LinkedHashMap.java revision 53c8c684093c1778163ed386777e802e8f5188f1
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.  Oracle designates this
9 * particular file as subject to the "Classpath" exception as provided
10 * by Oracle in the LICENSE file that accompanied this code.
11 *
12 * This code is distributed in the hope that it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 * version 2 for more details (a copy is included in the LICENSE file that
16 * accompanied this code).
17 *
18 * You should have received a copy of the GNU General Public License version
19 * 2 along with this work; if not, write to the Free Software Foundation,
20 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
21 *
22 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
23 * or visit www.oracle.com if you need additional information or have any
24 * questions.
25 */
26
27package java.util;
28
29import sun.misc.Hashing;
30
31import java.io.*;
32import java.util.function.BiFunction;
33import java.util.function.Consumer;
34import java.util.function.BiConsumer;
35
36// Android-added: Note about spliterator order b/33945212 in Android N
37/**
38 * <p>Hash table and linked list implementation of the <tt>Map</tt> interface,
39 * with predictable iteration order.  This implementation differs from
40 * <tt>HashMap</tt> in that it maintains a doubly-linked list running through
41 * all of its entries.  This linked list defines the iteration ordering,
42 * which is normally the order in which keys were inserted into the map
43 * (<i>insertion-order</i>).  Note that insertion order is not affected
44 * if a key is <i>re-inserted</i> into the map.  (A key <tt>k</tt> is
45 * reinserted into a map <tt>m</tt> if <tt>m.put(k, v)</tt> is invoked when
46 * <tt>m.containsKey(k)</tt> would return <tt>true</tt> immediately prior to
47 * the invocation.)
48 *
49 * <p>This implementation spares its clients from the unspecified, generally
50 * chaotic ordering provided by {@link HashMap} (and {@link Hashtable}),
51 * without incurring the increased cost associated with {@link TreeMap}.  It
52 * can be used to produce a copy of a map that has the same order as the
53 * original, regardless of the original map's implementation:
54 * <pre>
55 *     void foo(Map m) {
56 *         Map copy = new LinkedHashMap(m);
57 *         ...
58 *     }
59 * </pre>
60 * This technique is particularly useful if a module takes a map on input,
61 * copies it, and later returns results whose order is determined by that of
62 * the copy.  (Clients generally appreciate having things returned in the same
63 * order they were presented.)
64 *
65 * <p>A special {@link #LinkedHashMap(int,float,boolean) constructor} is
66 * provided to create a linked hash map whose order of iteration is the order
67 * in which its entries were last accessed, from least-recently accessed to
68 * most-recently (<i>access-order</i>).  This kind of map is well-suited to
69 * building LRU caches.  Invoking the {@code put}, {@code putIfAbsent},
70 * {@code get}, {@code getOrDefault}, {@code compute}, {@code computeIfAbsent},
71 * {@code computeIfPresent}, or {@code merge} methods results
72 * in an access to the corresponding entry (assuming it exists after the
73 * invocation completes). The {@code replace} methods only result in an access
74 * of the entry if the value is replaced.  The {@code putAll} method generates one
75 * entry access for each mapping in the specified map, in the order that
76 * key-value mappings are provided by the specified map's entry set iterator.
77 * <i>No other methods generate entry accesses.</i>  In particular, operations
78 * on collection-views do <i>not</i> affect the order of iteration of the
79 * backing map. *
80 * <p>The {@link #removeEldestEntry(Map.Entry)} method may be overridden to
81 * impose a policy for removing stale mappings automatically when new mappings
82 * are added to the map.
83 *
84 * <p>This class provides all of the optional <tt>Map</tt> operations, and
85 * permits null elements.  Like <tt>HashMap</tt>, it provides constant-time
86 * performance for the basic operations (<tt>add</tt>, <tt>contains</tt> and
87 * <tt>remove</tt>), assuming the hash function disperses elements
88 * properly among the buckets.  Performance is likely to be just slightly
89 * below that of <tt>HashMap</tt>, due to the added expense of maintaining the
90 * linked list, with one exception: Iteration over the collection-views
91 * of a <tt>LinkedHashMap</tt> requires time proportional to the <i>size</i>
92 * of the map, regardless of its capacity.  Iteration over a <tt>HashMap</tt>
93 * is likely to be more expensive, requiring time proportional to its
94 * <i>capacity</i>.
95 *
96 * <p>A linked hash map has two parameters that affect its performance:
97 * <i>initial capacity</i> and <i>load factor</i>.  They are defined precisely
98 * as for <tt>HashMap</tt>.  Note, however, that the penalty for choosing an
99 * excessively high value for initial capacity is less severe for this class
100 * than for <tt>HashMap</tt>, as iteration times for this class are unaffected
101 * by capacity.
