Random.java revision 37db1d741fe624b67fb432aa453019c9a879a6f7
1/*
2 * Copyright (c) 1995, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package java.util;
27import java.io.*;
28import java.util.concurrent.atomic.AtomicLong;
29import java.util.function.DoubleConsumer;
30import java.util.function.IntConsumer;
31import java.util.function.LongConsumer;
32import java.util.stream.DoubleStream;
33import java.util.stream.IntStream;
34import java.util.stream.LongStream;
35import java.util.stream.StreamSupport;
36
37import sun.misc.Unsafe;
38
39/**
40 * An instance of this class is used to generate a stream of
41 * pseudorandom numbers. The class uses a 48-bit seed, which is
42 * modified using a linear congruential formula. (See Donald Knuth,
43 * <i>The Art of Computer Programming, Volume 2</i>, Section 3.2.1.)
44 * <p>
45 * If two instances of {@code Random} are created with the same
46 * seed, and the same sequence of method calls is made for each, they
47 * will generate and return identical sequences of numbers. In order to
48 * guarantee this property, particular algorithms are specified for the
49 * class {@code Random}. Java implementations must use all the algorithms
50 * shown here for the class {@code Random}, for the sake of absolute
51 * portability of Java code. However, subclasses of class {@code Random}
52 * are permitted to use other algorithms, so long as they adhere to the
53 * general contracts for all the methods.
54 * <p>
55 * The algorithms implemented by class {@code Random} use a
56 * {@code protected} utility method that on each invocation can supply
57 * up to 32 pseudorandomly generated bits.
58 * <p>
59 * Many applications will find the method {@link Math#random} simpler to use.
60 *
61 * <p>Instances of {@code java.util.Random} are threadsafe.
62 * However, the concurrent use of the same {@code java.util.Random}
63 * instance across threads may encounter contention and consequent
64 * poor performance. Consider instead using
65 * {@link java.util.concurrent.ThreadLocalRandom} in multithreaded
66 * designs.
67 *
68 * <p>Instances of {@code java.util.Random} are not cryptographically
69 * secure.  Consider instead using {@link java.security.SecureRandom} to
70 * get a cryptographically secure pseudo-random number generator for use
71 * by security-sensitive applications.
72 *
73 * @author  Frank Yellin
74 * @since   1.0
75 */
76public
77class Random implements java.io.Serializable {
78    /** use serialVersionUID from JDK 1.1 for interoperability */
79    static final long serialVersionUID = 3905348978240129619L;
80
81    /**
82     * The internal state associated with this pseudorandom number generator.
83     * (The specs for the methods in this class describe the ongoing
84     * computation of this value.)
85     */
86    private final AtomicLong seed;
87
88    private static final long multiplier = 0x5DEECE66DL;
89    private static final long addend = 0xBL;
90    private static final long mask = (1L << 48) - 1;
91
92    private static final double DOUBLE_UNIT = 0x1.0p-53; // 1.0 / (1L << 53)
93
94    // IllegalArgumentException messages
95    static final String BadBound = "bound must be positive";
96    static final String BadRange = "bound must be greater than origin";
97    static final String BadSize  = "size must be non-negative";
98
99    /**
100     * Creates a new random number generator. This constructor sets
101     * the seed of the random number generator to a value very likely
102     * to be distinct from any other invocation of this constructor.
103     */
104    public Random() {
105        this(seedUniquifier() ^ System.nanoTime());
106    }
107
108    private static long seedUniquifier() {
109        // L'Ecuyer, "Tables of Linear Congruential Generators of
110        // Different Sizes and Good Lattice Structure", 1999
111        for (;;) {
112            long current = seedUniquifier.get();
113            long next = current * 181783497276652981L;
114            if (seedUniquifier.compareAndSet(current, next))
115                return next;
116        }
117    }
118
119    private static final AtomicLong seedUniquifier
120        = new AtomicLong(8682522807148012L);
121
122    /**
123     * Creates a new random number generator using a single {@code long} seed.
124     * The seed is the initial value of the internal state of the pseudorandom
125     * number generator which is maintained by method {@link #next}.
126     *
127     * <p>The invocation {@code new Random(seed)} is equivalent to:
128     *  <pre> {@code
129     * Random rnd = new Random();
130     * rnd.setSeed(seed);}</pre>
131     *
132     * @param seed the initial seed
133     * @see   #setSeed(long)
134     */
135    public Random(long seed) {
136        if (getClass() == Random.class)
137            this.seed = new AtomicLong(initialScramble(seed));
138        else {
139            // subclass might have overriden setSeed
140            this.seed = new AtomicLong();
141            setSeed(seed);
142        }
143    }
144
145    private static long initialScramble(long seed) {
146        return (seed ^ multiplier) & mask;
147    }
148
149    /**
150     * Sets the seed of this random number generator using a single
151     * {@code long} seed. The general contract of {@code setSeed} is
152     * that it alters the state of this random number generator object
153     * so as to be in exactly the same state as if it had just been
154     * created with the argument {@code seed} as a seed. The method
155     * {@code setSeed} is implemented by class {@code Random} by
156     * atomically updating the seed to
157     *  <pre>{@code (seed ^ 0x5DEECE66DL) & ((1L << 48) - 1)}</pre>
158     * and clearing the {@code haveNextNextGaussian} flag used by {@link
159     * #nextGaussian}.
160     *
161     * <p>The implementation of {@code setSeed} by class {@code Random}
162     * happens to use only 48 bits of the given seed. In general, however,
163     * an overriding method may use all 64 bits of the {@code long}
164     * argument as a seed value.
165     *
166     * @param seed the initial seed
167     */
168    synchronized public void setSeed(long seed) {
169        this.seed.set(initialScramble(seed));
170        haveNextNextGaussian = false;
171    }
172
173    /**
174     * Generates the next pseudorandom number. Subclasses should
175     * override this, as this is used by all other methods.
