TreeMap.java revision 51b1b6997fd3f980076b8081f7f1165ccc2a4008
1/*
2 * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package java.util;
27
28/**
29 * A Red-Black tree based {@link NavigableMap} implementation.
30 * The map is sorted according to the {@linkplain Comparable natural
31 * ordering} of its keys, or by a {@link Comparator} provided at map
32 * creation time, depending on which constructor is used.
33 *
34 * <p>This implementation provides guaranteed log(n) time cost for the
35 * {@code containsKey}, {@code get}, {@code put} and {@code remove}
36 * operations.  Algorithms are adaptations of those in Cormen, Leiserson, and
37 * Rivest's <em>Introduction to Algorithms</em>.
38 *
39 * <p>Note that the ordering maintained by a tree map, like any sorted map, and
40 * whether or not an explicit comparator is provided, must be <em>consistent
41 * with {@code equals}</em> if this sorted map is to correctly implement the
42 * {@code Map} interface.  (See {@code Comparable} or {@code Comparator} for a
43 * precise definition of <em>consistent with equals</em>.)  This is so because
44 * the {@code Map} interface is defined in terms of the {@code equals}
45 * operation, but a sorted map performs all key comparisons using its {@code
46 * compareTo} (or {@code compare}) method, so two keys that are deemed equal by
47 * this method are, from the standpoint of the sorted map, equal.  The behavior
48 * of a sorted map <em>is</em> well-defined even if its ordering is
49 * inconsistent with {@code equals}; it just fails to obey the general contract
50 * of the {@code Map} interface.
51 *
52 * <p><strong>Note that this implementation is not synchronized.</strong>
53 * If multiple threads access a map concurrently, and at least one of the
54 * threads modifies the map structurally, it <em>must</em> be synchronized
55 * externally.  (A structural modification is any operation that adds or
56 * deletes one or more mappings; merely changing the value associated
57 * with an existing key is not a structural modification.)  This is
58 * typically accomplished by synchronizing on some object that naturally
59 * encapsulates the map.
60 * If no such object exists, the map should be "wrapped" using the
61 * {@link Collections#synchronizedSortedMap Collections.synchronizedSortedMap}
62 * method.  This is best done at creation time, to prevent accidental
63 * unsynchronized access to the map: <pre>
64 *   SortedMap m = Collections.synchronizedSortedMap(new TreeMap(...));</pre>
65 *
66 * <p>The iterators returned by the {@code iterator} method of the collections
67 * returned by all of this class's "collection view methods" are
68 * <em>fail-fast</em>: if the map is structurally modified at any time after
69 * the iterator is created, in any way except through the iterator's own
70 * {@code remove} method, the iterator will throw a {@link
71 * ConcurrentModificationException}.  Thus, in the face of concurrent
72 * modification, the iterator fails quickly and cleanly, rather than risking
73 * arbitrary, non-deterministic behavior at an undetermined time in the future.
74 *
75 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
76 * as it is, generally speaking, impossible to make any hard guarantees in the
77 * presence of unsynchronized concurrent modification.  Fail-fast iterators
78 * throw {@code ConcurrentModificationException} on a best-effort basis.
79 * Therefore, it would be wrong to write a program that depended on this
80 * exception for its correctness:   <em>the fail-fast behavior of iterators
81 * should be used only to detect bugs.</em>
82 *
83 * <p>All {@code Map.Entry} pairs returned by methods in this class
84 * and its views represent snapshots of mappings at the time they were
85 * produced. They do <strong>not</strong> support the {@code Entry.setValue}
86 * method. (Note however that it is possible to change mappings in the
87 * associated map using {@code put}.)
88 *
89 * <p>This class is a member of the
90 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
91 * Java Collections Framework</a>.
92 *
93 * @param <K> the type of keys maintained by this map
94 * @param <V> the type of mapped values
95 *
96 * @author  Josh Bloch and Doug Lea
97 * @see Map
98 * @see HashMap
99 * @see Hashtable
100 * @see Comparable
101 * @see Comparator
102 * @see Collection
103 * @since 1.2
104 */
105
106public class TreeMap<K,V>
107    extends AbstractMap<K,V>
108    implements NavigableMap<K,V>, Cloneable, java.io.Serializable
109{
110    /**
111     * The comparator used to maintain order in this tree map, or
112     * null if it uses the natural ordering of its keys.
113     *
114     * @serial
115     */
116    private final Comparator<? super K> comparator;
117
118    private transient Entry<K,V> root = null;
119
120    /**
121     * The number of entries in the tree
122     */
123    private transient int size = 0;
124
125    /**
126     * The number of structural modifications to the tree.
127     */
128    private transient int modCount = 0;
129
130    /**
131     * Constructs a new, empty tree map, using the natural ordering of its
132     * keys.  All keys inserted into the map must implement the {@link
133     * Comparable} interface.  Furthermore, all such keys must be
134     * <em>mutually comparable</em>: {@code k1.compareTo(k2)} must not throw
135     * a {@code ClassCastException} for any keys {@code k1} and
136     * {@code k2} in the map.  If the user attempts to put a key into the
137     * map that violates this constraint (for example, the user attempts to
138     * put a string key into a map whose keys are integers), the
139     * {@code put(Object key, Object value)} call will throw a
140     * {@code ClassCastException}.