102 *
103 * <p><strong>Note that this implementation is not synchronized.</strong>
104 * If multiple threads access a linked hash map concurrently, and at least
105 * one of the threads modifies the map structurally, it <em>must</em> be
106 * synchronized externally.  This is typically accomplished by
107 * synchronizing on some object that naturally encapsulates the map.
108 *
109 * If no such object exists, the map should be "wrapped" using the
110 * {@link Collections#synchronizedMap Collections.synchronizedMap}
111 * method.  This is best done at creation time, to prevent accidental
112 * unsynchronized access to the map:<pre>
113 *   Map m = Collections.synchronizedMap(new LinkedHashMap(...));</pre>
114 *
115 * A structural modification is any operation that adds or deletes one or more
116 * mappings or, in the case of access-ordered linked hash maps, affects
117 * iteration order.  In insertion-ordered linked hash maps, merely changing
118 * the value associated with a key that is already contained in the map is not
119 * a structural modification.  <strong>In access-ordered linked hash maps,
120 * merely querying the map with <tt>get</tt> is a structural
121 * modification.</strong>)
122 *
123 * <p>The iterators returned by the <tt>iterator</tt> method of the collections
124 * returned by all of this class's collection view methods are
125 * <em>fail-fast</em>: if the map is structurally modified at any time after
126 * the iterator is created, in any way except through the iterator's own
127 * <tt>remove</tt> method, the iterator will throw a {@link
128 * ConcurrentModificationException}.  Thus, in the face of concurrent
129 * modification, the iterator fails quickly and cleanly, rather than risking
130 * arbitrary, non-deterministic behavior at an undetermined time in the future.
131 *
132 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
133 * as it is, generally speaking, impossible to make any hard guarantees in the
134 * presence of unsynchronized concurrent modification.  Fail-fast iterators
135 * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
136 * Therefore, it would be wrong to write a program that depended on this
137 * exception for its correctness:   <i>the fail-fast behavior of iterators
138 * should be used only to detect bugs.</i>
139 *
140 * <p>The spliterators returned by the spliterator method of the collections
141 * returned by all of this class's collection view methods are
142 * <em><a href="Spliterator.html#binding">late-binding</a></em>,
143 * <em>fail-fast</em>, and additionally report {@link Spliterator#ORDERED}.
144 * <em>Note</em>: The implementation of these spliterators in Android Nougat
145 * (API levels 24 and 25) uses the wrong order (inconsistent with the
146 * iterators, which use the correct order), despite reporting
147 * {@link Spliterator#ORDERED}. You may use the following code fragments
148 * to obtain a correctly ordered Spliterator on API level 24 and 25:
149 * <ul>
150 *     <li>For a Collection view {@code c = lhm.keySet()},
151 *         {@code c = lhm.keySet()} or {@code c = lhm.values()}, use
152 *         {@code java.util.Spliterators.spliterator(c, c.spliterator().characteristics())}
153 *         instead of {@code c.spliterator()}.
154 *     <li>Instead of {@code lhm.stream()} or {@code lhm.parallelStream()}, use
155 *         {@code java.util.stream.StreamSupport.stream(spliterator, false)}
156 *         to construct a (nonparallel) {@link java.util.stream.Stream} from
157 *         such a {@code Spliterator}.
158 * </ul>
159 * Note that these workarounds are only suggested where {@code lhm} is a
160 * {@code LinkedHashMap}.
161 *
162 * <p>This class is a member of the
163 * <a href="{@docRoot}openjdk-redirect.html?v=8&path=/technotes/guides/collections/index.html">
164 * Java Collections Framework</a>.
165 *
166 * @implNote
167 * The spliterators returned by the spliterator method of the collections
168 * returned by all of this class's collection view methods are created from
169 * the iterators of the corresponding collections.
170 *
171 * @param <K> the type of keys maintained by this map
172 * @param <V> the type of mapped values
173 *
174 * @author  Josh Bloch
175 * @see     Object#hashCode()
176 * @see     Collection
177 * @see     Map
178 * @see     HashMap
179 * @see     TreeMap
180 * @see     Hashtable
181 * @since   1.4
182 */
183
184public class LinkedHashMap<K,V>
185    extends HashMap<K,V>
186    implements Map<K,V>
187{
188
189    private static final long serialVersionUID = 3801124242820219131L;
190
191    /**
192     * The head of the doubly linked list.
193     */
194    private transient LinkedHashMapEntry<K,V> header;
195
196    /**
197     * The iteration ordering method for this linked hash map: <tt>true</tt>
198     * for access-order, <tt>false</tt> for insertion-order.
