LinkedHashMap.java revision 9048c4faf8f9f15e0124c32834b6a9a2a6cb54de
1/*
2 * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package java.util;
27import java.io.*;
28
29/**
30 * <p>Hash table and linked list implementation of the <tt>Map</tt> interface,
31 * with predictable iteration order.  This implementation differs from
32 * <tt>HashMap</tt> in that it maintains a doubly-linked list running through
33 * all of its entries.  This linked list defines the iteration ordering,
34 * which is normally the order in which keys were inserted into the map
35 * (<i>insertion-order</i>).  Note that insertion order is not affected
36 * if a key is <i>re-inserted</i> into the map.  (A key <tt>k</tt> is
37 * reinserted into a map <tt>m</tt> if <tt>m.put(k, v)</tt> is invoked when
38 * <tt>m.containsKey(k)</tt> would return <tt>true</tt> immediately prior to
39 * the invocation.)
40 *
41 * <p>This implementation spares its clients from the unspecified, generally
42 * chaotic ordering provided by {@link HashMap} (and {@link Hashtable}),
43 * without incurring the increased cost associated with {@link TreeMap}.  It
44 * can be used to produce a copy of a map that has the same order as the
45 * original, regardless of the original map's implementation:
46 * <pre>
47 *     void foo(Map m) {
48 *         Map copy = new LinkedHashMap(m);
49 *         ...
50 *     }
51 * </pre>
52 * This technique is particularly useful if a module takes a map on input,
53 * copies it, and later returns results whose order is determined by that of
54 * the copy.  (Clients generally appreciate having things returned in the same
55 * order they were presented.)
56 *
57 * <p>A special {@link #LinkedHashMap(int,float,boolean) constructor} is
58 * provided to create a linked hash map whose order of iteration is the order
59 * in which its entries were last accessed, from least-recently accessed to
60 * most-recently (<i>access-order</i>).  This kind of map is well-suited to
61 * building LRU caches.  Invoking the <tt>put</tt> or <tt>get</tt> method
62 * results in an access to the corresponding entry (assuming it exists after
63 * the invocation completes).  The <tt>putAll</tt> method generates one entry
64 * access for each mapping in the specified map, in the order that key-value
65 * mappings are provided by the specified map's entry set iterator.  <i>No
66 * other methods generate entry accesses.</i> In particular, operations on
67 * collection-views do <i>not</i> affect the order of iteration of the backing
68 * map.
69 *
70 * <p>The {@link #removeEldestEntry(Map.Entry)} method may be overridden to
71 * impose a policy for removing stale mappings automatically when new mappings
72 * are added to the map.
73 *
74 * <p>This class provides all of the optional <tt>Map</tt> operations, and
75 * permits null elements.  Like <tt>HashMap</tt>, it provides constant-time
76 * performance for the basic operations (<tt>add</tt>, <tt>contains</tt> and
77 * <tt>remove</tt>), assuming the hash function disperses elements
78 * properly among the buckets.  Performance is likely to be just slightly
79 * below that of <tt>HashMap</tt>, due to the added expense of maintaining the
80 * linked list, with one exception: Iteration over the collection-views
81 * of a <tt>LinkedHashMap</tt> requires time proportional to the <i>size</i>
82 * of the map, regardless of its capacity.  Iteration over a <tt>HashMap</tt>
83 * is likely to be more expensive, requiring time proportional to its
84 * <i>capacity</i>.
85 *
86 * <p>A linked hash map has two parameters that affect its performance:
87 * <i>initial capacity</i> and <i>load factor</i>.  They are defined precisely
88 * as for <tt>HashMap</tt>.  Note, however, that the penalty for choosing an
89 * excessively high value for initial capacity is less severe for this class
90 * than for <tt>HashMap</tt>, as iteration times for this class are unaffected
91 * by capacity.
92 *
93 * <p><strong>Note that this implementation is not synchronized.</strong>
94 * If multiple threads access a linked hash map concurrently, and at least
95 * one of the threads modifies the map structurally, it <em>must</em> be
96 * synchronized externally.  This is typically accomplished by
97 * synchronizing on some object that naturally encapsulates the map.
