LinkedHashMap.java revision 9efb6d12ce4d2ffedb73d6e9887ea2c89f8ec129
1/*
2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package java.util;
27
28import java.util.function.Consumer;
29import java.util.function.BiConsumer;
30import java.util.function.BiFunction;
31import java.io.IOException;
32
33/**
34 * <p>Hash table and linked list implementation of the <tt>Map</tt> interface,
35 * with predictable iteration order.  This implementation differs from
36 * <tt>HashMap</tt> in that it maintains a doubly-linked list running through
37 * all of its entries.  This linked list defines the iteration ordering,
38 * which is normally the order in which keys were inserted into the map
39 * (<i>insertion-order</i>).  Note that insertion order is not affected
40 * if a key is <i>re-inserted</i> into the map.  (A key <tt>k</tt> is
41 * reinserted into a map <tt>m</tt> if <tt>m.put(k, v)</tt> is invoked when
42 * <tt>m.containsKey(k)</tt> would return <tt>true</tt> immediately prior to
43 * the invocation.)
44 *
45 * <p>This implementation spares its clients from the unspecified, generally
46 * chaotic ordering provided by {@link HashMap} (and {@link Hashtable}),
47 * without incurring the increased cost associated with {@link TreeMap}.  It
48 * can be used to produce a copy of a map that has the same order as the
49 * original, regardless of the original map's implementation:
50 * <pre>
51 *     void foo(Map m) {
52 *         Map copy = new LinkedHashMap(m);
53 *         ...
54 *     }
55 * </pre>
56 * This technique is particularly useful if a module takes a map on input,
57 * copies it, and later returns results whose order is determined by that of
58 * the copy.  (Clients generally appreciate having things returned in the same
59 * order they were presented.)
60 *
61 * <p>A special {@link #LinkedHashMap(int,float,boolean) constructor} is
62 * provided to create a linked hash map whose order of iteration is the order
63 * in which its entries were last accessed, from least-recently accessed to
64 * most-recently (<i>access-order</i>).  This kind of map is well-suited to
65 * building LRU caches.  Invoking the {@code put}, {@code putIfAbsent},
66 * {@code get}, {@code getOrDefault}, {@code compute}, {@code computeIfAbsent},
67 * {@code computeIfPresent}, or {@code merge} methods results
68 * in an access to the corresponding entry (assuming it exists after the
69 * invocation completes). The {@code replace} methods only result in an access
70 * of the entry if the value is replaced.  The {@code putAll} method generates one
71 * entry access for each mapping in the specified map, in the order that
72 * key-value mappings are provided by the specified map's entry set iterator.
73 * <i>No other methods generate entry accesses.</i>  In particular, operations
74 * on collection-views do <i>not</i> affect the order of iteration of the
75 * backing map.
76 *
77 * <p>The {@link #removeEldestEntry(Map.Entry)} method may be overridden to
78 * impose a policy for removing stale mappings automatically when new mappings
79 * are added to the map.
80 *
81 * <p>This class provides all of the optional <tt>Map</tt> operations, and
82 * permits null elements.  Like <tt>HashMap</tt>, it provides constant-time
83 * performance for the basic operations (<tt>add</tt>, <tt>contains</tt> and
84 * <tt>remove</tt>), assuming the hash function disperses elements
85 * properly among the buckets.  Performance is likely to be just slightly
86 * below that of <tt>HashMap</tt>, due to the added expense of maintaining the
87 * linked list, with one exception: Iteration over the collection-views
88 * of a <tt>LinkedHashMap</tt> requires time proportional to the <i>size</i>
89 * of the map, regardless of its capacity.  Iteration over a <tt>HashMap</tt>
90 * is likely to be more expensive, requiring time proportional to its
91 * <i>capacity</i>.
92 *
93 * <p>A linked hash map has two parameters that affect its performance:
94 * <i>initial capacity</i> and <i>load factor</i>.  They are defined precisely
95 * as for <tt>HashMap</tt>.  Note, however, that the penalty for choosing an
96 * excessively high value for initial capacity is less severe for this class
97 * than for <tt>HashMap</tt>, as iteration times for this class are unaffected
98 * by capacity.