176     *
177     * <p>The general contract of {@code next} is that it returns an
178     * {@code int} value and if the argument {@code bits} is between
179     * {@code 1} and {@code 32} (inclusive), then that many low-order
180     * bits of the returned value will be (approximately) independently
181     * chosen bit values, each of which is (approximately) equally
182     * likely to be {@code 0} or {@code 1}. The method {@code next} is
183     * implemented by class {@code Random} by atomically updating the seed to
184     *  <pre>{@code (seed * 0x5DEECE66DL + 0xBL) & ((1L << 48) - 1)}</pre>
185     * and returning
186     *  <pre>{@code (int)(seed >>> (48 - bits))}.</pre>
187     *
188     * This is a linear congruential pseudorandom number generator, as
189     * defined by D. H. Lehmer and described by Donald E. Knuth in
190     * <i>The Art of Computer Programming,</i> Volume 3:
191     * <i>Seminumerical Algorithms</i>, section 3.2.1.
192     *
193     * @param  bits random bits
194     * @return the next pseudorandom value from this random number
195     *         generator's sequence
196     * @since  1.1
197     */
198    protected int next(int bits) {
199        long oldseed, nextseed;
200        AtomicLong seed = this.seed;
201        do {
202            oldseed = seed.get();
203            nextseed = (oldseed * multiplier + addend) & mask;
204        } while (!seed.compareAndSet(oldseed, nextseed));
205        return (int)(nextseed >>> (48 - bits));
206    }
207
208    /**
209     * Generates random bytes and places them into a user-supplied
210     * byte array.  The number of random bytes produced is equal to
211     * the length of the byte array.
212     *
213     * <p>The method {@code nextBytes} is implemented by class {@code Random}
214     * as if by:
215     *  <pre> {@code
216     * public void nextBytes(byte[] bytes) {
217     *   for (int i = 0; i < bytes.length; )
218     *     for (int rnd = nextInt(), n = Math.min(bytes.length - i, 4);
219     *          n-- > 0; rnd >>= 8)
220     *       bytes[i++] = (byte)rnd;
221     * }}</pre>
222     *
223     * @param  bytes the byte array to fill with random bytes
224     * @throws NullPointerException if the byte array is null
225     * @since  1.1
226     */
227    public void nextBytes(byte[] bytes) {
228        for (int i = 0, len = bytes.length; i < len; )
229            for (int rnd = nextInt(),
230                     n = Math.min(len - i, Integer.SIZE/Byte.SIZE);
231                 n-- > 0; rnd >>= Byte.SIZE)
232                bytes[i++] = (byte)rnd;
233    }
234
235    /**
236     * The form of nextLong used by LongStream Spliterators.  If
237     * origin is greater than bound, acts as unbounded form of
238     * nextLong, else as bounded form.
239     *
240     * @param origin the least value, unless greater than bound
241     * @param bound the upper bound (exclusive), must not equal origin
242     * @return a pseudorandom value
243     */
244    final long internalNextLong(long origin, long bound) {
245        long r = nextLong();
246        if (origin < bound) {
247            long n = bound - origin, m = n - 1;
248            if ((n & m) == 0L)  // power of two
249                r = (r & m) + origin;
250            else if (n > 0L) {  // reject over-represented candidates
251                for (long u = r >>> 1;            // ensure nonnegative
252                     u + m - (r = u % n) < 0L;    // rejection check
253                     u = nextLong() >>> 1) // retry
254                    ;
255                r += origin;
256            }
257            else {              // range not representable as long
258                while (r < origin || r >= bound)
259                    r = nextLong();
260            }
261        }
262        return r;
263    }
264
265    /**
266     * The form of nextInt used by IntStream Spliterators.
267     * For the unbounded case: uses nextInt().
268     * For the bounded case with representable range: uses nextInt(int bound)
269     * For the bounded case with unrepresentable range: uses nextInt()
270     *
271     * @param origin the least value, unless greater than bound
272     * @param bound the upper bound (exclusive), must not equal origin
273     * @return a pseudorandom value
274     */
275    final int internalNextInt(int origin, int bound) {
276        if (origin < bound) {
277            int n = bound - origin;
278            if (n > 0) {
279                return nextInt(n) + origin;
280            }
281            else {  // range not representable as int
282                int r;
283                do {
284                    r = nextInt();
285                } while (r < origin || r >= bound);
286                return r;
287            }
288        }
289        else {
290            return nextInt();
291        }
292    }
293
294    /**
295     * The form of nextDouble used by DoubleStream Spliterators.
296     *
297     * @param origin the least value, unless greater than bound
298     * @param bound the upper bound (exclusive), must not equal origin
299     * @return a pseudorandom value
300     */
301    final double internalNextDouble(double origin, double bound) {
302        double r = nextDouble();
303        if (origin < bound) {
304            r = r * (bound - origin) + origin;
305            if (r >= bound) // correct for rounding
306                r = Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
307        }
308        return r;
309    }
310
311    /**
312     * Returns the next pseudorandom, uniformly distributed {@code int}
313     * value from this random number generator's sequence. The general
314     * contract of {@code nextInt} is that one {@code int} value is
315     * pseudorandomly generated and returned. All 2<sup>32</sup> possible
316     * {@code int} values are produced with (approximately) equal probability.
