LinkedHashMap.java revision 60796efea3a74e02aea384b8eb56103ea21b880b
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.  Oracle designates this
9 * particular file as subject to the "Classpath" exception as provided
10 * by Oracle in the LICENSE file that accompanied this code.
11 *
12 * This code is distributed in the hope that it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 * version 2 for more details (a copy is included in the LICENSE file that
16 * accompanied this code).
17 *
18 * You should have received a copy of the GNU General Public License version
19 * 2 along with this work; if not, write to the Free Software Foundation,
20 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
21 *
22 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
23 * or visit www.oracle.com if you need additional information or have any
24 * questions.
25 */
26
27package java.util;
28
29import java.io.*;
30import java.util.function.Consumer;
31import java.util.function.BiConsumer;
32
33/**
34 * <p>Hash table and linked list implementation of the <tt>Map</tt> interface,
35 * with predictable iteration order.  This implementation differs from
36 * <tt>HashMap</tt> in that it maintains a doubly-linked list running through
37 * all of its entries.  This linked list defines the iteration ordering,
38 * which is normally the order in which keys were inserted into the map
39 * (<i>insertion-order</i>).  Note that insertion order is not affected
40 * if a key is <i>re-inserted</i> into the map.  (A key <tt>k</tt> is
41 * reinserted into a map <tt>m</tt> if <tt>m.put(k, v)</tt> is invoked when
42 * <tt>m.containsKey(k)</tt> would return <tt>true</tt> immediately prior to
43 * the invocation.)
44 *
45 * <p>This implementation spares its clients from the unspecified, generally
46 * chaotic ordering provided by {@link HashMap} (and {@link Hashtable}),
47 * without incurring the increased cost associated with {@link TreeMap}.  It
48 * can be used to produce a copy of a map that has the same order as the
49 * original, regardless of the original map's implementation:
50 * <pre>
51 *     void foo(Map m) {
52 *         Map copy = new LinkedHashMap(m);
53 *         ...
54 *     }
55 * </pre>
56 * This technique is particularly useful if a module takes a map on input,
57 * copies it, and later returns results whose order is determined by that of
58 * the copy.  (Clients generally appreciate having things returned in the same
59 * order they were presented.)
60 *
61 * <p>A special {@link #LinkedHashMap(int,float,boolean) constructor} is
62 * provided to create a linked hash map whose order of iteration is the order
63 * in which its entries were last accessed, from least-recently accessed to
64 * most-recently (<i>access-order</i>).  This kind of map is well-suited to
65 * building LRU caches.  Invoking the <tt>put</tt> or <tt>get</tt> method
66 * results in an access to the corresponding entry (assuming it exists after
67 * the invocation completes).  The <tt>putAll</tt> method generates one entry
68 * access for each mapping in the specified map, in the order that key-value
69 * mappings are provided by the specified map's entry set iterator.  <i>No
70 * other methods generate entry accesses.</i> In particular, operations on
71 * collection-views do <i>not</i> affect the order of iteration of the backing
72 * map.
73 *
74 * <p>The {@link #removeEldestEntry(Map.Entry)} method may be overridden to
75 * impose a policy for removing stale mappings automatically when new mappings
76 * are added to the map.
77 *
78 * <p>This class provides all of the optional <tt>Map</tt> operations, and
79 * permits null elements.  Like <tt>HashMap</tt>, it provides constant-time
80 * performance for the basic operations (<tt>add</tt>, <tt>contains</tt> and
81 * <tt>remove</tt>), assuming the hash function disperses elements
82 * properly among the buckets.  Performance is likely to be just slightly
83 * below that of <tt>HashMap</tt>, due to the added expense of maintaining the
84 * linked list, with one exception: Iteration over the collection-views
85 * of a <tt>LinkedHashMap</tt> requires time proportional to the <i>size</i>
86 * of the map, regardless of its capacity.  Iteration over a <tt>HashMap</tt>
87 * is likely to be more expensive, requiring time proportional to its
88 * <i>capacity</i>.
