, then week 1 of 1998 starts on January 4, 1998, and
134 * ends on January 10, 1998; the first three days of 1998 then are
135 * part of week 53 of 1997 and their week year is 1997.
136 *
137 * <h4>Week Of Month</h4>
138 *
139 * <p>Values calculated for the <code>WEEK_OF_MONTH</code> field range from 0
140 * to 6.  Week 1 of a month (the days with <code>WEEK_OF_MONTH =
141 * 1</code>) is the earliest set of at least
142 * <code>getMinimalDaysInFirstWeek()</code> contiguous days in that month,
143 * ending on the day before <code>getFirstDayOfWeek()</code>.  Unlike
144 * week 1 of a year, week 1 of a month may be shorter than 7 days, need
145 * not start on <code>getFirstDayOfWeek()</code>, and will not include days of
146 * the previous month.  Days of a month before week 1 have a
147 * <code>WEEK_OF_MONTH</code> of 0.
148 *
149 * <p>For example, if <code>getFirstDayOfWeek()</code> is <code>SUNDAY</code>
150 * and <code>getMinimalDaysInFirstWeek()</code> is 4, then the first week of
151 * January 1998 is Sunday, January 4 through Saturday, January 10.  These days
152 * have a <code>WEEK_OF_MONTH</code> of 1.  Thursday, January 1 through
153 * Saturday, January 3 have a <code>WEEK_OF_MONTH</code> of 0.  If
154 * <code>getMinimalDaysInFirstWeek()</code> is changed to 3, then January 1
155 * through January 3 have a <code>WEEK_OF_MONTH</code> of 1.
156 *
157 * <h4>Default Fields Values</h4>
158 *
159 * <p>The <code>clear</code> method sets calendar field(s)
160 * undefined. <code>GregorianCalendar</code> uses the following
161 * default value for each calendar field if its value is undefined.
162 *
163 * <table cellpadding="0" cellspacing="3" border="0"
164 *        summary="GregorianCalendar default field values"
165 *        style="text-align: left; width: 66%;">
166 *   <tbody>
167 *     <tr>
168 *       <th style="vertical-align: top; background-color: rgb(204, 204, 255);
169 *           text-align: center;">Field<br>
170 *       </th>
171 *       <th style="vertical-align: top; background-color: rgb(204, 204, 255);
172 *           text-align: center;">Default Value<br>
173 *       </th>
174 *     </tr>
175 *     <tr>
176 *       <td style="vertical-align: middle;">
177 *              <code>ERA<br></code>
178 *       </td>
179 *       <td style="vertical-align: middle;">
180 *              <code>AD<br></code>
181 *       </td>
182 *     </tr>
183 *     <tr>
184 *       <td style="vertical-align: middle; background-color: rgb(238, 238, 255);">
185 *              <code>YEAR<br></code>
186 *       </td>
187 *       <td style="vertical-align: middle; background-color: rgb(238, 238, 255);">
188 *              <code>1970<br></code>
189 *       </td>
190 *     </tr>
191 *     <tr>
192 *       <td style="vertical-align: middle;">
193 *              <code>MONTH<br></code>
194 *       </td>
195 *       <td style="vertical-align: middle;">
196 *              <code>JANUARY<br></code>
197 *       </td>
198 *     </tr>
199 *     <tr>
200 *       <td style="vertical-align: top; background-color: rgb(238, 238, 255);">
201 *              <code>DAY_OF_MONTH<br></code>
202 *       </td>
203 *       <td style="vertical-align: top; background-color: rgb(238, 238, 255);">
204 *              <code>1<br></code>
205 *       </td>
206 *     </tr>
207 *     <tr>
208 *       <td style="vertical-align: middle;">
209 *              <code>DAY_OF_WEEK<br></code>
210 *       </td>
211 *       <td style="vertical-align: middle;">
212 *              <code>the first day of week<br></code>
213 *       </td>
214 *     </tr>
215 *     <tr>
216 *       <td style="vertical-align: top; background-color: rgb(238, 238, 255);">
217 *              <code>WEEK_OF_MONTH<br></code>
218 *       </td>
219 *       <td style="vertical-align: top; background-color: rgb(238, 238, 255);">
220 *              <code>0<br></code>
221 *       </td>
222 *     </tr>
223 *     <tr>
224 *       <td style="vertical-align: top;">
225 *              <code>DAY_OF_WEEK_IN_MONTH<br></code>
226 *       </td>
227 *       <td style="vertical-align: top;">
228 *              <code>1<br></code>
229 *       </td>
230 *     </tr>
231 *     <tr>
232 *       <td style="vertical-align: middle; background-color: rgb(238, 238, 255);">
233 *              <code>AM_PM<br></code>
234 *       </td>
235 *       <td style="vertical-align: middle; background-color: rgb(238, 238, 255);">
236 *              <code>AM<br></code>
237 *       </td>
238 *     </tr>
239 *     <tr>
240 *       <td style="vertical-align: middle;">
241 *              <code>HOUR, HOUR_OF_DAY, MINUTE, SECOND, MILLISECOND<br></code>
242 *       </td>
243 *       <td style="vertical-align: middle;">
244 *              <code>0<br></code>
245 *       </td>
246 *     </tr>
247 *   </tbody>
248 * </table>
249 * <br>Default values are not applicable for the fields not listed above.
250 *
251 * <p>
252 * <strong>Example:</strong>
253 * <blockquote>
254 * <pre>
255 * // get the supported ids for GMT-08:00 (Pacific Standard Time)
256 * String[] ids = TimeZone.getAvailableIDs(-8 * 60 * 60 * 1000);
257 * // if no ids were returned, something is wrong. get out.
258 * if (ids.length == 0)
259 *     System.exit(0);
260 *
261 *  // begin output
262 * System.out.println("Current Time");
263 *
264 * // create a Pacific Standard Time time zone
265 * SimpleTimeZone pdt = new SimpleTimeZone(-8 * 60 * 60 * 1000, ids[0]);
266 *
267 * // set up rules for Daylight Saving Time
268 * pdt.setStartRule(Calendar.APRIL, 1, Calendar.SUNDAY, 2 * 60 * 60 * 1000);
269 * pdt.setEndRule(Calendar.OCTOBER, -1, Calendar.SUNDAY, 2 * 60 * 60 * 1000);
270 *
271 * // create a GregorianCalendar with the Pacific Daylight time zone
272 * // and the current date and time
273 * Calendar calendar = new GregorianCalendar(pdt);
274 * Date trialTime = new Date();
275 * calendar.setTime(trialTime);
276 *
277 * // print out a bunch of interesting things
278 * System.out.println("ERA: " + calendar.get(Calendar.ERA));
279 * System.out.println("YEAR: " + calendar.get(Calendar.YEAR));
280 * System.out.println("MONTH: " + calendar.get(Calendar.MONTH));
281 * System.out.println("WEEK_OF_YEAR: " + calendar.get(Calendar.WEEK_OF_YEAR));
282 * System.out.println("WEEK_OF_MONTH: " + calendar.get(Calendar.WEEK_OF_MONTH));
283 * System.out.println("DATE: " + calendar.get(Calendar.DATE));
284 * System.out.println("DAY_OF_MONTH: " + calendar.get(Calendar.DAY_OF_MONTH));
285 * System.out.println("DAY_OF_YEAR: " + calendar.get(Calendar.DAY_OF_YEAR));
286 * System.out.println("DAY_OF_WEEK: " + calendar.get(Calendar.DAY_OF_WEEK));
287 * System.out.println("DAY_OF_WEEK_IN_MONTH: "
288 *                    + calendar.get(Calendar.DAY_OF_WEEK_IN_MONTH));
289 * System.out.println("AM_PM: " + calendar.get(Calendar.AM_PM));
290 * System.out.println("HOUR: " + calendar.get(Calendar.HOUR));
291 * System.out.println("HOUR_OF_DAY: " + calendar.get(Calendar.HOUR_OF_DAY));
292 * System.out.println("MINUTE: " + calendar.get(Calendar.MINUTE));
293 * System.out.println("SECOND: " + calendar.get(Calendar.SECOND));
294 * System.out.println("MILLISECOND: " + calendar.get(Calendar.MILLISECOND));
295 * System.out.println("ZONE_OFFSET: "
296 *                    + (calendar.get(Calendar.ZONE_OFFSET)/(60*60*1000)));
297 * System.out.println("DST_OFFSET: "
298 *                    + (calendar.get(Calendar.DST_OFFSET)/(60*60*1000)));
299
300 * System.out.println("Current Time, with hour reset to 3");
301 * calendar.clear(Calendar.HOUR_OF_DAY); // so doesn't override
302 * calendar.set(Calendar.HOUR, 3);
303 * System.out.println("ERA: " + calendar.get(Calendar.ERA));
304 * System.out.println("YEAR: " + calendar.get(Calendar.YEAR));
305 * System.out.println("MONTH: " + calendar.get(Calendar.MONTH));
306 * System.out.println("WEEK_OF_YEAR: " + calendar.get(Calendar.WEEK_OF_YEAR));
307 * System.out.println("WEEK_OF_MONTH: " + calendar.get(Calendar.WEEK_OF_MONTH));
308 * System.out.println("DATE: " + calendar.get(Calendar.DATE));
309 * System.out.println("DAY_OF_MONTH: " + calendar.get(Calendar.DAY_OF_MONTH));
310 * System.out.println("DAY_OF_YEAR: " + calendar.get(Calendar.DAY_OF_YEAR));
311 * System.out.println("DAY_OF_WEEK: " + calendar.get(Calendar.DAY_OF_WEEK));
312 * System.out.println("DAY_OF_WEEK_IN_MONTH: "
313 *                    + calendar.get(Calendar.DAY_OF_WEEK_IN_MONTH));
314 * System.out.println("AM_PM: " + calendar.get(Calendar.AM_PM));
315 * System.out.println("HOUR: " + calendar.get(Calendar.HOUR));
316 * System.out.println("HOUR_OF_DAY: " + calendar.get(Calendar.HOUR_OF_DAY));
317 * System.out.println("MINUTE: " + calendar.get(Calendar.MINUTE));
318 * System.out.println("SECOND: " + calendar.get(Calendar.SECOND));
319 * System.out.println("MILLISECOND: " + calendar.get(Calendar.MILLISECOND));
320 * System.out.println("ZONE_OFFSET: "
321 *        + (calendar.get(Calendar.ZONE_OFFSET)/(60*60*1000))); // in hours
322 * System.out.println("DST_OFFSET: "
323 *        + (calendar.get(Calendar.DST_OFFSET)/(60*60*1000))); // in hours
324 * </pre>
325 * </blockquote>
326 *
327 * @see          TimeZone
328 * @author David Goldsmith, Mark Davis, Chen-Lieh Huang, Alan Liu
329 * @since JDK1.1
330 */
331public class GregorianCalendar extends Calendar {
332    /*
333     * Implementation Notes
334     *
335     * The epoch is the number of days or milliseconds from some defined
336     * starting point. The epoch for java.util.Date is used here; that is,
337     * milliseconds from January 1, 1970 (Gregorian), midnight UTC.  Other
338     * epochs which are used are January 1, year 1 (Gregorian), which is day 1
339     * of the Gregorian calendar, and December 30, year 0 (Gregorian), which is
340     * day 1 of the Julian calendar.
341     *
342     * We implement the proleptic Julian and Gregorian calendars.  This means we
343     * implement the modern definition of the calendar even though the
344     * historical usage differs.  For example, if the Gregorian change is set
345     * to new Date(Long.MIN_VALUE), we have a pure Gregorian calendar which
346     * labels dates preceding the invention of the Gregorian calendar in 1582 as
347     * if the calendar existed then.
348     *
349     * Likewise, with the Julian calendar, we assume a consistent
350     * 4-year leap year rule, even though the historical pattern of
351     * leap years is irregular, being every 3 years from 45 BCE
352     * through 9 BCE, then every 4 years from 8 CE onwards, with no
353     * leap years in-between.  Thus date computations and functions
354     * such as isLeapYear() are not intended to be historically
355     * accurate.
356     */
357
358//////////////////
359// Class Variables
360//////////////////
361
362    /**
363     * Value of the <code>ERA</code> field indicating
364     * the period before the common era (before Christ), also known as BCE.
365     * The sequence of years at the transition from <code>BC</code> to <code>AD</code> is
366     * ..., 2 BC, 1 BC, 1 AD, 2 AD,...
367     *
368     * @see #ERA
369     */
370    public static final int BC = 0;
371
372    /**
373     * Value of the {@link #ERA} field indicating
374     * the period before the common era, the same value as {@link #BC}.
375     *
376     * @see #CE
377     */
378    static final int BCE = 0;
379
380    /**
381     * Value of the <code>ERA</code> field indicating
382     * the common era (Anno Domini), also known as CE.
383     * The sequence of years at the transition from <code>BC</code> to <code>AD</code> is
384     * ..., 2 BC, 1 BC, 1 AD, 2 AD,...
385     *
386     * @see #ERA
387     */
388    public static final int AD = 1;
389
390    /**
391     * Value of the {@link #ERA} field indicating
392     * the common era, the same value as {@link #AD}.
393     *
394     * @see #BCE
395     */
396    static final int CE = 1;
397
398    private static final int EPOCH_OFFSET   = 719163; // Fixed date of January 1, 1970 (Gregorian)
399    private static final int EPOCH_YEAR     = 1970;
400
401    static final int MONTH_LENGTH[]
402        = {31,28,31,30,31,30,31,31,30,31,30,31}; // 0-based
403    static final int LEAP_MONTH_LENGTH[]
404        = {31,29,31,30,31,30,31,31,30,31,30,31}; // 0-based
405
406    // Useful millisecond constants.  Although ONE_DAY and ONE_WEEK can fit
407    // into ints, they must be longs in order to prevent arithmetic overflow
408    // when performing (bug 4173516).
409    private static final int  ONE_SECOND = 1000;
410    private static final int  ONE_MINUTE = 60*ONE_SECOND;
411    private static final int  ONE_HOUR   = 60*ONE_MINUTE;
412    private static final long ONE_DAY    = 24*ONE_HOUR;
413    private static final long ONE_WEEK   = 7*ONE_DAY;
414
415    /*
416     * <pre>
417     *                            Greatest       Least
418     * Field name        Minimum   Minimum     Maximum     Maximum
419     * ----------        -------   -------     -------     -------
420     * ERA                     0         0           1           1
421     * YEAR                    1         1   292269054   292278994
422     * MONTH                   0         0          11          11
423     * WEEK_OF_YEAR            1         1          52*         53
424     * WEEK_OF_MONTH           0         0           4*          6
425     * DAY_OF_MONTH            1         1          28*         31
426     * DAY_OF_YEAR             1         1         365*        366
427     * DAY_OF_WEEK             1         1           7           7
428     * DAY_OF_WEEK_IN_MONTH   -1        -1           4*          6
429     * AM_PM                   0         0           1           1
430     * HOUR                    0         0          11          11
431     * HOUR_OF_DAY             0         0          23          23
432     * MINUTE                  0         0          59          59
433     * SECOND                  0         0          59          59
434     * MILLISECOND             0         0         999         999
435     * ZONE_OFFSET        -13:00    -13:00       14:00       14:00
436     * DST_OFFSET           0:00      0:00        0:20        2:00
437     * </pre>
438     * *: depends on the Gregorian change date
439     */
440    static final int MIN_VALUES[] = {
441        BCE,            // ERA
442        1,              // YEAR
443        JANUARY,        // MONTH
444        1,              // WEEK_OF_YEAR
445        0,              // WEEK_OF_MONTH
446        1,              // DAY_OF_MONTH
447        1,              // DAY_OF_YEAR
448        SUNDAY,         // DAY_OF_WEEK
449        1,              // DAY_OF_WEEK_IN_MONTH
450        AM,             // AM_PM
451        0,              // HOUR
452        0,              // HOUR_OF_DAY
453        0,              // MINUTE
454        0,              // SECOND
455        0,              // MILLISECOND
456        -13*ONE_HOUR,   // ZONE_OFFSET (UNIX compatibility)
457        0               // DST_OFFSET
458    };
459    static final int LEAST_MAX_VALUES[] = {
460        CE,             // ERA
461        292269054,      // YEAR
462        DECEMBER,       // MONTH
463        52,             // WEEK_OF_YEAR
464        4,              // WEEK_OF_MONTH
465        28,             // DAY_OF_MONTH
466        365,            // DAY_OF_YEAR
467        SATURDAY,       // DAY_OF_WEEK
468        4,              // DAY_OF_WEEK_IN
469        PM,             // AM_PM
470        11,             // HOUR
471        23,             // HOUR_OF_DAY
472        59,             // MINUTE
473        59,             // SECOND
474        999,            // MILLISECOND
475        14*ONE_HOUR,    // ZONE_OFFSET
476        20*ONE_MINUTE   // DST_OFFSET (historical least maximum)
477    };
478    static final int MAX_VALUES[] = {
479        CE,             // ERA
480        292278994,      // YEAR
481        DECEMBER,       // MONTH
482        53,             // WEEK_OF_YEAR
483        6,              // WEEK_OF_MONTH
484        31,             // DAY_OF_MONTH
485        366,            // DAY_OF_YEAR
486        SATURDAY,       // DAY_OF_WEEK
487        6,              // DAY_OF_WEEK_IN
488        PM,             // AM_PM
489        11,             // HOUR
490        23,             // HOUR_OF_DAY
491        59,             // MINUTE
492        59,             // SECOND
493        999,            // MILLISECOND
494        14*ONE_HOUR,    // ZONE_OFFSET
495        2*ONE_HOUR      // DST_OFFSET (double summer time)
496    };
497
498    // Proclaim serialization compatibility with JDK 1.1
499    @SuppressWarnings("FieldNameHidesFieldInSuperclass")
500    static final long serialVersionUID = -8125100834729963327L;
501
502    // Reference to the sun.util.calendar.Gregorian instance (singleton).
503    private static final Gregorian gcal =
504                                CalendarSystem.getGregorianCalendar();
505
506    // Reference to the JulianCalendar instance (singleton), set as needed. See
507    // getJulianCalendarSystem().
508    private static JulianCalendar jcal;
509
510    // JulianCalendar eras. See getJulianCalendarSystem().