317     *
318     * <p>The method {@code nextInt} is implemented by class {@code Random}
319     * as if by:
320     *  <pre> {@code
321     * public int nextInt() {
322     *   return next(32);
323     * }}</pre>
324     *
325     * @return the next pseudorandom, uniformly distributed {@code int}
326     *         value from this random number generator's sequence
327     */
328    public int nextInt() {
329        return next(32);
330    }
331
332    /**
333     * Returns a pseudorandom, uniformly distributed {@code int} value
334     * between 0 (inclusive) and the specified value (exclusive), drawn from
335     * this random number generator's sequence.  The general contract of
336     * {@code nextInt} is that one {@code int} value in the specified range
337     * is pseudorandomly generated and returned.  All {@code bound} possible
338     * {@code int} values are produced with (approximately) equal
339     * probability.  The method {@code nextInt(int bound)} is implemented by
340     * class {@code Random} as if by:
341     *  <pre> {@code
342     * public int nextInt(int bound) {
343     *   if (bound <= 0)
344     *     throw new IllegalArgumentException("bound must be positive");
345     *
346     *   if ((bound & -bound) == bound)  // i.e., bound is a power of 2
347     *     return (int)((bound * (long)next(31)) >> 31);
348     *
349     *   int bits, val;
350     *   do {
351     *       bits = next(31);
352     *       val = bits % bound;
353     *   } while (bits - val + (bound-1) < 0);
354     *   return val;
355     * }}</pre>
356     *
357     * <p>The hedge "approximately" is used in the foregoing description only
358     * because the next method is only approximately an unbiased source of
359     * independently chosen bits.  If it were a perfect source of randomly
360     * chosen bits, then the algorithm shown would choose {@code int}
361     * values from the stated range with perfect uniformity.
362     * <p>
363     * The algorithm is slightly tricky.  It rejects values that would result
364     * in an uneven distribution (due to the fact that 2^31 is not divisible
365     * by n). The probability of a value being rejected depends on n.  The
366     * worst case is n=2^30+1, for which the probability of a reject is 1/2,
367     * and the expected number of iterations before the loop terminates is 2.
368     * <p>
369     * The algorithm treats the case where n is a power of two specially: it
370     * returns the correct number of high-order bits from the underlying
371     * pseudo-random number generator.  In the absence of special treatment,
372     * the correct number of <i>low-order</i> bits would be returned.  Linear
373     * congruential pseudo-random number generators such as the one
374     * implemented by this class are known to have short periods in the
375     * sequence of values of their low-order bits.  Thus, this special case
376     * greatly increases the length of the sequence of values returned by
377     * successive calls to this method if n is a small power of two.
378     *
379     * @param bound the upper bound (exclusive).  Must be positive.
380     * @return the next pseudorandom, uniformly distributed {@code int}
381     *         value between zero (inclusive) and {@code bound} (exclusive)
382     *         from this random number generator's sequence
383     * @throws IllegalArgumentException if bound is not positive
384     * @since 1.2
385     */
386    public int nextInt(int bound) {
387        if (bound <= 0)
388            throw new IllegalArgumentException(BadBound);
389
390        int r = next(31);
391        int m = bound - 1;
392        if ((bound & m) == 0)  // i.e., bound is a power of 2
393            r = (int)((bound * (long)r) >> 31);
394        else {
395            for (int u = r;
396                 u - (r = u % bound) + m < 0;
397                 u = next(31))
398                ;
399        }
400        return r;
401    }
402
403    /**
404     * Returns the next pseudorandom, uniformly distributed {@code long}
405     * value from this random number generator's sequence. The general
406     * contract of {@code nextLong} is that one {@code long} value is
407     * pseudorandomly generated and returned.
408     *
409     * <p>The method {@code nextLong} is implemented by class {@code Random}
410     * as if by:
411     *  <pre> {@code
412     * public long nextLong() {
413     *   return ((long)next(32) << 32) + next(32);
414     * }}</pre>
415     *
416     * Because class {@code Random} uses a seed with only 48 bits,
417     * this algorithm will not return all possible {@code long} values.
418     *
419     * @return the next pseudorandom, uniformly distributed {@code long}
420     *         value from this random number generator's sequence
421     */
422    public long nextLong() {
423        // it's okay that the bottom word remains signed.
424        return ((long)(next(32)) << 32) + next(32);
425    }
426
427    /**
428     * Returns the next pseudorandom, uniformly distributed
429     * {@code boolean} value from this random number generator's
430     * sequence. The general contract of {@code nextBoolean} is that one
431     * {@code boolean} value is pseudorandomly generated and returned.  The
432     * values {@code true} and {@code false} are produced with
433     * (approximately) equal probability.
434     *
435     * <p>The method {@code nextBoolean} is implemented by class {@code Random}
436     * as if by:
437     *  <pre> {@code
438     * public boolean nextBoolean() {
439     *   return next(1) != 0;
440     * }}</pre>
441     *
442     * @return the next pseudorandom, uniformly distributed
443     *         {@code boolean} value from this random number generator's
444     *         sequence
445     * @since 1.2
446     */
447    public boolean nextBoolean() {
448        return next(1) != 0;
449    }
450
451    /**
452     * Returns the next pseudorandom, uniformly distributed {@code float}
453     * value between {@code 0.0} and {@code 1.0} from this random
454     * number generator's sequence.
455     *
456     * <p>The general contract of {@code nextFloat} is that one
457     * {@code float} value, chosen (approximately) uniformly from the
458     * range {@code 0.0f} (inclusive) to {@code 1.0f} (exclusive), is
459     * pseudorandomly generated and returned. All 2<sup>24</sup> possible
460     * {@code float} values of the form <i>m&nbsp;x&nbsp;</i>2<sup>-24</sup>,
461     * where <i>m</i> is a positive integer less than 2<sup>24</sup>, are
462     * produced with (approximately) equal probability.