99 *
100 * <p><strong>Note that this implementation is not synchronized.</strong>
101 * If multiple threads access a linked hash map concurrently, and at least
102 * one of the threads modifies the map structurally, it <em>must</em> be
103 * synchronized externally.  This is typically accomplished by
104 * synchronizing on some object that naturally encapsulates the map.
105 *
106 * If no such object exists, the map should be "wrapped" using the
107 * {@link Collections#synchronizedMap Collections.synchronizedMap}
108 * method.  This is best done at creation time, to prevent accidental
109 * unsynchronized access to the map:<pre>
110 *   Map m = Collections.synchronizedMap(new LinkedHashMap(...));</pre>
111 *
112 * A structural modification is any operation that adds or deletes one or more
113 * mappings or, in the case of access-ordered linked hash maps, affects
114 * iteration order.  In insertion-ordered linked hash maps, merely changing
115 * the value associated with a key that is already contained in the map is not
116 * a structural modification.  <strong>In access-ordered linked hash maps,
117 * merely querying the map with <tt>get</tt> is a structural modification.
118 * </strong>)
119 *
120 * <p>The iterators returned by the <tt>iterator</tt> method of the collections
121 * returned by all of this class's collection view methods are
122 * <em>fail-fast</em>: if the map is structurally modified at any time after
123 * the iterator is created, in any way except through the iterator's own
124 * <tt>remove</tt> method, the iterator will throw a {@link
125 * ConcurrentModificationException}.  Thus, in the face of concurrent
126 * modification, the iterator fails quickly and cleanly, rather than risking
127 * arbitrary, non-deterministic behavior at an undetermined time in the future.
128 *
129 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
130 * as it is, generally speaking, impossible to make any hard guarantees in the
131 * presence of unsynchronized concurrent modification.  Fail-fast iterators
132 * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
133 * Therefore, it would be wrong to write a program that depended on this
134 * exception for its correctness:   <i>the fail-fast behavior of iterators
135 * should be used only to detect bugs.</i>
136 *
137 * <p>The spliterators returned by the spliterator method of the collections
138 * returned by all of this class's collection view methods are
139 * <em><a href="Spliterator.html#binding">late-binding</a></em>,
140 * <em>fail-fast</em>, and additionally report {@link Spliterator#ORDERED}.
141 *
142 * <p>This class is a member of the
143 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
144 * Java Collections Framework</a>.
145 *
146 * @implNote
147 * The spliterators returned by the spliterator method of the collections
148 * returned by all of this class's collection view methods are created from
149 * the iterators of the corresponding collections.
150 *
151 * @param <K> the type of keys maintained by this map
152 * @param <V> the type of mapped values
153 *
154 * @author  Josh Bloch
155 * @see     Object#hashCode()
156 * @see     Collection
157 * @see     Map
158 * @see     HashMap
159 * @see     TreeMap
160 * @see     Hashtable
161 * @since   1.4
162 */
163public class LinkedHashMap<K,V>
164    extends HashMap<K,V>
165    implements Map<K,V>
166{
167
168    /*
169     * Implementation note.  A previous version of this class was
170     * internally structured a little differently. Because superclass
171     * HashMap now uses trees for some of its nodes, class
172     * LinkedHashMap.Entry is now treated as intermediary node class
173     * that can also be converted to tree form.
174     *
175     * Android-changed BEGIN
176     * LinkedHashMapEntry should not be renamed. Specifically, for
177     * source compatibility with earlier versions of Android, this
178     * nested class must not be named "Entry". Otherwise, it would
179     * hide Map.Entry which would break compilation of code like:
180     *
181     * LinkedHashMap.Entry<K, V> entry = map.entrySet().iterator.next()
182     *
183     * To compile, that code snippet's "LinkedHashMap.Entry" must
184     * mean java.util.Map.Entry which is the compile time type of
185     * entrySet()'s elements.
186     * Android-changed END
187     *
188     * The changes in node classes also require using two fields
189     * (head, tail) rather than a pointer to a header node to maintain
190     * the doubly-linked before/after list. This class also
191     * previously used a different style of callback methods upon
192     * access, insertion, and removal.
193     */
194
195    /**
196     * HashMap.Node subclass for normal LinkedHashMap entries.