511    private static Era[] jeras;
512
513    // The default value of gregorianCutover.
514    static final long DEFAULT_GREGORIAN_CUTOVER = -12219292800000L;
515
516/////////////////////
517// Instance Variables
518/////////////////////
519
520    /**
521     * The point at which the Gregorian calendar rules are used, measured in
522     * milliseconds from the standard epoch.  Default is October 15, 1582
523     * (Gregorian) 00:00:00 UTC or -12219292800000L.  For this value, October 4,
524     * 1582 (Julian) is followed by October 15, 1582 (Gregorian).  This
525     * corresponds to Julian day number 2299161.
526     * @serial
527     */
528    private long gregorianCutover = DEFAULT_GREGORIAN_CUTOVER;
529
530    /**
531     * The fixed date of the gregorianCutover.
532     */
533    private transient long gregorianCutoverDate =
534        (((DEFAULT_GREGORIAN_CUTOVER + 1)/ONE_DAY) - 1) + EPOCH_OFFSET; // == 577736
535
536    /**
537     * The normalized year of the gregorianCutover in Gregorian, with
538     * 0 representing 1 BCE, -1 representing 2 BCE, etc.
539     */
540    private transient int gregorianCutoverYear = 1582;
541
542    /**
543     * The normalized year of the gregorianCutover in Julian, with 0
544     * representing 1 BCE, -1 representing 2 BCE, etc.
545     */
546    private transient int gregorianCutoverYearJulian = 1582;
547
548    /**
549     * gdate always has a sun.util.calendar.Gregorian.Date instance to
550     * avoid overhead of creating it. The assumption is that most
551     * applications will need only Gregorian calendar calculations.
552     */
553    private transient BaseCalendar.Date gdate;
554
555    /**
556     * Reference to either gdate or a JulianCalendar.Date
557     * instance. After calling complete(), this value is guaranteed to
558     * be set.
559     */
560    private transient BaseCalendar.Date cdate;
561
562    /**
563     * The CalendarSystem used to calculate the date in cdate. After
564     * calling complete(), this value is guaranteed to be set and
565     * consistent with the cdate value.
566     */
567    private transient BaseCalendar calsys;
568
569    /**
570     * Temporary int[2] to get time zone offsets. zoneOffsets[0] gets
571     * the GMT offset value and zoneOffsets[1] gets the DST saving
572     * value.
573     */
574    private transient int[] zoneOffsets;
575
576    /**
577     * Temporary storage for saving original fields[] values in
578     * non-lenient mode.
579     */
580    private transient int[] originalFields;
581
582///////////////
583// Constructors
584///////////////
585
586    /**
587     * Constructs a default <code>GregorianCalendar</code> using the current time
588     * in the default time zone with the default
589     * {@link Locale.Category#FORMAT FORMAT} locale.
590     */
591    public GregorianCalendar() {
592        this(TimeZone.getDefaultRef(), Locale.getDefault(Locale.Category.FORMAT));
593        setZoneShared(true);
594    }
595
596    /**
597     * Constructs a <code>GregorianCalendar</code> based on the current time
598     * in the given time zone with the default
599     * {@link Locale.Category#FORMAT FORMAT} locale.
600     *
601     * @param zone the given time zone.
602     */
603    public GregorianCalendar(TimeZone zone) {
604        this(zone, Locale.getDefault(Locale.Category.FORMAT));
605    }
606
607    /**
608     * Constructs a <code>GregorianCalendar</code> based on the current time
609     * in the default time zone with the given locale.
610     *
611     * @param aLocale the given locale.
612     */
613    public GregorianCalendar(Locale aLocale) {
614        this(TimeZone.getDefaultRef(), aLocale);
615        setZoneShared(true);
616    }
617
618    /**
619     * Constructs a <code>GregorianCalendar</code> based on the current time
620     * in the given time zone with the given locale.
621     *
622     * @param zone the given time zone.
623     * @param aLocale the given locale.
624     */
625    public GregorianCalendar(TimeZone zone, Locale aLocale) {
626        super(zone, aLocale);
627        gdate = (BaseCalendar.Date) gcal.newCalendarDate(zone);
628        setTimeInMillis(System.currentTimeMillis());
629    }
630
631    /**
632     * Constructs a <code>GregorianCalendar</code> with the given date set
633     * in the default time zone with the default locale.
634     *
635     * @param year the value used to set the <code>YEAR</code> calendar field in the calendar.
636     * @param month the value used to set the <code>MONTH</code> calendar field in the calendar.
637     * Month value is 0-based. e.g., 0 for January.
638     * @param dayOfMonth the value used to set the <code>DAY_OF_MONTH</code> calendar field in the calendar.
639     */
640    public GregorianCalendar(int year, int month, int dayOfMonth) {
641        this(year, month, dayOfMonth, 0, 0, 0, 0);
642    }
643
644    /**
645     * Constructs a <code>GregorianCalendar</code> with the given date
646     * and time set for the default time zone with the default locale.
647     *
648     * @param year the value used to set the <code>YEAR</code> calendar field in the calendar.
649     * @param month the value used to set the <code>MONTH</code> calendar field in the calendar.
650     * Month value is 0-based. e.g., 0 for January.
651     * @param dayOfMonth the value used to set the <code>DAY_OF_MONTH</code> calendar field in the calendar.
652     * @param hourOfDay the value used to set the <code>HOUR_OF_DAY</code> calendar field
653     * in the calendar.
654     * @param minute the value used to set the <code>MINUTE</code> calendar field
655     * in the calendar.
656     */
657    public GregorianCalendar(int year, int month, int dayOfMonth, int hourOfDay,
658                             int minute) {
659        this(year, month, dayOfMonth, hourOfDay, minute, 0, 0);
660    }
661
662    /**
663     * Constructs a GregorianCalendar with the given date
664     * and time set for the default time zone with the default locale.
665     *
666     * @param year the value used to set the <code>YEAR</code> calendar field in the calendar.
667     * @param month the value used to set the <code>MONTH</code> calendar field in the calendar.
668     * Month value is 0-based. e.g., 0 for January.
669     * @param dayOfMonth the value used to set the <code>DAY_OF_MONTH</code> calendar field in the calendar.
670     * @param hourOfDay the value used to set the <code>HOUR_OF_DAY</code> calendar field
671     * in the calendar.
672     * @param minute the value used to set the <code>MINUTE</code> calendar field
673     * in the calendar.
674     * @param second the value used to set the <code>SECOND</code> calendar field
675     * in the calendar.
676     */
677    public GregorianCalendar(int year, int month, int dayOfMonth, int hourOfDay,
678                             int minute, int second) {
679        this(year, month, dayOfMonth, hourOfDay, minute, second, 0);
680    }
681
682    /**
683     * Constructs a <code>GregorianCalendar</code> with the given date
684     * and time set for the default time zone with the default locale.
685     *
686     * @param year the value used to set the <code>YEAR</code> calendar field in the calendar.
687     * @param month the value used to set the <code>MONTH</code> calendar field in the calendar.
688     * Month value is 0-based. e.g., 0 for January.
689     * @param dayOfMonth the value used to set the <code>DAY_OF_MONTH</code> calendar field in the calendar.
690     * @param hourOfDay the value used to set the <code>HOUR_OF_DAY</code> calendar field
691     * in the calendar.
692     * @param minute the value used to set the <code>MINUTE</code> calendar field
693     * in the calendar.
694     * @param second the value used to set the <code>SECOND</code> calendar field
695     * in the calendar.
696     * @param millis the value used to set the <code>MILLISECOND</code> calendar field
697     */
698    GregorianCalendar(int year, int month, int dayOfMonth,
699                      int hourOfDay, int minute, int second, int millis) {
700        super();
701        gdate = (BaseCalendar.Date) gcal.newCalendarDate(getZone());
702        this.set(YEAR, year);
703        this.set(MONTH, month);
704        this.set(DAY_OF_MONTH, dayOfMonth);
705
706        // Set AM_PM and HOUR here to set their stamp values before
707        // setting HOUR_OF_DAY (6178071).
708        if (hourOfDay >= 12 && hourOfDay <= 23) {
709            // If hourOfDay is a valid PM hour, set the correct PM values
710            // so that it won't throw an exception in case it's set to
711            // non-lenient later.
712            this.internalSet(AM_PM, PM);
713            this.internalSet(HOUR, hourOfDay - 12);
714        } else {
715            // The default value for AM_PM is AM.
716            // We don't care any out of range value here for leniency.
717            this.internalSet(HOUR, hourOfDay);
718        }
719        // The stamp values of AM_PM and HOUR must be COMPUTED. (6440854)
720        setFieldsComputed(HOUR_MASK|AM_PM_MASK);
721
722        this.set(HOUR_OF_DAY, hourOfDay);
723        this.set(MINUTE, minute);
724        this.set(SECOND, second);
725        // should be changed to set() when this constructor is made
726        // public.
727        this.internalSet(MILLISECOND, millis);
728    }
729
730    /**
731     * Constructs an empty GregorianCalendar.
732     *
733     * @param zone    the given time zone
734     * @param locale the given locale
735     * @param flag    the flag requesting an empty instance
736     */
737    GregorianCalendar(TimeZone zone, Locale locale, boolean flag) {
738        super(zone, locale);
739        gdate = (BaseCalendar.Date) gcal.newCalendarDate(getZone());
740    }
741
742    GregorianCalendar(long milliseconds) {
743        this();
744        setTimeInMillis(milliseconds);
745    }
746
747/////////////////
748// Public methods
749/////////////////
750
751    /**
752     * Sets the <code>GregorianCalendar</code> change date. This is the point when the switch
753     * from Julian dates to Gregorian dates occurred. Default is October 15,
754     * 1582 (Gregorian). Previous to this, dates will be in the Julian calendar.
755     * <p>
756     * To obtain a pure Julian calendar, set the change date to
757     * <code>Date(Long.MAX_VALUE)</code>.  To obtain a pure Gregorian calendar,
758     * set the change date to <code>Date(Long.MIN_VALUE)</code>.
759     *
760     * @param date the given Gregorian cutover date.
761     */
762    public void setGregorianChange(Date date) {
763        long cutoverTime = date.getTime();
764        if (cutoverTime == gregorianCutover) {
765            return;
766        }
767        // Before changing the cutover date, make sure to have the
768        // time of this calendar.
769        complete();
770        setGregorianChange(cutoverTime);
771    }
772
773    private void setGregorianChange(long cutoverTime) {
774        gregorianCutover = cutoverTime;
775        gregorianCutoverDate = CalendarUtils.floorDivide(cutoverTime, ONE_DAY)
776                                + EPOCH_OFFSET;
777
778        // To provide the "pure" Julian calendar as advertised.
779        // Strictly speaking, the last millisecond should be a
780        // Gregorian date. However, the API doc specifies that setting
781        // the cutover date to Long.MAX_VALUE will make this calendar
782        // a pure Julian calendar. (See 4167995)
783        if (cutoverTime == Long.MAX_VALUE) {
784            gregorianCutoverDate++;
785        }
786
787        BaseCalendar.Date d = getGregorianCutoverDate();
788
789        // Set the cutover year (in the Gregorian year numbering)
790        gregorianCutoverYear = d.getYear();
791
792        BaseCalendar julianCal = getJulianCalendarSystem();
793        d = (BaseCalendar.Date) julianCal.newCalendarDate(TimeZone.NO_TIMEZONE);
794        julianCal.getCalendarDateFromFixedDate(d, gregorianCutoverDate - 1);
795        gregorianCutoverYearJulian = d.getNormalizedYear();
796
797        if (time < gregorianCutover) {
798            // The field values are no longer valid under the new
799            // cutover date.
800            setUnnormalized();
801        }
802    }
803
804    /**
805     * Gets the Gregorian Calendar change date.  This is the point when the
806     * switch from Julian dates to Gregorian dates occurred. Default is
807     * October 15, 1582 (Gregorian). Previous to this, dates will be in the Julian
808     * calendar.
809     *
810     * @return the Gregorian cutover date for this <code>GregorianCalendar</code> object.
811     */
812    public final Date getGregorianChange() {
813        return new Date(gregorianCutover);
814    }
815
816    /**
817     * Determines if the given year is a leap year. Returns <code>true</code> if
818     * the given year is a leap year. To specify BC year numbers,
819     * <code>1 - year number</code> must be given. For example, year BC 4 is
820     * specified as -3.
821     *
822     * @param year the given year.
823     * @return <code>true</code> if the given year is a leap year; <code>false</code> otherwise.
824     */
825    public boolean isLeapYear(int year) {
826        if ((year & 3) != 0) {
827            return false;
828        }
829
830        if (year > gregorianCutoverYear) {
831            return (year%100 != 0) || (year%400 == 0); // Gregorian
832        }
833        if (year < gregorianCutoverYearJulian) {
834            return true; // Julian
835        }
836        boolean gregorian;
837        // If the given year is the Gregorian cutover year, we need to
838        // determine which calendar system to be applied to February in the year.
839        if (gregorianCutoverYear == gregorianCutoverYearJulian) {
840            BaseCalendar.Date d = getCalendarDate(gregorianCutoverDate); // Gregorian
841            gregorian = d.getMonth() < BaseCalendar.MARCH;
842        } else {
843            gregorian = year == gregorianCutoverYear;
844        }
845        return gregorian ? (year%100 != 0) || (year%400 == 0) : true;
846    }
847
848    /**
849     * Returns {@code "gregory"} as the calendar type.
850     *
851     * @return {@code "gregory"}
852     * @since 1.8
853     */
854    @Override
855    public String getCalendarType() {
856        return "gregory";
857    }
858
859    /**
860     * Compares this <code>GregorianCalendar</code> to the specified
861     * <code>Object</code>. The result is <code>true</code> if and
862     * only if the argument is a <code>GregorianCalendar</code> object
863     * that represents the same time value (millisecond offset from
864     * the <a href="Calendar.html#Epoch">Epoch</a>) under the same
865     * <code>Calendar</code> parameters and Gregorian change date as
866     * this object.
867     *
868     * @param obj the object to compare with.
869     * @return <code>true</code> if this object is equal to <code>obj</code>;
870     * <code>false</code> otherwise.
871     * @see Calendar#compareTo(Calendar)
872     */
873    @Override
874    public boolean equals(Object obj) {
875        return obj instanceof GregorianCalendar &&
876            super.equals(obj) &&
877            gregorianCutover == ((GregorianCalendar)obj).gregorianCutover;
878    }
879
880    /**
881     * Generates the hash code for this <code>GregorianCalendar</code> object.
882     */
883    @Override
884    public int hashCode() {
885        return super.hashCode() ^ (int)gregorianCutoverDate;
886    }
887
888    /**
889     * Adds the specified (signed) amount of time to the given calendar field,
890     * based on the calendar's rules.
891     *
892     * <p><em>Add rule 1</em>. The value of <code>field</code>
893     * after the call minus the value of <code>field</code> before the
894     * call is <code>amount</code>, modulo any overflow that has occurred in
895     * <code>field</code>. Overflow occurs when a field value exceeds its
896     * range and, as a result, the next larger field is incremented or
897     * decremented and the field value is adjusted back into its range.</p>
898     *
899     * <p><em>Add rule 2</em>. If a smaller field is expected to be
900     * invariant, but it is impossible for it to be equal to its
901     * prior value because of changes in its minimum or maximum after
902     * <code>field</code> is changed, then its value is adjusted to be as close
903     * as possible to its expected value. A smaller field represents a
904     * smaller unit of time. <code>HOUR</code> is a smaller field than
905     * <code>DAY_OF_MONTH</code>. No adjustment is made to smaller fields
906     * that are not expected to be invariant. The calendar system
907     * determines what fields are expected to be invariant.</p>
908     *
909     * @param field the calendar field.
910     * @param amount the amount of date or time to be added to the field.
911     * @exception IllegalArgumentException if <code>field</code> is
912     * <code>ZONE_OFFSET</code>, <code>DST_OFFSET</code>, or unknown,
913     * or if any calendar fields have out-of-range values in
914     * non-lenient mode.
915     */
916    @Override
917    public void add(int field, int amount) {
918        // If amount == 0, do nothing even the given field is out of
919        // range. This is tested by JCK.
920        if (amount == 0) {
921            return;   // Do nothing!
922        }
923
924        if (field < 0 || field >= ZONE_OFFSET) {
925            throw new IllegalArgumentException();
926        }
927
928        // Sync the time and calendar fields.
929        complete();
930
931        if (field == YEAR) {
932            int year = internalGet(YEAR);
933            if (internalGetEra() == CE) {
934                year += amount;
935                if (year > 0) {
936                    set(YEAR, year);
937                } else { // year <= 0
938                    set(YEAR, 1 - year);
939                    // if year == 0, you get 1 BCE.
940                    set(ERA, BCE);
941                }
942            }
943            else { // era == BCE
944                year -= amount;
945                if (year > 0) {
946                    set(YEAR, year);
947                } else { // year <= 0
948                    set(YEAR, 1 - year);
949                    // if year == 0, you get 1 CE
950                    set(ERA, CE);
951                }
952            }
953            pinDayOfMonth();
954        } else if (field == MONTH) {
955            int month = internalGet(MONTH) + amount;
956            int year = internalGet(YEAR);
957            int y_amount;
958
959            if (month >= 0) {
960                y_amount = month/12;
961            } else {
962                y_amount = (month+1)/12 - 1;
963            }
964            if (y_amount != 0) {
965                if (internalGetEra() == CE) {
966                    year += y_amount;
967                    if (year > 0) {
968                        set(YEAR, year);
969                    } else { // year <= 0
970                        set(YEAR, 1 - year);
971                        // if year == 0, you get 1 BCE
972                        set(ERA, BCE);
973                    }
974                }
975                else { // era == BCE
976                    year -= y_amount;
977                    if (year > 0) {
978                        set(YEAR, year);
979                    } else { // year <= 0
980                        set(YEAR, 1 - year);
981                        // if year == 0, you get 1 CE
982                        set(ERA, CE);
983                    }
984                }
985            }
986
987            if (month >= 0) {
988                set(MONTH,  month % 12);
989            } else {
990                // month < 0
991                month %= 12;
992                if (month < 0) {
993                    month += 12;
994                }
995                set(MONTH, JANUARY + month);
996            }
997            pinDayOfMonth();
998        } else if (field == ERA) {
999            int era = internalGet(ERA) + amount;
1000            if (era < 0) {
1001                era = 0;
1002            }
1003            if (era > 1) {
1004                era = 1;
1005            }
1006            set(ERA, era);
1007        } else {
1008            long delta = amount;
1009            long timeOfDay = 0;
1010            switch (field) {
1011            // Handle the time fields here. Convert the given
1012            // amount to milliseconds and call setTimeInMillis.
