PriorityQueue.java revision ed4f365789d43b1961657195df223a19bf4ef20f
1/*
2 * Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package java.util;
27
28import java.util.function.Consumer;
29
30/**
31 * An unbounded priority {@linkplain Queue queue} based on a priority heap.
32 * The elements of the priority queue are ordered according to their
33 * {@linkplain Comparable natural ordering}, or by a {@link Comparator}
34 * provided at queue construction time, depending on which constructor is
35 * used.  A priority queue does not permit {@code null} elements.
36 * A priority queue relying on natural ordering also does not permit
37 * insertion of non-comparable objects (doing so may result in
38 * {@code ClassCastException}).
39 *
40 * <p>The <em>head</em> of this queue is the <em>least</em> element
41 * with respect to the specified ordering.  If multiple elements are
42 * tied for least value, the head is one of those elements -- ties are
43 * broken arbitrarily.  The queue retrieval operations {@code poll},
44 * {@code remove}, {@code peek}, and {@code element} access the
45 * element at the head of the queue.
46 *
47 * <p>A priority queue is unbounded, but has an internal
48 * <i>capacity</i> governing the size of an array used to store the
49 * elements on the queue.  It is always at least as large as the queue
50 * size.  As elements are added to a priority queue, its capacity
51 * grows automatically.  The details of the growth policy are not
52 * specified.
53 *
54 * <p>This class and its iterator implement all of the
55 * <em>optional</em> methods of the {@link Collection} and {@link
56 * Iterator} interfaces.  The Iterator provided in method {@link
57 * #iterator()} is <em>not</em> guaranteed to traverse the elements of
58 * the priority queue in any particular order. If you need ordered
59 * traversal, consider using {@code Arrays.sort(pq.toArray())}.
60 *
61 * <p><strong>Note that this implementation is not synchronized.</strong>
62 * Multiple threads should not access a {@code PriorityQueue}
63 * instance concurrently if any of the threads modifies the queue.
64 * Instead, use the thread-safe {@link
65 * java.util.concurrent.PriorityBlockingQueue} class.
66 *
67 * <p>Implementation note: this implementation provides
68 * O(log(n)) time for the enqueuing and dequeuing methods
69 * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
70 * linear time for the {@code remove(Object)} and {@code contains(Object)}
71 * methods; and constant time for the retrieval methods
72 * ({@code peek}, {@code element}, and {@code size}).
73 *
74 * <p>This class is a member of the
75 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
76 * Java Collections Framework</a>.
77 *
78 * @since 1.5
79 * @author Josh Bloch, Doug Lea
80 * @param <E> the type of elements held in this collection
81 */
82public class PriorityQueue<E> extends AbstractQueue<E>
83    implements java.io.Serializable {
84
85    private static final long serialVersionUID = -7720805057305804111L;
86
87    private static final int DEFAULT_INITIAL_CAPACITY = 11;
88
89    /**
90     * Priority queue represented as a balanced binary heap: the two
91     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)].  The
92     * priority queue is ordered by comparator, or by the elements'
93     * natural ordering, if comparator is null: For each node n in the
94     * heap and each descendant d of n, n <= d.  The element with the
95     * lowest value is in queue[0], assuming the queue is nonempty.
96     */
97    transient Object[] queue; // non-private to simplify nested class access
98
99    /**
100     * The number of elements in the priority queue.
101     */
102    private int size = 0;
103
104    /**
105     * The comparator, or null if priority queue uses elements'
106     * natural ordering.
107     */
108    private final Comparator<? super E> comparator;
109
110    /**
111     * The number of times this priority queue has been
112     * <i>structurally modified</i>.  See AbstractList for gory details.
113     */
114    transient int modCount = 0; // non-private to simplify nested class access
115
116    /**
117     * Creates a {@code PriorityQueue} with the default initial
118     * capacity (11) that orders its elements according to their
119     * {@linkplain Comparable natural ordering}.
120     */
121    public PriorityQueue() {
122        this(DEFAULT_INITIAL_CAPACITY, null);
123    }
124
125    /**
126     * Creates a {@code PriorityQueue} with the specified initial
127     * capacity that orders its elements according to their
128     * {@linkplain Comparable natural ordering}.