98 *
99 * If no such object exists, the map should be "wrapped" using the
100 * {@link Collections#synchronizedMap Collections.synchronizedMap}
101 * method.  This is best done at creation time, to prevent accidental
102 * unsynchronized access to the map:<pre>
103 *   Map m = Collections.synchronizedMap(new LinkedHashMap(...));</pre>
104 *
105 * A structural modification is any operation that adds or deletes one or more
106 * mappings or, in the case of access-ordered linked hash maps, affects
107 * iteration order.  In insertion-ordered linked hash maps, merely changing
108 * the value associated with a key that is already contained in the map is not
109 * a structural modification.  <strong>In access-ordered linked hash maps,
110 * merely querying the map with <tt>get</tt> is a structural
111 * modification.</strong>)
112 *
113 * <p>The iterators returned by the <tt>iterator</tt> method of the collections
114 * returned by all of this class's collection view methods are
115 * <em>fail-fast</em>: if the map is structurally modified at any time after
116 * the iterator is created, in any way except through the iterator's own
117 * <tt>remove</tt> method, the iterator will throw a {@link
118 * ConcurrentModificationException}.  Thus, in the face of concurrent
119 * modification, the iterator fails quickly and cleanly, rather than risking
120 * arbitrary, non-deterministic behavior at an undetermined time in the future.
121 *
122 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
123 * as it is, generally speaking, impossible to make any hard guarantees in the
124 * presence of unsynchronized concurrent modification.  Fail-fast iterators
125 * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
126 * Therefore, it would be wrong to write a program that depended on this
127 * exception for its correctness:   <i>the fail-fast behavior of iterators
128 * should be used only to detect bugs.</i>
129 *
130 * <p>This class is a member of the
131 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
132 * Java Collections Framework</a>.
133 *
134 * @param <K> the type of keys maintained by this map
135 * @param <V> the type of mapped values
136 *
137 * @author  Josh Bloch
138 * @see     Object#hashCode()
139 * @see     Collection
140 * @see     Map
141 * @see     HashMap
142 * @see     TreeMap
143 * @see     Hashtable
144 * @since   1.4
145 */
146
147public class LinkedHashMap<K,V>
148    extends HashMap<K,V>
149    implements Map<K,V>
150{
151
152    private static final long serialVersionUID = 3801124242820219131L;
153
154    /**
155     * The head of the doubly linked list.
156     */
157    private transient LinkedHashMapEntry<K,V> header;
158
159    /**
160     * The iteration ordering method for this linked hash map: <tt>true</tt>
161     * for access-order, <tt>false</tt> for insertion-order.
162     *
163     * @serial
164     */
165    private final boolean accessOrder;
166
167    /**
168     * Constructs an empty insertion-ordered <tt>LinkedHashMap</tt> instance
169     * with the specified initial capacity and load factor.
170     *
171     * @param  initialCapacity the initial capacity
172     * @param  loadFactor      the load factor
173     * @throws IllegalArgumentException if the initial capacity is negative
174     *         or the load factor is nonpositive
175     */
176    public LinkedHashMap(int initialCapacity, float loadFactor) {
177        super(initialCapacity, loadFactor);
178        accessOrder = false;
179    }
180
181    /**
182     * Constructs an empty insertion-ordered <tt>LinkedHashMap</tt> instance
183     * with the specified initial capacity and a default load factor (0.75).
184     *
185     * @param  initialCapacity the initial capacity
186     * @throws IllegalArgumentException if the initial capacity is negative
187     */
188    public LinkedHashMap(int initialCapacity) {
189        super(initialCapacity);
190        accessOrder = false;
191    }
192
193    /**
194     * Constructs an empty insertion-ordered <tt>LinkedHashMap</tt> instance
195     * with the default initial capacity (16) and load factor (0.75).
196     */
197    public LinkedHashMap() {
198        super();
199        accessOrder = false;
200    }
201
202    /**
203     * Constructs an insertion-ordered <tt>LinkedHashMap</tt> instance with
204     * the same mappings as the specified map.  The <tt>LinkedHashMap</tt>
205     * instance is created with a default load factor (0.75) and an initial
206     * capacity sufficient to hold the mappings in the specified map.
207     *
208     * @param  m the map whose mappings are to be placed in this map
209     * @throws NullPointerException if the specified map is null
210     */
211    public LinkedHashMap(Map<? extends K, ? extends V> m) {
212        super(m);
213        accessOrder = false;
214    }
215
216    /**
217     * Constructs an empty <tt>LinkedHashMap</tt> instance with the
218     * specified initial capacity, load factor and ordering mode.
219     *
220     * @param  initialCapacity the initial capacity
221     * @param  loadFactor      the load factor
222     * @param  accessOrder     the ordering mode - <tt>true</tt> for
223     *         access-order, <tt>false</tt> for insertion-order
224     * @throws IllegalArgumentException if the initial capacity is negative
225     *         or the load factor is nonpositive
226     */
227    public LinkedHashMap(int initialCapacity,
228                         float loadFactor,
229                         boolean accessOrder) {
230        super(initialCapacity, loadFactor);
231        this.accessOrder = accessOrder;
232    }
233
234    /**
235     * Called by superclass constructors and pseudoconstructors (clone,
236     * readObject) before any entries are inserted into the map.  Initializes
237     * the chain.