1013            case HOUR:
1014            case HOUR_OF_DAY:
1015                delta *= 60 * 60 * 1000;        // hours to minutes
1016                break;
1017
1018            case MINUTE:
1019                delta *= 60 * 1000;             // minutes to seconds
1020                break;
1021
1022            case SECOND:
1023                delta *= 1000;                  // seconds to milliseconds
1024                break;
1025
1026            case MILLISECOND:
1027                break;
1028
1029            // Handle week, day and AM_PM fields which involves
1030            // time zone offset change adjustment. Convert the
1031            // given amount to the number of days.
1032            case WEEK_OF_YEAR:
1033            case WEEK_OF_MONTH:
1034            case DAY_OF_WEEK_IN_MONTH:
1035                delta *= 7;
1036                break;
1037
1038            case DAY_OF_MONTH: // synonym of DATE
1039            case DAY_OF_YEAR:
1040            case DAY_OF_WEEK:
1041                break;
1042
1043            case AM_PM:
1044                // Convert the amount to the number of days (delta)
1045                // and +12 or -12 hours (timeOfDay).
1046                delta = amount / 2;
1047                timeOfDay = 12 * (amount % 2);
1048                break;
1049            }
1050
1051            // The time fields don't require time zone offset change
1052            // adjustment.
1053            if (field >= HOUR) {
1054                setTimeInMillis(time + delta);
1055                return;
1056            }
1057
1058            // The rest of the fields (week, day or AM_PM fields)
1059            // require time zone offset (both GMT and DST) change
1060            // adjustment.
1061
1062            // Translate the current time to the fixed date and time
1063            // of the day.
1064            long fd = getCurrentFixedDate();
1065            timeOfDay += internalGet(HOUR_OF_DAY);
1066            timeOfDay *= 60;
1067            timeOfDay += internalGet(MINUTE);
1068            timeOfDay *= 60;
1069            timeOfDay += internalGet(SECOND);
1070            timeOfDay *= 1000;
1071            timeOfDay += internalGet(MILLISECOND);
1072            if (timeOfDay >= ONE_DAY) {
1073                fd++;
1074                timeOfDay -= ONE_DAY;
1075            } else if (timeOfDay < 0) {
1076                fd--;
1077                timeOfDay += ONE_DAY;
1078            }
1079
1080            fd += delta; // fd is the expected fixed date after the calculation
1081
1082            // Android changed: move time zone related calculation to separate method.
1083            // Calculate the time in the UTC time zone.
1084            long utcTime = (fd - EPOCH_OFFSET) * ONE_DAY + timeOfDay;
1085
1086            // Neither of the time zone related fields are relevant because they have not been
1087            // set since the call to complete() above.
1088            int tzMask = 0;
1089
1090            // Adjust the time to account for zone and daylight savings time offset.
1091            long millis = adjustForZoneAndDaylightSavingsTime(tzMask, utcTime, getZone());
1092
1093            // Update the time and recompute the fields.
1094            setTimeInMillis(millis);
1095        }
1096    }
1097
1098    /**
1099     * Adds or subtracts (up/down) a single unit of time on the given time
1100     * field without changing larger fields.
1101     * <p>
1102     * <em>Example</em>: Consider a <code>GregorianCalendar</code>
1103     * originally set to December 31, 1999. Calling {@link #roll(int,boolean) roll(Calendar.MONTH, true)}
1104     * sets the calendar to January 31, 1999.  The <code>YEAR</code> field is unchanged
1105     * because it is a larger field than <code>MONTH</code>.</p>
1106     *
1107     * @param up indicates if the value of the specified calendar field is to be
1108     * rolled up or rolled down. Use <code>true</code> if rolling up, <code>false</code> otherwise.
1109     * @exception IllegalArgumentException if <code>field</code> is
1110     * <code>ZONE_OFFSET</code>, <code>DST_OFFSET</code>, or unknown,
1111     * or if any calendar fields have out-of-range values in
1112     * non-lenient mode.
1113     * @see #add(int,int)
1114     * @see #set(int,int)
1115     */
1116    @Override
1117    public void roll(int field, boolean up) {
1118        roll(field, up ? +1 : -1);
1119    }
1120
1121    /**
1122     * Adds a signed amount to the specified calendar field without changing larger fields.
1123     * A negative roll amount means to subtract from field without changing
1124     * larger fields. If the specified amount is 0, this method performs nothing.
1125     *
1126     * <p>This method calls {@link #complete()} before adding the
1127     * amount so that all the calendar fields are normalized. If there
1128     * is any calendar field having an out-of-range value in non-lenient mode, then an
1129     * <code>IllegalArgumentException</code> is thrown.
1130     *
1131     * <p>
1132     * <em>Example</em>: Consider a <code>GregorianCalendar</code>
1133     * originally set to August 31, 1999. Calling <code>roll(Calendar.MONTH,
1134     * 8)</code> sets the calendar to April 30, <strong>1999</strong>. Using a
1135     * <code>GregorianCalendar</code>, the <code>DAY_OF_MONTH</code> field cannot
1136     * be 31 in the month April. <code>DAY_OF_MONTH</code> is set to the closest possible
1137     * value, 30. The <code>YEAR</code> field maintains the value of 1999 because it
1138     * is a larger field than <code>MONTH</code>.
1139     * <p>
1140     * <em>Example</em>: Consider a <code>GregorianCalendar</code>
1141     * originally set to Sunday June 6, 1999. Calling
1142     * <code>roll(Calendar.WEEK_OF_MONTH, -1)</code> sets the calendar to
1143     * Tuesday June 1, 1999, whereas calling
1144     * <code>add(Calendar.WEEK_OF_MONTH, -1)</code> sets the calendar to
1145     * Sunday May 30, 1999. This is because the roll rule imposes an
1146     * additional constraint: The <code>MONTH</code> must not change when the
1147     * <code>WEEK_OF_MONTH</code> is rolled. Taken together with add rule 1,
1148     * the resultant date must be between Tuesday June 1 and Saturday June
1149     * 5. According to add rule 2, the <code>DAY_OF_WEEK</code>, an invariant
1150     * when changing the <code>WEEK_OF_MONTH</code>, is set to Tuesday, the
1151     * closest possible value to Sunday (where Sunday is the first day of the
1152     * week).</p>
1153     *
1154     * @param field the calendar field.
1155     * @param amount the signed amount to add to <code>field</code>.
1156     * @exception IllegalArgumentException if <code>field</code> is
1157     * <code>ZONE_OFFSET</code>, <code>DST_OFFSET</code>, or unknown,
1158     * or if any calendar fields have out-of-range values in
1159     * non-lenient mode.
1160     * @see #roll(int,boolean)
1161     * @see #add(int,int)
1162     * @see #set(int,int)
1163     * @since 1.2
1164     */
1165    @Override
1166    public void roll(int field, int amount) {
1167        // If amount == 0, do nothing even the given field is out of
1168        // range. This is tested by JCK.
1169        if (amount == 0) {
1170            return;
1171        }
1172
1173        if (field < 0 || field >= ZONE_OFFSET) {
1174            throw new IllegalArgumentException();
1175        }
1176
1177        // Sync the time and calendar fields.
1178        complete();
1179
1180        int min = getMinimum(field);
1181        int max = getMaximum(field);
1182
1183        switch (field) {
1184        case AM_PM:
1185        case ERA:
1186        case YEAR:
1187        case MINUTE:
1188        case SECOND:
1189        case MILLISECOND:
1190            // These fields are handled simply, since they have fixed minima
1191            // and maxima.  The field DAY_OF_MONTH is almost as simple.  Other
1192            // fields are complicated, since the range within they must roll
1193            // varies depending on the date.
1194            break;
1195
1196        case HOUR:
1197        case HOUR_OF_DAY:
1198            {
1199                int unit = max + 1; // 12 or 24 hours
1200                int h = internalGet(field);
1201                int nh = (h + amount) % unit;
1202                if (nh < 0) {
1203                    nh += unit;
1204                }
1205                time += ONE_HOUR * (nh - h);
1206
1207                // The day might have changed, which could happen if
1208                // the daylight saving time transition brings it to
1209                // the next day, although it's very unlikely. But we
1210                // have to make sure not to change the larger fields.
1211                CalendarDate d = calsys.getCalendarDate(time, getZone());
1212                if (internalGet(DAY_OF_MONTH) != d.getDayOfMonth()) {
1213                    d.setDate(internalGet(YEAR),
1214                              internalGet(MONTH) + 1,
1215                              internalGet(DAY_OF_MONTH));
1216                    if (field == HOUR) {
1217                        assert (internalGet(AM_PM) == PM);
1218                        d.addHours(+12); // restore PM
1219                    }
1220                    time = calsys.getTime(d);
1221                }
1222                int hourOfDay = d.getHours();
1223                internalSet(field, hourOfDay % unit);
1224                if (field == HOUR) {
1225                    internalSet(HOUR_OF_DAY, hourOfDay);
1226                } else {
1227                    internalSet(AM_PM, hourOfDay / 12);
1228                    internalSet(HOUR, hourOfDay % 12);
1229                }
1230
1231                // Time zone offset and/or daylight saving might have changed.
1232                int zoneOffset = d.getZoneOffset();
1233                int saving = d.getDaylightSaving();
1234                internalSet(ZONE_OFFSET, zoneOffset - saving);
1235                internalSet(DST_OFFSET, saving);
1236                return;
1237            }
1238
1239        case MONTH:
1240            // Rolling the month involves both pinning the final value to [0, 11]
1241            // and adjusting the DAY_OF_MONTH if necessary.  We only adjust the
1242            // DAY_OF_MONTH if, after updating the MONTH field, it is illegal.
1243            // E.g., <jan31>.roll(MONTH, 1) -> <feb28> or <feb29>.
1244            {
1245                if (!isCutoverYear(cdate.getNormalizedYear())) {
1246                    int mon = (internalGet(MONTH) + amount) % 12;
1247                    if (mon < 0) {
1248                        mon += 12;
1249                    }
1250                    set(MONTH, mon);
1251
1252                    // Keep the day of month in the range.  We don't want to spill over
1253                    // into the next month; e.g., we don't want jan31 + 1 mo -> feb31 ->
1254                    // mar3.
1255                    int monthLen = monthLength(mon);
1256                    if (internalGet(DAY_OF_MONTH) > monthLen) {
1257                        set(DAY_OF_MONTH, monthLen);
1258                    }
1259                } else {
1260                    // We need to take care of different lengths in
1261                    // year and month due to the cutover.
1262                    int yearLength = getActualMaximum(MONTH) + 1;
1263                    int mon = (internalGet(MONTH) + amount) % yearLength;
1264                    if (mon < 0) {
1265                        mon += yearLength;
1266                    }
1267                    set(MONTH, mon);
1268                    int monthLen = getActualMaximum(DAY_OF_MONTH);
1269                    if (internalGet(DAY_OF_MONTH) > monthLen) {
1270                        set(DAY_OF_MONTH, monthLen);
1271                    }
1272                }
1273                return;
1274            }
1275
1276        case WEEK_OF_YEAR:
1277            {
1278                int y = cdate.getNormalizedYear();
1279                max = getActualMaximum(WEEK_OF_YEAR);
1280                set(DAY_OF_WEEK, internalGet(DAY_OF_WEEK));
1281                int woy = internalGet(WEEK_OF_YEAR);
1282                int value = woy + amount;
1283                if (!isCutoverYear(y)) {
1284                    int weekYear = getWeekYear();
1285                    if (weekYear == y) {
1286                        // If the new value is in between min and max
1287                        // (exclusive), then we can use the value.
1288                        if (value > min && value < max) {
1289                            set(WEEK_OF_YEAR, value);
1290                            return;
1291                        }
1292                        long fd = getCurrentFixedDate();
1293                        // Make sure that the min week has the current DAY_OF_WEEK
1294                        // in the calendar year
1295                        long day1 = fd - (7 * (woy - min));
1296                        if (calsys.getYearFromFixedDate(day1) != y) {
1297                            min++;
1298                        }
1299
1300                        // Make sure the same thing for the max week
1301                        fd += 7 * (max - internalGet(WEEK_OF_YEAR));
1302                        if (calsys.getYearFromFixedDate(fd) != y) {
1303                            max--;
1304                        }
1305                    } else {
1306                        // When WEEK_OF_YEAR and YEAR are out of sync,
1307                        // adjust woy and amount to stay in the calendar year.
1308                        if (weekYear > y) {
1309                            if (amount < 0) {
1310                                amount++;
1311                            }
1312                            woy = max;
1313                        } else {
1314                            if (amount > 0) {
1315                                amount -= woy - max;
1316                            }
1317                            woy = min;
1318                        }
1319                    }
1320                    set(field, getRolledValue(woy, amount, min, max));
1321                    return;
1322                }
1323
1324                // Handle cutover here.
1325                long fd = getCurrentFixedDate();
1326                BaseCalendar cal;
1327                if (gregorianCutoverYear == gregorianCutoverYearJulian) {
1328                    cal = getCutoverCalendarSystem();
1329                } else if (y == gregorianCutoverYear) {
1330                    cal = gcal;
1331                } else {
1332                    cal = getJulianCalendarSystem();
1333                }
1334                long day1 = fd - (7 * (woy - min));
1335                // Make sure that the min week has the current DAY_OF_WEEK
1336                if (cal.getYearFromFixedDate(day1) != y) {
1337                    min++;
1338                }
1339
1340                // Make sure the same thing for the max week
1341                fd += 7 * (max - woy);
1342                cal = (fd >= gregorianCutoverDate) ? gcal : getJulianCalendarSystem();
1343                if (cal.getYearFromFixedDate(fd) != y) {
1344                    max--;
1345                }
1346                // value: the new WEEK_OF_YEAR which must be converted
1347                // to month and day of month.
1348                value = getRolledValue(woy, amount, min, max) - 1;
1349                BaseCalendar.Date d = getCalendarDate(day1 + value * 7);
1350                set(MONTH, d.getMonth() - 1);
1351                set(DAY_OF_MONTH, d.getDayOfMonth());
1352                return;
1353            }
1354
1355        case WEEK_OF_MONTH:
1356            {
1357                boolean isCutoverYear = isCutoverYear(cdate.getNormalizedYear());
1358                // dow: relative day of week from first day of week
1359                int dow = internalGet(DAY_OF_WEEK) - getFirstDayOfWeek();
1360                if (dow < 0) {
1361                    dow += 7;
1362                }
1363
1364                long fd = getCurrentFixedDate();
1365                long month1;     // fixed date of the first day (usually 1) of the month
1366                int monthLength; // actual month length
1367                if (isCutoverYear) {
1368                    month1 = getFixedDateMonth1(cdate, fd);
1369                    monthLength = actualMonthLength();
1370                } else {
1371                    month1 = fd - internalGet(DAY_OF_MONTH) + 1;
1372                    monthLength = calsys.getMonthLength(cdate);
1373                }
1374
1375                // the first day of week of the month.
1376                long monthDay1st = BaseCalendar.getDayOfWeekDateOnOrBefore(month1 + 6,
1377                                                                           getFirstDayOfWeek());
1378                // if the week has enough days to form a week, the
1379                // week starts from the previous month.
1380                if ((int)(monthDay1st - month1) >= getMinimalDaysInFirstWeek()) {
1381                    monthDay1st -= 7;
1382                }
1383                max = getActualMaximum(field);
1384
1385                // value: the new WEEK_OF_MONTH value
1386                int value = getRolledValue(internalGet(field), amount, 1, max) - 1;
1387
1388                // nfd: fixed date of the rolled date
1389                long nfd = monthDay1st + value * 7 + dow;
1390
1391                // Unlike WEEK_OF_YEAR, we need to change day of week if the
1392                // nfd is out of the month.
1393                if (nfd < month1) {
1394                    nfd = month1;
1395                } else if (nfd >= (month1 + monthLength)) {
1396                    nfd = month1 + monthLength - 1;
1397                }
1398                int dayOfMonth;
1399                if (isCutoverYear) {
1400                    // If we are in the cutover year, convert nfd to
1401                    // its calendar date and use dayOfMonth.
1402                    BaseCalendar.Date d = getCalendarDate(nfd);
1403                    dayOfMonth = d.getDayOfMonth();
1404                } else {
1405                    dayOfMonth = (int)(nfd - month1) + 1;
1406                }
1407                set(DAY_OF_MONTH, dayOfMonth);
1408                return;
1409            }
1410
1411        case DAY_OF_MONTH:
1412            {
1413                if (!isCutoverYear(cdate.getNormalizedYear())) {
1414                    max = calsys.getMonthLength(cdate);
1415                    break;
1416                }
1417
1418                // Cutover year handling
1419                long fd = getCurrentFixedDate();
1420                long month1 = getFixedDateMonth1(cdate, fd);
1421                // It may not be a regular month. Convert the date and range to
1422                // the relative values, perform the roll, and
1423                // convert the result back to the rolled date.
1424                int value = getRolledValue((int)(fd - month1), amount, 0, actualMonthLength() - 1);
1425                BaseCalendar.Date d = getCalendarDate(month1 + value);
1426                assert d.getMonth()-1 == internalGet(MONTH);
1427                set(DAY_OF_MONTH, d.getDayOfMonth());
1428                return;
1429            }
1430
1431        case DAY_OF_YEAR:
1432            {
1433                max = getActualMaximum(field);
1434                if (!isCutoverYear(cdate.getNormalizedYear())) {
1435                    break;
1436                }
1437
1438                // Handle cutover here.