129     *
130     * @param initialCapacity the initial capacity for this priority queue
131     * @throws IllegalArgumentException if {@code initialCapacity} is less
132     *         than 1
133     */
134    public PriorityQueue(int initialCapacity) {
135        this(initialCapacity, null);
136    }
137
138    /**
139     * Creates a {@code PriorityQueue} with the default initial capacity and
140     * whose elements are ordered according to the specified comparator.
141     *
142     * @param  comparator the comparator that will be used to order this
143     *         priority queue.  If {@code null}, the {@linkplain Comparable
144     *         natural ordering} of the elements will be used.
145     * @since 1.8
146     */
147    public PriorityQueue(Comparator<? super E> comparator) {
148        this(DEFAULT_INITIAL_CAPACITY, comparator);
149    }
150
151    /**
152     * Creates a {@code PriorityQueue} with the specified initial capacity
153     * that orders its elements according to the specified comparator.
154     *
155     * @param  initialCapacity the initial capacity for this priority queue
156     * @param  comparator the comparator that will be used to order this
157     *         priority queue.  If {@code null}, the {@linkplain Comparable
158     *         natural ordering} of the elements will be used.
159     * @throws IllegalArgumentException if {@code initialCapacity} is
160     *         less than 1
161     */
162    public PriorityQueue(int initialCapacity,
163                         Comparator<? super E> comparator) {
164        // Note: This restriction of at least one is not actually needed,
165        // but continues for 1.5 compatibility
166        if (initialCapacity < 1)
167            throw new IllegalArgumentException();
168        this.queue = new Object[initialCapacity];
169        this.comparator = comparator;
170    }
171
172    /**
173     * Creates a {@code PriorityQueue} containing the elements in the
174     * specified collection.  If the specified collection is an instance of
175     * a {@link SortedSet} or is another {@code PriorityQueue}, this
176     * priority queue will be ordered according to the same ordering.
177     * Otherwise, this priority queue will be ordered according to the
178     * {@linkplain Comparable natural ordering} of its elements.
179     *
180     * @param  c the collection whose elements are to be placed
181     *         into this priority queue
182     * @throws ClassCastException if elements of the specified collection
183     *         cannot be compared to one another according to the priority
184     *         queue's ordering
185     * @throws NullPointerException if the specified collection or any
186     *         of its elements are null
187     */
188    @SuppressWarnings("unchecked")
189    public PriorityQueue(Collection<? extends E> c) {
190        if (c instanceof SortedSet<?>) {
191            SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
192            this.comparator = (Comparator<? super E>) ss.comparator();
193            initElementsFromCollection(ss);
194        }
195        else if (c instanceof PriorityQueue<?>) {
196            PriorityQueue<? extends E> pq = (PriorityQueue<? extends E>) c;
197            this.comparator = (Comparator<? super E>) pq.comparator();
198            initFromPriorityQueue(pq);
199        }
200        else {
201            this.comparator = null;
202            initFromCollection(c);
203        }
204    }
205
206    /**
207     * Creates a {@code PriorityQueue} containing the elements in the
208     * specified priority queue.  This priority queue will be
209     * ordered according to the same ordering as the given priority
210     * queue.
211     *
212     * @param  c the priority queue whose elements are to be placed
213     *         into this priority queue
214     * @throws ClassCastException if elements of {@code c} cannot be
215     *         compared to one another according to {@code c}'s
216     *         ordering
217     * @throws NullPointerException if the specified priority queue or any
218     *         of its elements are null
219     */
220    @SuppressWarnings("unchecked")
221    public PriorityQueue(PriorityQueue<? extends E> c) {
222        this.comparator = (Comparator<? super E>) c.comparator();
223        initFromPriorityQueue(c);
224    }
225
226    /**
227     * Creates a {@code PriorityQueue} containing the elements in the
228     * specified sorted set.   This priority queue will be ordered
229     * according to the same ordering as the given sorted set.
