TimSort.java revision 742e6e3264e81f7ebabb5f3b551c47e3778a2fc7
1/*
2 * Copyright (c) 2009, 2013, Oracle and/or its affiliates. All rights reserved.
3 * Copyright 2009 Google Inc.  All Rights Reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.  Oracle designates this
9 * particular file as subject to the "Classpath" exception as provided
10 * by Oracle in the LICENSE file that accompanied this code.
11 *
12 * This code is distributed in the hope that it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 * version 2 for more details (a copy is included in the LICENSE file that
16 * accompanied this code).
17 *
18 * You should have received a copy of the GNU General Public License version
19 * 2 along with this work; if not, write to the Free Software Foundation,
20 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
21 *
22 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
23 * or visit www.oracle.com if you need additional information or have any
24 * questions.
25 */
26
27package java.util;
28
29/**
30 * A stable, adaptive, iterative mergesort that requires far fewer than
31 * n lg(n) comparisons when running on partially sorted arrays, while
32 * offering performance comparable to a traditional mergesort when run
33 * on random arrays.  Like all proper mergesorts, this sort is stable and
34 * runs O(n log n) time (worst case).  In the worst case, this sort requires
35 * temporary storage space for n/2 object references; in the best case,
36 * it requires only a small constant amount of space.
37 *
38 * This implementation was adapted from Tim Peters's list sort for
39 * Python, which is described in detail here:
40 *
41 *   http://svn.python.org/projects/python/trunk/Objects/listsort.txt
42 *
43 * Tim's C code may be found here:
44 *
45 *   http://svn.python.org/projects/python/trunk/Objects/listobject.c
46 *
47 * The underlying techniques are described in this paper (and may have
48 * even earlier origins):
49 *
50 *  "Optimistic Sorting and Information Theoretic Complexity"
51 *  Peter McIlroy
52 *  SODA (Fourth Annual ACM-SIAM Symposium on Discrete Algorithms),
53 *  pp 467-474, Austin, Texas, 25-27 January 1993.
54 *
55 * While the API to this class consists solely of static methods, it is
56 * (privately) instantiable; a TimSort instance holds the state of an ongoing
57 * sort, assuming the input array is large enough to warrant the full-blown
58 * TimSort. Small arrays are sorted in place, using a binary insertion sort.
59 *
60 * @author Josh Bloch
61 */
62class TimSort<T> {
63    /**
64     * This is the minimum sized sequence that will be merged.  Shorter
65     * sequences will be lengthened by calling binarySort.  If the entire
66     * array is less than this length, no merges will be performed.
67     *
68     * This constant should be a power of two.  It was 64 in Tim Peter's C
69     * implementation, but 32 was empirically determined to work better in
70     * this implementation.  In the unlikely event that you set this constant
71     * to be a number that's not a power of two, you'll need to change the
72     * {@link #minRunLength} computation.
73     *
74     * If you decrease this constant, you must change the stackLen
75     * computation in the TimSort constructor, or you risk an
76     * ArrayOutOfBounds exception.  See listsort.txt for a discussion
77     * of the minimum stack length required as a function of the length
78     * of the array being sorted and the minimum merge sequence length.
79     */
80    private static final int MIN_MERGE = 32;
81
82    /**
83     * The array being sorted.
84     */
85    private final T[] a;
86
87    /**
88     * The comparator for this sort.
89     */
90    private final Comparator<? super T> c;
91
92    /**
93     * When we get into galloping mode, we stay there until both runs win less
94     * often than MIN_GALLOP consecutive times.
95     */
96    private static final int  MIN_GALLOP = 7;
97
98    /**
99     * This controls when we get *into* galloping mode.  It is initialized
100     * to MIN_GALLOP.  The mergeLo and mergeHi methods nudge it higher for
101     * random data, and lower for highly structured data.
102     */
103    private int minGallop = MIN_GALLOP;
104
105    /**
106     * Maximum initial size of tmp array, which is used for merging.  The array
107     * can grow to accommodate demand.
108     *
109     * Unlike Tim's original C version, we do not allocate this much storage
110     * when sorting smaller arrays.  This change was required for performance.
111     */
112    private static final int INITIAL_TMP_STORAGE_LENGTH = 256;
113
114    /**
115     * Temp storage for merges. A workspace array may optionally be
116     * provided in constructor, and if so will be used as long as it
117     * is big enough.