1439                long fd = getCurrentFixedDate();
1440                long jan1 = fd - internalGet(DAY_OF_YEAR) + 1;
1441                int value = getRolledValue((int)(fd - jan1) + 1, amount, min, max);
1442                BaseCalendar.Date d = getCalendarDate(jan1 + value - 1);
1443                set(MONTH, d.getMonth() - 1);
1444                set(DAY_OF_MONTH, d.getDayOfMonth());
1445                return;
1446            }
1447
1448        case DAY_OF_WEEK:
1449            {
1450                if (!isCutoverYear(cdate.getNormalizedYear())) {
1451                    // If the week of year is in the same year, we can
1452                    // just change DAY_OF_WEEK.
1453                    int weekOfYear = internalGet(WEEK_OF_YEAR);
1454                    if (weekOfYear > 1 && weekOfYear < 52) {
1455                        set(WEEK_OF_YEAR, weekOfYear); // update stamp[WEEK_OF_YEAR]
1456                        max = SATURDAY;
1457                        break;
1458                    }
1459                }
1460
1461                // We need to handle it in a different way around year
1462                // boundaries and in the cutover year. Note that
1463                // changing era and year values violates the roll
1464                // rule: not changing larger calendar fields...
1465                amount %= 7;
1466                if (amount == 0) {
1467                    return;
1468                }
1469                long fd = getCurrentFixedDate();
1470                long dowFirst = BaseCalendar.getDayOfWeekDateOnOrBefore(fd, getFirstDayOfWeek());
1471                fd += amount;
1472                if (fd < dowFirst) {
1473                    fd += 7;
1474                } else if (fd >= dowFirst + 7) {
1475                    fd -= 7;
1476                }
1477                BaseCalendar.Date d = getCalendarDate(fd);
1478                set(ERA, (d.getNormalizedYear() <= 0 ? BCE : CE));
1479                set(d.getYear(), d.getMonth() - 1, d.getDayOfMonth());
1480                return;
1481            }
1482
1483        case DAY_OF_WEEK_IN_MONTH:
1484            {
1485                min = 1; // after normalized, min should be 1.
1486                if (!isCutoverYear(cdate.getNormalizedYear())) {
1487                    int dom = internalGet(DAY_OF_MONTH);
1488                    int monthLength = calsys.getMonthLength(cdate);
1489                    int lastDays = monthLength % 7;
1490                    max = monthLength / 7;
1491                    int x = (dom - 1) % 7;
1492                    if (x < lastDays) {
1493                        max++;
1494                    }
1495                    set(DAY_OF_WEEK, internalGet(DAY_OF_WEEK));
1496                    break;
1497                }
1498
1499                // Cutover year handling
1500                long fd = getCurrentFixedDate();
1501                long month1 = getFixedDateMonth1(cdate, fd);
1502                int monthLength = actualMonthLength();
1503                int lastDays = monthLength % 7;
1504                max = monthLength / 7;
1505                int x = (int)(fd - month1) % 7;
1506                if (x < lastDays) {
1507                    max++;
1508                }
1509                int value = getRolledValue(internalGet(field), amount, min, max) - 1;
1510                fd = month1 + value * 7 + x;
1511                BaseCalendar cal = (fd >= gregorianCutoverDate) ? gcal : getJulianCalendarSystem();
1512                BaseCalendar.Date d = (BaseCalendar.Date) cal.newCalendarDate(TimeZone.NO_TIMEZONE);
1513                cal.getCalendarDateFromFixedDate(d, fd);
1514                set(DAY_OF_MONTH, d.getDayOfMonth());
1515                return;
1516            }
1517        }
1518
1519        set(field, getRolledValue(internalGet(field), amount, min, max));
1520    }
1521
1522    /**
1523     * Returns the minimum value for the given calendar field of this
1524     * <code>GregorianCalendar</code> instance. The minimum value is
1525     * defined as the smallest value returned by the {@link
1526     * Calendar#get(int) get} method for any possible time value,
1527     * taking into consideration the current values of the
1528     * {@link Calendar#getFirstDayOfWeek() getFirstDayOfWeek},
1529     * {@link Calendar#getMinimalDaysInFirstWeek() getMinimalDaysInFirstWeek},
1530     * {@link #getGregorianChange() getGregorianChange} and
1531     * {@link Calendar#getTimeZone() getTimeZone} methods.
1532     *
1533     * @param field the calendar field.
1534     * @return the minimum value for the given calendar field.
1535     * @see #getMaximum(int)
1536     * @see #getGreatestMinimum(int)
1537     * @see #getLeastMaximum(int)
1538     * @see #getActualMinimum(int)
1539     * @see #getActualMaximum(int)
1540     */
1541    @Override
1542    public int getMinimum(int field) {
1543        return MIN_VALUES[field];
1544    }
1545
1546    /**
1547     * Returns the maximum value for the given calendar field of this
1548     * <code>GregorianCalendar</code> instance. The maximum value is
1549     * defined as the largest value returned by the {@link
1550     * Calendar#get(int) get} method for any possible time value,
1551     * taking into consideration the current values of the
1552     * {@link Calendar#getFirstDayOfWeek() getFirstDayOfWeek},
1553     * {@link Calendar#getMinimalDaysInFirstWeek() getMinimalDaysInFirstWeek},
1554     * {@link #getGregorianChange() getGregorianChange} and
1555     * {@link Calendar#getTimeZone() getTimeZone} methods.
1556     *
1557     * @param field the calendar field.
1558     * @return the maximum value for the given calendar field.
1559     * @see #getMinimum(int)
1560     * @see #getGreatestMinimum(int)
1561     * @see #getLeastMaximum(int)
1562     * @see #getActualMinimum(int)
1563     * @see #getActualMaximum(int)
1564     */
1565    @Override
1566    public int getMaximum(int field) {
1567        switch (field) {
1568        case MONTH:
1569        case DAY_OF_MONTH:
1570        case DAY_OF_YEAR:
1571        case WEEK_OF_YEAR:
1572        case WEEK_OF_MONTH:
1573        case DAY_OF_WEEK_IN_MONTH:
1574        case YEAR:
1575            {
1576                // On or after Gregorian 200-3-1, Julian and Gregorian
1577                // calendar dates are the same or Gregorian dates are
1578                // larger (i.e., there is a "gap") after 300-3-1.
1579                if (gregorianCutoverYear > 200) {
1580                    break;
1581                }
1582                // There might be "overlapping" dates.
1583                GregorianCalendar gc = (GregorianCalendar) clone();
1584                gc.setLenient(true);
1585                gc.setTimeInMillis(gregorianCutover);
1586                int v1 = gc.getActualMaximum(field);
1587                gc.setTimeInMillis(gregorianCutover-1);
1588                int v2 = gc.getActualMaximum(field);
1589                return Math.max(MAX_VALUES[field], Math.max(v1, v2));
1590            }
1591        }
1592        return MAX_VALUES[field];
1593    }
1594
1595    /**
1596     * Returns the highest minimum value for the given calendar field
1597     * of this <code>GregorianCalendar</code> instance. The highest
1598     * minimum value is defined as the largest value returned by
1599     * {@link #getActualMinimum(int)} for any possible time value,
1600     * taking into consideration the current values of the
1601     * {@link Calendar#getFirstDayOfWeek() getFirstDayOfWeek},
1602     * {@link Calendar#getMinimalDaysInFirstWeek() getMinimalDaysInFirstWeek},
1603     * {@link #getGregorianChange() getGregorianChange} and
1604     * {@link Calendar#getTimeZone() getTimeZone} methods.
1605     *
1606     * @param field the calendar field.
1607     * @return the highest minimum value for the given calendar field.
1608     * @see #getMinimum(int)
1609     * @see #getMaximum(int)
1610     * @see #getLeastMaximum(int)
1611     * @see #getActualMinimum(int)
1612     * @see #getActualMaximum(int)
1613     */
1614    @Override
1615    public int getGreatestMinimum(int field) {
1616        if (field == DAY_OF_MONTH) {
1617            BaseCalendar.Date d = getGregorianCutoverDate();
1618            long mon1 = getFixedDateMonth1(d, gregorianCutoverDate);
1619            d = getCalendarDate(mon1);
1620            return Math.max(MIN_VALUES[field], d.getDayOfMonth());
1621        }
1622        return MIN_VALUES[field];
1623    }
1624
1625    /**
1626     * Returns the lowest maximum value for the given calendar field
1627     * of this <code>GregorianCalendar</code> instance. The lowest
1628     * maximum value is defined as the smallest value returned by
1629     * {@link #getActualMaximum(int)} for any possible time value,
1630     * taking into consideration the current values of the
1631     * {@link Calendar#getFirstDayOfWeek() getFirstDayOfWeek},
1632     * {@link Calendar#getMinimalDaysInFirstWeek() getMinimalDaysInFirstWeek},
1633     * {@link #getGregorianChange() getGregorianChange} and
1634     * {@link Calendar#getTimeZone() getTimeZone} methods.
1635     *
1636     * @param field the calendar field
1637     * @return the lowest maximum value for the given calendar field.
1638     * @see #getMinimum(int)
1639     * @see #getMaximum(int)
1640     * @see #getGreatestMinimum(int)
1641     * @see #getActualMinimum(int)
1642     * @see #getActualMaximum(int)
1643     */
1644    @Override
1645    public int getLeastMaximum(int field) {
1646        switch (field) {
1647        case MONTH:
1648        case DAY_OF_MONTH:
1649        case DAY_OF_YEAR:
1650        case WEEK_OF_YEAR:
1651        case WEEK_OF_MONTH:
1652        case DAY_OF_WEEK_IN_MONTH:
1653        case YEAR:
1654            {
1655                GregorianCalendar gc = (GregorianCalendar) clone();
1656                gc.setLenient(true);
1657                gc.setTimeInMillis(gregorianCutover);
1658                int v1 = gc.getActualMaximum(field);
1659                gc.setTimeInMillis(gregorianCutover-1);
1660                int v2 = gc.getActualMaximum(field);
1661                return Math.min(LEAST_MAX_VALUES[field], Math.min(v1, v2));
1662            }
1663        }
1664        return LEAST_MAX_VALUES[field];
1665    }
1666
1667    /**
1668     * Returns the minimum value that this calendar field could have,
1669     * taking into consideration the given time value and the current
1670     * values of the
1671     * {@link Calendar#getFirstDayOfWeek() getFirstDayOfWeek},
1672     * {@link Calendar#getMinimalDaysInFirstWeek() getMinimalDaysInFirstWeek},
1673     * {@link #getGregorianChange() getGregorianChange} and
1674     * {@link Calendar#getTimeZone() getTimeZone} methods.
1675     *
1676     * <p>For example, if the Gregorian change date is January 10,
1677     * 1970 and the date of this <code>GregorianCalendar</code> is
1678     * January 20, 1970, the actual minimum value of the
1679     * <code>DAY_OF_MONTH</code> field is 10 because the previous date
1680     * of January 10, 1970 is December 27, 1996 (in the Julian
1681     * calendar). Therefore, December 28, 1969 to January 9, 1970
1682     * don't exist.
1683     *
1684     * @param field the calendar field
1685     * @return the minimum of the given field for the time value of
1686     * this <code>GregorianCalendar</code>
1687     * @see #getMinimum(int)
1688     * @see #getMaximum(int)
1689     * @see #getGreatestMinimum(int)
1690     * @see #getLeastMaximum(int)
1691     * @see #getActualMaximum(int)
1692     * @since 1.2
1693     */
1694    @Override
1695    public int getActualMinimum(int field) {
1696        if (field == DAY_OF_MONTH) {
1697            GregorianCalendar gc = getNormalizedCalendar();
1698            int year = gc.cdate.getNormalizedYear();
1699            if (year == gregorianCutoverYear || year == gregorianCutoverYearJulian) {
1700                long month1 = getFixedDateMonth1(gc.cdate, gc.calsys.getFixedDate(gc.cdate));
1701                BaseCalendar.Date d = getCalendarDate(month1);
1702                return d.getDayOfMonth();
1703            }
1704        }
1705        return getMinimum(field);
1706    }
1707
1708    /**
1709     * Returns the maximum value that this calendar field could have,
1710     * taking into consideration the given time value and the current
1711     * values of the
1712     * {@link Calendar#getFirstDayOfWeek() getFirstDayOfWeek},
1713     * {@link Calendar#getMinimalDaysInFirstWeek() getMinimalDaysInFirstWeek},
1714     * {@link #getGregorianChange() getGregorianChange} and
1715     * {@link Calendar#getTimeZone() getTimeZone} methods.
1716     * For example, if the date of this instance is February 1, 2004,
1717     * the actual maximum value of the <code>DAY_OF_MONTH</code> field
1718     * is 29 because 2004 is a leap year, and if the date of this
1719     * instance is February 1, 2005, it's 28.
1720     *
1721     * <p>This method calculates the maximum value of {@link
1722     * Calendar#WEEK_OF_YEAR WEEK_OF_YEAR} based on the {@link
1723     * Calendar#YEAR YEAR} (calendar year) value, not the <a
1724     * href="#week_year">week year</a>. Call {@link
1725     * #getWeeksInWeekYear()} to get the maximum value of {@code
1726     * WEEK_OF_YEAR} in the week year of this {@code GregorianCalendar}.
1727     *
1728     * @param field the calendar field
1729     * @return the maximum of the given field for the time value of
1730     * this <code>GregorianCalendar</code>
1731     * @see #getMinimum(int)
1732     * @see #getMaximum(int)
1733     * @see #getGreatestMinimum(int)
1734     * @see #getLeastMaximum(int)
1735     * @see #getActualMinimum(int)
1736     * @since 1.2
1737     */
1738    @Override
1739    public int getActualMaximum(int field) {
1740        final int fieldsForFixedMax = ERA_MASK|DAY_OF_WEEK_MASK|HOUR_MASK|AM_PM_MASK|
1741            HOUR_OF_DAY_MASK|MINUTE_MASK|SECOND_MASK|MILLISECOND_MASK|
1742            ZONE_OFFSET_MASK|DST_OFFSET_MASK;
1743        if ((fieldsForFixedMax & (1<<field)) != 0) {
1744            return getMaximum(field);
1745        }
1746
1747        GregorianCalendar gc = getNormalizedCalendar();
1748        BaseCalendar.Date date = gc.cdate;
1749        BaseCalendar cal = gc.calsys;
1750        int normalizedYear = date.getNormalizedYear();
1751
1752        int value = -1;
1753        switch (field) {
1754        case MONTH:
1755            {
1756                if (!gc.isCutoverYear(normalizedYear)) {
1757                    value = DECEMBER;
1758                    break;
1759                }
1760
1761                // January 1 of the next year may or may not exist.
1762                long nextJan1;
1763                do {
1764                    nextJan1 = gcal.getFixedDate(++normalizedYear, BaseCalendar.JANUARY, 1, null);
1765                } while (nextJan1 < gregorianCutoverDate);
1766                BaseCalendar.Date d = (BaseCalendar.Date) date.clone();
1767                cal.getCalendarDateFromFixedDate(d, nextJan1 - 1);
1768                value = d.getMonth() - 1;
1769            }
1770            break;
1771
1772        case DAY_OF_MONTH:
1773            {
1774                value = cal.getMonthLength(date);
1775                if (!gc.isCutoverYear(normalizedYear) || date.getDayOfMonth() == value) {
1776                    break;
1777                }
1778
1779                // Handle cutover year.
1780                long fd = gc.getCurrentFixedDate();
1781                if (fd >= gregorianCutoverDate) {
1782                    break;
1783                }
1784                int monthLength = gc.actualMonthLength();
1785                long monthEnd = gc.getFixedDateMonth1(gc.cdate, fd) + monthLength - 1;
1786                // Convert the fixed date to its calendar date.
1787                BaseCalendar.Date d = gc.getCalendarDate(monthEnd);
1788                value = d.getDayOfMonth();
1789            }
1790            break;
1791
1792        case DAY_OF_YEAR:
1793            {
1794                if (!gc.isCutoverYear(normalizedYear)) {
1795                    value = cal.getYearLength(date);
1796                    break;
1797                }
1798
1799                // Handle cutover year.
1800                long jan1;
1801                if (gregorianCutoverYear == gregorianCutoverYearJulian) {
1802                    BaseCalendar cocal = gc.getCutoverCalendarSystem();
1803                    jan1 = cocal.getFixedDate(normalizedYear, 1, 1, null);
1804                } else if (normalizedYear == gregorianCutoverYearJulian) {
1805                    jan1 = cal.getFixedDate(normalizedYear, 1, 1, null);
1806                } else {
1807                    jan1 = gregorianCutoverDate;
1808                }
1809                // January 1 of the next year may or may not exist.