230     *
231     * @param  c the sorted set whose elements are to be placed
232     *         into this priority queue
233     * @throws ClassCastException if elements of the specified sorted
234     *         set cannot be compared to one another according to the
235     *         sorted set's ordering
236     * @throws NullPointerException if the specified sorted set or any
237     *         of its elements are null
238     */
239    @SuppressWarnings("unchecked")
240    public PriorityQueue(SortedSet<? extends E> c) {
241        this.comparator = (Comparator<? super E>) c.comparator();
242        initElementsFromCollection(c);
243    }
244
245    private void initFromPriorityQueue(PriorityQueue<? extends E> c) {
246        if (c.getClass() == PriorityQueue.class) {
247            this.queue = c.toArray();
248            this.size = c.size();
249        } else {
250            initFromCollection(c);
251        }
252    }
253
254    private void initElementsFromCollection(Collection<? extends E> c) {
255        Object[] a = c.toArray();
256        // If c.toArray incorrectly doesn't return Object[], copy it.
257        if (a.getClass() != Object[].class)
258            a = Arrays.copyOf(a, a.length, Object[].class);
259        int len = a.length;
260        if (len == 1 || this.comparator != null)
261            for (int i = 0; i < len; i++)
262                if (a[i] == null)
263                    throw new NullPointerException();
264        this.queue = a;
265        this.size = a.length;
266    }
267
268    /**
269     * Initializes queue array with elements from the given Collection.
270     *
271     * @param c the collection
272     */
273    private void initFromCollection(Collection<? extends E> c) {
274        initElementsFromCollection(c);
275        heapify();
276    }
277
278    /**
279     * The maximum size of array to allocate.
280     * Some VMs reserve some header words in an array.
281     * Attempts to allocate larger arrays may result in
282     * OutOfMemoryError: Requested array size exceeds VM limit
283     */
284    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
285
286    /**
287     * Increases the capacity of the array.
288     *
289     * @param minCapacity the desired minimum capacity
290     */
291    private void grow(int minCapacity) {
292        int oldCapacity = queue.length;
293        // Double size if small; else grow by 50%
294        int newCapacity = oldCapacity + ((oldCapacity < 64) ?
295                                         (oldCapacity + 2) :
296                                         (oldCapacity >> 1));
297        // overflow-conscious code
298        if (newCapacity - MAX_ARRAY_SIZE > 0)
299            newCapacity = hugeCapacity(minCapacity);
300        queue = Arrays.copyOf(queue, newCapacity);
301    }
302
303    private static int hugeCapacity(int minCapacity) {
304        if (minCapacity < 0) // overflow
305            throw new OutOfMemoryError();
306        return (minCapacity > MAX_ARRAY_SIZE) ?
307            Integer.MAX_VALUE :
308            MAX_ARRAY_SIZE;
309    }
310
311    /**
312     * Inserts the specified element into this priority queue.
313     *
314     * @return {@code true} (as specified by {@link Collection#add})
315     * @throws ClassCastException if the specified element cannot be
316     *         compared with elements currently in this priority queue
317     *         according to the priority queue's ordering
318     * @throws NullPointerException if the specified element is null
319     */
320    public boolean add(E e) {
321        return offer(e);
322    }
323
324    /**
325     * Inserts the specified element into this priority queue.
326     *
327     * @return {@code true} (as specified by {@link Queue#offer})
328     * @throws ClassCastException if the specified element cannot be
329     *         compared with elements currently in this priority queue
330     *         according to the priority queue's ordering
331     * @throws NullPointerException if the specified element is null
332     */
333    public boolean offer(E e) {
334        if (e == null)
335            throw new NullPointerException();
336        modCount++;
337        int i = size;
338        if (i >= queue.length)
339            grow(i + 1);
340        size = i + 1;
341        if (i == 0)
342            queue[0] = e;
343        else
344            siftUp(i, e);
345        return true;
346    }
347
348    @SuppressWarnings("unchecked")
349    public E peek() {
350        return (size == 0) ? null : (E) queue[0];
351    }
352
353    private int indexOf(Object o) {
354        if (o != null) {
355            for (int i = 0; i < size; i++)
356                if (o.equals(queue[i]))
357                    return i;
358        }
359        return -1;
360    }
361
362    /**
363     * Removes a single instance of the specified element from this queue,
364     * if it is present.  More formally, removes an element {@code e} such
365     * that {@code o.equals(e)}, if this queue contains one or more such
366     * elements.  Returns {@code true} if and only if this queue contained
367     * the specified element (or equivalently, if this queue changed as a
368     * result of the call).