197     */
198    static class LinkedHashMapEntry<K,V> extends HashMap.Node<K,V> {
199        LinkedHashMapEntry<K,V> before, after;
200        LinkedHashMapEntry(int hash, K key, V value, Node<K,V> next) {
201            super(hash, key, value, next);
202        }
203    }
204
205    private static final long serialVersionUID = 3801124242820219131L;
206
207    /**
208     * The head (eldest) of the doubly linked list.
209     */
210    transient LinkedHashMapEntry<K,V> head;
211
212    /**
213     * The tail (youngest) of the doubly linked list.
214     */
215    transient LinkedHashMapEntry<K,V> tail;
216
217    /**
218     * The iteration ordering method for this linked hash map: <tt>true</tt>
219     * for access-order, <tt>false</tt> for insertion-order.
220     *
221     * @serial
222     */
223    final boolean accessOrder;
224
225    // internal utilities
226
227    // link at the end of list
228    private void linkNodeLast(LinkedHashMapEntry<K,V> p) {
229        LinkedHashMapEntry<K,V> last = tail;
230        tail = p;
231        if (last == null)
232            head = p;
233        else {
234            p.before = last;
235            last.after = p;
236        }
237    }
238
239    // apply src's links to dst
240    private void transferLinks(LinkedHashMapEntry<K,V> src,
241                               LinkedHashMapEntry<K,V> dst) {
242        LinkedHashMapEntry<K,V> b = dst.before = src.before;
243        LinkedHashMapEntry<K,V> a = dst.after = src.after;
244        if (b == null)
245            head = dst;
246        else
247            b.after = dst;
248        if (a == null)
249            tail = dst;
250        else
251            a.before = dst;
252    }
253
254    // overrides of HashMap hook methods
255
256    void reinitialize() {
257        super.reinitialize();
258        head = tail = null;
259    }
260
261    Node<K,V> newNode(int hash, K key, V value, Node<K,V> e) {
262        LinkedHashMapEntry<K,V> p =
263            new LinkedHashMapEntry<K,V>(hash, key, value, e);
264        linkNodeLast(p);
265        return p;
266    }
267
268    Node<K,V> replacementNode(Node<K,V> p, Node<K,V> next) {
269        LinkedHashMapEntry<K,V> q = (LinkedHashMapEntry<K,V>)p;
270        LinkedHashMapEntry<K,V> t =
271            new LinkedHashMapEntry<K,V>(q.hash, q.key, q.value, next);
272        transferLinks(q, t);
273        return t;
274    }
275
276    TreeNode<K,V> newTreeNode(int hash, K key, V value, Node<K,V> next) {
277        TreeNode<K,V> p = new TreeNode<K,V>(hash, key, value, next);
278        linkNodeLast(p);
279        return p;
280    }
281
282    TreeNode<K,V> replacementTreeNode(Node<K,V> p, Node<K,V> next) {
283        LinkedHashMapEntry<K,V> q = (LinkedHashMapEntry<K,V>)p;
284        TreeNode<K,V> t = new TreeNode<K,V>(q.hash, q.key, q.value, next);
285        transferLinks(q, t);
286        return t;
287    }
288
289    void afterNodeRemoval(Node<K,V> e) { // unlink
290        LinkedHashMapEntry<K,V> p =
291            (LinkedHashMapEntry<K,V>)e, b = p.before, a = p.after;
292        p.before = p.after = null;
293        if (b == null)
294            head = a;
295        else
296            b.after = a;
297        if (a == null)
298            tail = b;
299        else
300            a.before = b;
301    }
302
303    void afterNodeInsertion(boolean evict) { // possibly remove eldest
304        LinkedHashMapEntry<K,V> first;
305        if (evict && (first = head) != null && removeEldestEntry(first)) {
306            K key = first.key;
307            removeNode(hash(key), key, null, false, true);
308        }
309    }
310
311    void afterNodeAccess(Node<K,V> e) { // move node to last
312        LinkedHashMapEntry<K,V> last;
313        if (accessOrder && (last = tail) != e) {
314            LinkedHashMapEntry<K,V> p =
315                (LinkedHashMapEntry<K,V>)e, b = p.before, a = p.after;
316            p.after = null;
317            if (b == null)
318                head = a;
319            else
320                b.after = a;
321            if (a != null)
322                a.before = b;
323            else
324                last = b;
325            if (last == null)
326                head = p;
327            else {
328                p.before = last;
329                last.after = p;
330            }
331            tail = p;
332            ++modCount;
333        }
334    }
335
336    void internalWriteEntries(java.io.ObjectOutputStream s) throws IOException {
337        for (LinkedHashMapEntry<K,V> e = head; e != null; e = e.after) {
338            s.writeObject(e.key);
339            s.writeObject(e.value);
340        }
341    }
342
343    /**
344     * Constructs an empty insertion-ordered <tt>LinkedHashMap</tt> instance
345     * with the specified initial capacity and load factor.