463     *
464     * <p>The method {@code nextFloat} is implemented by class {@code Random}
465     * as if by:
466     *  <pre> {@code
467     * public float nextFloat() {
468     *   return next(24) / ((float)(1 << 24));
469     * }}</pre>
470     *
471     * <p>The hedge "approximately" is used in the foregoing description only
472     * because the next method is only approximately an unbiased source of
473     * independently chosen bits. If it were a perfect source of randomly
474     * chosen bits, then the algorithm shown would choose {@code float}
475     * values from the stated range with perfect uniformity.<p>
476     * [In early versions of Java, the result was incorrectly calculated as:
477     *  <pre> {@code
478     *   return next(30) / ((float)(1 << 30));}</pre>
479     * This might seem to be equivalent, if not better, but in fact it
480     * introduced a slight nonuniformity because of the bias in the rounding
481     * of floating-point numbers: it was slightly more likely that the
482     * low-order bit of the significand would be 0 than that it would be 1.]
483     *
484     * @return the next pseudorandom, uniformly distributed {@code float}
485     *         value between {@code 0.0} and {@code 1.0} from this
486     *         random number generator's sequence
487     */
488    public float nextFloat() {
489        return next(24) / ((float)(1 << 24));
490    }
491
492    /**
493     * Returns the next pseudorandom, uniformly distributed
494     * {@code double} value between {@code 0.0} and
495     * {@code 1.0} from this random number generator's sequence.
496     *
497     * <p>The general contract of {@code nextDouble} is that one
498     * {@code double} value, chosen (approximately) uniformly from the
499     * range {@code 0.0d} (inclusive) to {@code 1.0d} (exclusive), is
500     * pseudorandomly generated and returned.
501     *
502     * <p>The method {@code nextDouble} is implemented by class {@code Random}
503     * as if by:
504     *  <pre> {@code
505     * public double nextDouble() {
506     *   return (((long)next(26) << 27) + next(27))
507     *     / (double)(1L << 53);
508     * }}</pre>
509     *
510     * <p>The hedge "approximately" is used in the foregoing description only
511     * because the {@code next} method is only approximately an unbiased
512     * source of independently chosen bits. If it were a perfect source of
513     * randomly chosen bits, then the algorithm shown would choose
514     * {@code double} values from the stated range with perfect uniformity.
515     * <p>[In early versions of Java, the result was incorrectly calculated as:
516     *  <pre> {@code
517     *   return (((long)next(27) << 27) + next(27))
518     *     / (double)(1L << 54);}</pre>
519     * This might seem to be equivalent, if not better, but in fact it
520     * introduced a large nonuniformity because of the bias in the rounding
521     * of floating-point numbers: it was three times as likely that the
522     * low-order bit of the significand would be 0 than that it would be 1!
523     * This nonuniformity probably doesn't matter much in practice, but we
524     * strive for perfection.]
525     *
526     * @return the next pseudorandom, uniformly distributed {@code double}
527     *         value between {@code 0.0} and {@code 1.0} from this
528     *         random number generator's sequence
529     * @see Math#random
530     */
531    public double nextDouble() {
532        return (((long)(next(26)) << 27) + next(27)) * DOUBLE_UNIT;
533    }
534
535    private double nextNextGaussian;
536    private boolean haveNextNextGaussian = false;
537
538    /**
539     * Returns the next pseudorandom, Gaussian ("normally") distributed
540     * {@code double} value with mean {@code 0.0} and standard
541     * deviation {@code 1.0} from this random number generator's sequence.
542     * <p>
543     * The general contract of {@code nextGaussian} is that one
544     * {@code double} value, chosen from (approximately) the usual
545     * normal distribution with mean {@code 0.0} and standard deviation
546     * {@code 1.0}, is pseudorandomly generated and returned.
547     *
548     * <p>The method {@code nextGaussian} is implemented by class
549     * {@code Random} as if by a threadsafe version of the following:
550     *  <pre> {@code
551     * private double nextNextGaussian;
552     * private boolean haveNextNextGaussian = false;
553     *
554     * public double nextGaussian() {
555     *   if (haveNextNextGaussian) {
556     *     haveNextNextGaussian = false;
557     *     return nextNextGaussian;
558     *   } else {
559     *     double v1, v2, s;
560     *     do {
561     *       v1 = 2 * nextDouble() - 1;   // between -1.0 and 1.0
562     *       v2 = 2 * nextDouble() - 1;   // between -1.0 and 1.0
563     *       s = v1 * v1 + v2 * v2;
564     *     } while (s >= 1 || s == 0);
565     *     double multiplier = StrictMath.sqrt(-2 * StrictMath.log(s)/s);
566     *     nextNextGaussian = v2 * multiplier;
567     *     haveNextNextGaussian = true;
568     *     return v1 * multiplier;
569     *   }
570     * }}</pre>
571     * This uses the <i>polar method</i> of G. E. P. Box, M. E. Muller, and
572     * G. Marsaglia, as described by Donald E. Knuth in <i>The Art of
573     * Computer Programming</i>, Volume 3: <i>Seminumerical Algorithms</i>,
574     * section 3.4.1, subsection C, algorithm P. Note that it generates two
575     * independent values at the cost of only one call to {@code StrictMath.log}
576     * and one call to {@code StrictMath.sqrt}.
577     *
578     * @return the next pseudorandom, Gaussian ("normally") distributed
579     *         {@code double} value with mean {@code 0.0} and
580     *         standard deviation {@code 1.0} from this random number
581     *         generator's sequence
582     */
583    synchronized public double nextGaussian() {
584        // See Knuth, ACP, Section 3.4.1 Algorithm C.
585        if (haveNextNextGaussian) {
586            haveNextNextGaussian = false;
587            return nextNextGaussian;
588        } else {
589            double v1, v2, s;
590            do {
591                v1 = 2 * nextDouble() - 1; // between -1 and 1
592                v2 = 2 * nextDouble() - 1; // between -1 and 1
593                s = v1 * v1 + v2 * v2;
594            } while (s >= 1 || s == 0);
595            double multiplier = StrictMath.sqrt(-2 * StrictMath.log(s)/s);
596            nextNextGaussian = v2 * multiplier;
597            haveNextNextGaussian = true;
598            return v1 * multiplier;
599        }
600    }
601
602    // stream methods, coded in a way intended to better isolate for
603    // maintenance purposes the small differences across forms.