369     *
370     * @param o element to be removed from this queue, if present
371     * @return {@code true} if this queue changed as a result of the call
372     */
373    public boolean remove(Object o) {
374        int i = indexOf(o);
375        if (i == -1)
376            return false;
377        else {
378            removeAt(i);
379            return true;
380        }
381    }
382
383    /**
384     * Version of remove using reference equality, not equals.
385     * Needed by iterator.remove.
386     *
387     * @param o element to be removed from this queue, if present
388     * @return {@code true} if removed
389     */
390    boolean removeEq(Object o) {
391        for (int i = 0; i < size; i++) {
392            if (o == queue[i]) {
393                removeAt(i);
394                return true;
395            }
396        }
397        return false;
398    }
399
400    /**
401     * Returns {@code true} if this queue contains the specified element.
402     * More formally, returns {@code true} if and only if this queue contains
403     * at least one element {@code e} such that {@code o.equals(e)}.
404     *
405     * @param o object to be checked for containment in this queue
406     * @return {@code true} if this queue contains the specified element
407     */
408    public boolean contains(Object o) {
409        return indexOf(o) != -1;
410    }
411
412    /**
413     * Returns an array containing all of the elements in this queue.
414     * The elements are in no particular order.
415     *
416     * <p>The returned array will be "safe" in that no references to it are
417     * maintained by this queue.  (In other words, this method must allocate
418     * a new array).  The caller is thus free to modify the returned array.
419     *
420     * <p>This method acts as bridge between array-based and collection-based
421     * APIs.
422     *
423     * @return an array containing all of the elements in this queue
424     */
425    public Object[] toArray() {
426        return Arrays.copyOf(queue, size);
427    }
428
429    /**
430     * Returns an array containing all of the elements in this queue; the
431     * runtime type of the returned array is that of the specified array.
432     * The returned array elements are in no particular order.
433     * If the queue fits in the specified array, it is returned therein.
434     * Otherwise, a new array is allocated with the runtime type of the
435     * specified array and the size of this queue.
436     *
437     * <p>If the queue fits in the specified array with room to spare
438     * (i.e., the array has more elements than the queue), the element in
439     * the array immediately following the end of the collection is set to
440     * {@code null}.
441     *
442     * <p>Like the {@link #toArray()} method, this method acts as bridge between
443     * array-based and collection-based APIs.  Further, this method allows
444     * precise control over the runtime type of the output array, and may,
445     * under certain circumstances, be used to save allocation costs.
446     *
447     * <p>Suppose {@code x} is a queue known to contain only strings.
448     * The following code can be used to dump the queue into a newly
449     * allocated array of {@code String}:
450     *
451     *  <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
452     *
453     * Note that {@code toArray(new Object[0])} is identical in function to
454     * {@code toArray()}.
455     *
456     * @param a the array into which the elements of the queue are to
457     *          be stored, if it is big enough; otherwise, a new array of the
458     *          same runtime type is allocated for this purpose.
459     * @return an array containing all of the elements in this queue
460     * @throws ArrayStoreException if the runtime type of the specified array
461     *         is not a supertype of the runtime type of every element in
462     *         this queue
463     * @throws NullPointerException if the specified array is null
464     */
465    @SuppressWarnings("unchecked")
466    public <T> T[] toArray(T[] a) {
467        final int size = this.size;
468        if (a.length < size)
469            // Make a new array of a's runtime type, but my contents:
470            return (T[]) Arrays.copyOf(queue, size, a.getClass());
471        System.arraycopy(queue, 0, a, 0, size);
472        if (a.length > size)
473            a[size] = null;
474        return a;
475    }
476
477    /**
478     * Returns an iterator over the elements in this queue. The iterator
479     * does not return the elements in any particular order.
480     *
481     * @return an iterator over the elements in this queue
482     */
483    public Iterator<E> iterator() {
484        return new Itr();
485    }
486
487    private final class Itr implements Iterator<E> {
488        /**
489         * Index (into queue array) of element to be returned by
490         * subsequent call to next.
491         */
492        private int cursor = 0;
493
494        /**
495         * Index of element returned by most recent call to next,
496         * unless that element came from the forgetMeNot list.