199     *
200     * @serial
201     */
202    private final boolean accessOrder;
203
204    /**
205     * Constructs an empty insertion-ordered <tt>LinkedHashMap</tt> instance
206     * with the specified initial capacity and load factor.
207     *
208     * @param  initialCapacity the initial capacity
209     * @param  loadFactor      the load factor
210     * @throws IllegalArgumentException if the initial capacity is negative
211     *         or the load factor is nonpositive
212     */
213    public LinkedHashMap(int initialCapacity, float loadFactor) {
214        super(initialCapacity, loadFactor);
215        accessOrder = false;
216    }
217
218    /**
219     * Constructs an empty insertion-ordered <tt>LinkedHashMap</tt> instance
220     * with the specified initial capacity and a default load factor (0.75).
221     *
222     * @param  initialCapacity the initial capacity
223     * @throws IllegalArgumentException if the initial capacity is negative
224     */
225    public LinkedHashMap(int initialCapacity) {
226        super(initialCapacity);
227        accessOrder = false;
228    }
229
230    /**
231     * Constructs an empty insertion-ordered <tt>LinkedHashMap</tt> instance
232     * with the default initial capacity (16) and load factor (0.75).
233     */
234    public LinkedHashMap() {
235        super();
236        accessOrder = false;
237    }
238
239    /**
240     * Constructs an insertion-ordered <tt>LinkedHashMap</tt> instance with
241     * the same mappings as the specified map.  The <tt>LinkedHashMap</tt>
242     * instance is created with a default load factor (0.75) and an initial
243     * capacity sufficient to hold the mappings in the specified map.
244     *
245     * @param  m the map whose mappings are to be placed in this map
246     * @throws NullPointerException if the specified map is null
247     */
248    public LinkedHashMap(Map<? extends K, ? extends V> m) {
249        super(m);
250        accessOrder = false;
251    }
252
253    /**
254     * Constructs an empty <tt>LinkedHashMap</tt> instance with the
255     * specified initial capacity, load factor and ordering mode.
256     *
257     * @param  initialCapacity the initial capacity
258     * @param  loadFactor      the load factor
259     * @param  accessOrder     the ordering mode - <tt>true</tt> for
260     *         access-order, <tt>false</tt> for insertion-order
261     * @throws IllegalArgumentException if the initial capacity is negative
262     *         or the load factor is nonpositive
263     */
264    public LinkedHashMap(int initialCapacity,
265                         float loadFactor,
266                         boolean accessOrder) {
267        super(initialCapacity, loadFactor);
268        this.accessOrder = accessOrder;
269    }
270
271    /**
272     * Called by superclass constructors and pseudoconstructors (clone,
273     * readObject) before any entries are inserted into the map.  Initializes
274     * the chain.
275     */
276    @Override
277    void init() {
278        header = new LinkedHashMapEntry<>(-1, null, null, null);
279        header.before = header.after = header;
280    }
281
282    /**
283     * Transfers all entries to new table array.  This method is called
284     * by superclass resize.  It is overridden for performance, as it is
285     * faster to iterate using our linked list.
286     */
287    @Override
288    void transfer(HashMapEntry[] newTable) {
289        int newCapacity = newTable.length;
290        for (LinkedHashMapEntry<K,V> e = header.after; e != header; e = e.after) {
291            int index = indexFor(e.hash, newCapacity);
292            e.next = newTable[index];
293            newTable[index] = e;
294        }
295    }
296
297
298    /**
299     * Returns <tt>true</tt> if this map maps one or more keys to the
300     * specified value.
301     *
302     * @param value value whose presence in this map is to be tested
303     * @return <tt>true</tt> if this map maps one or more keys to the
304     *         specified value
305     */
306    public boolean containsValue(Object value) {
307        // Overridden to take advantage of faster iterator
308        if (value==null) {
309            for (LinkedHashMapEntry e = header.after; e != header; e = e.after)
310                if (e.value==null)
311                    return true;
312        } else {
313            for (LinkedHashMapEntry e = header.after; e != header; e = e.after)
314                if (value.equals(e.value))
315                    return true;
316        }
317        return false;
318    }
319
320    /**
321     * Returns the value to which the specified key is mapped,
322     * or {@code null} if this map contains no mapping for the key.
323     *
324     * <p>More formally, if this map contains a mapping from a key
325     * {@code k} to a value {@code v} such that {@code (key==null ? k==null :
326     * key.equals(k))}, then this method returns {@code v}; otherwise
327     * it returns {@code null}.  (There can be at most one such mapping.)