89 *
90 * <p>A linked hash map has two parameters that affect its performance:
91 * <i>initial capacity</i> and <i>load factor</i>.  They are defined precisely
92 * as for <tt>HashMap</tt>.  Note, however, that the penalty for choosing an
93 * excessively high value for initial capacity is less severe for this class
94 * than for <tt>HashMap</tt>, as iteration times for this class are unaffected
95 * by capacity.
96 *
97 * <p><strong>Note that this implementation is not synchronized.</strong>
98 * If multiple threads access a linked hash map concurrently, and at least
99 * one of the threads modifies the map structurally, it <em>must</em> be
100 * synchronized externally.  This is typically accomplished by
101 * synchronizing on some object that naturally encapsulates the map.
102 *
103 * If no such object exists, the map should be "wrapped" using the
104 * {@link Collections#synchronizedMap Collections.synchronizedMap}
105 * method.  This is best done at creation time, to prevent accidental
106 * unsynchronized access to the map:<pre>
107 *   Map m = Collections.synchronizedMap(new LinkedHashMap(...));</pre>
108 *
109 * A structural modification is any operation that adds or deletes one or more
110 * mappings or, in the case of access-ordered linked hash maps, affects
111 * iteration order.  In insertion-ordered linked hash maps, merely changing
112 * the value associated with a key that is already contained in the map is not
113 * a structural modification.  <strong>In access-ordered linked hash maps,
114 * merely querying the map with <tt>get</tt> is a structural
115 * modification.</strong>)
116 *
117 * <p>The iterators returned by the <tt>iterator</tt> method of the collections
118 * returned by all of this class's collection view methods are
119 * <em>fail-fast</em>: if the map is structurally modified at any time after
120 * the iterator is created, in any way except through the iterator's own
121 * <tt>remove</tt> method, the iterator will throw a {@link
122 * ConcurrentModificationException}.  Thus, in the face of concurrent
123 * modification, the iterator fails quickly and cleanly, rather than risking
124 * arbitrary, non-deterministic behavior at an undetermined time in the future.
125 *
126 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
127 * as it is, generally speaking, impossible to make any hard guarantees in the
128 * presence of unsynchronized concurrent modification.  Fail-fast iterators
129 * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
130 * Therefore, it would be wrong to write a program that depended on this
131 * exception for its correctness:   <i>the fail-fast behavior of iterators
132 * should be used only to detect bugs.</i>
133 *
134 * <p>This class is a member of the
135 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
136 * Java Collections Framework</a>.
137 *
138 * @param <K> the type of keys maintained by this map
139 * @param <V> the type of mapped values
140 *
141 * @author  Josh Bloch
142 * @see     Object#hashCode()
143 * @see     Collection
144 * @see     Map
145 * @see     HashMap
146 * @see     TreeMap
147 * @see     Hashtable
148 * @since   1.4
149 */
150
151public class LinkedHashMap<K,V>
152    extends HashMap<K,V>
153    implements Map<K,V>
154{
155
156    private static final long serialVersionUID = 3801124242820219131L;
157
158    /**
159     * The head of the doubly linked list.
160     */
161    private transient LinkedHashMapEntry<K,V> header;
162
163    /**
164     * The iteration ordering method for this linked hash map: <tt>true</tt>
165     * for access-order, <tt>false</tt> for insertion-order.
166     *
167     * @serial
168     */
169    private final boolean accessOrder;
170
171    /**
172     * Constructs an empty insertion-ordered <tt>LinkedHashMap</tt> instance
173     * with the specified initial capacity and load factor.
174     *
175     * @param  initialCapacity the initial capacity
176     * @param  loadFactor      the load factor
177     * @throws IllegalArgumentException if the initial capacity is negative
178     *         or the load factor is nonpositive
179     */
180    public LinkedHashMap(int initialCapacity, float loadFactor) {
181        super(initialCapacity, loadFactor);
182        accessOrder = false;
183    }
184
185    /**
186     * Constructs an empty insertion-ordered <tt>LinkedHashMap</tt> instance
187     * with the specified initial capacity and a default load factor (0.75).