497         * Set to -1 if element is deleted by a call to remove.
498         */
499        private int lastRet = -1;
500
501        /**
502         * A queue of elements that were moved from the unvisited portion of
503         * the heap into the visited portion as a result of "unlucky" element
504         * removals during the iteration.  (Unlucky element removals are those
505         * that require a siftup instead of a siftdown.)  We must visit all of
506         * the elements in this list to complete the iteration.  We do this
507         * after we've completed the "normal" iteration.
508         *
509         * We expect that most iterations, even those involving removals,
510         * will not need to store elements in this field.
511         */
512        private ArrayDeque<E> forgetMeNot = null;
513
514        /**
515         * Element returned by the most recent call to next iff that
516         * element was drawn from the forgetMeNot list.
517         */
518        private E lastRetElt = null;
519
520        /**
521         * The modCount value that the iterator believes that the backing
522         * Queue should have.  If this expectation is violated, the iterator
523         * has detected concurrent modification.
524         */
525        private int expectedModCount = modCount;
526
527        public boolean hasNext() {
528            return cursor < size ||
529                (forgetMeNot != null && !forgetMeNot.isEmpty());
530        }
531
532        @SuppressWarnings("unchecked")
533        public E next() {
534            if (expectedModCount != modCount)
535                throw new ConcurrentModificationException();
536            if (cursor < size)
537                return (E) queue[lastRet = cursor++];
538            if (forgetMeNot != null) {
539                lastRet = -1;
540                lastRetElt = forgetMeNot.poll();
541                if (lastRetElt != null)
542                    return lastRetElt;
543            }
544            throw new NoSuchElementException();
545        }
546
547        public void remove() {
548            if (expectedModCount != modCount)
549                throw new ConcurrentModificationException();
550            if (lastRet != -1) {
551                E moved = PriorityQueue.this.removeAt(lastRet);
552                lastRet = -1;
553                if (moved == null)
554                    cursor--;
555                else {
556                    if (forgetMeNot == null)
557                        forgetMeNot = new ArrayDeque<>();
558                    forgetMeNot.add(moved);
559                }
560            } else if (lastRetElt != null) {
561                PriorityQueue.this.removeEq(lastRetElt);
562                lastRetElt = null;
563            } else {
564                throw new IllegalStateException();
565            }
566            expectedModCount = modCount;
567        }
568    }
569
570    public int size() {
571        return size;
572    }
573
574    /**
575     * Removes all of the elements from this priority queue.
576     * The queue will be empty after this call returns.
577     */
578    public void clear() {
579        modCount++;
580        for (int i = 0; i < size; i++)
581            queue[i] = null;
582        size = 0;
583    }
584
585    @SuppressWarnings("unchecked")
586    public E poll() {
587        if (size == 0)
588            return null;
589        int s = --size;
590        modCount++;
591        E result = (E) queue[0];
592        E x = (E) queue[s];
593        queue[s] = null;
594        if (s != 0)
595            siftDown(0, x);
596        return result;
597    }
598
599    /**
600     * Removes the ith element from queue.
601     *
602     * Normally this method leaves the elements at up to i-1,
603     * inclusive, untouched.  Under these circumstances, it returns
604     * null.  Occasionally, in order to maintain the heap invariant,
605     * it must swap a later element of the list with one earlier than
606     * i.  Under these circumstances, this method returns the element
607     * that was previously at the end of the list and is now at some
608     * position before i. This fact is used by iterator.remove so as to
609     * avoid missing traversing elements.
610     */
611    @SuppressWarnings("unchecked")
612    private E removeAt(int i) {
613        assert i >= 0 && i < size;
614        modCount++;
615        int s = --size;
616        if (s == i) // removed last element
617            queue[i] = null;
618        else {
619            E moved = (E) queue[s];
620            queue[s] = null;
621            siftDown(i, moved);
622            if (queue[i] == moved) {
623                siftUp(i, moved);
624                if (queue[i] != moved)
625                    return moved;
626            }
627        }
628        return null;
629    }
630
631    /**
632     * Inserts item x at position k, maintaining heap invariant by
633     * promoting x up the tree until it is greater than or equal to
634     * its parent, or is the root.