604
605    /**
606     * Returns a stream producing the given {@code streamSize} number of
607     * pseudorandom {@code int} values.
608     *
609     * <p>A pseudorandom {@code int} value is generated as if it's the result of
610     * calling the method {@link #nextInt()}.
611     *
612     * @param streamSize the number of values to generate
613     * @return a stream of pseudorandom {@code int} values
614     * @throws IllegalArgumentException if {@code streamSize} is
615     *         less than zero
616     * @since 1.8
617     */
618    public IntStream ints(long streamSize) {
619        if (streamSize < 0L)
620            throw new IllegalArgumentException(BadSize);
621        return StreamSupport.intStream
622                (new RandomIntsSpliterator
623                         (this, 0L, streamSize, Integer.MAX_VALUE, 0),
624                 false);
625    }
626
627    /**
628     * Returns an effectively unlimited stream of pseudorandom {@code int}
629     * values.
630     *
631     * <p>A pseudorandom {@code int} value is generated as if it's the result of
632     * calling the method {@link #nextInt()}.
633     *
634     * @implNote This method is implemented to be equivalent to {@code
635     * ints(Long.MAX_VALUE)}.
636     *
637     * @return a stream of pseudorandom {@code int} values
638     * @since 1.8
639     */
640    public IntStream ints() {
641        return StreamSupport.intStream
642                (new RandomIntsSpliterator
643                         (this, 0L, Long.MAX_VALUE, Integer.MAX_VALUE, 0),
644                 false);
645    }
646
647    /**
648     * Returns a stream producing the given {@code streamSize} number
649     * of pseudorandom {@code int} values, each conforming to the given
650     * origin (inclusive) and bound (exclusive).
651     *
652     * <p>A pseudorandom {@code int} value is generated as if it's the result of
653     * calling the following method with the origin and bound:
654     * <pre> {@code
655     * int nextInt(int origin, int bound) {
656     *   int n = bound - origin;
657     *   if (n > 0) {
658     *     return nextInt(n) + origin;
659     *   }
660     *   else {  // range not representable as int
661     *     int r;
662     *     do {
663     *       r = nextInt();
664     *     } while (r < origin || r >= bound);
665     *     return r;
666     *   }
667     * }}</pre>
668     *
669     * @param streamSize the number of values to generate
670     * @param randomNumberOrigin the origin (inclusive) of each random value
671     * @param randomNumberBound the bound (exclusive) of each random value
672     * @return a stream of pseudorandom {@code int} values,
673     *         each with the given origin (inclusive) and bound (exclusive)
674     * @throws IllegalArgumentException if {@code streamSize} is
675     *         less than zero, or {@code randomNumberOrigin}
676     *         is greater than or equal to {@code randomNumberBound}
677     * @since 1.8
678     */
679    public IntStream ints(long streamSize, int randomNumberOrigin,
680                          int randomNumberBound) {
681        if (streamSize < 0L)
682            throw new IllegalArgumentException(BadSize);
683        if (randomNumberOrigin >= randomNumberBound)
684            throw new IllegalArgumentException(BadRange);
685        return StreamSupport.intStream
686                (new RandomIntsSpliterator
687                         (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
688                 false);
689    }
690
691    /**
692     * Returns an effectively unlimited stream of pseudorandom {@code
693     * int} values, each conforming to the given origin (inclusive) and bound
694     * (exclusive).
695     *
696     * <p>A pseudorandom {@code int} value is generated as if it's the result of
697     * calling the following method with the origin and bound:
698     * <pre> {@code
699     * int nextInt(int origin, int bound) {
700     *   int n = bound - origin;
701     *   if (n > 0) {
702     *     return nextInt(n) + origin;
703     *   }
704     *   else {  // range not representable as int
705     *     int r;
706     *     do {
707     *       r = nextInt();
708     *     } while (r < origin || r >= bound);
709     *     return r;
710     *   }
711     * }}</pre>
712     *
713     * @implNote This method is implemented to be equivalent to {@code
714     * ints(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
715     *
716     * @param randomNumberOrigin the origin (inclusive) of each random value
717     * @param randomNumberBound the bound (exclusive) of each random value
718     * @return a stream of pseudorandom {@code int} values,
719     *         each with the given origin (inclusive) and bound (exclusive)
720     * @throws IllegalArgumentException if {@code randomNumberOrigin}
721     *         is greater than or equal to {@code randomNumberBound}
722     * @since 1.8
723     */
724    public IntStream ints(int randomNumberOrigin, int randomNumberBound) {
725        if (randomNumberOrigin >= randomNumberBound)
726            throw new IllegalArgumentException(BadRange);
727        return StreamSupport.intStream
728                (new RandomIntsSpliterator
729                         (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
730                 false);
731    }
732
733    /**
734     * Returns a stream producing the given {@code streamSize} number of
735     * pseudorandom {@code long} values.
736     *
737     * <p>A pseudorandom {@code long} value is generated as if it's the result
738     * of calling the method {@link #nextLong()}.
739     *
740     * @param streamSize the number of values to generate
741     * @return a stream of pseudorandom {@code long} values
742     * @throws IllegalArgumentException if {@code streamSize} is
743     *         less than zero
744     * @since 1.8
745     */
746    public LongStream longs(long streamSize) {
747        if (streamSize < 0L)
748            throw new IllegalArgumentException(BadSize);
749        return StreamSupport.longStream
750                (new RandomLongsSpliterator
751                         (this, 0L, streamSize, Long.MAX_VALUE, 0L),
752                 false);
753    }
754
755    /**
756     * Returns an effectively unlimited stream of pseudorandom {@code long}
757     * values.