118     */
119    private T[] tmp;
120    private int tmpBase; // base of tmp array slice
121    private int tmpLen;  // length of tmp array slice
122
123    /**
124     * A stack of pending runs yet to be merged.  Run i starts at
125     * address base[i] and extends for len[i] elements.  It's always
126     * true (so long as the indices are in bounds) that:
127     *
128     *     runBase[i] + runLen[i] == runBase[i + 1]
129     *
130     * so we could cut the storage for this, but it's a minor amount,
131     * and keeping all the info explicit simplifies the code.
132     */
133    private int stackSize = 0;  // Number of pending runs on stack
134    private final int[] runBase;
135    private final int[] runLen;
136
137    /**
138     * Creates a TimSort instance to maintain the state of an ongoing sort.
139     *
140     * @param a the array to be sorted
141     * @param c the comparator to determine the order of the sort
142     * @param work a workspace array (slice)
143     * @param workBase origin of usable space in work array
144     * @param workLen usable size of work array
145     */
146    private TimSort(T[] a, Comparator<? super T> c, T[] work, int workBase, int workLen) {
147        this.a = a;
148        this.c = c;
149
150        // Allocate temp storage (which may be increased later if necessary)
151        int len = a.length;
152        int tlen = (len < 2 * INITIAL_TMP_STORAGE_LENGTH) ?
153            len >>> 1 : INITIAL_TMP_STORAGE_LENGTH;
154        if (work == null || workLen < tlen || workBase + tlen > work.length) {
155            @SuppressWarnings({"unchecked", "UnnecessaryLocalVariable"})
156            T[] newArray = (T[])java.lang.reflect.Array.newInstance
157                (a.getClass().getComponentType(), tlen);
158            tmp = newArray;
159            tmpBase = 0;
160            tmpLen = tlen;
161        }
162        else {
163            tmp = work;
164            tmpBase = workBase;
165            tmpLen = workLen;
166        }
167
168        /*
169         * Allocate runs-to-be-merged stack (which cannot be expanded).  The
170         * stack length requirements are described in listsort.txt.  The C
171         * version always uses the same stack length (85), but this was
172         * measured to be too expensive when sorting "mid-sized" arrays (e.g.,
173         * 100 elements) in Java.  Therefore, we use smaller (but sufficiently
174         * large) stack lengths for smaller arrays.  The "magic numbers" in the
175         * computation below must be changed if MIN_MERGE is decreased.  See
176         * the MIN_MERGE declaration above for more information.
177         * The maximum value of 49 allows for an array up to length
178         * Integer.MAX_VALUE-4, if array is filled by the worst case stack size
179         * increasing scenario. More explanations are given in section 4 of:
180         * http://envisage-project.eu/wp-content/uploads/2015/02/sorting.pdf
181         */
182        int stackLen = (len <    120  ?  5 :
183                        len <   1542  ? 10 :
184                        len < 119151  ? 24 : 49);
185        runBase = new int[stackLen];
186        runLen = new int[stackLen];
187    }
188
189    /*
190     * The next method (package private and static) constitutes the
191     * entire API of this class.
192     */
193
194    /**
195     * Sorts the given range, using the given workspace array slice
196     * for temp storage when possible. This method is designed to be
197     * invoked from public methods (in class Arrays) after performing
198     * any necessary array bounds checks and expanding parameters into
199     * the required forms.
200     *
201     * @param a the array to be sorted
202     * @param lo the index of the first element, inclusive, to be sorted
203     * @param hi the index of the last element, exclusive, to be sorted
204     * @param c the comparator to use
205     * @param work a workspace array (slice)
206     * @param workBase origin of usable space in work array
207     * @param workLen usable size of work array
208     * @since 1.8
209     */
210    static <T> void sort(T[] a, int lo, int hi, Comparator<? super T> c,
211                         T[] work, int workBase, int workLen) {
212        assert c != null && a != null && lo >= 0 && lo <= hi && hi <= a.length;
213
214        int nRemaining  = hi - lo;
215        if (nRemaining < 2)
216            return;  // Arrays of size 0 and 1 are always sorted
217
218        // If array is small, do a "mini-TimSort" with no merges
219        if (nRemaining < MIN_MERGE) {
220            int initRunLen = countRunAndMakeAscending(a, lo, hi, c);
221            binarySort(a, lo, hi, lo + initRunLen, c);
222            return;
223        }
224
225        /**
226         * March over the array once, left to right, finding natural runs,
227         * extending short natural runs to minRun elements, and merging runs
228         * to maintain stack invariant.