238     */
239    @Override
240    void init() {
241        header = new LinkedHashMapEntry<>(-1, null, null, null);
242        header.before = header.after = header;
243    }
244
245    /**
246     * Transfers all entries to new table array.  This method is called
247     * by superclass resize.  It is overridden for performance, as it is
248     * faster to iterate using our linked list.
249     */
250    @Override
251    void transfer(HashMapEntry[] newTable, boolean rehash) {
252        int newCapacity = newTable.length;
253        for (LinkedHashMapEntry<K,V> e = header.after; e != header; e = e.after) {
254            if (rehash)
255                e.hash = (e.key == null) ? 0 : hash(e.key);
256            int index = indexFor(e.hash, newCapacity);
257            e.next = newTable[index];
258            newTable[index] = e;
259        }
260    }
261
262
263    /**
264     * Returns <tt>true</tt> if this map maps one or more keys to the
265     * specified value.
266     *
267     * @param value value whose presence in this map is to be tested
268     * @return <tt>true</tt> if this map maps one or more keys to the
269     *         specified value
270     */
271    public boolean containsValue(Object value) {
272        // Overridden to take advantage of faster iterator
273        if (value==null) {
274            for (LinkedHashMapEntry e = header.after; e != header; e = e.after)
275                if (e.value==null)
276                    return true;
277        } else {
278            for (LinkedHashMapEntry e = header.after; e != header; e = e.after)
279                if (value.equals(e.value))
280                    return true;
281        }
282        return false;
283    }
284
285    /**
286     * Returns the value to which the specified key is mapped,
287     * or {@code null} if this map contains no mapping for the key.
288     *
289     * <p>More formally, if this map contains a mapping from a key
290     * {@code k} to a value {@code v} such that {@code (key==null ? k==null :
291     * key.equals(k))}, then this method returns {@code v}; otherwise
292     * it returns {@code null}.  (There can be at most one such mapping.)
293     *
294     * <p>A return value of {@code null} does not <i>necessarily</i>
295     * indicate that the map contains no mapping for the key; it's also
296     * possible that the map explicitly maps the key to {@code null}.
297     * The {@link #containsKey containsKey} operation may be used to
298     * distinguish these two cases.
299     */
300    public V get(Object key) {
301        LinkedHashMapEntry<K,V> e = (LinkedHashMapEntry<K,V>)getEntry(key);
302        if (e == null)
303            return null;
304        e.recordAccess(this);
305        return e.value;
306    }
307
308    /**
309     * Removes all of the mappings from this map.
310     * The map will be empty after this call returns.
311     */
312    public void clear() {
313        super.clear();
314        header.before = header.after = header;
315    }
316
317    /**
318     * LinkedHashMap entry.
319     */
320    private static class LinkedHashMapEntry<K,V> extends HashMapEntry<K,V> {
321        // These fields comprise the doubly linked list used for iteration.
322        LinkedHashMapEntry<K,V> before, after;
323
324        LinkedHashMapEntry(int hash, K key, V value, HashMapEntry<K,V> next) {
325            super(hash, key, value, next);
326        }
327
328        /**
329         * Removes this entry from the linked list.
330         */
331        private void remove() {
332            before.after = after;
333            after.before = before;
334        }
335
336        /**
337         * Inserts this entry before the specified existing entry in the list.
338         */
339        private void addBefore(LinkedHashMapEntry<K,V> existingEntry) {
340            after  = existingEntry;
341            before = existingEntry.before;
342            before.after = this;
343            after.before = this;
344        }
345
346        /**
347         * This method is invoked by the superclass whenever the value
348         * of a pre-existing entry is read by Map.get or modified by Map.set.
349         * If the enclosing Map is access-ordered, it moves the entry
350         * to the end of the list; otherwise, it does nothing.
351         */
352        void recordAccess(HashMap<K,V> m) {
353            LinkedHashMap<K,V> lm = (LinkedHashMap<K,V>)m;
354            if (lm.accessOrder) {
355                lm.modCount++;
356                remove();
357                addBefore(lm.header);
358            }
359        }
360
361        void recordRemoval(HashMap<K,V> m) {
362            remove();
363        }
364    }
365
366    private abstract class LinkedHashIterator<T> implements Iterator<T> {
367        LinkedHashMapEntry<K,V> nextEntry    = header.after;
368        LinkedHashMapEntry<K,V> lastReturned = null;
369
370        /**
371         * The modCount value that the iterator believes that the backing
372         * List should have.  If this expectation is violated, the iterator
373         * has detected concurrent modification.