635     *
636     * To simplify and speed up coercions and comparisons. the
637     * Comparable and Comparator versions are separated into different
638     * methods that are otherwise identical. (Similarly for siftDown.)
639     *
640     * @param k the position to fill
641     * @param x the item to insert
642     */
643    private void siftUp(int k, E x) {
644        if (comparator != null)
645            siftUpUsingComparator(k, x);
646        else
647            siftUpComparable(k, x);
648    }
649
650    @SuppressWarnings("unchecked")
651    private void siftUpComparable(int k, E x) {
652        Comparable<? super E> key = (Comparable<? super E>) x;
653        while (k > 0) {
654            int parent = (k - 1) >>> 1;
655            Object e = queue[parent];
656            if (key.compareTo((E) e) >= 0)
657                break;
658            queue[k] = e;
659            k = parent;
660        }
661        queue[k] = key;
662    }
663
664    @SuppressWarnings("unchecked")
665    private void siftUpUsingComparator(int k, E x) {
666        while (k > 0) {
667            int parent = (k - 1) >>> 1;
668            Object e = queue[parent];
669            if (comparator.compare(x, (E) e) >= 0)
670                break;
671            queue[k] = e;
672            k = parent;
673        }
674        queue[k] = x;
675    }
676
677    /**
678     * Inserts item x at position k, maintaining heap invariant by
679     * demoting x down the tree repeatedly until it is less than or
680     * equal to its children or is a leaf.
681     *
682     * @param k the position to fill
683     * @param x the item to insert
684     */
685    private void siftDown(int k, E x) {
686        if (comparator != null)
687            siftDownUsingComparator(k, x);
688        else
689            siftDownComparable(k, x);
690    }
691
692    @SuppressWarnings("unchecked")
693    private void siftDownComparable(int k, E x) {
694        Comparable<? super E> key = (Comparable<? super E>)x;
695        int half = size >>> 1;        // loop while a non-leaf
696        while (k < half) {
697            int child = (k << 1) + 1; // assume left child is least
698            Object c = queue[child];
699            int right = child + 1;
700            if (right < size &&
701                ((Comparable<? super E>) c).compareTo((E) queue[right]) > 0)
702                c = queue[child = right];
703            if (key.compareTo((E) c) <= 0)
704                break;
705            queue[k] = c;
706            k = child;
707        }
708        queue[k] = key;
709    }
710
711    @SuppressWarnings("unchecked")
712    private void siftDownUsingComparator(int k, E x) {
713        int half = size >>> 1;
714        while (k < half) {
715            int child = (k << 1) + 1;
716            Object c = queue[child];
717            int right = child + 1;
718            if (right < size &&
719                comparator.compare((E) c, (E) queue[right]) > 0)
720                c = queue[child = right];
721            if (comparator.compare(x, (E) c) <= 0)
722                break;
723            queue[k] = c;
724            k = child;
725        }
726        queue[k] = x;
727    }
728
729    /**
730     * Establishes the heap invariant (described above) in the entire tree,
731     * assuming nothing about the order of the elements prior to the call.
732     */
733    @SuppressWarnings("unchecked")
734    private void heapify() {
735        for (int i = (size >>> 1) - 1; i >= 0; i--)
736            siftDown(i, (E) queue[i]);
737    }
738
739    /**
740     * Returns the comparator used to order the elements in this
741     * queue, or {@code null} if this queue is sorted according to
742     * the {@linkplain Comparable natural ordering} of its elements.
743     *
744     * @return the comparator used to order this queue, or
745     *         {@code null} if this queue is sorted according to the
746     *         natural ordering of its elements
747     */
748    public Comparator<? super E> comparator() {
749        return comparator;
750    }
751
752    /**
753     * Saves this queue to a stream (that is, serializes it).
754     *
755     * @serialData The length of the array backing the instance is
756     *             emitted (int), followed by all of its elements
757     *             (each an {@code Object}) in the proper order.
758     * @param s the stream
759     */
760    private void writeObject(java.io.ObjectOutputStream s)
761        throws java.io.IOException {
762        // Write out element count, and any hidden stuff
763        s.defaultWriteObject();
764
765        // Write out array length, for compatibility with 1.5 version
766        s.writeInt(Math.max(2, size + 1));
767
768        // Write out all elements in the "proper order".