346     *
347     * @param  initialCapacity the initial capacity
348     * @param  loadFactor      the load factor
349     * @throws IllegalArgumentException if the initial capacity is negative
350     *         or the load factor is nonpositive
351     */
352    public LinkedHashMap(int initialCapacity, float loadFactor) {
353        super(initialCapacity, loadFactor);
354        accessOrder = false;
355    }
356
357    /**
358     * Constructs an empty insertion-ordered <tt>LinkedHashMap</tt> instance
359     * with the specified initial capacity and a default load factor (0.75).
360     *
361     * @param  initialCapacity the initial capacity
362     * @throws IllegalArgumentException if the initial capacity is negative
363     */
364    public LinkedHashMap(int initialCapacity) {
365        super(initialCapacity);
366        accessOrder = false;
367    }
368
369    /**
370     * Constructs an empty insertion-ordered <tt>LinkedHashMap</tt> instance
371     * with the default initial capacity (16) and load factor (0.75).
372     */
373    public LinkedHashMap() {
374        super();
375        accessOrder = false;
376    }
377
378    /**
379     * Constructs an insertion-ordered <tt>LinkedHashMap</tt> instance with
380     * the same mappings as the specified map.  The <tt>LinkedHashMap</tt>
381     * instance is created with a default load factor (0.75) and an initial
382     * capacity sufficient to hold the mappings in the specified map.
383     *
384     * @param  m the map whose mappings are to be placed in this map
385     * @throws NullPointerException if the specified map is null
386     */
387    public LinkedHashMap(Map<? extends K, ? extends V> m) {
388        super();
389        accessOrder = false;
390        putMapEntries(m, false);
391    }
392
393    /**
394     * Constructs an empty <tt>LinkedHashMap</tt> instance with the
395     * specified initial capacity, load factor and ordering mode.
396     *
397     * @param  initialCapacity the initial capacity
398     * @param  loadFactor      the load factor
399     * @param  accessOrder     the ordering mode - <tt>true</tt> for
400     *         access-order, <tt>false</tt> for insertion-order
401     * @throws IllegalArgumentException if the initial capacity is negative
402     *         or the load factor is nonpositive
403     */
404    public LinkedHashMap(int initialCapacity,
405                         float loadFactor,
406                         boolean accessOrder) {
407        super(initialCapacity, loadFactor);
408        this.accessOrder = accessOrder;
409    }
410
411
412    /**
413     * Returns <tt>true</tt> if this map maps one or more keys to the
414     * specified value.
415     *
416     * @param value value whose presence in this map is to be tested
417     * @return <tt>true</tt> if this map maps one or more keys to the
418     *         specified value
419     */
420    public boolean containsValue(Object value) {
421        for (LinkedHashMapEntry<K,V> e = head; e != null; e = e.after) {
422            V v = e.value;
423            if (v == value || (value != null && value.equals(v)))
424                return true;
425        }
426        return false;
427    }
428
429    /**
430     * Returns the value to which the specified key is mapped,
431     * or {@code null} if this map contains no mapping for the key.
432     *
433     * <p>More formally, if this map contains a mapping from a key
434     * {@code k} to a value {@code v} such that {@code (key==null ? k==null :
435     * key.equals(k))}, then this method returns {@code v}; otherwise
436     * it returns {@code null}.  (There can be at most one such mapping.)