188     *
189     * @param  initialCapacity the initial capacity
190     * @throws IllegalArgumentException if the initial capacity is negative
191     */
192    public LinkedHashMap(int initialCapacity) {
193        super(initialCapacity);
194        accessOrder = false;
195    }
196
197    /**
198     * Constructs an empty insertion-ordered <tt>LinkedHashMap</tt> instance
199     * with the default initial capacity (16) and load factor (0.75).
200     */
201    public LinkedHashMap() {
202        super();
203        accessOrder = false;
204    }
205
206    /**
207     * Constructs an insertion-ordered <tt>LinkedHashMap</tt> instance with
208     * the same mappings as the specified map.  The <tt>LinkedHashMap</tt>
209     * instance is created with a default load factor (0.75) and an initial
210     * capacity sufficient to hold the mappings in the specified map.
211     *
212     * @param  m the map whose mappings are to be placed in this map
213     * @throws NullPointerException if the specified map is null
214     */
215    public LinkedHashMap(Map<? extends K, ? extends V> m) {
216        super(m);
217        accessOrder = false;
218    }
219
220    /**
221     * Constructs an empty <tt>LinkedHashMap</tt> instance with the
222     * specified initial capacity, load factor and ordering mode.
223     *
224     * @param  initialCapacity the initial capacity
225     * @param  loadFactor      the load factor
226     * @param  accessOrder     the ordering mode - <tt>true</tt> for
227     *         access-order, <tt>false</tt> for insertion-order
228     * @throws IllegalArgumentException if the initial capacity is negative
229     *         or the load factor is nonpositive
230     */
231    public LinkedHashMap(int initialCapacity,
232                         float loadFactor,
233                         boolean accessOrder) {
234        super(initialCapacity, loadFactor);
235        this.accessOrder = accessOrder;
236    }
237
238    /**
239     * Called by superclass constructors and pseudoconstructors (clone,
240     * readObject) before any entries are inserted into the map.  Initializes
241     * the chain.
242     */
243    @Override
244    void init() {
245        header = new LinkedHashMapEntry<>(-1, null, null, null);
246        header.before = header.after = header;
247    }
248
249    /**
250     * Transfers all entries to new table array.  This method is called
251     * by superclass resize.  It is overridden for performance, as it is
252     * faster to iterate using our linked list.
253     */
254    @Override
255    void transfer(HashMapEntry[] newTable, boolean rehash) {
256        int newCapacity = newTable.length;
257        for (LinkedHashMapEntry<K,V> e = header.after; e != header; e = e.after) {
258            if (rehash)
259                e.hash = (e.key == null) ? 0 : hash(e.key);
260            int index = indexFor(e.hash, newCapacity);
261            e.next = newTable[index];
262            newTable[index] = e;
263        }
264    }
265
266
267    /**
268     * Returns <tt>true</tt> if this map maps one or more keys to the
269     * specified value.
270     *
271     * @param value value whose presence in this map is to be tested
272     * @return <tt>true</tt> if this map maps one or more keys to the
273     *         specified value
274     */
275    public boolean containsValue(Object value) {
276        // Overridden to take advantage of faster iterator
277        if (value==null) {
278            for (LinkedHashMapEntry e = header.after; e != header; e = e.after)
279                if (e.value==null)
280                    return true;
281        } else {
282            for (LinkedHashMapEntry e = header.after; e != header; e = e.after)
283                if (value.equals(e.value))
284                    return true;
285        }
286        return false;
287    }
288
289    /**
290     * Returns the value to which the specified key is mapped,
291     * or {@code null} if this map contains no mapping for the key.
292     *
293     * <p>More formally, if this map contains a mapping from a key
294     * {@code k} to a value {@code v} such that {@code (key==null ? k==null :
295     * key.equals(k))}, then this method returns {@code v}; otherwise
296     * it returns {@code null}.  (There can be at most one such mapping.)
297     *
298     * <p>A return value of {@code null} does not <i>necessarily</i>
299     * indicate that the map contains no mapping for the key; it's also
300     * possible that the map explicitly maps the key to {@code null}.