229         */
230        TimSort<T> ts = new TimSort<>(a, c, work, workBase, workLen);
231        int minRun = minRunLength(nRemaining);
232        do {
233            // Identify next run
234            int runLen = countRunAndMakeAscending(a, lo, hi, c);
235
236            // If run is short, extend to min(minRun, nRemaining)
237            if (runLen < minRun) {
238                int force = nRemaining <= minRun ? nRemaining : minRun;
239                binarySort(a, lo, lo + force, lo + runLen, c);
240                runLen = force;
241            }
242
243            // Push run onto pending-run stack, and maybe merge
244            ts.pushRun(lo, runLen);
245            ts.mergeCollapse();
246
247            // Advance to find next run
248            lo += runLen;
249            nRemaining -= runLen;
250        } while (nRemaining != 0);
251
252        // Merge all remaining runs to complete sort
253        assert lo == hi;
254        ts.mergeForceCollapse();
255        assert ts.stackSize == 1;
256    }
257
258    /**
259     * Sorts the specified portion of the specified array using a binary
260     * insertion sort.  This is the best method for sorting small numbers
261     * of elements.  It requires O(n log n) compares, but O(n^2) data
262     * movement (worst case).
263     *
264     * If the initial part of the specified range is already sorted,
265     * this method can take advantage of it: the method assumes that the
266     * elements from index {@code lo}, inclusive, to {@code start},
267     * exclusive are already sorted.
268     *
269     * @param a the array in which a range is to be sorted
270     * @param lo the index of the first element in the range to be sorted
271     * @param hi the index after the last element in the range to be sorted
272     * @param start the index of the first element in the range that is
273     *        not already known to be sorted ({@code lo <= start <= hi})
274     * @param c comparator to used for the sort
275     */
276    @SuppressWarnings("fallthrough")
277    private static <T> void binarySort(T[] a, int lo, int hi, int start,
278                                       Comparator<? super T> c) {
279        assert lo <= start && start <= hi;
280        if (start == lo)
281            start++;
282        for ( ; start < hi; start++) {
283            T pivot = a[start];
284
285            // Set left (and right) to the index where a[start] (pivot) belongs
286            int left = lo;
287            int right = start;
288            assert left <= right;
289            /*
290             * Invariants:
291             *   pivot >= all in [lo, left).
292             *   pivot <  all in [right, start).
293             */
294            while (left < right) {
295                int mid = (left + right) >>> 1;
296                if (c.compare(pivot, a[mid]) < 0)
297                    right = mid;
298                else
299                    left = mid + 1;
300            }
301            assert left == right;
302
303            /*
304             * The invariants still hold: pivot >= all in [lo, left) and
305             * pivot < all in [left, start), so pivot belongs at left.  Note
306             * that if there are elements equal to pivot, left points to the
307             * first slot after them -- that's why this sort is stable.
308             * Slide elements over to make room for pivot.
309             */
310            int n = start - left;  // The number of elements to move
311            // Switch is just an optimization for arraycopy in default case
312            switch (n) {
313                case 2:  a[left + 2] = a[left + 1];
314                case 1:  a[left + 1] = a[left];
315                         break;
316                default: System.arraycopy(a, left, a, left + 1, n);
317            }
318            a[left] = pivot;
319        }
320    }
321
322    /**
323     * Returns the length of the run beginning at the specified position in
324     * the specified array and reverses the run if it is descending (ensuring
325     * that the run will always be ascending when the method returns).
326     *
327     * A run is the longest ascending sequence with:
328     *
329     *    a[lo] <= a[lo + 1] <= a[lo + 2] <= ...
330     *
331     * or the longest descending sequence with:
332     *
333     *    a[lo] >  a[lo + 1] >  a[lo + 2] >  ...
334     *
335     * For its intended use in a stable mergesort, the strictness of the
336     * definition of "descending" is needed so that the call can safely
337     * reverse a descending sequence without violating stability.
338     *
339     * @param a the array in which a run is to be counted and possibly reversed
340     * @param lo index of the first element in the run
341     * @param hi index after the last element that may be contained in the run.
342              It is required that {@code lo < hi}.
343     * @param c the comparator to used for the sort
344     * @return  the length of the run beginning at the specified position in
345     *          the specified array
346     */
347    private static <T> int countRunAndMakeAscending(T[] a, int lo, int hi,
348                                                    Comparator<? super T> c) {
349        assert lo < hi;
350        int runHi = lo + 1;
351        if (runHi == hi)
352            return 1;
353
354        // Find end of run, and reverse range if descending
355        if (c.compare(a[runHi++], a[lo]) < 0) { // Descending
356            while (runHi < hi && c.compare(a[runHi], a[runHi - 1]) < 0)
357                runHi++;
358            reverseRange(a, lo, runHi);
359        } else {                              // Ascending
360            while (runHi < hi && c.compare(a[runHi], a[runHi - 1]) >= 0)
361                runHi++;
362        }
363
364        return runHi - lo;
365    }
366
367    /**
368     * Reverse the specified range of the specified array.