758     *
759     * <p>A pseudorandom {@code long} value is generated as if it's the result
760     * of calling the method {@link #nextLong()}.
761     *
762     * @implNote This method is implemented to be equivalent to {@code
763     * longs(Long.MAX_VALUE)}.
764     *
765     * @return a stream of pseudorandom {@code long} values
766     * @since 1.8
767     */
768    public LongStream longs() {
769        return StreamSupport.longStream
770                (new RandomLongsSpliterator
771                         (this, 0L, Long.MAX_VALUE, Long.MAX_VALUE, 0L),
772                 false);
773    }
774
775    /**
776     * Returns a stream producing the given {@code streamSize} number of
777     * pseudorandom {@code long}, each conforming to the given origin
778     * (inclusive) and bound (exclusive).
779     *
780     * <p>A pseudorandom {@code long} value is generated as if it's the result
781     * of calling the following method with the origin and bound:
782     * <pre> {@code
783     * long nextLong(long origin, long bound) {
784     *   long r = nextLong();
785     *   long n = bound - origin, m = n - 1;
786     *   if ((n & m) == 0L)  // power of two
787     *     r = (r & m) + origin;
788     *   else if (n > 0L) {  // reject over-represented candidates
789     *     for (long u = r >>> 1;            // ensure nonnegative
790     *          u + m - (r = u % n) < 0L;    // rejection check
791     *          u = nextLong() >>> 1) // retry
792     *         ;
793     *     r += origin;
794     *   }
795     *   else {              // range not representable as long
796     *     while (r < origin || r >= bound)
797     *       r = nextLong();
798     *   }
799     *   return r;
800     * }}</pre>
801     *
802     * @param streamSize the number of values to generate
803     * @param randomNumberOrigin the origin (inclusive) of each random value
804     * @param randomNumberBound the bound (exclusive) of each random value
805     * @return a stream of pseudorandom {@code long} values,
806     *         each with the given origin (inclusive) and bound (exclusive)
807     * @throws IllegalArgumentException if {@code streamSize} is
808     *         less than zero, or {@code randomNumberOrigin}
809     *         is greater than or equal to {@code randomNumberBound}
810     * @since 1.8
811     */
812    public LongStream longs(long streamSize, long randomNumberOrigin,
813                            long randomNumberBound) {
814        if (streamSize < 0L)
815            throw new IllegalArgumentException(BadSize);
816        if (randomNumberOrigin >= randomNumberBound)
817            throw new IllegalArgumentException(BadRange);
818        return StreamSupport.longStream
819                (new RandomLongsSpliterator
820                         (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
821                 false);
822    }
823
824    /**
825     * Returns an effectively unlimited stream of pseudorandom {@code
826     * long} values, each conforming to the given origin (inclusive) and bound
827     * (exclusive).
828     *
829     * <p>A pseudorandom {@code long} value is generated as if it's the result
830     * of calling the following method with the origin and bound:
831     * <pre> {@code
832     * long nextLong(long origin, long bound) {
833     *   long r = nextLong();
834     *   long n = bound - origin, m = n - 1;
835     *   if ((n & m) == 0L)  // power of two
836     *     r = (r & m) + origin;
837     *   else if (n > 0L) {  // reject over-represented candidates
838     *     for (long u = r >>> 1;            // ensure nonnegative
839     *          u + m - (r = u % n) < 0L;    // rejection check
840     *          u = nextLong() >>> 1) // retry
841     *         ;
842     *     r += origin;
843     *   }
844     *   else {              // range not representable as long
845     *     while (r < origin || r >= bound)
846     *       r = nextLong();
847     *   }
848     *   return r;
849     * }}</pre>
850     *
851     * @implNote This method is implemented to be equivalent to {@code
852     * longs(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
853     *
854     * @param randomNumberOrigin the origin (inclusive) of each random value
855     * @param randomNumberBound the bound (exclusive) of each random value
856     * @return a stream of pseudorandom {@code long} values,
857     *         each with the given origin (inclusive) and bound (exclusive)
858     * @throws IllegalArgumentException if {@code randomNumberOrigin}
859     *         is greater than or equal to {@code randomNumberBound}
860     * @since 1.8
861     */
862    public LongStream longs(long randomNumberOrigin, long randomNumberBound) {
863        if (randomNumberOrigin >= randomNumberBound)
864            throw new IllegalArgumentException(BadRange);
865        return StreamSupport.longStream
866                (new RandomLongsSpliterator
867                         (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
868                 false);
869    }
870
871    /**
872     * Returns a stream producing the given {@code streamSize} number of
873     * pseudorandom {@code double} values, each between zero
874     * (inclusive) and one (exclusive).
875     *
876     * <p>A pseudorandom {@code double} value is generated as if it's the result
877     * of calling the method {@link #nextDouble()}.
878     *
879     * @param streamSize the number of values to generate
880     * @return a stream of {@code double} values
881     * @throws IllegalArgumentException if {@code streamSize} is
882     *         less than zero
883     * @since 1.8
884     */
885    public DoubleStream doubles(long streamSize) {
886        if (streamSize < 0L)
887            throw new IllegalArgumentException(BadSize);
888        return StreamSupport.doubleStream
889                (new RandomDoublesSpliterator
890                         (this, 0L, streamSize, Double.MAX_VALUE, 0.0),
891                 false);
892    }
893
894    /**
895     * Returns an effectively unlimited stream of pseudorandom {@code
896     * double} values, each between zero (inclusive) and one
897     * (exclusive).
898     *
899     * <p>A pseudorandom {@code double} value is generated as if it's the result
900     * of calling the method {@link #nextDouble()}.
901     *
902     * @implNote This method is implemented to be equivalent to {@code
903     * doubles(Long.MAX_VALUE)}.