1810                long nextJan1 = gcal.getFixedDate(++normalizedYear, 1, 1, null);
1811                if (nextJan1 < gregorianCutoverDate) {
1812                    nextJan1 = gregorianCutoverDate;
1813                }
1814                assert jan1 <= cal.getFixedDate(date.getNormalizedYear(), date.getMonth(),
1815                                                date.getDayOfMonth(), date);
1816                assert nextJan1 >= cal.getFixedDate(date.getNormalizedYear(), date.getMonth(),
1817                                                date.getDayOfMonth(), date);
1818                value = (int)(nextJan1 - jan1);
1819            }
1820            break;
1821
1822        case WEEK_OF_YEAR:
1823            {
1824                if (!gc.isCutoverYear(normalizedYear)) {
1825                    // Get the day of week of January 1 of the year
1826                    CalendarDate d = cal.newCalendarDate(TimeZone.NO_TIMEZONE);
1827                    d.setDate(date.getYear(), BaseCalendar.JANUARY, 1);
1828                    int dayOfWeek = cal.getDayOfWeek(d);
1829                    // Normalize the day of week with the firstDayOfWeek value
1830                    dayOfWeek -= getFirstDayOfWeek();
1831                    if (dayOfWeek < 0) {
1832                        dayOfWeek += 7;
1833                    }
1834                    value = 52;
1835                    int magic = dayOfWeek + getMinimalDaysInFirstWeek() - 1;
1836                    if ((magic == 6) ||
1837                        (date.isLeapYear() && (magic == 5 || magic == 12))) {
1838                        value++;
1839                    }
1840                    break;
1841                }
1842
1843                if (gc == this) {
1844                    gc = (GregorianCalendar) gc.clone();
1845                }
1846                int maxDayOfYear = getActualMaximum(DAY_OF_YEAR);
1847                gc.set(DAY_OF_YEAR, maxDayOfYear);
1848                value = gc.get(WEEK_OF_YEAR);
1849                if (internalGet(YEAR) != gc.getWeekYear()) {
1850                    gc.set(DAY_OF_YEAR, maxDayOfYear - 7);
1851                    value = gc.get(WEEK_OF_YEAR);
1852                }
1853            }
1854            break;
1855
1856        case WEEK_OF_MONTH:
1857            {
1858                if (!gc.isCutoverYear(normalizedYear)) {
1859                    CalendarDate d = cal.newCalendarDate(null);
1860                    d.setDate(date.getYear(), date.getMonth(), 1);
1861                    int dayOfWeek = cal.getDayOfWeek(d);
1862                    int monthLength = cal.getMonthLength(d);
1863                    dayOfWeek -= getFirstDayOfWeek();
1864                    if (dayOfWeek < 0) {
1865                        dayOfWeek += 7;
1866                    }
1867                    int nDaysFirstWeek = 7 - dayOfWeek; // # of days in the first week
1868                    value = 3;
1869                    if (nDaysFirstWeek >= getMinimalDaysInFirstWeek()) {
1870                        value++;
1871                    }
1872                    monthLength -= nDaysFirstWeek + 7 * 3;
1873                    if (monthLength > 0) {
1874                        value++;
1875                        if (monthLength > 7) {
1876                            value++;
1877                        }
1878                    }
1879                    break;
1880                }
1881
1882                // Cutover year handling
1883                if (gc == this) {
1884                    gc = (GregorianCalendar) gc.clone();
1885                }
1886                int y = gc.internalGet(YEAR);
1887                int m = gc.internalGet(MONTH);
1888                do {
1889                    value = gc.get(WEEK_OF_MONTH);
1890                    gc.add(WEEK_OF_MONTH, +1);
1891                } while (gc.get(YEAR) == y && gc.get(MONTH) == m);
1892            }
1893            break;
1894
1895        case DAY_OF_WEEK_IN_MONTH:
1896            {
1897                // may be in the Gregorian cutover month
1898                int ndays, dow1;
1899                int dow = date.getDayOfWeek();
1900                if (!gc.isCutoverYear(normalizedYear)) {
1901                    BaseCalendar.Date d = (BaseCalendar.Date) date.clone();
1902                    ndays = cal.getMonthLength(d);
1903                    d.setDayOfMonth(1);
1904                    cal.normalize(d);
1905                    dow1 = d.getDayOfWeek();
1906                } else {
1907                    // Let a cloned GregorianCalendar take care of the cutover cases.
1908                    if (gc == this) {
1909                        gc = (GregorianCalendar) clone();
1910                    }
1911                    ndays = gc.actualMonthLength();
1912                    gc.set(DAY_OF_MONTH, gc.getActualMinimum(DAY_OF_MONTH));
1913                    dow1 = gc.get(DAY_OF_WEEK);
1914                }
1915                int x = dow - dow1;
1916                if (x < 0) {
1917                    x += 7;
1918                }
1919                ndays -= x;
1920                value = (ndays + 6) / 7;
1921            }
1922            break;
1923
1924        case YEAR:
1925            /* The year computation is no different, in principle, from the
1926             * others, however, the range of possible maxima is large.  In
1927             * addition, the way we know we've exceeded the range is different.
1928             * For these reasons, we use the special case code below to handle
1929             * this field.
1930             *
1931             * The actual maxima for YEAR depend on the type of calendar:
1932             *
1933             *     Gregorian = May 17, 292275056 BCE - Aug 17, 292278994 CE
1934             *     Julian    = Dec  2, 292269055 BCE - Jan  3, 292272993 CE
1935             *     Hybrid    = Dec  2, 292269055 BCE - Aug 17, 292278994 CE
1936             *
1937             * We know we've exceeded the maximum when either the month, date,
1938             * time, or era changes in response to setting the year.  We don't
1939             * check for month, date, and time here because the year and era are
1940             * sufficient to detect an invalid year setting.  NOTE: If code is
1941             * added to check the month and date in the future for some reason,
1942             * Feb 29 must be allowed to shift to Mar 1 when setting the year.
1943             */
1944            {
1945                if (gc == this) {
1946                    gc = (GregorianCalendar) clone();
1947                }
1948
1949                // Calculate the millisecond offset from the beginning
1950                // of the year of this calendar and adjust the max
1951                // year value if we are beyond the limit in the max
1952                // year.
1953                long current = gc.getYearOffsetInMillis();
1954
1955                if (gc.internalGetEra() == CE) {
1956                    gc.setTimeInMillis(Long.MAX_VALUE);
1957                    value = gc.get(YEAR);
1958                    long maxEnd = gc.getYearOffsetInMillis();
1959                    if (current > maxEnd) {
1960                        value--;
1961                    }
1962                } else {
1963                    CalendarSystem mincal = gc.getTimeInMillis() >= gregorianCutover ?
1964                        gcal : getJulianCalendarSystem();
1965                    CalendarDate d = mincal.getCalendarDate(Long.MIN_VALUE, getZone());
1966                    long maxEnd = (cal.getDayOfYear(d) - 1) * 24 + d.getHours();
1967                    maxEnd *= 60;
1968                    maxEnd += d.getMinutes();
1969                    maxEnd *= 60;
1970                    maxEnd += d.getSeconds();
1971                    maxEnd *= 1000;
1972                    maxEnd += d.getMillis();
1973                    value = d.getYear();
1974                    if (value <= 0) {
1975                        assert mincal == gcal;
1976                        value = 1 - value;
1977                    }
1978                    if (current < maxEnd) {
1979                        value--;
1980                    }
1981                }
1982            }
1983            break;
1984
1985        default:
1986            throw new ArrayIndexOutOfBoundsException(field);
1987        }
1988        return value;
1989    }
1990
1991    /**
1992     * Returns the millisecond offset from the beginning of this
1993     * year. This Calendar object must have been normalized.
1994     */
1995    private long getYearOffsetInMillis() {
1996        long t = (internalGet(DAY_OF_YEAR) - 1) * 24;
1997        t += internalGet(HOUR_OF_DAY);
1998        t *= 60;
1999        t += internalGet(MINUTE);
2000        t *= 60;
2001        t += internalGet(SECOND);
2002        t *= 1000;
2003        return t + internalGet(MILLISECOND) -
2004            (internalGet(ZONE_OFFSET) + internalGet(DST_OFFSET));
2005    }
2006
2007    @Override
2008    public Object clone()
2009    {
2010        GregorianCalendar other = (GregorianCalendar) super.clone();
2011
2012        other.gdate = (BaseCalendar.Date) gdate.clone();
2013        if (cdate != null) {
2014            if (cdate != gdate) {
2015                other.cdate = (BaseCalendar.Date) cdate.clone();
2016            } else {
2017                other.cdate = other.gdate;
2018            }
2019        }
2020        other.originalFields = null;
2021        other.zoneOffsets = null;
2022        return other;
2023    }
2024
2025    @Override
2026    public TimeZone getTimeZone() {
2027        TimeZone zone = super.getTimeZone();
2028        // To share the zone by CalendarDates
2029        gdate.setZone(zone);
2030        if (cdate != null && cdate != gdate) {
2031            cdate.setZone(zone);
2032        }
2033        return zone;
2034    }
2035
2036    @Override
2037    public void setTimeZone(TimeZone zone) {
2038        super.setTimeZone(zone);
2039        // To share the zone by CalendarDates
2040        gdate.setZone(zone);
2041        if (cdate != null && cdate != gdate) {
2042            cdate.setZone(zone);
2043        }
2044    }
2045
2046    /**
2047     * Returns {@code true} indicating this {@code GregorianCalendar}
2048     * supports week dates.
2049     *
2050     * @return {@code true} (always)
2051     * @see #getWeekYear()
2052     * @see #setWeekDate(int,int,int)
2053     * @see #getWeeksInWeekYear()
2054     * @since 1.7
2055     */
2056    @Override
2057    public final boolean isWeekDateSupported() {
2058        return true;
2059    }
2060
2061    /**
2062     * Returns the <a href="#week_year">week year</a> represented by this
2063     * {@code GregorianCalendar}. The dates in the weeks between 1 and the
2064     * maximum week number of the week year have the same week year value
2065     * that may be one year before or after the {@link Calendar#YEAR YEAR}
2066     * (calendar year) value.
2067     *
2068     * <p>This method calls {@link Calendar#complete()} before
2069     * calculating the week year.
2070     *
2071     * @return the week year represented by this {@code GregorianCalendar}.
2072     *         If the {@link Calendar#ERA ERA} value is {@link #BC}, the year is
2073     *         represented by 0 or a negative number: BC 1 is 0, BC 2
2074     *         is -1, BC 3 is -2, and so on.
2075     * @throws IllegalArgumentException
2076     *         if any of the calendar fields is invalid in non-lenient mode.
2077     * @see #isWeekDateSupported()
2078     * @see #getWeeksInWeekYear()
2079     * @see Calendar#getFirstDayOfWeek()
2080     * @see Calendar#getMinimalDaysInFirstWeek()
2081     * @since 1.7
2082     */
2083    @Override
2084    public int getWeekYear() {
2085        int year = get(YEAR); // implicitly calls complete()
2086        if (internalGetEra() == BCE) {
2087            year = 1 - year;
2088        }
2089
2090        // Fast path for the Gregorian calendar years that are never
2091        // affected by the Julian-Gregorian transition
2092        if (year > gregorianCutoverYear + 1) {
2093            int weekOfYear = internalGet(WEEK_OF_YEAR);
2094            if (internalGet(MONTH) == JANUARY) {
2095                if (weekOfYear >= 52) {
2096                    --year;
2097                }
2098            } else {
2099                if (weekOfYear == 1) {
2100                    ++year;
2101                }
2102            }
2103            return year;
2104        }
2105
2106        // General (slow) path
2107        int dayOfYear = internalGet(DAY_OF_YEAR);
2108        int maxDayOfYear = getActualMaximum(DAY_OF_YEAR);
2109        int minimalDays = getMinimalDaysInFirstWeek();
2110
2111        // Quickly check the possibility of year adjustments before
2112        // cloning this GregorianCalendar.
2113        if (dayOfYear > minimalDays && dayOfYear < (maxDayOfYear - 6)) {
2114            return year;
2115        }
2116
2117        // Create a clone to work on the calculation
2118        GregorianCalendar cal = (GregorianCalendar) clone();
2119        cal.setLenient(true);
2120        // Use GMT so that intermediate date calculations won't
2121        // affect the time of day fields.
2122        cal.setTimeZone(TimeZone.getTimeZone("GMT"));
2123        // Go to the first day of the year, which is usually January 1.
2124        cal.set(DAY_OF_YEAR, 1);
2125        cal.complete();
2126
2127        // Get the first day of the first day-of-week in the year.
2128        int delta = getFirstDayOfWeek() - cal.get(DAY_OF_WEEK);
2129        if (delta != 0) {
2130            if (delta < 0) {
2131                delta += 7;
2132            }
2133            cal.add(DAY_OF_YEAR, delta);
2134        }
2135        int minDayOfYear = cal.get(DAY_OF_YEAR);
2136        if (dayOfYear < minDayOfYear) {
2137            if (minDayOfYear <= minimalDays) {
2138                --year;
2139            }
2140        } else {
2141            cal.set(YEAR, year + 1);
2142            cal.set(DAY_OF_YEAR, 1);
2143            cal.complete();
2144            int del = getFirstDayOfWeek() - cal.get(DAY_OF_WEEK);
2145            if (del != 0) {
2146                if (del < 0) {
2147                    del += 7;
2148                }
2149                cal.add(DAY_OF_YEAR, del);
2150            }
2151            minDayOfYear = cal.get(DAY_OF_YEAR) - 1;
2152            if (minDayOfYear == 0) {
2153                minDayOfYear = 7;
2154            }
2155            if (minDayOfYear >= minimalDays) {
2156                int days = maxDayOfYear - dayOfYear + 1;
2157                if (days <= (7 - minDayOfYear)) {
2158                    ++year;
2159                }
2160            }
2161        }
2162        return year;
2163    }
2164
2165    /**
2166     * Sets this {@code GregorianCalendar} to the date given by the
2167     * date specifiers - <a href="#week_year">{@code weekYear}</a>,
2168     * {@code weekOfYear}, and {@code dayOfWeek}. {@code weekOfYear}
2169     * follows the <a href="#week_and_year">{@code WEEK_OF_YEAR}
2170     * numbering</a>.  The {@code dayOfWeek} value must be one of the
2171     * {@link Calendar#DAY_OF_WEEK DAY_OF_WEEK} values: {@link
2172     * Calendar#SUNDAY SUNDAY} to {@link Calendar#SATURDAY SATURDAY}.
2173     *
2174     * <p>Note that the numeric day-of-week representation differs from
2175     * the ISO 8601 standard, and that the {@code weekOfYear}
2176     * numbering is compatible with the standard when {@code
2177     * getFirstDayOfWeek()} is {@code MONDAY} and {@code
2178     * getMinimalDaysInFirstWeek()} is 4.
2179     *
2180     * <p>Unlike the {@code set} method, all of the calendar fields
2181     * and the instant of time value are calculated upon return.
2182     *
2183     * <p>If {@code weekOfYear} is out of the valid week-of-year
2184     * range in {@code weekYear}, the {@code weekYear}
2185     * and {@code weekOfYear} values are adjusted in lenient
2186     * mode, or an {@code IllegalArgumentException} is thrown in
2187     * non-lenient mode.
2188     *
2189     * @param weekYear    the week year
2190     * @param weekOfYear  the week number based on {@code weekYear}
2191     * @param dayOfWeek   the day of week value: one of the constants
2192     *                    for the {@link #DAY_OF_WEEK DAY_OF_WEEK} field:
2193     *                    {@link Calendar#SUNDAY SUNDAY}, ...,
2194     *                    {@link Calendar#SATURDAY SATURDAY}.
2195     * @exception IllegalArgumentException
2196     *            if any of the given date specifiers is invalid,
2197     *            or if any of the calendar fields are inconsistent
2198     *            with the given date specifiers in non-lenient mode
2199     * @see GregorianCalendar#isWeekDateSupported()
2200     * @see Calendar#getFirstDayOfWeek()
2201     * @see Calendar#getMinimalDaysInFirstWeek()
2202     * @since 1.7
2203     */
2204    @Override
2205    public void setWeekDate(int weekYear, int weekOfYear, int dayOfWeek) {
2206        if (dayOfWeek < SUNDAY || dayOfWeek > SATURDAY) {
2207            throw new IllegalArgumentException("invalid dayOfWeek: " + dayOfWeek);
2208        }
2209
2210        // To avoid changing the time of day fields by date
2211        // calculations, use a clone with the GMT time zone.
2212        GregorianCalendar gc = (GregorianCalendar) clone();
2213        gc.setLenient(true);
2214        int era = gc.get(ERA);
2215        gc.clear();
2216        gc.setTimeZone(TimeZone.getTimeZone("GMT"));
2217        gc.set(ERA, era);
2218        gc.set(YEAR, weekYear);
2219        gc.set(WEEK_OF_YEAR, 1);
2220        gc.set(DAY_OF_WEEK, getFirstDayOfWeek());
2221        int days = dayOfWeek - getFirstDayOfWeek();
2222        if (days < 0) {
2223            days += 7;
2224        }
2225        days += 7 * (weekOfYear - 1);
2226        if (days != 0) {
2227            gc.add(DAY_OF_YEAR, days);
2228        } else {
2229            gc.complete();
2230        }
2231
2232        if (!isLenient() &&
2233            (gc.getWeekYear() != weekYear
2234             || gc.internalGet(WEEK_OF_YEAR) != weekOfYear
2235             || gc.internalGet(DAY_OF_WEEK) != dayOfWeek)) {
2236            throw new IllegalArgumentException();
2237        }
2238
2239        set(ERA, gc.internalGet(ERA));
2240        set(YEAR, gc.internalGet(YEAR));
2241        set(MONTH, gc.internalGet(MONTH));
2242        set(DAY_OF_MONTH, gc.internalGet(DAY_OF_MONTH));
2243
2244        // to avoid throwing an IllegalArgumentException in
2245        // non-lenient, set WEEK_OF_YEAR internally
2246        internalSet(WEEK_OF_YEAR, weekOfYear);
2247        complete();
2248    }
2249
2250    /**
2251     * Returns the number of weeks in the <a href="#week_year">week year</a>
2252     * represented by this {@code GregorianCalendar}.
2253     *
2254     * <p>For example, if this {@code GregorianCalendar}'s date is
2255     * December 31, 2008 with <a href="#iso8601_compatible_setting">the ISO
2256     * 8601 compatible setting</a>, this method will return 53 for the
2257     * period: December 29, 2008 to January 3, 2010 while {@link
2258     * #getActualMaximum(int) getActualMaximum(WEEK_OF_YEAR)} will return
2259     * 52 for the period: December 31, 2007 to December 28, 2008.
2260     *
2261     * @return the number of weeks in the week year.
2262     * @see Calendar#WEEK_OF_YEAR
2263     * @see #getWeekYear()
2264     * @see #getActualMaximum(int)
2265     * @since 1.7
2266     */
2267    @Override
2268    public int getWeeksInWeekYear() {
2269        GregorianCalendar gc = getNormalizedCalendar();
2270        int weekYear = gc.getWeekYear();
2271        if (weekYear == gc.internalGet(YEAR)) {
2272            return gc.getActualMaximum(WEEK_OF_YEAR);
2273        }
2274
2275        // Use the 2nd week for calculating the max of WEEK_OF_YEAR
2276        if (gc == this) {
2277            gc = (GregorianCalendar) gc.clone();
2278        }
2279        gc.setWeekDate(weekYear, 2, internalGet(DAY_OF_WEEK));
2280        return gc.getActualMaximum(WEEK_OF_YEAR);
2281    }
2282
2283/////////////////////////////
2284// Time => Fields computation
2285/////////////////////////////
2286
2287    /**
2288     * The fixed date corresponding to gdate. If the value is
2289     * Long.MIN_VALUE, the fixed date value is unknown. Currently,
2290     * Julian calendar dates are not cached.