437     *
438     * <p>A return value of {@code null} does not <i>necessarily</i>
439     * indicate that the map contains no mapping for the key; it's also
440     * possible that the map explicitly maps the key to {@code null}.
441     * The {@link #containsKey containsKey} operation may be used to
442     * distinguish these two cases.
443     */
444    public V get(Object key) {
445        Node<K,V> e;
446        if ((e = getNode(hash(key), key)) == null)
447            return null;
448        if (accessOrder)
449            afterNodeAccess(e);
450        return e.value;
451    }
452
453    /**
454     * {@inheritDoc}
455     */
456    public V getOrDefault(Object key, V defaultValue) {
457       Node<K,V> e;
458       if ((e = getNode(hash(key), key)) == null)
459           return defaultValue;
460       if (accessOrder)
461           afterNodeAccess(e);
462       return e.value;
463   }
464
465    /**
466     * {@inheritDoc}
467     */
468    public void clear() {
469        super.clear();
470        head = tail = null;
471    }
472
473    /**
474     * Returns the eldest entry in the map, or {@code null} if the map is empty.
475     *
476     * Android-added.
477     *
478     * @hide
479     */
480    public Map.Entry<K, V> eldest() {
481        return head;
482    }
483
484    /**
485     * Returns <tt>true</tt> if this map should remove its eldest entry.
486     * This method is invoked by <tt>put</tt> and <tt>putAll</tt> after
487     * inserting a new entry into the map.  It provides the implementor
488     * with the opportunity to remove the eldest entry each time a new one
489     * is added.  This is useful if the map represents a cache: it allows
490     * the map to reduce memory consumption by deleting stale entries.
491     *
492     * <p>Sample use: this override will allow the map to grow up to 100
493     * entries and then delete the eldest entry each time a new entry is
494     * added, maintaining a steady state of 100 entries.
495     * <pre>
496     *     private static final int MAX_ENTRIES = 100;
497     *
498     *     protected boolean removeEldestEntry(Map.Entry eldest) {
499     *        return size() &gt; MAX_ENTRIES;
500     *     }
501     * </pre>
502     *
503     * <p>This method typically does not modify the map in any way,
504     * instead allowing the map to modify itself as directed by its
505     * return value.  It <i>is</i> permitted for this method to modify
506     * the map directly, but if it does so, it <i>must</i> return
507     * <tt>false</tt> (indicating that the map should not attempt any
508     * further modification).  The effects of returning <tt>true</tt>
509     * after modifying the map from within this method are unspecified.
510     *
511     * <p>This implementation merely returns <tt>false</tt> (so that this
512     * map acts like a normal map - the eldest element is never removed).
513     *
514     * @param    eldest The least recently inserted entry in the map, or if
515     *           this is an access-ordered map, the least recently accessed
516     *           entry.  This is the entry that will be removed it this
517     *           method returns <tt>true</tt>.  If the map was empty prior
518     *           to the <tt>put</tt> or <tt>putAll</tt> invocation resulting
519     *           in this invocation, this will be the entry that was just
520     *           inserted; in other words, if the map contains a single
521     *           entry, the eldest entry is also the newest.
522     * @return   <tt>true</tt> if the eldest entry should be removed
523     *           from the map; <tt>false</tt> if it should be retained.
524     */
525    protected boolean removeEldestEntry(Map.Entry<K,V> eldest) {
526        return false;
527    }
528
529    /**
530     * Returns a {@link Set} view of the keys contained in this map.
531     * The set is backed by the map, so changes to the map are
532     * reflected in the set, and vice-versa.  If the map is modified
533     * while an iteration over the set is in progress (except through
534     * the iterator's own <tt>remove</tt> operation), the results of
535     * the iteration are undefined.  The set supports element removal,
536     * which removes the corresponding mapping from the map, via the
537     * <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
538     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
539     * operations.  It does not support the <tt>add</tt> or <tt>addAll</tt>
540     * operations.
541     * Its {@link Spliterator} typically provides faster sequential
542     * performance but much poorer parallel performance than that of
543     * {@code HashMap}.