904     *
905     * @return a stream of pseudorandom {@code double} values
906     * @since 1.8
907     */
908    public DoubleStream doubles() {
909        return StreamSupport.doubleStream
910                (new RandomDoublesSpliterator
911                         (this, 0L, Long.MAX_VALUE, Double.MAX_VALUE, 0.0),
912                 false);
913    }
914
915    /**
916     * Returns a stream producing the given {@code streamSize} number of
917     * pseudorandom {@code double} values, each conforming to the given origin
918     * (inclusive) and bound (exclusive).
919     *
920     * <p>A pseudorandom {@code double} value is generated as if it's the result
921     * of calling the following method with the origin and bound:
922     * <pre> {@code
923     * double nextDouble(double origin, double bound) {
924     *   double r = nextDouble();
925     *   r = r * (bound - origin) + origin;
926     *   if (r >= bound) // correct for rounding
927     *     r = Math.nextDown(bound);
928     *   return r;
929     * }}</pre>
930     *
931     * @param streamSize the number of values to generate
932     * @param randomNumberOrigin the origin (inclusive) of each random value
933     * @param randomNumberBound the bound (exclusive) of each random value
934     * @return a stream of pseudorandom {@code double} values,
935     *         each with the given origin (inclusive) and bound (exclusive)
936     * @throws IllegalArgumentException if {@code streamSize} is
937     *         less than zero
938     * @throws IllegalArgumentException if {@code randomNumberOrigin}
939     *         is greater than or equal to {@code randomNumberBound}
940     * @since 1.8
941     */
942    public DoubleStream doubles(long streamSize, double randomNumberOrigin,
943                                double randomNumberBound) {
944        if (streamSize < 0L)
945            throw new IllegalArgumentException(BadSize);
946        if (!(randomNumberOrigin < randomNumberBound))
947            throw new IllegalArgumentException(BadRange);
948        return StreamSupport.doubleStream
949                (new RandomDoublesSpliterator
950                         (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
951                 false);
952    }
953
954    /**
955     * Returns an effectively unlimited stream of pseudorandom {@code
956     * double} values, each conforming to the given origin (inclusive) and bound
957     * (exclusive).
958     *
959     * <p>A pseudorandom {@code double} value is generated as if it's the result
960     * of calling the following method with the origin and bound:
961     * <pre> {@code
962     * double nextDouble(double origin, double bound) {
963     *   double r = nextDouble();
964     *   r = r * (bound - origin) + origin;
965     *   if (r >= bound) // correct for rounding
966     *     r = Math.nextDown(bound);
967     *   return r;
968     * }}</pre>
969     *
970     * @implNote This method is implemented to be equivalent to {@code
971     * doubles(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
972     *
973     * @param randomNumberOrigin the origin (inclusive) of each random value
974     * @param randomNumberBound the bound (exclusive) of each random value
975     * @return a stream of pseudorandom {@code double} values,
976     *         each with the given origin (inclusive) and bound (exclusive)
977     * @throws IllegalArgumentException if {@code randomNumberOrigin}
978     *         is greater than or equal to {@code randomNumberBound}
979     * @since 1.8
980     */
981    public DoubleStream doubles(double randomNumberOrigin, double randomNumberBound) {
982        if (!(randomNumberOrigin < randomNumberBound))
983            throw new IllegalArgumentException(BadRange);
984        return StreamSupport.doubleStream
985                (new RandomDoublesSpliterator
986                         (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
987                 false);
988    }
989
990    /**
991     * Spliterator for int streams.  We multiplex the four int
992     * versions into one class by treating a bound less than origin as
993     * unbounded, and also by treating "infinite" as equivalent to
994     * Long.MAX_VALUE. For splits, it uses the standard divide-by-two
995     * approach. The long and double versions of this class are
996     * identical except for types.
997     */
998    static final class RandomIntsSpliterator implements Spliterator.OfInt {
999        final Random rng;
1000        long index;
1001        final long fence;
1002        final int origin;
1003        final int bound;
1004        RandomIntsSpliterator(Random rng, long index, long fence,
1005                              int origin, int bound) {
1006            this.rng = rng; this.index = index; this.fence = fence;
1007            this.origin = origin; this.bound = bound;
1008        }
1009
1010        public RandomIntsSpliterator trySplit() {
1011            long i = index, m = (i + fence) >>> 1;
1012            return (m <= i) ? null :
1013                   new RandomIntsSpliterator(rng, i, index = m, origin, bound);
1014        }
1015
1016        public long estimateSize() {
1017            return fence - index;
1018        }
1019
1020        public int characteristics() {
1021            return (Spliterator.SIZED | Spliterator.SUBSIZED |
1022                    Spliterator.NONNULL | Spliterator.IMMUTABLE);
1023        }
1024
1025        public boolean tryAdvance(IntConsumer consumer) {
1026            if (consumer == null) throw new NullPointerException();
1027            long i = index, f = fence;
1028            if (i < f) {
1029                consumer.accept(rng.internalNextInt(origin, bound));
1030                index = i + 1;
1031                return true;
1032            }
1033            return false;
1034        }
1035
1036        public void forEachRemaining(IntConsumer consumer) {
1037            if (consumer == null) throw new NullPointerException();
1038            long i = index, f = fence;
1039            if (i < f) {
1040                index = f;
1041                Random r = rng;
1042                int o = origin, b = bound;
1043                do {
1044                    consumer.accept(r.internalNextInt(o, b));
1045                } while (++i < f);
1046            }
1047        }
1048    }
1049
1050    /**
1051     * Spliterator for long streams.