374         */
375        int expectedModCount = modCount;
376
377        public boolean hasNext() {
378            return nextEntry != header;
379        }
380
381        public void remove() {
382            if (lastReturned == null)
383                throw new IllegalStateException();
384            if (modCount != expectedModCount)
385                throw new ConcurrentModificationException();
386
387            LinkedHashMap.this.remove(lastReturned.key);
388            lastReturned = null;
389            expectedModCount = modCount;
390        }
391
392        Entry<K,V> nextEntry() {
393            if (modCount != expectedModCount)
394                throw new ConcurrentModificationException();
395            if (nextEntry == header)
396                throw new NoSuchElementException();
397
398            LinkedHashMapEntry<K,V> e = lastReturned = nextEntry;
399            nextEntry = e.after;
400            return e;
401        }
402    }
403
404    private class KeyIterator extends LinkedHashIterator<K> {
405        public K next() { return nextEntry().getKey(); }
406    }
407
408    private class ValueIterator extends LinkedHashIterator<V> {
409        public V next() { return nextEntry().getValue(); }
410    }
411
412    private class EntryIterator extends LinkedHashIterator<Map.Entry<K,V>> {
413        public Map.Entry<K,V> next() { return nextEntry(); }
414    }
415
416    // These Overrides alter the behavior of superclass view iterator() methods
417    Iterator<K> newKeyIterator()   { return new KeyIterator();   }
418    Iterator<V> newValueIterator() { return new ValueIterator(); }
419    Iterator<Map.Entry<K,V>> newEntryIterator() { return new EntryIterator(); }
420
421    /**
422     * This override alters behavior of superclass put method. It causes newly
423     * allocated entry to get inserted at the end of the linked list and
424     * removes the eldest entry if appropriate.
425     */
426    void addEntry(int hash, K key, V value, int bucketIndex) {
427        super.addEntry(hash, key, value, bucketIndex);
428
429        // Remove eldest entry if instructed
430        LinkedHashMapEntry<K,V> eldest = header.after;
431        if (removeEldestEntry(eldest)) {
432            removeEntryForKey(eldest.key);
433        }
434    }
435
436    /**
437     * Returns the eldest entry in the map, or {@code null} if the map is empty.
438     *
439     * Android-added.
440     *
441     * @hide
442     */
443    public Map.Entry<K, V> eldest() {
444        Entry<K, V> eldest = header.after;
445        return eldest != header ? eldest : null;
446    }
447
448    /**
449     * This override differs from addEntry in that it doesn't resize the
450     * table or remove the eldest entry.
451     */
452    void createEntry(int hash, K key, V value, int bucketIndex) {
453        HashMapEntry<K,V> old = table[bucketIndex];
454        LinkedHashMapEntry<K,V> e = new LinkedHashMapEntry<>(hash, key, value, old);
455        table[bucketIndex] = e;
456        e.addBefore(header);
457        size++;
458    }
459
460    /**
461     * Returns <tt>true</tt> if this map should remove its eldest entry.
462     * This method is invoked by <tt>put</tt> and <tt>putAll</tt> after
463     * inserting a new entry into the map.  It provides the implementor
464     * with the opportunity to remove the eldest entry each time a new one
465     * is added.  This is useful if the map represents a cache: it allows
466     * the map to reduce memory consumption by deleting stale entries.
467     *
468     * <p>Sample use: this override will allow the map to grow up to 100
469     * entries and then delete the eldest entry each time a new entry is
470     * added, maintaining a steady state of 100 entries.
471     * <pre>
472     *     private static final int MAX_ENTRIES = 100;
473     *
474     *     protected boolean removeEldestEntry(Map.Entry eldest) {
475     *        return size() > MAX_ENTRIES;
476     *     }
477     * </pre>
478     *
479     * <p>This method typically does not modify the map in any way,
480     * instead allowing the map to modify itself as directed by its
481     * return value.  It <i>is</i> permitted for this method to modify
482     * the map directly, but if it does so, it <i>must</i> return
483     * <tt>false</tt> (indicating that the map should not attempt any
484     * further modification).  The effects of returning <tt>true</tt>
485     * after modifying the map from within this method are unspecified.
486     *
487     * <p>This implementation merely returns <tt>false</tt> (so that this
488     * map acts like a normal map - the eldest element is never removed).
489     *
490     * @param    eldest The least recently inserted entry in the map, or if
491     *           this is an access-ordered map, the least recently accessed
492     *           entry.  This is the entry that will be removed it this
493     *           method returns <tt>true</tt>.  If the map was empty prior
494     *           to the <tt>put</tt> or <tt>putAll</tt> invocation resulting
495     *           in this invocation, this will be the entry that was just
496     *           inserted; in other words, if the map contains a single
497     *           entry, the eldest entry is also the newest.
498     * @return   <tt>true</tt> if the eldest entry should be removed
499     *           from the map; <tt>false</tt> if it should be retained.
500     */
501    protected boolean removeEldestEntry(Map.Entry<K,V> eldest) {
502        return false;
503    }
504}
505