544     *
545     * @return a set view of the keys contained in this map
546     */
547    public Set<K> keySet() {
548        Set<K> ks;
549        return (ks = keySet) == null ? (keySet = new LinkedKeySet()) : ks;
550    }
551
552    final class LinkedKeySet extends AbstractSet<K> {
553        public final int size()                 { return size; }
554        public final void clear()               { LinkedHashMap.this.clear(); }
555        public final Iterator<K> iterator() {
556            return new LinkedKeyIterator();
557        }
558        public final boolean contains(Object o) { return containsKey(o); }
559        public final boolean remove(Object key) {
560            return removeNode(hash(key), key, null, false, true) != null;
561        }
562        public final Spliterator<K> spliterator()  {
563            return Spliterators.spliterator(this, Spliterator.SIZED |
564                                            Spliterator.ORDERED |
565                                            Spliterator.DISTINCT);
566        }
567        public final void forEach(Consumer<? super K> action) {
568            if (action == null)
569                throw new NullPointerException();
570            int mc = modCount;
571            // Android-changed: Detect changes to modCount early.
572            for (LinkedHashMapEntry<K,V> e = head; (e != null && modCount == mc); e = e.after)
573                action.accept(e.key);
574            if (modCount != mc)
575                throw new ConcurrentModificationException();
576        }
577    }
578
579    /**
580     * Returns a {@link Collection} view of the values contained in this map.
581     * The collection is backed by the map, so changes to the map are
582     * reflected in the collection, and vice-versa.  If the map is
583     * modified while an iteration over the collection is in progress
584     * (except through the iterator's own <tt>remove</tt> operation),
585     * the results of the iteration are undefined.  The collection
586     * supports element removal, which removes the corresponding
587     * mapping from the map, via the <tt>Iterator.remove</tt>,
588     * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
589     * <tt>retainAll</tt> and <tt>clear</tt> operations.  It does not
590     * support the <tt>add</tt> or <tt>addAll</tt> operations.
591     * Its {@link Spliterator} typically provides faster sequential
592     * performance but much poorer parallel performance than that of
593     * {@code HashMap}.
594     *
595     * @return a view of the values contained in this map
596     */
597    public Collection<V> values() {
598        Collection<V> vs;
599        return (vs = values) == null ? (values = new LinkedValues()) : vs;
600    }
601
602    final class LinkedValues extends AbstractCollection<V> {
603        public final int size()                 { return size; }
604        public final void clear()               { LinkedHashMap.this.clear(); }
605        public final Iterator<V> iterator() {
606            return new LinkedValueIterator();
607        }
608        public final boolean contains(Object o) { return containsValue(o); }
609        public final Spliterator<V> spliterator() {
610            return Spliterators.spliterator(this, Spliterator.SIZED |
611                                            Spliterator.ORDERED);
612        }
613        public final void forEach(Consumer<? super V> action) {
614            if (action == null)
615                throw new NullPointerException();
616            int mc = modCount;
617            // Android-changed: Detect changes to modCount early.
618            for (LinkedHashMapEntry<K,V> e = head; (e != null && modCount == mc); e = e.after)
619                action.accept(e.value);
620            if (modCount != mc)
621                throw new ConcurrentModificationException();
622        }
623    }
624
625    /**
626     * Returns a {@link Set} view of the mappings contained in this map.
627     * The set is backed by the map, so changes to the map are
628     * reflected in the set, and vice-versa.  If the map is modified
629     * while an iteration over the set is in progress (except through
630     * the iterator's own <tt>remove</tt> operation, or through the
631     * <tt>setValue</tt> operation on a map entry returned by the
632     * iterator) the results of the iteration are undefined.  The set
633     * supports element removal, which removes the corresponding
634     * mapping from the map, via the <tt>Iterator.remove</tt>,
635     * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and
636     * <tt>clear</tt> operations.  It does not support the
637     * <tt>add</tt> or <tt>addAll</tt> operations.
638     * Its {@link Spliterator} typically provides faster sequential
639     * performance but much poorer parallel performance than that of
640     * {@code HashMap}.