328     *
329     * <p>A return value of {@code null} does not <i>necessarily</i>
330     * indicate that the map contains no mapping for the key; it's also
331     * possible that the map explicitly maps the key to {@code null}.
332     * The {@link #containsKey containsKey} operation may be used to
333     * distinguish these two cases.
334     */
335    public V get(Object key) {
336        LinkedHashMapEntry<K,V> e = (LinkedHashMapEntry<K,V>)getEntry(key);
337        if (e == null)
338            return null;
339        e.recordAccess(this);
340        return e.value;
341    }
342
343    /**
344     * Removes all of the mappings from this map.
345     * The map will be empty after this call returns.
346     */
347    public void clear() {
348        super.clear();
349        header.before = header.after = header;
350    }
351
352    /**
353     * LinkedHashMap entry.
354     */
355    private static class LinkedHashMapEntry<K,V> extends HashMapEntry<K,V> {
356        // These fields comprise the doubly linked list used for iteration.
357        LinkedHashMapEntry<K,V> before, after;
358
359        LinkedHashMapEntry(int hash, K key, V value, HashMapEntry<K,V> next) {
360            super(hash, key, value, next);
361        }
362
363        /**
364         * Removes this entry from the linked list.
365         */
366        private void remove() {
367            before.after = after;
368            after.before = before;
369        }
370
371        /**
372         * Inserts this entry before the specified existing entry in the list.
373         */
374        private void addBefore(LinkedHashMapEntry<K,V> existingEntry) {
375            after  = existingEntry;
376            before = existingEntry.before;
377            before.after = this;
378            after.before = this;
379        }
380
381        /**
382         * This method is invoked by the superclass whenever the value
383         * of a pre-existing entry is read by Map.get or modified by Map.set.
384         * If the enclosing Map is access-ordered, it moves the entry
385         * to the end of the list; otherwise, it does nothing.
386         */
387        void recordAccess(HashMap<K,V> m) {
388            LinkedHashMap<K,V> lm = (LinkedHashMap<K,V>)m;
389            if (lm.accessOrder) {
390                lm.modCount++;
391                remove();
392                addBefore(lm.header);
393            }
394        }
395
396        void recordRemoval(HashMap<K,V> m) {
397            remove();
398        }
399    }
400
401    private abstract class LinkedHashIterator<T> implements Iterator<T> {
402        LinkedHashMapEntry<K,V> nextEntry    = header.after;
403        LinkedHashMapEntry<K,V> lastReturned = null;
404
405        /**
406         * The modCount value that the iterator believes that the backing
407         * List should have.  If this expectation is violated, the iterator
408         * has detected concurrent modification.
409         */
410        int expectedModCount = modCount;
411
412        public boolean hasNext() {
413            return nextEntry != header;
414        }
415
416        public void remove() {
417            if (lastReturned == null)
418                throw new IllegalStateException();
419            if (modCount != expectedModCount)
420                throw new ConcurrentModificationException();
421
422            LinkedHashMap.this.remove(lastReturned.key);
423            lastReturned = null;
424            expectedModCount = modCount;
425        }
426
427        Entry<K,V> nextEntry() {
428            if (modCount != expectedModCount)
429                throw new ConcurrentModificationException();
430            if (nextEntry == header)
431                throw new NoSuchElementException();
432
433            LinkedHashMapEntry<K,V> e = lastReturned = nextEntry;
434            nextEntry = e.after;
435            return e;
436        }
437    }
438
439    private class KeyIterator extends LinkedHashIterator<K> {
440        public K next() { return nextEntry().getKey(); }
441    }
442
443    private class ValueIterator extends LinkedHashIterator<V> {
444        public V next() { return nextEntry().getValue(); }
445    }
446
447    private class EntryIterator extends LinkedHashIterator<Map.Entry<K,V>> {
448        public Map.Entry<K,V> next() { return nextEntry(); }
449    }
450
451    // These Overrides alter the behavior of superclass view iterator() methods
452    Iterator<K> newKeyIterator()   { return new KeyIterator();   }
453    Iterator<V> newValueIterator() { return new ValueIterator(); }
454    Iterator<Map.Entry<K,V>> newEntryIterator() { return new EntryIterator(); }
455
456    /**
457     * This override alters behavior of superclass put method. It causes newly
458     * allocated entry to get inserted at the end of the linked list and
459     * removes the eldest entry if appropriate.
460     */
461    void addEntry(int hash, K key, V value, int bucketIndex) {
462        // Previous Android releases called removeEldestEntry() before actually
463        // inserting a value but after increasing the size.
464        // The RI is documented to call it afterwards.