301     * The {@link #containsKey containsKey} operation may be used to
302     * distinguish these two cases.
303     */
304    public V get(Object key) {
305        LinkedHashMapEntry<K,V> e = (LinkedHashMapEntry<K,V>)getEntry(key);
306        if (e == null)
307            return null;
308        e.recordAccess(this);
309        return e.value;
310    }
311
312    /**
313     * Removes all of the mappings from this map.
314     * The map will be empty after this call returns.
315     */
316    public void clear() {
317        super.clear();
318        header.before = header.after = header;
319    }
320
321    /**
322     * LinkedHashMap entry.
323     */
324    private static class LinkedHashMapEntry<K,V> extends HashMapEntry<K,V> {
325        // These fields comprise the doubly linked list used for iteration.
326        LinkedHashMapEntry<K,V> before, after;
327
328        LinkedHashMapEntry(int hash, K key, V value, HashMapEntry<K,V> next) {
329            super(hash, key, value, next);
330        }
331
332        /**
333         * Removes this entry from the linked list.
334         */
335        private void remove() {
336            before.after = after;
337            after.before = before;
338        }
339
340        /**
341         * Inserts this entry before the specified existing entry in the list.
342         */
343        private void addBefore(LinkedHashMapEntry<K,V> existingEntry) {
344            after  = existingEntry;
345            before = existingEntry.before;
346            before.after = this;
347            after.before = this;
348        }
349
350        /**
351         * This method is invoked by the superclass whenever the value
352         * of a pre-existing entry is read by Map.get or modified by Map.set.
353         * If the enclosing Map is access-ordered, it moves the entry
354         * to the end of the list; otherwise, it does nothing.
355         */
356        void recordAccess(HashMap<K,V> m) {
357            LinkedHashMap<K,V> lm = (LinkedHashMap<K,V>)m;
358            if (lm.accessOrder) {
359                lm.modCount++;
360                remove();
361                addBefore(lm.header);
362            }
363        }
364
365        void recordRemoval(HashMap<K,V> m) {
366            remove();
367        }
368    }
369
370    private abstract class LinkedHashIterator<T> implements Iterator<T> {
371        LinkedHashMapEntry<K,V> nextEntry    = header.after;
372        LinkedHashMapEntry<K,V> lastReturned = null;
373
374        /**
375         * The modCount value that the iterator believes that the backing
376         * List should have.  If this expectation is violated, the iterator
377         * has detected concurrent modification.
378         */
379        int expectedModCount = modCount;
380
381        public boolean hasNext() {
382            return nextEntry != header;
383        }
384
385        public void remove() {
386            if (lastReturned == null)
387                throw new IllegalStateException();
388            if (modCount != expectedModCount)
389                throw new ConcurrentModificationException();
390
391            LinkedHashMap.this.remove(lastReturned.key);
392            lastReturned = null;
393            expectedModCount = modCount;
394        }
395
396        Entry<K,V> nextEntry() {
397            if (modCount != expectedModCount)
398                throw new ConcurrentModificationException();
399            if (nextEntry == header)
400                throw new NoSuchElementException();
401
402            LinkedHashMapEntry<K,V> e = lastReturned = nextEntry;
403            nextEntry = e.after;
404            return e;
405        }
406    }
407
408    private class KeyIterator extends LinkedHashIterator<K> {
409        public K next() { return nextEntry().getKey(); }
410    }
411
412    private class ValueIterator extends LinkedHashIterator<V> {
413        public V next() { return nextEntry().getValue(); }
414    }
415
416    private class EntryIterator extends LinkedHashIterator<Map.Entry<K,V>> {
417        public Map.Entry<K,V> next() { return nextEntry(); }
418    }
419
420    // These Overrides alter the behavior of superclass view iterator() methods
421    Iterator<K> newKeyIterator()   { return new KeyIterator();   }
422    Iterator<V> newValueIterator() { return new ValueIterator(); }
423    Iterator<Map.Entry<K,V>> newEntryIterator() { return new EntryIterator(); }
424
425    /**
426     * This override alters behavior of superclass put method. It causes newly
427     * allocated entry to get inserted at the end of the linked list and
428     * removes the eldest entry if appropriate.