369     *
370     * @param a the array in which a range is to be reversed
371     * @param lo the index of the first element in the range to be reversed
372     * @param hi the index after the last element in the range to be reversed
373     */
374    private static void reverseRange(Object[] a, int lo, int hi) {
375        hi--;
376        while (lo < hi) {
377            Object t = a[lo];
378            a[lo++] = a[hi];
379            a[hi--] = t;
380        }
381    }
382
383    /**
384     * Returns the minimum acceptable run length for an array of the specified
385     * length. Natural runs shorter than this will be extended with
386     * {@link #binarySort}.
387     *
388     * Roughly speaking, the computation is:
389     *
390     *  If n < MIN_MERGE, return n (it's too small to bother with fancy stuff).
391     *  Else if n is an exact power of 2, return MIN_MERGE/2.
392     *  Else return an int k, MIN_MERGE/2 <= k <= MIN_MERGE, such that n/k
393     *   is close to, but strictly less than, an exact power of 2.
394     *
395     * For the rationale, see listsort.txt.
396     *
397     * @param n the length of the array to be sorted
398     * @return the length of the minimum run to be merged
399     */
400    private static int minRunLength(int n) {
401        assert n >= 0;
402        int r = 0;      // Becomes 1 if any 1 bits are shifted off
403        while (n >= MIN_MERGE) {
404            r |= (n & 1);
405            n >>= 1;
406        }
407        return n + r;
408    }
409
410    /**
411     * Pushes the specified run onto the pending-run stack.
412     *
413     * @param runBase index of the first element in the run
414     * @param runLen  the number of elements in the run
415     */
416    private void pushRun(int runBase, int runLen) {
417        this.runBase[stackSize] = runBase;
418        this.runLen[stackSize] = runLen;
419        stackSize++;
420    }
421
422    /**
423     * Examines the stack of runs waiting to be merged and merges adjacent runs
424     * until the stack invariants are reestablished:
425     *
426     *     1. runLen[i - 3] > runLen[i - 2] + runLen[i - 1]
427     *     2. runLen[i - 2] > runLen[i - 1]
428     *
429     * This method is called each time a new run is pushed onto the stack,
430     * so the invariants are guaranteed to hold for i < stackSize upon
431     * entry to the method.
432     */
433    private void mergeCollapse() {
434        while (stackSize > 1) {
435            int n = stackSize - 2;
436            if (n > 0 && runLen[n-1] <= runLen[n] + runLen[n+1]) {
437                if (runLen[n - 1] < runLen[n + 1])
438                    n--;
439                mergeAt(n);
440            } else if (runLen[n] <= runLen[n + 1]) {
441                mergeAt(n);
442            } else {
443                break; // Invariant is established
444            }
445        }
446    }
447
448    /**
449     * Merges all runs on the stack until only one remains.  This method is
450     * called once, to complete the sort.
451     */
452    private void mergeForceCollapse() {
453        while (stackSize > 1) {
454            int n = stackSize - 2;
455            if (n > 0 && runLen[n - 1] < runLen[n + 1])
456                n--;
457            mergeAt(n);
458        }
459    }
460
461    /**
462     * Merges the two runs at stack indices i and i+1.  Run i must be
463     * the penultimate or antepenultimate run on the stack.  In other words,
464     * i must be equal to stackSize-2 or stackSize-3.
465     *
466     * @param i stack index of the first of the two runs to merge
467     */
468    private void mergeAt(int i) {
469        assert stackSize >= 2;
470        assert i >= 0;
471        assert i == stackSize - 2 || i == stackSize - 3;
472
473        int base1 = runBase[i];
474        int len1 = runLen[i];
475        int base2 = runBase[i + 1];
476        int len2 = runLen[i + 1];
477        assert len1 > 0 && len2 > 0;
478        assert base1 + len1 == base2;
479
480        /*
481         * Record the length of the combined runs; if i is the 3rd-last
482         * run now, also slide over the last run (which isn't involved
483         * in this merge).  The current run (i+1) goes away in any case.