2291     */
2292    transient private long cachedFixedDate = Long.MIN_VALUE;
2293
2294    /**
2295     * Converts the time value (millisecond offset from the <a
2296     * href="Calendar.html#Epoch">Epoch</a>) to calendar field values.
2297     * The time is <em>not</em>
2298     * recomputed first; to recompute the time, then the fields, call the
2299     * <code>complete</code> method.
2300     *
2301     * @see Calendar#complete
2302     */
2303    @Override
2304    protected void computeFields() {
2305        int mask;
2306        if (isPartiallyNormalized()) {
2307            // Determine which calendar fields need to be computed.
2308            mask = getSetStateFields();
2309            int fieldMask = ~mask & ALL_FIELDS;
2310            // We have to call computTime in case calsys == null in
2311            // order to set calsys and cdate. (6263644)
2312            if (fieldMask != 0 || calsys == null) {
2313                mask |= computeFields(fieldMask,
2314                                      mask & (ZONE_OFFSET_MASK|DST_OFFSET_MASK));
2315                assert mask == ALL_FIELDS;
2316            }
2317        } else {
2318            mask = ALL_FIELDS;
2319            computeFields(mask, 0);
2320        }
2321        // After computing all the fields, set the field state to `COMPUTED'.
2322        setFieldsComputed(mask);
2323    }
2324
2325    /**
2326     * This computeFields implements the conversion from UTC
2327     * (millisecond offset from the Epoch) to calendar
2328     * field values. fieldMask specifies which fields to change the
2329     * setting state to COMPUTED, although all fields are set to
2330     * the correct values. This is required to fix 4685354.
2331     *
2332     * @param fieldMask a bit mask to specify which fields to change
2333     * the setting state.
2334     * @param tzMask a bit mask to specify which time zone offset
2335     * fields to be used for time calculations
2336     * @return a new field mask that indicates what field values have
2337     * actually been set.
2338     */
2339    private int computeFields(int fieldMask, int tzMask) {
2340        int zoneOffset = 0;
2341        TimeZone tz = getZone();
2342        if (zoneOffsets == null) {
2343            zoneOffsets = new int[2];
2344        }
2345        if (tzMask != (ZONE_OFFSET_MASK|DST_OFFSET_MASK)) {
2346            if (tz instanceof ZoneInfo) {
2347                // Android changed: libcore ZoneInfo uses different method to get offsets.
2348                ZoneInfo zoneInfo = (ZoneInfo) tz;
2349                zoneOffset = zoneInfo.getOffsetsByUtcTime(time, zoneOffsets);
2350            } else {
2351                zoneOffset = tz.getOffset(time);
2352                zoneOffsets[0] = tz.getRawOffset();
2353                zoneOffsets[1] = zoneOffset - zoneOffsets[0];
2354            }
2355        }
2356        if (tzMask != 0) {
2357            if (isFieldSet(tzMask, ZONE_OFFSET)) {
2358                zoneOffsets[0] = internalGet(ZONE_OFFSET);
2359            }
2360            if (isFieldSet(tzMask, DST_OFFSET)) {
2361                zoneOffsets[1] = internalGet(DST_OFFSET);
2362            }
2363            zoneOffset = zoneOffsets[0] + zoneOffsets[1];
2364        }
2365
2366        // By computing time and zoneOffset separately, we can take
2367        // the wider range of time+zoneOffset than the previous
2368        // implementation.
2369        long fixedDate = zoneOffset / ONE_DAY;
2370        int timeOfDay = zoneOffset % (int)ONE_DAY;
2371        fixedDate += time / ONE_DAY;
2372        timeOfDay += (int) (time % ONE_DAY);
2373        if (timeOfDay >= ONE_DAY) {
2374            timeOfDay -= ONE_DAY;
2375            ++fixedDate;
2376        } else {
2377            while (timeOfDay < 0) {
2378                timeOfDay += ONE_DAY;
2379                --fixedDate;
2380            }
2381        }
2382        fixedDate += EPOCH_OFFSET;
2383
2384        int era = CE;
2385        int year;
2386        if (fixedDate >= gregorianCutoverDate) {
2387            // Handle Gregorian dates.
2388            assert cachedFixedDate == Long.MIN_VALUE || gdate.isNormalized()
2389                        : "cache control: not normalized";
2390            assert cachedFixedDate == Long.MIN_VALUE ||
2391                   gcal.getFixedDate(gdate.getNormalizedYear(),
2392                                          gdate.getMonth(),
2393                                          gdate.getDayOfMonth(), gdate)
2394                                == cachedFixedDate
2395                        : "cache control: inconsictency" +
2396                          ", cachedFixedDate=" + cachedFixedDate +
2397                          ", computed=" +
2398                          gcal.getFixedDate(gdate.getNormalizedYear(),
2399                                                 gdate.getMonth(),
2400                                                 gdate.getDayOfMonth(),
2401                                                 gdate) +
2402                          ", date=" + gdate;
2403
2404            // See if we can use gdate to avoid date calculation.
2405            if (fixedDate != cachedFixedDate) {
2406                gcal.getCalendarDateFromFixedDate(gdate, fixedDate);
2407                cachedFixedDate = fixedDate;
2408            }
2409
2410            year = gdate.getYear();
2411            if (year <= 0) {
2412                year = 1 - year;
2413                era = BCE;
2414            }
2415            calsys = gcal;
2416            cdate = gdate;
2417            assert cdate.getDayOfWeek() > 0 : "dow="+cdate.getDayOfWeek()+", date="+cdate;
2418        } else {
2419            // Handle Julian calendar dates.
2420            calsys = getJulianCalendarSystem();
2421            cdate = (BaseCalendar.Date) jcal.newCalendarDate(getZone());
2422            jcal.getCalendarDateFromFixedDate(cdate, fixedDate);
2423            Era e = cdate.getEra();
2424            if (e == jeras[0]) {
2425                era = BCE;
2426            }
2427            year = cdate.getYear();
2428        }
2429
2430        // Always set the ERA and YEAR values.
2431        internalSet(ERA, era);
2432        internalSet(YEAR, year);
2433        int mask = fieldMask | (ERA_MASK|YEAR_MASK);
2434
2435        int month =  cdate.getMonth() - 1; // 0-based
2436        int dayOfMonth = cdate.getDayOfMonth();
2437
2438        // Set the basic date fields.
2439        if ((fieldMask & (MONTH_MASK|DAY_OF_MONTH_MASK|DAY_OF_WEEK_MASK))
2440            != 0) {
2441            internalSet(MONTH, month);
2442            internalSet(DAY_OF_MONTH, dayOfMonth);
2443            internalSet(DAY_OF_WEEK, cdate.getDayOfWeek());
2444            mask |= MONTH_MASK|DAY_OF_MONTH_MASK|DAY_OF_WEEK_MASK;
2445        }
2446
2447        if ((fieldMask & (HOUR_OF_DAY_MASK|AM_PM_MASK|HOUR_MASK
2448                          |MINUTE_MASK|SECOND_MASK|MILLISECOND_MASK)) != 0) {
2449            if (timeOfDay != 0) {
2450                int hours = timeOfDay / ONE_HOUR;
2451                internalSet(HOUR_OF_DAY, hours);
2452                internalSet(AM_PM, hours / 12); // Assume AM == 0
2453                internalSet(HOUR, hours % 12);
2454                int r = timeOfDay % ONE_HOUR;
2455                internalSet(MINUTE, r / ONE_MINUTE);
2456                r %= ONE_MINUTE;
2457                internalSet(SECOND, r / ONE_SECOND);
2458                internalSet(MILLISECOND, r % ONE_SECOND);
2459            } else {
2460                internalSet(HOUR_OF_DAY, 0);
2461                internalSet(AM_PM, AM);
2462                internalSet(HOUR, 0);
2463                internalSet(MINUTE, 0);
2464                internalSet(SECOND, 0);
2465                internalSet(MILLISECOND, 0);
2466            }
2467            mask |= (HOUR_OF_DAY_MASK|AM_PM_MASK|HOUR_MASK
2468                     |MINUTE_MASK|SECOND_MASK|MILLISECOND_MASK);
2469        }
2470
2471        if ((fieldMask & (ZONE_OFFSET_MASK|DST_OFFSET_MASK)) != 0) {
2472            internalSet(ZONE_OFFSET, zoneOffsets[0]);
2473            internalSet(DST_OFFSET, zoneOffsets[1]);
2474            mask |= (ZONE_OFFSET_MASK|DST_OFFSET_MASK);
2475        }
2476
2477        if ((fieldMask & (DAY_OF_YEAR_MASK|WEEK_OF_YEAR_MASK|WEEK_OF_MONTH_MASK|DAY_OF_WEEK_IN_MONTH_MASK)) != 0) {
2478            int normalizedYear = cdate.getNormalizedYear();
2479            long fixedDateJan1 = calsys.getFixedDate(normalizedYear, 1, 1, cdate);
2480            int dayOfYear = (int)(fixedDate - fixedDateJan1) + 1;
2481            long fixedDateMonth1 = fixedDate - dayOfMonth + 1;
2482            int cutoverGap = 0;
2483            int cutoverYear = (calsys == gcal) ? gregorianCutoverYear : gregorianCutoverYearJulian;
2484            int relativeDayOfMonth = dayOfMonth - 1;
2485
2486            // If we are in the cutover year, we need some special handling.
2487            if (normalizedYear == cutoverYear) {
2488                // Need to take care of the "missing" days.
2489                if (gregorianCutoverYearJulian <= gregorianCutoverYear) {
2490                    // We need to find out where we are. The cutover
2491                    // gap could even be more than one year.  (One
2492                    // year difference in ~48667 years.)
2493                    fixedDateJan1 = getFixedDateJan1(cdate, fixedDate);
2494                    if (fixedDate >= gregorianCutoverDate) {
2495                        fixedDateMonth1 = getFixedDateMonth1(cdate, fixedDate);
2496                    }
2497                }
2498                int realDayOfYear = (int)(fixedDate - fixedDateJan1) + 1;
2499                cutoverGap = dayOfYear - realDayOfYear;
2500                dayOfYear = realDayOfYear;
2501                relativeDayOfMonth = (int)(fixedDate - fixedDateMonth1);
2502            }
2503            internalSet(DAY_OF_YEAR, dayOfYear);
2504            internalSet(DAY_OF_WEEK_IN_MONTH, relativeDayOfMonth / 7 + 1);
2505
2506            int weekOfYear = getWeekNumber(fixedDateJan1, fixedDate);
2507
2508            // The spec is to calculate WEEK_OF_YEAR in the
2509            // ISO8601-style. This creates problems, though.
2510            if (weekOfYear == 0) {
2511                // If the date belongs to the last week of the
2512                // previous year, use the week number of "12/31" of
2513                // the "previous" year. Again, if the previous year is
2514                // the Gregorian cutover year, we need to take care of
2515                // it.  Usually the previous day of January 1 is
2516                // December 31, which is not always true in
2517                // GregorianCalendar.
2518                long fixedDec31 = fixedDateJan1 - 1;
2519                long prevJan1  = fixedDateJan1 - 365;
2520                if (normalizedYear > (cutoverYear + 1)) {
2521                    if (CalendarUtils.isGregorianLeapYear(normalizedYear - 1)) {
2522                        --prevJan1;
2523                    }
2524                } else if (normalizedYear <= gregorianCutoverYearJulian) {
2525                    if (CalendarUtils.isJulianLeapYear(normalizedYear - 1)) {
2526                        --prevJan1;
2527                    }
2528                } else {
2529                    BaseCalendar calForJan1 = calsys;
2530                    //int prevYear = normalizedYear - 1;
2531                    int prevYear = getCalendarDate(fixedDec31).getNormalizedYear();
2532                    if (prevYear == gregorianCutoverYear) {
2533                        calForJan1 = getCutoverCalendarSystem();
2534                        if (calForJan1 == jcal) {
2535                            prevJan1 = calForJan1.getFixedDate(prevYear,
2536                                                               BaseCalendar.JANUARY,
2537                                                               1,
2538                                                               null);
2539                        } else {
2540                            prevJan1 = gregorianCutoverDate;
2541                            calForJan1 = gcal;
2542                        }
2543                    } else if (prevYear <= gregorianCutoverYearJulian) {
2544                        calForJan1 = getJulianCalendarSystem();
2545                        prevJan1 = calForJan1.getFixedDate(prevYear,
2546                                                           BaseCalendar.JANUARY,
2547                                                           1,
2548                                                           null);
2549                    }
2550                }
2551                weekOfYear = getWeekNumber(prevJan1, fixedDec31);
2552            } else {
2553                if (normalizedYear > gregorianCutoverYear ||
2554                    normalizedYear < (gregorianCutoverYearJulian - 1)) {
2555                    // Regular years
2556                    if (weekOfYear >= 52) {
2557                        long nextJan1 = fixedDateJan1 + 365;
2558                        if (cdate.isLeapYear()) {
2559                            nextJan1++;
2560                        }
2561                        long nextJan1st = BaseCalendar.getDayOfWeekDateOnOrBefore(nextJan1 + 6,
2562                                                                                  getFirstDayOfWeek());
2563                        int ndays = (int)(nextJan1st - nextJan1);
2564                        if (ndays >= getMinimalDaysInFirstWeek() && fixedDate >= (nextJan1st - 7)) {
2565                            // The first days forms a week in which the date is included.
2566                            weekOfYear = 1;
2567                        }
2568                    }
2569                } else {
2570                    BaseCalendar calForJan1 = calsys;
2571                    int nextYear = normalizedYear + 1;
2572                    if (nextYear == (gregorianCutoverYearJulian + 1) &&
2573                        nextYear < gregorianCutoverYear) {
2574                        // In case the gap is more than one year.
2575                        nextYear = gregorianCutoverYear;
2576                    }
2577                    if (nextYear == gregorianCutoverYear) {
2578                        calForJan1 = getCutoverCalendarSystem();
2579                    }
2580
2581                    long nextJan1;
2582                    if (nextYear > gregorianCutoverYear
2583                        || gregorianCutoverYearJulian == gregorianCutoverYear
2584                        || nextYear == gregorianCutoverYearJulian) {
2585                        nextJan1 = calForJan1.getFixedDate(nextYear,
2586                                                           BaseCalendar.JANUARY,
2587                                                           1,
2588                                                           null);
2589                    } else {
2590                        nextJan1 = gregorianCutoverDate;
2591                        calForJan1 = gcal;
2592                    }
2593
2594                    long nextJan1st = BaseCalendar.getDayOfWeekDateOnOrBefore(nextJan1 + 6,
2595                                                                              getFirstDayOfWeek());
2596                    int ndays = (int)(nextJan1st - nextJan1);
2597                    if (ndays >= getMinimalDaysInFirstWeek() && fixedDate >= (nextJan1st - 7)) {
2598                        // The first days forms a week in which the date is included.
2599                        weekOfYear = 1;
2600                    }
2601                }
2602            }
2603            internalSet(WEEK_OF_YEAR, weekOfYear);
2604            internalSet(WEEK_OF_MONTH, getWeekNumber(fixedDateMonth1, fixedDate));
2605            mask |= (DAY_OF_YEAR_MASK|WEEK_OF_YEAR_MASK|WEEK_OF_MONTH_MASK|DAY_OF_WEEK_IN_MONTH_MASK);
2606        }
2607        return mask;
2608    }
2609
2610    /**
2611     * Returns the number of weeks in a period between fixedDay1 and
2612     * fixedDate. The getFirstDayOfWeek-getMinimalDaysInFirstWeek rule
2613     * is applied to calculate the number of weeks.
2614     *
2615     * @param fixedDay1 the fixed date of the first day of the period
2616     * @param fixedDate the fixed date of the last day of the period
2617     * @return the number of weeks of the given period
2618     */
2619    private int getWeekNumber(long fixedDay1, long fixedDate) {
2620        // We can always use `gcal' since Julian and Gregorian are the
2621        // same thing for this calculation.
2622        long fixedDay1st = Gregorian.getDayOfWeekDateOnOrBefore(fixedDay1 + 6,
2623                                                                getFirstDayOfWeek());
2624        int ndays = (int)(fixedDay1st - fixedDay1);
2625        assert ndays <= 7;
2626        if (ndays >= getMinimalDaysInFirstWeek()) {
2627            fixedDay1st -= 7;
2628        }
2629        int normalizedDayOfPeriod = (int)(fixedDate - fixedDay1st);
2630        if (normalizedDayOfPeriod >= 0) {
2631            return normalizedDayOfPeriod / 7 + 1;
2632        }
2633        return CalendarUtils.floorDivide(normalizedDayOfPeriod, 7) + 1;
2634    }
2635
2636    /**
2637     * Converts calendar field values to the time value (millisecond
2638     * offset from the <a href="Calendar.html#Epoch">Epoch</a>).
2639     *
2640     * @exception IllegalArgumentException if any calendar fields are invalid.
2641     */
2642    @Override
2643    protected void computeTime() {
2644        // In non-lenient mode, perform brief checking of calendar
2645        // fields which have been set externally. Through this
2646        // checking, the field values are stored in originalFields[]
2647        // to see if any of them are normalized later.
2648        if (!isLenient()) {
2649            if (originalFields == null) {
2650                originalFields = new int[FIELD_COUNT];
2651            }
2652            for (int field = 0; field < FIELD_COUNT; field++) {
2653                int value = internalGet(field);
2654                if (isExternallySet(field)) {
2655                    // Quick validation for any out of range values
2656                    if (value < getMinimum(field) || value > getMaximum(field)) {
2657                        throw new IllegalArgumentException(getFieldName(field));
2658                    }
2659                }
2660                originalFields[field] = value;
2661            }
2662        }
2663
2664        // Let the super class determine which calendar fields to be
2665        // used to calculate the time.
2666        int fieldMask = selectFields();
2667
2668        // The year defaults to the epoch start. We don't check
2669        // fieldMask for YEAR because YEAR is a mandatory field to
2670        // determine the date.