641     *
642     * @return a set view of the mappings contained in this map
643     */
644    public Set<Map.Entry<K,V>> entrySet() {
645        Set<Map.Entry<K,V>> es;
646        return (es = entrySet) == null ? (entrySet = new LinkedEntrySet()) : es;
647    }
648
649    final class LinkedEntrySet extends AbstractSet<Map.Entry<K,V>> {
650        public final int size()                 { return size; }
651        public final void clear()               { LinkedHashMap.this.clear(); }
652        public final Iterator<Map.Entry<K,V>> iterator() {
653            return new LinkedEntryIterator();
654        }
655        public final boolean contains(Object o) {
656            if (!(o instanceof Map.Entry))
657                return false;
658            Map.Entry<?,?> e = (Map.Entry<?,?>) o;
659            Object key = e.getKey();
660            Node<K,V> candidate = getNode(hash(key), key);
661            return candidate != null && candidate.equals(e);
662        }
663        public final boolean remove(Object o) {
664            if (o instanceof Map.Entry) {
665                Map.Entry<?,?> e = (Map.Entry<?,?>) o;
666                Object key = e.getKey();
667                Object value = e.getValue();
668                return removeNode(hash(key), key, value, true, true) != null;
669            }
670            return false;
671        }
672        public final Spliterator<Map.Entry<K,V>> spliterator() {
673            return Spliterators.spliterator(this, Spliterator.SIZED |
674                                            Spliterator.ORDERED |
675                                            Spliterator.DISTINCT);
676        }
677        public final void forEach(Consumer<? super Map.Entry<K,V>> action) {
678            if (action == null)
679                throw new NullPointerException();
680            int mc = modCount;
681            // Android-changed: Detect changes to modCount early.
682            for (LinkedHashMapEntry<K,V> e = head; (e != null && mc == modCount); e = e.after)
683                action.accept(e);
684            if (modCount != mc)
685                throw new ConcurrentModificationException();
686        }
687    }
688
689    // Map overrides
690
691    public void forEach(BiConsumer<? super K, ? super V> action) {
692        if (action == null)
693            throw new NullPointerException();
694        int mc = modCount;
695        // Android-changed: Detect changes to modCount early.
696        for (LinkedHashMapEntry<K,V> e = head; modCount == mc && e != null; e = e.after)
697            action.accept(e.key, e.value);
698        if (modCount != mc)
699            throw new ConcurrentModificationException();
700    }
701
702    public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
703        if (function == null)
704            throw new NullPointerException();
705        int mc = modCount;
706        // Android-changed: Detect changes to modCount early.
707        for (LinkedHashMapEntry<K,V> e = head; modCount == mc && e != null; e = e.after)
708            e.value = function.apply(e.key, e.value);
709        if (modCount != mc)
710            throw new ConcurrentModificationException();
711    }
712
713    // Iterators
714
715    abstract class LinkedHashIterator {
716        LinkedHashMapEntry<K,V> next;
717        LinkedHashMapEntry<K,V> current;
718        int expectedModCount;
719
720        LinkedHashIterator() {
721            next = head;
722            expectedModCount = modCount;
723            current = null;
724        }
725
726        public final boolean hasNext() {
727            return next != null;
728        }
729
730        final LinkedHashMapEntry<K,V> nextNode() {
731            LinkedHashMapEntry<K,V> e = next;
732            if (modCount != expectedModCount)
733                throw new ConcurrentModificationException();
734            if (e == null)
735                throw new NoSuchElementException();
736            current = e;
737            next = e.after;
738            return e;
739        }
740
741        public final void remove() {
742            Node<K,V> p = current;
743            if (p == null)
744                throw new IllegalStateException();
745            if (modCount != expectedModCount)
746                throw new ConcurrentModificationException();
747            current = null;
748            K key = p.key;
749            removeNode(hash(key), key, null, false, false);
750            expectedModCount = modCount;
751        }
752    }
753
754    final class LinkedKeyIterator extends LinkedHashIterator
755        implements Iterator<K> {
756        public final K next() { return nextNode().getKey(); }
757    }
758
759    final class LinkedValueIterator extends LinkedHashIterator
760        implements Iterator<V> {
761        public final V next() { return nextNode().value; }
762    }
763
764    final class LinkedEntryIterator extends LinkedHashIterator
765        implements Iterator<Map.Entry<K,V>> {
766        public final Map.Entry<K,V> next() { return nextNode(); }
767    }
768
769
770}
771