484         */
485        runLen[i] = len1 + len2;
486        if (i == stackSize - 3) {
487            runBase[i + 1] = runBase[i + 2];
488            runLen[i + 1] = runLen[i + 2];
489        }
490        stackSize--;
491
492        /*
493         * Find where the first element of run2 goes in run1. Prior elements
494         * in run1 can be ignored (because they're already in place).
495         */
496        int k = gallopRight(a[base2], a, base1, len1, 0, c);
497        assert k >= 0;
498        base1 += k;
499        len1 -= k;
500        if (len1 == 0)
501            return;
502
503        /*
504         * Find where the last element of run1 goes in run2. Subsequent elements
505         * in run2 can be ignored (because they're already in place).
506         */
507        len2 = gallopLeft(a[base1 + len1 - 1], a, base2, len2, len2 - 1, c);
508        assert len2 >= 0;
509        if (len2 == 0)
510            return;
511
512        // Merge remaining runs, using tmp array with min(len1, len2) elements
513        if (len1 <= len2)
514            mergeLo(base1, len1, base2, len2);
515        else
516            mergeHi(base1, len1, base2, len2);
517    }
518
519    /**
520     * Locates the position at which to insert the specified key into the
521     * specified sorted range; if the range contains an element equal to key,
522     * returns the index of the leftmost equal element.
523     *
524     * @param key the key whose insertion point to search for
525     * @param a the array in which to search
526     * @param base the index of the first element in the range
527     * @param len the length of the range; must be > 0
528     * @param hint the index at which to begin the search, 0 <= hint < n.
529     *     The closer hint is to the result, the faster this method will run.
530     * @param c the comparator used to order the range, and to search
531     * @return the int k,  0 <= k <= n such that a[b + k - 1] < key <= a[b + k],
532     *    pretending that a[b - 1] is minus infinity and a[b + n] is infinity.
533     *    In other words, key belongs at index b + k; or in other words,
534     *    the first k elements of a should precede key, and the last n - k
535     *    should follow it.
536     */
537    private static <T> int gallopLeft(T key, T[] a, int base, int len, int hint,
538                                      Comparator<? super T> c) {
539        assert len > 0 && hint >= 0 && hint < len;
540        int lastOfs = 0;
541        int ofs = 1;
542        if (c.compare(key, a[base + hint]) > 0) {
543            // Gallop right until a[base+hint+lastOfs] < key <= a[base+hint+ofs]
544            int maxOfs = len - hint;
545            while (ofs < maxOfs && c.compare(key, a[base + hint + ofs]) > 0) {
546                lastOfs = ofs;
547                ofs = (ofs << 1) + 1;
548                if (ofs <= 0)   // int overflow
549                    ofs = maxOfs;
550            }
551            if (ofs > maxOfs)
552                ofs = maxOfs;
553
554            // Make offsets relative to base
555            lastOfs += hint;
556            ofs += hint;
557        } else { // key <= a[base + hint]
558            // Gallop left until a[base+hint-ofs] < key <= a[base+hint-lastOfs]
559            final int maxOfs = hint + 1;
560            while (ofs < maxOfs && c.compare(key, a[base + hint - ofs]) <= 0) {
561                lastOfs = ofs;
562                ofs = (ofs << 1) + 1;
563                if (ofs <= 0)   // int overflow
564                    ofs = maxOfs;
565            }
566            if (ofs > maxOfs)
567                ofs = maxOfs;
568
569            // Make offsets relative to base
570            int tmp = lastOfs;
571            lastOfs = hint - ofs;
572            ofs = hint - tmp;
573        }
574        assert -1 <= lastOfs && lastOfs < ofs && ofs <= len;
575
576        /*
577         * Now a[base+lastOfs] < key <= a[base+ofs], so key belongs somewhere
578         * to the right of lastOfs but no farther right than ofs.  Do a binary
579         * search, with invariant a[base + lastOfs - 1] < key <= a[base + ofs].
580         */
581        lastOfs++;
582        while (lastOfs < ofs) {
583            int m = lastOfs + ((ofs - lastOfs) >>> 1);
584
585            if (c.compare(key, a[base + m]) > 0)
586                lastOfs = m + 1;  // a[base + m] < key
587            else
588                ofs = m;          // key <= a[base + m]
589        }
590        assert lastOfs == ofs;    // so a[base + ofs - 1] < key <= a[base + ofs]
591        return ofs;
592    }
593
594    /**
595     * Like gallopLeft, except that if the range contains an element equal to
596     * key, gallopRight returns the index after the rightmost equal element.