2671        int year = isSet(YEAR) ? internalGet(YEAR) : EPOCH_YEAR;
2672
2673        int era = internalGetEra();
2674        if (era == BCE) {
2675            year = 1 - year;
2676        } else if (era != CE) {
2677            // Even in lenient mode we disallow ERA values other than CE & BCE.
2678            // (The same normalization rule as add()/roll() could be
2679            // applied here in lenient mode. But this checking is kept
2680            // unchanged for compatibility as of 1.5.)
2681            throw new IllegalArgumentException("Invalid era");
2682        }
2683
2684        // If year is 0 or negative, we need to set the ERA value later.
2685        if (year <= 0 && !isSet(ERA)) {
2686            fieldMask |= ERA_MASK;
2687            setFieldsComputed(ERA_MASK);
2688        }
2689
2690        // Calculate the time of day. We rely on the convention that
2691        // an UNSET field has 0.
2692        long timeOfDay = 0;
2693        if (isFieldSet(fieldMask, HOUR_OF_DAY)) {
2694            timeOfDay += (long) internalGet(HOUR_OF_DAY);
2695        } else {
2696            timeOfDay += internalGet(HOUR);
2697            // The default value of AM_PM is 0 which designates AM.
2698            if (isFieldSet(fieldMask, AM_PM)) {
2699                timeOfDay += 12 * internalGet(AM_PM);
2700            }
2701        }
2702        timeOfDay *= 60;
2703        timeOfDay += internalGet(MINUTE);
2704        timeOfDay *= 60;
2705        timeOfDay += internalGet(SECOND);
2706        timeOfDay *= 1000;
2707        timeOfDay += internalGet(MILLISECOND);
2708
2709        // Convert the time of day to the number of days and the
2710        // millisecond offset from midnight.
2711        long fixedDate = timeOfDay / ONE_DAY;
2712        timeOfDay %= ONE_DAY;
2713        while (timeOfDay < 0) {
2714            timeOfDay += ONE_DAY;
2715            --fixedDate;
2716        }
2717
2718        // Calculate the fixed date since January 1, 1 (Gregorian).
2719        calculateFixedDate: {
2720            long gfd, jfd;
2721            if (year > gregorianCutoverYear && year > gregorianCutoverYearJulian) {
2722                gfd = fixedDate + getFixedDate(gcal, year, fieldMask);
2723                if (gfd >= gregorianCutoverDate) {
2724                    fixedDate = gfd;
2725                    break calculateFixedDate;
2726                }
2727                jfd = fixedDate + getFixedDate(getJulianCalendarSystem(), year, fieldMask);
2728            } else if (year < gregorianCutoverYear && year < gregorianCutoverYearJulian) {
2729                jfd = fixedDate + getFixedDate(getJulianCalendarSystem(), year, fieldMask);
2730                if (jfd < gregorianCutoverDate) {
2731                    fixedDate = jfd;
2732                    break calculateFixedDate;
2733                }
2734                gfd = jfd;
2735            } else {
2736                jfd = fixedDate + getFixedDate(getJulianCalendarSystem(), year, fieldMask);
2737                gfd = fixedDate + getFixedDate(gcal, year, fieldMask);
2738            }
2739
2740            // Now we have to determine which calendar date it is.
2741
2742            // If the date is relative from the beginning of the year
2743            // in the Julian calendar, then use jfd;
2744            if (isFieldSet(fieldMask, DAY_OF_YEAR) || isFieldSet(fieldMask, WEEK_OF_YEAR)) {
2745                if (gregorianCutoverYear == gregorianCutoverYearJulian) {
2746                    fixedDate = jfd;
2747                    break calculateFixedDate;
2748                } else if (year == gregorianCutoverYear) {
2749                    fixedDate = gfd;
2750                    break calculateFixedDate;
2751                }
2752            }
2753
2754            if (gfd >= gregorianCutoverDate) {
2755                if (jfd >= gregorianCutoverDate) {
2756                    fixedDate = gfd;
2757                } else {
2758                    // The date is in an "overlapping" period. No way
2759                    // to disambiguate it. Determine it using the
2760                    // previous date calculation.
2761                    if (calsys == gcal || calsys == null) {
2762                        fixedDate = gfd;
2763                    } else {
2764                        fixedDate = jfd;
2765                    }
2766                }
2767            } else {
2768                if (jfd < gregorianCutoverDate) {
2769                    fixedDate = jfd;
2770                } else {
2771                    // The date is in a "missing" period.
2772                    if (!isLenient()) {
2773                        throw new IllegalArgumentException("the specified date doesn't exist");
2774                    }
2775                    // Take the Julian date for compatibility, which
2776                    // will produce a Gregorian date.
2777                    fixedDate = jfd;
2778                }
2779            }
2780        }
2781
2782        // millis represents local wall-clock time in milliseconds.
2783        long millis = (fixedDate - EPOCH_OFFSET) * ONE_DAY + timeOfDay;
2784
2785        // Compute the time zone offset and DST offset.  There are two potential
2786        // ambiguities here.  We'll assume a 2:00 am (wall time) switchover time
2787        // for discussion purposes here.
2788        // 1. The transition into DST.  Here, a designated time of 2:00 am - 2:59 am
2789        //    can be in standard or in DST depending.  However, 2:00 am is an invalid
2790        //    representation (the representation jumps from 1:59:59 am Std to 3:00:00 am DST).
2791        //    We assume standard time.
2792        // 2. The transition out of DST.  Here, a designated time of 1:00 am - 1:59 am
2793        //    can be in standard or DST.  Both are valid representations (the rep
2794        //    jumps from 1:59:59 DST to 1:00:00 Std).
2795        //    Again, we assume standard time.
2796        // We use the TimeZone object, unless the user has explicitly set the ZONE_OFFSET
2797        // or DST_OFFSET fields; then we use those fields.
2798        TimeZone zone = getZone();
2799        // Android changed: move time zone related calculation to separate method.
2800
2801        int tzMask = fieldMask & (ZONE_OFFSET_MASK|DST_OFFSET_MASK);
2802
2803        millis = adjustForZoneAndDaylightSavingsTime(tzMask, millis, zone);
2804
2805        // Set this calendar's time in milliseconds
2806        time = millis;
2807
2808        int mask = computeFields(fieldMask | getSetStateFields(), tzMask);
2809
2810        if (!isLenient()) {
2811            for (int field = 0; field < FIELD_COUNT; field++) {
2812                if (!isExternallySet(field)) {
2813                    continue;
2814                }
2815                if (originalFields[field] != internalGet(field)) {
2816                    String s = originalFields[field] + " -> " + internalGet(field);
2817                    // Restore the original field values
2818                    System.arraycopy(originalFields, 0, fields, 0, fields.length);
2819                    throw new IllegalArgumentException(getFieldName(field) + ": " + s);
2820                }
2821            }
2822        }
2823        setFieldsNormalized(mask);
2824    }
2825
2826    /**
2827     * Calculates the time in milliseconds that this calendar represents using the UTC time,
2828     * timezone information (specifically Daylight Savings Time (DST) rules, if any) and knowledge
2829     * of what fields were explicitly set on the calendar.
2830     *
2831     * <p>A time is represented as the number of milliseconds since
2832     * <i>1st January 1970 00:00:00.000 UTC</i>.
2833     *
2834     * <p>This uses the terms {@link SimpleTimeZone#STANDARD_TIME standard time},
2835     * {@link SimpleTimeZone#WALL_TIME} wall time} and {@link SimpleTimeZone#UTC_TIME UTC time} as
2836     * used in {@link SimpleTimeZone}. Specifically:
2837     *
2838     * <dl>
2839     * <dt><b>UTC time</b></dt>
2840     * <dd>This is the time within the UTC time zone. UTC does not support DST so the UTC time,
2841     * standard time and wall time are all identical within the UTC time zone.</dd>
2842     * <dt><b>standard time</b></dt>
2843     * <dd>This is the local time within the time zone and is not affected by DST.</dd>
2844     * <dt><b>wall time</b></dt>
2845     * <dd>This is the local time within the time zone as shown on a wall clock. If the time zone
2846     * supports DST then it will be the same as <b>standard time</b> when outside DST and it will
2847     * differ (usually be an hour later) when inside DST. This is what the fields on the Calendar
2848     * represent.</dd>
2849     * </dl>
2850     *
2851     * <p>The {@code utcTimeInMillis} value supplied was calculated as if the fields represented
2852     * a standard time in the {@code UTC} time zone. It is the value that would be returned by
2853     * {@link #getTimeInMillis()} when called on this calendar if it was in UTC time zone. e.g. If
2854     * the calendar was set to say <i>2014 March 19th 13:27.53 -08:00</i> then the value of
2855     * {@code utcTimeInMillis} would be the value of {@link #getTimeInMillis()} when called on a
2856     * calendar set to <i>2014 March 19th 13:27.53 -00:00</i>, note the time zone offset is set to
2857     * 0.
2858     *
2859     * <p>To adjust from a UTC time in millis to the standard time in millis we must
2860     * <em>subtract</em> the offset from UTC. e.g. given an offset of UTC-08:00, to convert
2861     * "14:00 UTC" to "14:00 UTC-08:00" we must subtract -08:00 (i.e. add 8 hours). Another way to
2862     * think about it is that 8 hours has to elapse after 14:00 UTC before it is 14:00 UTC-08:00.
2863     *
2864     * <p>As the zone offset can depend on the time and we cannot calculate the time properly until
2865     * we know the time there is a bit of a catch-22. So, what this does is use the
2866     * {@link TimeZone#getRawOffset() raw offset} to calculate a ballpark standard time and then
2867     * uses that value to retrieve the appropriate zone and DST offsets from the time zone. They
2868     * are then used to make the final wall time calculation.
2869     *
2870     * <p>The DST offset will need clearing if the standard time is not a valid wall clock. See
2871     * {@link #adjustDstOffsetForInvalidWallClock(long, TimeZone, int)} for more information.
2872     *
2873     * @param tzMask the set of time zone related fields, i.e. {@link #ZONE_OFFSET_MASK} and
2874     * {@link #DST_OFFSET_MASK}
2875     * @param utcTimeInMillis the time in millis, calculated assuming the time zone was GMT.
2876     * @param zone the actual time zone.
2877     * @return the UTC time in millis after adjusting for zone and DST offset.
2878     */
2879    private long adjustForZoneAndDaylightSavingsTime(
2880            int tzMask, long utcTimeInMillis, TimeZone zone) {
2881
2882        // The following don't actually need to be initialized because they are always set before
2883        // they are used but the compiler cannot detect that.
2884        int zoneOffset = 0;
2885        int dstOffset = 0;
2886
2887        // If either of the ZONE_OFFSET or DST_OFFSET fields are not set then get the information
2888        // from the TimeZone.
2889        if (tzMask != (ZONE_OFFSET_MASK|DST_OFFSET_MASK)) {
2890            if (zoneOffsets == null) {
2891                zoneOffsets = new int[2];
2892            }
2893            int gmtOffset = isFieldSet(tzMask, ZONE_OFFSET) ?
2894                                internalGet(ZONE_OFFSET) : zone.getRawOffset();
2895
2896            // Calculate the standard time (no DST) in the supplied zone. This is a ballpark figure
2897            // and not used in the final calculation as the offset used here may not be the same as
2898            // the actual offset the time zone requires be used for this time. This is to handle
2899            // situations like Honolulu, where its raw offset changed from GMT-10:30 to GMT-10:00
2900            // in 1947. The TimeZone always uses a raw offset of -10:00 but will return -10:30
2901            // for dates before the change over.
2902            long standardTimeInZone = utcTimeInMillis - gmtOffset;
2903
2904            // Retrieve the correct zone and DST offsets from the time zone.
2905            if (zone instanceof ZoneInfo) {
2906                // Android changed: libcore ZoneInfo uses different method to get offsets.
2907                ZoneInfo zoneInfo = (ZoneInfo) zone;
2908                zoneInfo.getOffsetsByUtcTime(standardTimeInZone, zoneOffsets);
2909            } else {
2910                zone.getOffsets(standardTimeInZone, zoneOffsets);
2911            }
2912            zoneOffset = zoneOffsets[0];
2913            dstOffset = zoneOffsets[1];
2914
2915            // If necessary adjust the DST offset to handle an invalid wall clock sensibly.
2916            dstOffset = adjustDstOffsetForInvalidWallClock(standardTimeInZone, zone, dstOffset);
2917        }
2918
2919        // If either ZONE_OFFSET of DST_OFFSET fields are set then get the information from the
2920        // fields, potentially overriding information from the TimeZone.
2921        if (tzMask != 0) {
2922            if (isFieldSet(tzMask, ZONE_OFFSET)) {
2923                zoneOffset = internalGet(ZONE_OFFSET);
2924            }
2925            if (isFieldSet(tzMask, DST_OFFSET)) {
2926                dstOffset = internalGet(DST_OFFSET);
2927            }
2928        }
2929
2930        // Adjust the time zone offset values to get the UTC time.
2931        long standardTimeInZone = utcTimeInMillis - zoneOffset;
2932        return standardTimeInZone - dstOffset;
2933    }
2934
2935    /**
2936     * If the supplied millis is in daylight savings time (DST) and is the result of an invalid
2937     * wall clock then adjust the DST offset to ensure sensible behavior.
2938     *
2939     * <p>When transitioning into DST, i.e. when the clocks spring forward (usually by one hour)
2940     * there is a wall clock period that is invalid, it literally doesn't exist. e.g. If clocks
2941     * go forward one hour at 02:00 on 9th March 2014 (standard time) then the wall time of
2942     * 02:00-02:59:59.999 is not a valid. The wall clock jumps straight from 01:59:59.999 to
2943     * 03:00. The following table shows the relationship between the time in millis, the standard
2944     * time and the wall time at the point of transitioning into DST. As can be seen there is no
2945     * 02:00 in the wall time.
2946     *
2947     * <pre>
2948     * Time In Millis - ......  x+1h .....  x+2h .....  x+3h
2949     * Standard Time  - ...... 01:00 ..... 02:00 ..... 03:00 .....
2950     * Wall Time      - ...... 01:00 ..... 03:00 ..... 04:00 .....
2951     *                                       ^
2952     *                                 02:00 missing
2953     * </pre>
2954     *
2955     * <p>The calendar fields represent wall time. If the user sets the fields on the calendar so
2956     * that it is in that invalid period then this code attempts to do something sensible. It
2957     * treats 02:MM:SS.SSS as if it is {@code 01:MM:SS.SSS + 1 hour}. That makes sense from both
2958     * the input calendar fields perspective and from the time in millis perspective. Of course the
2959     * result of that is that when the time is formatted in that time zone that the time is
2960     * actually 03:MM:SS.SSS.
2961     *
2962     * <pre>
2963     * Wall Time      - ...... 01:00 ..... <b>02:00 .....</b> 03:00 ..... 04:00 .....
2964     * Time In Millis - ......  x+1h ..... <b> x+2h .....</b>  x+2h .....  x+3h .....
2965     * </pre>
2966     *
2967     * <p>The way that works is as follows. First the standard time is calculated and the DST
2968     * offset is determined. Then if the time is in DST (the DST offset is not 0) but it was not in
2969     * DST an hour earlier (or however long the DST offset is) then it must be in that invalid
2970     * period, in which case set the DST offset to 0. That is then subtracted from the time in
2971     * millis to produce the correct result. The following diagram illustrates the process.
2972     *
2973     * <pre>
2974     * Standard Time  - ...... 01:00 ..... 02:00 ..... 03:00 ..... 04:00 .....
2975     * Time In Millis - ......  x+1h .....  x+2h .....  x+3h .....  x+4h .....
2976     * DST Offset     - ......    0h .....    1h .....    1h .....    1h .....
2977     * Adjusted DST   - ......    0h .....    <b>0h</b> .....    1h .....    1h .....
2978     * Adjusted Time  - ......  x+1h .....  x+2h .....  <b>x+2h</b> .....  <b>x+3h</b> .....
2979     * </pre>
2980     *
2981     * @return the adjusted DST offset.
2982     */
2983    private int adjustDstOffsetForInvalidWallClock(
2984            long standardTimeInZone, TimeZone zone, int dstOffset) {
2985
2986        if (dstOffset != 0) {
2987            // If applying the DST offset produces a time that is outside DST then it must be
2988            // an invalid wall clock so clear the DST offset to avoid that happening.
2989            if (!zone.inDaylightTime(new Date(standardTimeInZone - dstOffset))) {
2990                dstOffset = 0;
2991            }
2992        }
2993        return dstOffset;
2994    }
2995
2996    /**
2997     * Computes the fixed date under either the Gregorian or the
2998     * Julian calendar, using the given year and the specified calendar fields.
2999     *
3000     * @param cal the CalendarSystem to be used for the date calculation
3001     * @param year the normalized year number, with 0 indicating the
3002     * year 1 BCE, -1 indicating 2 BCE, etc.
3003     * @param fieldMask the calendar fields to be used for the date calculation
3004     * @return the fixed date
3005     * @see Calendar#selectFields
3006     */
3007    private long getFixedDate(BaseCalendar cal, int year, int fieldMask) {
3008        int month = JANUARY;
3009        if (isFieldSet(fieldMask, MONTH)) {
3010            // No need to check if MONTH has been set (no isSet(MONTH)
3011            // call) since its unset value happens to be JANUARY (0).
3012            month = internalGet(MONTH);
3013
3014            // If the month is out of range, adjust it into range
3015            if (month > DECEMBER) {
3016                year += month / 12;
3017                month %= 12;
3018            } else if (month < JANUARY) {
3019                int[] rem = new int[1];
3020                year += CalendarUtils.floorDivide(month, 12, rem);
3021                month = rem[0];
3022            }
3023        }
3024
3025        // Get the fixed date since Jan 1, 1 (Gregorian). We are on
3026        // the first day of either `month' or January in 'year'.
3027        long fixedDate = cal.getFixedDate(year, month + 1, 1,
3028                                          cal == gcal ? gdate : null);
3029        if (isFieldSet(fieldMask, MONTH)) {
3030            // Month-based calculations
3031            if (isFieldSet(fieldMask, DAY_OF_MONTH)) {
3032                // We are on the first day of the month. Just add the
3033                // offset if DAY_OF_MONTH is set. If the isSet call
3034                // returns false, that means DAY_OF_MONTH has been
3035                // selected just because of the selected
3036                // combination. We don't need to add any since the
3037                // default value is the 1st.