769        for (int i = 0; i < size; i++)
770            s.writeObject(queue[i]);
771    }
772
773    /**
774     * Reconstitutes the {@code PriorityQueue} instance from a stream
775     * (that is, deserializes it).
776     *
777     * @param s the stream
778     */
779    private void readObject(java.io.ObjectInputStream s)
780        throws java.io.IOException, ClassNotFoundException {
781        // Read in size, and any hidden stuff
782        s.defaultReadObject();
783
784        // Read in (and discard) array length
785        s.readInt();
786
787        queue = new Object[size];
788
789        // Read in all elements.
790        for (int i = 0; i < size; i++)
791            queue[i] = s.readObject();
792
793        // Elements are guaranteed to be in "proper order", but the
794        // spec has never explained what that might be.
795        heapify();
796    }
797
798    /**
799     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
800     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
801     * queue.
802     *
803     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
804     * {@link Spliterator#SUBSIZED}, and {@link Spliterator#NONNULL}.
805     * Overriding implementations should document the reporting of additional
806     * characteristic values.
807     *
808     * @return a {@code Spliterator} over the elements in this queue
809     * @since 1.8
810     */
811    public final Spliterator<E> spliterator() {
812        return new PriorityQueueSpliterator<E>(this, 0, -1, 0);
813    }
814
815    static final class PriorityQueueSpliterator<E> implements Spliterator<E> {
816        /*
817         * This is very similar to ArrayList Spliterator, except for
818         * extra null checks.
819         */
820        private final PriorityQueue<E> pq;
821        private int index;            // current index, modified on advance/split
822        private int fence;            // -1 until first use
823        private int expectedModCount; // initialized when fence set
824
825        /** Creates new spliterator covering the given range */
826        PriorityQueueSpliterator(PriorityQueue<E> pq, int origin, int fence,
827                             int expectedModCount) {
828            this.pq = pq;
829            this.index = origin;
830            this.fence = fence;
831            this.expectedModCount = expectedModCount;
832        }
833
834        private int getFence() { // initialize fence to size on first use
835            int hi;
836            if ((hi = fence) < 0) {
837                expectedModCount = pq.modCount;
838                hi = fence = pq.size;
839            }
840            return hi;
841        }
842
843        public PriorityQueueSpliterator<E> trySplit() {
844            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
845            return (lo >= mid) ? null :
846                new PriorityQueueSpliterator<E>(pq, lo, index = mid,
847                                                expectedModCount);
848        }
849
850        @SuppressWarnings("unchecked")
851        public void forEachRemaining(Consumer<? super E> action) {
852            int i, hi, mc; // hoist accesses and checks from loop
853            PriorityQueue<E> q; Object[] a;
854            if (action == null)
855                throw new NullPointerException();
856            if ((q = pq) != null && (a = q.queue) != null) {
857                if ((hi = fence) < 0) {
858                    mc = q.modCount;
859                    hi = q.size;
860                }
861                else
862                    mc = expectedModCount;
863                if ((i = index) >= 0 && (index = hi) <= a.length) {
864                    for (E e;; ++i) {
865                        if (i < hi) {
866                            if ((e = (E) a[i]) == null) // must be CME
867                                break;
868                            action.accept(e);
869                        }
870                        else if (q.modCount != mc)
871                            break;
872                        else
873                            return;
874                    }
875                }
876            }
877            throw new ConcurrentModificationException();
878        }
879
880        public boolean tryAdvance(Consumer<? super E> action) {
881            if (action == null)
882                throw new NullPointerException();
883            int hi = getFence(), lo = index;
884            if (lo >= 0 && lo < hi) {
885                index = lo + 1;
886                @SuppressWarnings("unchecked") E e = (E)pq.queue[lo];
887                if (e == null)
888                    throw new ConcurrentModificationException();
889                action.accept(e);
890                if (pq.modCount != expectedModCount)
891                    throw new ConcurrentModificationException();
892                return true;
893            }
894            return false;
895        }
896
897        public long estimateSize() {
898            return (long) (getFence() - index);
899        }
900
901        public int characteristics() {
902            return Spliterator.SIZED | Spliterator.SUBSIZED | Spliterator.NONNULL;
903        }
904    }
905}
906