429     */
430    void addEntry(int hash, K key, V value, int bucketIndex) {
431        super.addEntry(hash, key, value, bucketIndex);
432
433        // Remove eldest entry if instructed
434        LinkedHashMapEntry<K,V> eldest = header.after;
435        if (removeEldestEntry(eldest)) {
436            removeEntryForKey(eldest.key);
437        }
438    }
439
440    /**
441     * Returns the eldest entry in the map, or {@code null} if the map is empty.
442     *
443     * Android-added.
444     *
445     * @hide
446     */
447    public Map.Entry<K, V> eldest() {
448        Entry<K, V> eldest = header.after;
449        return eldest != header ? eldest : null;
450    }
451
452    /**
453     * This override differs from addEntry in that it doesn't resize the
454     * table or remove the eldest entry.
455     */
456    void createEntry(int hash, K key, V value, int bucketIndex) {
457        HashMapEntry<K,V> old = table[bucketIndex];
458        LinkedHashMapEntry<K,V> e = new LinkedHashMapEntry<>(hash, key, value, old);
459        table[bucketIndex] = e;
460        e.addBefore(header);
461        size++;
462    }
463
464    /**
465     * Returns <tt>true</tt> if this map should remove its eldest entry.
466     * This method is invoked by <tt>put</tt> and <tt>putAll</tt> after
467     * inserting a new entry into the map.  It provides the implementor
468     * with the opportunity to remove the eldest entry each time a new one
469     * is added.  This is useful if the map represents a cache: it allows
470     * the map to reduce memory consumption by deleting stale entries.
471     *
472     * <p>Sample use: this override will allow the map to grow up to 100
473     * entries and then delete the eldest entry each time a new entry is
474     * added, maintaining a steady state of 100 entries.
475     * <pre>
476     *     private static final int MAX_ENTRIES = 100;
477     *
478     *     protected boolean removeEldestEntry(Map.Entry eldest) {
479     *        return size() > MAX_ENTRIES;
480     *     }
481     * </pre>
482     *
483     * <p>This method typically does not modify the map in any way,
484     * instead allowing the map to modify itself as directed by its
485     * return value.  It <i>is</i> permitted for this method to modify
486     * the map directly, but if it does so, it <i>must</i> return
487     * <tt>false</tt> (indicating that the map should not attempt any
488     * further modification).  The effects of returning <tt>true</tt>
489     * after modifying the map from within this method are unspecified.
490     *
491     * <p>This implementation merely returns <tt>false</tt> (so that this
492     * map acts like a normal map - the eldest element is never removed).
493     *
494     * @param    eldest The least recently inserted entry in the map, or if
495     *           this is an access-ordered map, the least recently accessed
496     *           entry.  This is the entry that will be removed it this
497     *           method returns <tt>true</tt>.  If the map was empty prior
498     *           to the <tt>put</tt> or <tt>putAll</tt> invocation resulting
499     *           in this invocation, this will be the entry that was just
500     *           inserted; in other words, if the map contains a single
501     *           entry, the eldest entry is also the newest.
502     * @return   <tt>true</tt> if the eldest entry should be removed
503     *           from the map; <tt>false</tt> if it should be retained.
504     */
505    protected boolean removeEldestEntry(Map.Entry<K,V> eldest) {
506        return false;
507    }
508
509    // Map overrides
510    public void forEach(BiConsumer<? super K, ? super V> action) {
511        if (action == null)
512            throw new NullPointerException();
513        int mc = modCount;
514        // Android modified - breaks from the loop when modCount != mc
515        for (LinkedHashMapEntry<K,V> e = header.after; modCount == mc && e != header; e = e.after)
516            action.accept(e.key, e.value);
517        if (modCount != mc)
518            throw new ConcurrentModificationException();
519    }
520}
521