3038                if (isSet(DAY_OF_MONTH)) {
3039                    // To avoid underflow with DAY_OF_MONTH-1, add
3040                    // DAY_OF_MONTH, then subtract 1.
3041                    fixedDate += internalGet(DAY_OF_MONTH);
3042                    fixedDate--;
3043                }
3044            } else {
3045                if (isFieldSet(fieldMask, WEEK_OF_MONTH)) {
3046                    long firstDayOfWeek = BaseCalendar.getDayOfWeekDateOnOrBefore(fixedDate + 6,
3047                                                                                  getFirstDayOfWeek());
3048                    // If we have enough days in the first week, then
3049                    // move to the previous week.
3050                    if ((firstDayOfWeek - fixedDate) >= getMinimalDaysInFirstWeek()) {
3051                        firstDayOfWeek -= 7;
3052                    }
3053                    if (isFieldSet(fieldMask, DAY_OF_WEEK)) {
3054                        firstDayOfWeek = BaseCalendar.getDayOfWeekDateOnOrBefore(firstDayOfWeek + 6,
3055                                                                                 internalGet(DAY_OF_WEEK));
3056                    }
3057                    // In lenient mode, we treat days of the previous
3058                    // months as a part of the specified
3059                    // WEEK_OF_MONTH. See 4633646.
3060                    fixedDate = firstDayOfWeek + 7 * (internalGet(WEEK_OF_MONTH) - 1);
3061                } else {
3062                    int dayOfWeek;
3063                    if (isFieldSet(fieldMask, DAY_OF_WEEK)) {
3064                        dayOfWeek = internalGet(DAY_OF_WEEK);
3065                    } else {
3066                        dayOfWeek = getFirstDayOfWeek();
3067                    }
3068                    // We are basing this on the day-of-week-in-month.  The only
3069                    // trickiness occurs if the day-of-week-in-month is
3070                    // negative.
3071                    int dowim;
3072                    if (isFieldSet(fieldMask, DAY_OF_WEEK_IN_MONTH)) {
3073                        dowim = internalGet(DAY_OF_WEEK_IN_MONTH);
3074                    } else {
3075                        dowim = 1;
3076                    }
3077                    if (dowim >= 0) {
3078                        fixedDate = BaseCalendar.getDayOfWeekDateOnOrBefore(fixedDate + (7 * dowim) - 1,
3079                                                                            dayOfWeek);
3080                    } else {
3081                        // Go to the first day of the next week of
3082                        // the specified week boundary.
3083                        int lastDate = monthLength(month, year) + (7 * (dowim + 1));
3084                        // Then, get the day of week date on or before the last date.
3085                        fixedDate = BaseCalendar.getDayOfWeekDateOnOrBefore(fixedDate + lastDate - 1,
3086                                                                            dayOfWeek);
3087                    }
3088                }
3089            }
3090        } else {
3091            if (year == gregorianCutoverYear && cal == gcal
3092                && fixedDate < gregorianCutoverDate
3093                && gregorianCutoverYear != gregorianCutoverYearJulian) {
3094                // January 1 of the year doesn't exist.  Use
3095                // gregorianCutoverDate as the first day of the
3096                // year.
3097                fixedDate = gregorianCutoverDate;
3098            }
3099            // We are on the first day of the year.
3100            if (isFieldSet(fieldMask, DAY_OF_YEAR)) {
3101                // Add the offset, then subtract 1. (Make sure to avoid underflow.)
3102                fixedDate += internalGet(DAY_OF_YEAR);
3103                fixedDate--;
3104            } else {
3105                long firstDayOfWeek = BaseCalendar.getDayOfWeekDateOnOrBefore(fixedDate + 6,
3106                                                                              getFirstDayOfWeek());
3107                // If we have enough days in the first week, then move
3108                // to the previous week.
3109                if ((firstDayOfWeek - fixedDate) >= getMinimalDaysInFirstWeek()) {
3110                    firstDayOfWeek -= 7;
3111                }
3112                if (isFieldSet(fieldMask, DAY_OF_WEEK)) {
3113                    int dayOfWeek = internalGet(DAY_OF_WEEK);
3114                    if (dayOfWeek != getFirstDayOfWeek()) {
3115                        firstDayOfWeek = BaseCalendar.getDayOfWeekDateOnOrBefore(firstDayOfWeek + 6,
3116                                                                                 dayOfWeek);
3117                    }
3118                }
3119                fixedDate = firstDayOfWeek + 7 * ((long)internalGet(WEEK_OF_YEAR) - 1);
3120            }
3121        }
3122
3123        return fixedDate;
3124    }
3125
3126    /**
3127     * Returns this object if it's normalized (all fields and time are
3128     * in sync). Otherwise, a cloned object is returned after calling
3129     * complete() in lenient mode.
3130     */
3131    private GregorianCalendar getNormalizedCalendar() {
3132        GregorianCalendar gc;
3133        if (isFullyNormalized()) {
3134            gc = this;
3135        } else {
3136            // Create a clone and normalize the calendar fields
3137            gc = (GregorianCalendar) this.clone();
3138            gc.setLenient(true);
3139            gc.complete();
3140        }
3141        return gc;
3142    }
3143
3144    /**
3145     * Returns the Julian calendar system instance (singleton). 'jcal'
3146     * and 'jeras' are set upon the return.
3147     */
3148    private static synchronized BaseCalendar getJulianCalendarSystem() {
3149        if (jcal == null) {
3150            jcal = (JulianCalendar) CalendarSystem.forName("julian");
3151            jeras = jcal.getEras();
3152        }
3153        return jcal;
3154    }
3155
3156    /**
3157     * Returns the calendar system for dates before the cutover date
3158     * in the cutover year. If the cutover date is January 1, the
3159     * method returns Gregorian. Otherwise, Julian.
3160     */
3161    private BaseCalendar getCutoverCalendarSystem() {
3162        if (gregorianCutoverYearJulian < gregorianCutoverYear) {
3163            return gcal;
3164        }
3165        return getJulianCalendarSystem();
3166    }
3167
3168    /**
3169     * Determines if the specified year (normalized) is the Gregorian
3170     * cutover year. This object must have been normalized.
3171     */
3172    private boolean isCutoverYear(int normalizedYear) {
3173        int cutoverYear = (calsys == gcal) ? gregorianCutoverYear : gregorianCutoverYearJulian;
3174        return normalizedYear == cutoverYear;
3175    }
3176
3177    /**
3178     * Returns the fixed date of the first day of the year (usually
3179     * January 1) before the specified date.
3180     *
3181     * @param date the date for which the first day of the year is
3182     * calculated. The date has to be in the cut-over year (Gregorian
3183     * or Julian).
3184     * @param fixedDate the fixed date representation of the date
3185     */
3186    private long getFixedDateJan1(BaseCalendar.Date date, long fixedDate) {
3187        assert date.getNormalizedYear() == gregorianCutoverYear ||
3188            date.getNormalizedYear() == gregorianCutoverYearJulian;
3189        if (gregorianCutoverYear != gregorianCutoverYearJulian) {
3190            if (fixedDate >= gregorianCutoverDate) {
3191                // Dates before the cutover date don't exist
3192                // in the same (Gregorian) year. So, no
3193                // January 1 exists in the year. Use the
3194                // cutover date as the first day of the year.
3195                return gregorianCutoverDate;
3196            }
3197        }
3198        // January 1 of the normalized year should exist.
3199        BaseCalendar juliancal = getJulianCalendarSystem();
3200        return juliancal.getFixedDate(date.getNormalizedYear(), BaseCalendar.JANUARY, 1, null);
3201    }
3202
3203    /**
3204     * Returns the fixed date of the first date of the month (usually
3205     * the 1st of the month) before the specified date.
3206     *
3207     * @param date the date for which the first day of the month is
3208     * calculated. The date has to be in the cut-over year (Gregorian
3209     * or Julian).
3210     * @param fixedDate the fixed date representation of the date
3211     */
3212    private long getFixedDateMonth1(BaseCalendar.Date date, long fixedDate) {
3213        assert date.getNormalizedYear() == gregorianCutoverYear ||
3214            date.getNormalizedYear() == gregorianCutoverYearJulian;
3215        BaseCalendar.Date gCutover = getGregorianCutoverDate();
3216        if (gCutover.getMonth() == BaseCalendar.JANUARY
3217            && gCutover.getDayOfMonth() == 1) {
3218            // The cutover happened on January 1.
3219            return fixedDate - date.getDayOfMonth() + 1;
3220        }
3221
3222        long fixedDateMonth1;
3223        // The cutover happened sometime during the year.
3224        if (date.getMonth() == gCutover.getMonth()) {
3225            // The cutover happened in the month.
3226            BaseCalendar.Date jLastDate = getLastJulianDate();
3227            if (gregorianCutoverYear == gregorianCutoverYearJulian
3228                && gCutover.getMonth() == jLastDate.getMonth()) {
3229                // The "gap" fits in the same month.
3230                fixedDateMonth1 = jcal.getFixedDate(date.getNormalizedYear(),
3231                                                    date.getMonth(),
3232                                                    1,
3233                                                    null);
3234            } else {
3235                // Use the cutover date as the first day of the month.
3236                fixedDateMonth1 = gregorianCutoverDate;
3237            }
3238        } else {
3239            // The cutover happened before the month.
3240            fixedDateMonth1 = fixedDate - date.getDayOfMonth() + 1;
3241        }
3242
3243        return fixedDateMonth1;
3244    }
3245
3246    /**
3247     * Returns a CalendarDate produced from the specified fixed date.
3248     *
3249     * @param fd the fixed date
3250     */
3251    private BaseCalendar.Date getCalendarDate(long fd) {
3252        BaseCalendar cal = (fd >= gregorianCutoverDate) ? gcal : getJulianCalendarSystem();
3253        BaseCalendar.Date d = (BaseCalendar.Date) cal.newCalendarDate(TimeZone.NO_TIMEZONE);
3254        cal.getCalendarDateFromFixedDate(d, fd);
3255        return d;
3256    }
3257
3258    /**
3259     * Returns the Gregorian cutover date as a BaseCalendar.Date. The
3260     * date is a Gregorian date.
3261     */
3262    private BaseCalendar.Date getGregorianCutoverDate() {
3263        return getCalendarDate(gregorianCutoverDate);
3264    }
3265
3266    /**
3267     * Returns the day before the Gregorian cutover date as a
3268     * BaseCalendar.Date. The date is a Julian date.
3269     */
3270    private BaseCalendar.Date getLastJulianDate() {
3271        return getCalendarDate(gregorianCutoverDate - 1);
3272    }
3273
3274    /**
3275     * Returns the length of the specified month in the specified
3276     * year. The year number must be normalized.
3277     *
3278     * @see #isLeapYear(int)
3279     */
3280    private int monthLength(int month, int year) {
3281        return isLeapYear(year) ? LEAP_MONTH_LENGTH[month] : MONTH_LENGTH[month];
3282    }
3283
3284    /**
3285     * Returns the length of the specified month in the year provided
3286     * by internalGet(YEAR).
3287     *
3288     * @see #isLeapYear(int)
3289     */
3290    private int monthLength(int month) {
3291        int year = internalGet(YEAR);
3292        if (internalGetEra() == BCE) {
3293            year = 1 - year;
3294        }
3295        return monthLength(month, year);
3296    }
3297
3298    private int actualMonthLength() {
3299        int year = cdate.getNormalizedYear();
3300        if (year != gregorianCutoverYear && year != gregorianCutoverYearJulian) {
3301            return calsys.getMonthLength(cdate);
3302        }
3303        BaseCalendar.Date date = (BaseCalendar.Date) cdate.clone();
3304        long fd = calsys.getFixedDate(date);
3305        long month1 = getFixedDateMonth1(date, fd);
3306        long next1 = month1 + calsys.getMonthLength(date);
3307        if (next1 < gregorianCutoverDate) {
3308            return (int)(next1 - month1);
3309        }
3310        if (cdate != gdate) {
3311            date = (BaseCalendar.Date) gcal.newCalendarDate(TimeZone.NO_TIMEZONE);
3312        }
3313        gcal.getCalendarDateFromFixedDate(date, next1);
3314        next1 = getFixedDateMonth1(date, next1);
3315        return (int)(next1 - month1);
3316    }
3317
3318    /**
3319     * Returns the length (in days) of the specified year. The year
3320     * must be normalized.
3321     */
3322    private int yearLength(int year) {
3323        return isLeapYear(year) ? 366 : 365;
3324    }
3325
3326    /**
3327     * Returns the length (in days) of the year provided by
3328     * internalGet(YEAR).
3329     */
3330    private int yearLength() {
3331        int year = internalGet(YEAR);
3332        if (internalGetEra() == BCE) {
3333            year = 1 - year;
3334        }
3335        return yearLength(year);
3336    }
3337
3338    /**
3339     * After adjustments such as add(MONTH), add(YEAR), we don't want the
3340     * month to jump around.  E.g., we don't want Jan 31 + 1 month to go to Mar
3341     * 3, we want it to go to Feb 28.  Adjustments which might run into this
3342     * problem call this method to retain the proper month.
3343     */
3344    private void pinDayOfMonth() {
3345        int year = internalGet(YEAR);
3346        int monthLen;
3347        if (year > gregorianCutoverYear || year < gregorianCutoverYearJulian) {
3348            monthLen = monthLength(internalGet(MONTH));
3349        } else {
3350            GregorianCalendar gc = getNormalizedCalendar();
3351            monthLen = gc.getActualMaximum(DAY_OF_MONTH);
3352        }
3353        int dom = internalGet(DAY_OF_MONTH);
3354        if (dom > monthLen) {
3355            set(DAY_OF_MONTH, monthLen);
3356        }
3357    }
3358
3359    /**
3360     * Returns the fixed date value of this object. The time value and
3361     * calendar fields must be in synch.
3362     */
3363    private long getCurrentFixedDate() {
3364        return (calsys == gcal) ? cachedFixedDate : calsys.getFixedDate(cdate);
3365    }
3366
3367    /**
3368     * Returns the new value after 'roll'ing the specified value and amount.
3369     */
3370    private static int getRolledValue(int value, int amount, int min, int max) {
3371        assert value >= min && value <= max;
3372        int range = max - min + 1;
3373        amount %= range;
3374        int n = value + amount;
3375        if (n > max) {
3376            n -= range;
3377        } else if (n < min) {
3378            n += range;
3379        }
3380        assert n >= min && n <= max;
3381        return n;
3382    }
3383
3384    /**
3385     * Returns the ERA.  We need a special method for this because the
3386     * default ERA is CE, but a zero (unset) ERA is BCE.
3387     */
3388    private int internalGetEra() {
3389        return isSet(ERA) ? internalGet(ERA) : CE;
3390    }
3391
3392    /**
3393     * Updates internal state.
3394     */
3395    private void readObject(ObjectInputStream stream)
3396            throws IOException, ClassNotFoundException {
3397        stream.defaultReadObject();
3398        if (gdate == null) {
3399            gdate = (BaseCalendar.Date) gcal.newCalendarDate(getZone());
3400            cachedFixedDate = Long.MIN_VALUE;
3401        }
3402        setGregorianChange(gregorianCutover);
3403    }
3404
3405    /**
3406     * Converts this object to a {@code ZonedDateTime} that represents
3407     * the same point on the time-line as this {@code GregorianCalendar}.
3408     * <p>
3409     * Since this object supports a Julian-Gregorian cutover date and
3410     * {@code ZonedDateTime} does not, it is possible that the resulting year,
3411     * month and day will have different values.  The result will represent the
3412     * correct date in the ISO calendar system, which will also be the same value
3413     * for Modified Julian Days.
3414     *
3415     * @return a zoned date-time representing the same point on the time-line
3416     *  as this gregorian calendar
3417     * @since 1.8
3418     */
3419    public ZonedDateTime toZonedDateTime() {
3420        return ZonedDateTime.ofInstant(Instant.ofEpochMilli(getTimeInMillis()),
3421                                       getTimeZone().toZoneId());
3422    }
3423
3424    /**
3425     * Obtains an instance of {@code GregorianCalendar} with the default locale
3426     * from a {@code ZonedDateTime} object.
3427     * <p>
3428     * Since {@code ZonedDateTime} does not support a Julian-Gregorian cutover
3429     * date and uses ISO calendar system, the return GregorianCalendar is a pure
3430     * Gregorian calendar and uses ISO 8601 standard for week definitions,
3431     * which has {@code MONDAY} as the {@link Calendar#getFirstDayOfWeek()
3432     * FirstDayOfWeek} and {@code 4} as the value of the
3433     * {@link Calendar#getMinimalDaysInFirstWeek() MinimalDaysInFirstWeek}.
3434     * <p>
3435     * {@code ZoneDateTime} can store points on the time-line further in the
3436     * future and further in the past than {@code GregorianCalendar}. In this
3437     * scenario, this method will throw an {@code IllegalArgumentException}
3438     * exception.
3439     *
3440     * @param zdt  the zoned date-time object to convert
3441     * @return  the gregorian calendar representing the same point on the
3442     *  time-line as the zoned date-time provided
3443     * @exception NullPointerException if {@code zdt} is null
3444     * @exception IllegalArgumentException if the zoned date-time is too
3445     * large to represent as a {@code GregorianCalendar}
3446     * @since 1.8
3447     */
3448    public static GregorianCalendar from(ZonedDateTime zdt) {
3449        GregorianCalendar cal = new GregorianCalendar(TimeZone.getTimeZone(zdt.getZone()));
3450        cal.setGregorianChange(new Date(Long.MIN_VALUE));
3451        cal.setFirstDayOfWeek(MONDAY);
3452        cal.setMinimalDaysInFirstWeek(4);
3453        try {
3454            cal.setTimeInMillis(Math.addExact(Math.multiplyExact(zdt.toEpochSecond(), 1000),
3455                                              zdt.get(ChronoField.MILLI_OF_SECOND)));
3456        } catch (ArithmeticException ex) {
3457            throw new IllegalArgumentException(ex);
3458        }
3459        return cal;
3460    }
3461}
3462