597     *
598     * @param key the key whose insertion point to search for
599     * @param a the array in which to search
600     * @param base the index of the first element in the range
601     * @param len the length of the range; must be > 0
602     * @param hint the index at which to begin the search, 0 <= hint < n.
603     *     The closer hint is to the result, the faster this method will run.
604     * @param c the comparator used to order the range, and to search
605     * @return the int k,  0 <= k <= n such that a[b + k - 1] <= key < a[b + k]
606     */
607    private static <T> int gallopRight(T key, T[] a, int base, int len,
608                                       int hint, Comparator<? super T> c) {
609        assert len > 0 && hint >= 0 && hint < len;
610
611        int ofs = 1;
612        int lastOfs = 0;
613        if (c.compare(key, a[base + hint]) < 0) {
614            // Gallop left until a[b+hint - ofs] <= key < a[b+hint - lastOfs]
615            int maxOfs = hint + 1;
616            while (ofs < maxOfs && c.compare(key, a[base + hint - ofs]) < 0) {
617                lastOfs = ofs;
618                ofs = (ofs << 1) + 1;
619                if (ofs <= 0)   // int overflow
620                    ofs = maxOfs;
621            }
622            if (ofs > maxOfs)
623                ofs = maxOfs;
624
625            // Make offsets relative to b
626            int tmp = lastOfs;
627            lastOfs = hint - ofs;
628            ofs = hint - tmp;
629        } else { // a[b + hint] <= key
630            // Gallop right until a[b+hint + lastOfs] <= key < a[b+hint + ofs]
631            int maxOfs = len - hint;
632            while (ofs < maxOfs && c.compare(key, a[base + hint + ofs]) >= 0) {
633                lastOfs = ofs;
634                ofs = (ofs << 1) + 1;
635                if (ofs <= 0)   // int overflow
636                    ofs = maxOfs;
637            }
638            if (ofs > maxOfs)
639                ofs = maxOfs;
640
641            // Make offsets relative to b
642            lastOfs += hint;
643            ofs += hint;
644        }
645        assert -1 <= lastOfs && lastOfs < ofs && ofs <= len;
646
647        /*
648         * Now a[b + lastOfs] <= key < a[b + ofs], so key belongs somewhere to
649         * the right of lastOfs but no farther right than ofs.  Do a binary
650         * search, with invariant a[b + lastOfs - 1] <= key < a[b + ofs].
651         */
652        lastOfs++;
653        while (lastOfs < ofs) {
654            int m = lastOfs + ((ofs - lastOfs) >>> 1);
655
656            if (c.compare(key, a[base + m]) < 0)
657                ofs = m;          // key < a[b + m]
658            else
659                lastOfs = m + 1;  // a[b + m] <= key
660        }
661        assert lastOfs == ofs;    // so a[b + ofs - 1] <= key < a[b + ofs]
662        return ofs;
663    }
664
665    /**
666     * Merges two adjacent runs in place, in a stable fashion.  The first
667     * element of the first run must be greater than the first element of the
668     * second run (a[base1] > a[base2]), and the last element of the first run
669     * (a[base1 + len1-1]) must be greater than all elements of the second run.
670     *
671     * For performance, this method should be called only when len1 <= len2;
672     * its twin, mergeHi should be called if len1 >= len2.  (Either method
673     * may be called if len1 == len2.)
674     *
675     * @param base1 index of first element in first run to be merged
676     * @param len1  length of first run to be merged (must be > 0)
677     * @param base2 index of first element in second run to be merged
678     *        (must be aBase + aLen)
679     * @param len2  length of second run to be merged (must be > 0)
680     */
681    private void mergeLo(int base1, int len1, int base2, int len2) {
682        assert len1 > 0 && len2 > 0 && base1 + len1 == base2;
683
684        // Copy first run into temp array
685        T[] a = this.a; // For performance
686        T[] tmp = ensureCapacity(len1);
687        int cursor1 = tmpBase; // Indexes into tmp array
688        int cursor2 = base2;   // Indexes int a
689        int dest = base1;      // Indexes int a
690        System.arraycopy(a, base1, tmp, cursor1, len1);
691
692        // Move first element of second run and deal with degenerate cases
693        a[dest++] = a[cursor2++];
694        if (--len2 == 0) {
695            System.arraycopy(tmp, cursor1, a, dest, len1);
696            return;
697        }
698        if (len1 == 1) {
699            System.arraycopy(a, cursor2, a, dest, len2);
700            a[dest + len2] = tmp[cursor1]; // Last elt of run 1 to end of merge
701            return;
702        }
703
704        Comparator<? super T> c = this.c;  // Use local variable for performance
705        int minGallop = this.minGallop;    //  "    "       "     "      "
706    outer:
707        while (true) {
708            int count1 = 0; // Number of times in a row that first run won
709            int count2 = 0; // Number of times in a row that second run won
710
711            /*
712             * Do the straightforward thing until (if ever) one run starts
713             * winning consistently.