1052     */
1053    static final class RandomLongsSpliterator implements Spliterator.OfLong {
1054        final Random rng;
1055        long index;
1056        final long fence;
1057        final long origin;
1058        final long bound;
1059        RandomLongsSpliterator(Random rng, long index, long fence,
1060                               long origin, long bound) {
1061            this.rng = rng; this.index = index; this.fence = fence;
1062            this.origin = origin; this.bound = bound;
1063        }
1064
1065        public RandomLongsSpliterator trySplit() {
1066            long i = index, m = (i + fence) >>> 1;
1067            return (m <= i) ? null :
1068                   new RandomLongsSpliterator(rng, i, index = m, origin, bound);
1069        }
1070
1071        public long estimateSize() {
1072            return fence - index;
1073        }
1074
1075        public int characteristics() {
1076            return (Spliterator.SIZED | Spliterator.SUBSIZED |
1077                    Spliterator.NONNULL | Spliterator.IMMUTABLE);
1078        }
1079
1080        public boolean tryAdvance(LongConsumer consumer) {
1081            if (consumer == null) throw new NullPointerException();
1082            long i = index, f = fence;
1083            if (i < f) {
1084                consumer.accept(rng.internalNextLong(origin, bound));
1085                index = i + 1;
1086                return true;
1087            }
1088            return false;
1089        }
1090
1091        public void forEachRemaining(LongConsumer consumer) {
1092            if (consumer == null) throw new NullPointerException();
1093            long i = index, f = fence;
1094            if (i < f) {
1095                index = f;
1096                Random r = rng;
1097                long o = origin, b = bound;
1098                do {
1099                    consumer.accept(r.internalNextLong(o, b));
1100                } while (++i < f);
1101            }
1102        }
1103
1104    }
1105
1106    /**
1107     * Spliterator for double streams.
1108     */
1109    static final class RandomDoublesSpliterator implements Spliterator.OfDouble {
1110        final Random rng;
1111        long index;
1112        final long fence;
1113        final double origin;
1114        final double bound;
1115        RandomDoublesSpliterator(Random rng, long index, long fence,
1116                                 double origin, double bound) {
1117            this.rng = rng; this.index = index; this.fence = fence;
1118            this.origin = origin; this.bound = bound;
1119        }
1120
1121        public RandomDoublesSpliterator trySplit() {
1122            long i = index, m = (i + fence) >>> 1;
1123            return (m <= i) ? null :
1124                   new RandomDoublesSpliterator(rng, i, index = m, origin, bound);
1125        }
1126
1127        public long estimateSize() {
1128            return fence - index;
1129        }
1130
1131        public int characteristics() {
1132            return (Spliterator.SIZED | Spliterator.SUBSIZED |
1133                    Spliterator.NONNULL | Spliterator.IMMUTABLE);
1134        }
1135
1136        public boolean tryAdvance(DoubleConsumer consumer) {
1137            if (consumer == null) throw new NullPointerException();
1138            long i = index, f = fence;
1139            if (i < f) {
1140                consumer.accept(rng.internalNextDouble(origin, bound));
1141                index = i + 1;
1142                return true;
1143            }
1144            return false;
1145        }
1146
1147        public void forEachRemaining(DoubleConsumer consumer) {
1148            if (consumer == null) throw new NullPointerException();
1149            long i = index, f = fence;
1150            if (i < f) {
1151                index = f;
1152                Random r = rng;
1153                double o = origin, b = bound;
1154                do {
1155                    consumer.accept(r.internalNextDouble(o, b));
1156                } while (++i < f);
1157            }
1158        }
1159    }
1160
1161    /**
1162     * Serializable fields for Random.
1163     *
1164     * @serialField    seed long
1165     *              seed for random computations
1166     * @serialField    nextNextGaussian double
1167     *              next Gaussian to be returned
1168     * @serialField      haveNextNextGaussian boolean
1169     *              nextNextGaussian is valid
1170     */
1171    private static final ObjectStreamField[] serialPersistentFields = {
1172        new ObjectStreamField("seed", Long.TYPE),
1173        new ObjectStreamField("nextNextGaussian", Double.TYPE),
1174        new ObjectStreamField("haveNextNextGaussian", Boolean.TYPE)
1175    };
1176
1177    /**
1178     * Reconstitute the {@code Random} instance from a stream (that is,
1179     * deserialize it).
1180     */
1181    private void readObject(java.io.ObjectInputStream s)
1182        throws java.io.IOException, ClassNotFoundException {
1183
1184        ObjectInputStream.GetField fields = s.readFields();
1185
1186        // The seed is read in as {@code long} for
1187        // historical reasons, but it is converted to an AtomicLong.
1188        long seedVal = fields.get("seed", -1L);
1189        if (seedVal < 0)
1190          throw new java.io.StreamCorruptedException(
1191                              "Random: invalid seed");
1192        resetSeed(seedVal);
1193        nextNextGaussian = fields.get("nextNextGaussian", 0.0);
1194        haveNextNextGaussian = fields.get("haveNextNextGaussian", false);
1195    }
1196
1197    /**
1198     * Save the {@code Random} instance to a stream.
1199     */
1200    synchronized private void writeObject(ObjectOutputStream s)
1201        throws IOException {
1202
1203        // set the values of the Serializable fields
1204        ObjectOutputStream.PutField fields = s.putFields();
1205
1206        // The seed is serialized as a long for historical reasons.
1207        fields.put("seed", seed.get());
1208        fields.put("nextNextGaussian", nextNextGaussian);
1209        fields.put("haveNextNextGaussian", haveNextNextGaussian);
1210
1211        // save them
1212        s.writeFields();
1213    }
1214
1215    // Support for resetting seed while deserializing
1216    private static final Unsafe unsafe = Unsafe.getUnsafe();
1217    private static final long seedOffset;
1218    static {
1219        try {
1220            seedOffset = unsafe.objectFieldOffset
1221                (Random.class.getDeclaredField("seed"));
1222        } catch (Exception ex) { throw new Error(ex); }
1223    }
1224    private void resetSeed(long seedVal) {
1225        unsafe.putObjectVolatile(this, seedOffset, new AtomicLong(seedVal));
1226    }
1227}
1228