465        // **** THIS CHANGE WILL BE REVERTED IN A FUTURE ANDROID RELEASE ****
466
467        // Remove eldest entry if instructed
468        LinkedHashMapEntry<K,V> eldest = header.after;
469        if (eldest != header) {
470            boolean removeEldest;
471            size++;
472            try {
473                removeEldest = removeEldestEntry(eldest);
474            } finally {
475                size--;
476            }
477            if (removeEldest) {
478                removeEntryForKey(eldest.key);
479            }
480        }
481
482        super.addEntry(hash, key, value, bucketIndex);
483    }
484
485    /**
486     * Returns the eldest entry in the map, or {@code null} if the map is empty.
487     *
488     * Android-added.
489     *
490     * @hide
491     */
492    public Map.Entry<K, V> eldest() {
493        Entry<K, V> eldest = header.after;
494        return eldest != header ? eldest : null;
495    }
496
497    /**
498     * This override differs from addEntry in that it doesn't resize the
499     * table or remove the eldest entry.
500     */
501    void createEntry(int hash, K key, V value, int bucketIndex) {
502        HashMapEntry<K,V> old = table[bucketIndex];
503        LinkedHashMapEntry<K,V> e = new LinkedHashMapEntry<>(hash, key, value, old);
504        table[bucketIndex] = e;
505        e.addBefore(header);
506        size++;
507    }
508
509    // Intentionally make this not JavaDoc, as the we don't conform to
510    // the behaviour documented here (we call removeEldestEntry before
511    // inserting the new value to be consistent with previous Android
512    // releases).
513    // **** THIS CHANGE WILL BE REVERTED IN A FUTURE ANDROID RELEASE ****
514    /*
515     * Returns <tt>true</tt> if this map should remove its eldest entry.
516     * This method is invoked by <tt>put</tt> and <tt>putAll</tt> after
517     * inserting a new entry into the map.  It provides the implementor
518     * with the opportunity to remove the eldest entry each time a new one
519     * is added.  This is useful if the map represents a cache: it allows
520     * the map to reduce memory consumption by deleting stale entries.
521     *
522     * <p>Sample use: this override will allow the map to grow up to 100
523     * entries and then delete the eldest entry each time a new entry is
524     * added, maintaining a steady state of 100 entries.
525     * <pre>
526     *     private static final int MAX_ENTRIES = 100;
527     *
528     *     protected boolean removeEldestEntry(Map.Entry eldest) {
529     *        return size() > MAX_ENTRIES;
530     *     }
531     * </pre>
532     *
533     * <p>This method typically does not modify the map in any way,
534     * instead allowing the map to modify itself as directed by its
535     * return value.  It <i>is</i> permitted for this method to modify
536     * the map directly, but if it does so, it <i>must</i> return
537     * <tt>false</tt> (indicating that the map should not attempt any
538     * further modification).  The effects of returning <tt>true</tt>
539     * after modifying the map from within this method are unspecified.
540     *
541     * <p>This implementation merely returns <tt>false</tt> (so that this
542     * map acts like a normal map - the eldest element is never removed).
543     *
544     * @param    eldest The least recently inserted entry in the map, or if
545     *           this is an access-ordered map, the least recently accessed
546     *           entry.  This is the entry that will be removed it this
547     *           method returns <tt>true</tt>.  If the map was empty prior
548     *           to the <tt>put</tt> or <tt>putAll</tt> invocation resulting
549     *           in this invocation, this will be the entry that was just
550     *           inserted; in other words, if the map contains a single
551     *           entry, the eldest entry is also the newest.
552     * @return   <tt>true</tt> if the eldest entry should be removed
553     *           from the map; <tt>false</tt> if it should be retained.
554     */
555    protected boolean removeEldestEntry(Map.Entry<K,V> eldest) {
556        return false;
557    }
558
559    // Map overrides
560    public void forEach(BiConsumer<? super K, ? super V> action) {
561        if (action == null)
562            throw new NullPointerException();
563        int mc = modCount;
564        // Android modified - breaks from the loop when modCount != mc
565        for (LinkedHashMapEntry<K,V> e = header.after; modCount == mc && e != header; e = e.after)
566            action.accept(e.key, e.value);
567        if (modCount != mc)
568            throw new ConcurrentModificationException();
569    }
570
571    public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
572        if (function == null)
573            throw new NullPointerException();
574        int mc = modCount;
575        // Android modified - breaks from the loop when modCount != mc
576        for (LinkedHashMapEntry<K,V> e = header.after; modCount == mc && e != header; e = e.after)
577            e.value = function.apply(e.key, e.value);
578        if (modCount != mc)
579            throw new ConcurrentModificationException();
580    }
581}
582