714             */
715            do {
716                assert len1 > 1 && len2 > 0;
717                if (c.compare(a[cursor2], tmp[cursor1]) < 0) {
718                    a[dest++] = a[cursor2++];
719                    count2++;
720                    count1 = 0;
721                    if (--len2 == 0)
722                        break outer;
723                } else {
724                    a[dest++] = tmp[cursor1++];
725                    count1++;
726                    count2 = 0;
727                    if (--len1 == 1)
728                        break outer;
729                }
730            } while ((count1 | count2) < minGallop);
731
732            /*
733             * One run is winning so consistently that galloping may be a
734             * huge win. So try that, and continue galloping until (if ever)
735             * neither run appears to be winning consistently anymore.
736             */
737            do {
738                assert len1 > 1 && len2 > 0;
739                count1 = gallopRight(a[cursor2], tmp, cursor1, len1, 0, c);
740                if (count1 != 0) {
741                    System.arraycopy(tmp, cursor1, a, dest, count1);
742                    dest += count1;
743                    cursor1 += count1;
744                    len1 -= count1;
745                    if (len1 <= 1) // len1 == 1 || len1 == 0
746                        break outer;
747                }
748                a[dest++] = a[cursor2++];
749                if (--len2 == 0)
750                    break outer;
751
752                count2 = gallopLeft(tmp[cursor1], a, cursor2, len2, 0, c);
753                if (count2 != 0) {
754                    System.arraycopy(a, cursor2, a, dest, count2);
755                    dest += count2;
756                    cursor2 += count2;
757                    len2 -= count2;
758                    if (len2 == 0)
759                        break outer;
760                }
761                a[dest++] = tmp[cursor1++];
762                if (--len1 == 1)
763                    break outer;
764                minGallop--;
765            } while (count1 >= MIN_GALLOP | count2 >= MIN_GALLOP);
766            if (minGallop < 0)
767                minGallop = 0;
768            minGallop += 2;  // Penalize for leaving gallop mode
769        }  // End of "outer" loop
770        this.minGallop = minGallop < 1 ? 1 : minGallop;  // Write back to field
771
772        if (len1 == 1) {
773            assert len2 > 0;
774            System.arraycopy(a, cursor2, a, dest, len2);
775            a[dest + len2] = tmp[cursor1]; //  Last elt of run 1 to end of merge
776        } else if (len1 == 0) {
777            throw new IllegalArgumentException(
778                "Comparison method violates its general contract!");
779        } else {
780            assert len2 == 0;
781            assert len1 > 1;
782            System.arraycopy(tmp, cursor1, a, dest, len1);
783        }
784    }
785
786    /**
787     * Like mergeLo, except that this method should be called only if
788     * len1 >= len2; mergeLo should be called if len1 <= len2.  (Either method
789     * may be called if len1 == len2.)
790     *
791     * @param base1 index of first element in first run to be merged
792     * @param len1  length of first run to be merged (must be > 0)
793     * @param base2 index of first element in second run to be merged
794     *        (must be aBase + aLen)
795     * @param len2  length of second run to be merged (must be > 0)
796     */
797    private void mergeHi(int base1, int len1, int base2, int len2) {
798        assert len1 > 0 && len2 > 0 && base1 + len1 == base2;
799
800        // Copy second run into temp array
801        T[] a = this.a; // For performance
802        T[] tmp = ensureCapacity(len2);
803        int tmpBase = this.tmpBase;
804        System.arraycopy(a, base2, tmp, tmpBase, len2);
805
806        int cursor1 = base1 + len1 - 1;  // Indexes into a
807        int cursor2 = tmpBase + len2 - 1; // Indexes into tmp array
808        int dest = base2 + len2 - 1;     // Indexes into a
809
810        // Move last element of first run and deal with degenerate cases
811        a[dest--] = a[cursor1--];
812        if (--len1 == 0) {
813            System.arraycopy(tmp, tmpBase, a, dest - (len2 - 1), len2);
814            return;
815        }
816        if (len2 == 1) {
817            dest -= len1;
818            cursor1 -= len1;
819            System.arraycopy(a, cursor1 + 1, a, dest + 1, len1);
820            a[dest] = tmp[cursor2];
821            return;
822        }
823
824        Comparator<? super T> c = this.c;  // Use local variable for performance
825        int minGallop = this.minGallop;    //  "    "       "     "      "
826    outer:
827        while (true) {
828            int count1 = 0; // Number of times in a row that first run won
829            int count2 = 0; // Number of times in a row that second run won
830
831            /*
832             * Do the straightforward thing until (if ever) one run
833             * appears to win consistently.
834             */
835            do {
836                assert len1 > 0 && len2 > 1;
837                if (c.compare(tmp[cursor2], a[cursor1]) < 0) {
838                    a[dest--] = a[cursor1--];
839                    count1++;
840                    count2 = 0;
841                    if (--len1 == 0)
842                        break outer;
843                } else {
844                    a[dest--] = tmp[cursor2--];
845                    count2++;
846                    count1 = 0;
847                    if (--len2 == 1)
848                        break outer;
849                }
850            } while ((count1 | count2) < minGallop);
851
852            /*
853             * One run is winning so consistently that galloping may be a
854             * huge win. So try that, and continue galloping until (if ever)
855             * neither run appears to be winning consistently anymore.
856             */
857            do {
858                assert len1 > 0 && len2 > 1;
859                count1 = len1 - gallopRight(tmp[cursor2], a, base1, len1, len1 - 1, c);
860                if (count1 != 0) {
861                    dest -= count1;
862                    cursor1 -= count1;
863                    len1 -= count1;
864                    System.arraycopy(a, cursor1 + 1, a, dest + 1, count1);
865                    if (len1 == 0)
866                        break outer;
867                }
868                a[dest--] = tmp[cursor2--];
869                if (--len2 == 1)
870                    break outer;
871
872                count2 = len2 - gallopLeft(a[cursor1], tmp, tmpBase, len2, len2 - 1, c);
873                if (count2 != 0) {
874                    dest -= count2;
875                    cursor2 -= count2;
876                    len2 -= count2;
877                    System.arraycopy(tmp, cursor2 + 1, a, dest + 1, count2);
878                    if (len2 <= 1)  // len2 == 1 || len2 == 0
879                        break outer;
880                }
881                a[dest--] = a[cursor1--];
882                if (--len1 == 0)
883                    break outer;
884                minGallop--;
885            } while (count1 >= MIN_GALLOP | count2 >= MIN_GALLOP);
886            if (minGallop < 0)
887                minGallop = 0;
888            minGallop += 2;  // Penalize for leaving gallop mode
889        }  // End of "outer" loop
890        this.minGallop = minGallop < 1 ? 1 : minGallop;  // Write back to field
891
892        if (len2 == 1) {
893            assert len1 > 0;
894            dest -= len1;
895            cursor1 -= len1;
896            System.arraycopy(a, cursor1 + 1, a, dest + 1, len1);
897            a[dest] = tmp[cursor2];  // Move first elt of run2 to front of merge
898        } else if (len2 == 0) {
899            throw new IllegalArgumentException(
900                "Comparison method violates its general contract!");
901        } else {
902            assert len1 == 0;
903            assert len2 > 0;
904            System.arraycopy(tmp, tmpBase, a, dest - (len2 - 1), len2);
905        }
906    }
907
908    /**
909     * Ensures that the external array tmp has at least the specified
910     * number of elements, increasing its size if necessary.  The size
911     * increases exponentially to ensure amortized linear time complexity.
912     *
913     * @param minCapacity the minimum required capacity of the tmp array
914     * @return tmp, whether or not it grew
915     */
916    private T[] ensureCapacity(int minCapacity) {
917        if (tmpLen < minCapacity) {
918            // Compute smallest power of 2 > minCapacity
919            int newSize = minCapacity;
920            newSize |= newSize >> 1;
921            newSize |= newSize >> 2;
922            newSize |= newSize >> 4;
923            newSize |= newSize >> 8;
924            newSize |= newSize >> 16;
925            newSize++;
926
927            if (newSize < 0) // Not bloody likely!
928                newSize = minCapacity;
929            else
930                newSize = Math.min(newSize, a.length >>> 1);
931
932            @SuppressWarnings({"unchecked", "UnnecessaryLocalVariable"})
933            T[] newArray = (T[])java.lang.reflect.Array.newInstance
934                (a.getClass().getComponentType(), newSize);
935            tmp = newArray;
936            tmpLen = newSize;
937            tmpBase = 0;
938        }
939        return tmp;
940    }
941}
942