141     */
142    public TreeMap() {
143        comparator = null;
144    }
145
146    /**
147     * Constructs a new, empty tree map, ordered according to the given
148     * comparator.  All keys inserted into the map must be <em>mutually
149     * comparable</em> by the given comparator: {@code comparator.compare(k1,
150     * k2)} must not throw a {@code ClassCastException} for any keys
151     * {@code k1} and {@code k2} in the map.  If the user attempts to put
152     * a key into the map that violates this constraint, the {@code put(Object
153     * key, Object value)} call will throw a
154     * {@code ClassCastException}.
155     *
156     * @param comparator the comparator that will be used to order this map.
157     *        If {@code null}, the {@linkplain Comparable natural
158     *        ordering} of the keys will be used.
159     */
160    public TreeMap(Comparator<? super K> comparator) {
161        this.comparator = comparator;
162    }
163
164    /**
165     * Constructs a new tree map containing the same mappings as the given
166     * map, ordered according to the <em>natural ordering</em> of its keys.
167     * All keys inserted into the new map must implement the {@link
168     * Comparable} interface.  Furthermore, all such keys must be
169     * <em>mutually comparable</em>: {@code k1.compareTo(k2)} must not throw
170     * a {@code ClassCastException} for any keys {@code k1} and
171     * {@code k2} in the map.  This method runs in n*log(n) time.
172     *
173     * @param  m the map whose mappings are to be placed in this map
174     * @throws ClassCastException if the keys in m are not {@link Comparable},
175     *         or are not mutually comparable
176     * @throws NullPointerException if the specified map is null
177     */
178    public TreeMap(Map<? extends K, ? extends V> m) {
179        comparator = null;
180        putAll(m);
181    }
182
183    /**
184     * Constructs a new tree map containing the same mappings and
185     * using the same ordering as the specified sorted map.  This
186     * method runs in linear time.
187     *
188     * @param  m the sorted map whose mappings are to be placed in this map,
189     *         and whose comparator is to be used to sort this map
190     * @throws NullPointerException if the specified map is null
191     */
192    public TreeMap(SortedMap<K, ? extends V> m) {
193        comparator = m.comparator();
194        try {
195            buildFromSorted(m.size(), m.entrySet().iterator(), null, null);
196        } catch (java.io.IOException cannotHappen) {
197        } catch (ClassNotFoundException cannotHappen) {
198        }
199    }
200
201
202    // Query Operations
203
204    /**
205     * Returns the number of key-value mappings in this map.
206     *
207     * @return the number of key-value mappings in this map
208     */
209    public int size() {
210        return size;
211    }
212
213    /**
214     * Returns {@code true} if this map contains a mapping for the specified
215     * key.
216     *
217     * @param key key whose presence in this map is to be tested
218     * @return {@code true} if this map contains a mapping for the
219     *         specified key
220     * @throws ClassCastException if the specified key cannot be compared
221     *         with the keys currently in the map
222     * @throws NullPointerException if the specified key is null
223     *         and this map uses natural ordering, or its comparator
224     *         does not permit null keys
225     */
226    public boolean containsKey(Object key) {
227        return getEntry(key) != null;
228    }
229
230    /**
231     * Returns {@code true} if this map maps one or more keys to the
232     * specified value.  More formally, returns {@code true} if and only if
233     * this map contains at least one mapping to a value {@code v} such
234     * that {@code (value==null ? v==null : value.equals(v))}.  This
235     * operation will probably require time linear in the map size for
236     * most implementations.
237     *
238     * @param value value whose presence in this map is to be tested
239     * @return {@code true} if a mapping to {@code value} exists;
240     *         {@code false} otherwise
241     * @since 1.2
242     */
243    public boolean containsValue(Object value) {
244        for (Entry<K,V> e = getFirstEntry(); e != null; e = successor(e))
245            if (valEquals(value, e.value))
246                return true;
247        return false;
248    }
249
250    /**
251     * Returns the value to which the specified key is mapped,
252     * or {@code null} if this map contains no mapping for the key.
253     *
254     * <p>More formally, if this map contains a mapping from a key
255     * {@code k} to a value {@code v} such that {@code key} compares
256     * equal to {@code k} according to the map's ordering, then this
257     * method returns {@code v}; otherwise it returns {@code null}.
258     * (There can be at most one such mapping.)
259     *
260     * <p>A return value of {@code null} does not <em>necessarily</em>
261     * indicate that the map contains no mapping for the key; it's also
262     * possible that the map explicitly maps the key to {@code null}.
263     * The {@link #containsKey containsKey} operation may be used to
264     * distinguish these two cases.
265     *
266     * @throws ClassCastException if the specified key cannot be compared
267     *         with the keys currently in the map
268     * @throws NullPointerException if the specified key is null
269     *         and this map uses natural ordering, or its comparator
270     *         does not permit null keys
271     */
272    public V get(Object key) {
273        Entry<K,V> p = getEntry(key);
274        return (p==null ? null : p.value);
275    }
276
277    public Comparator<? super K> comparator() {
278        return comparator;
279    }
280
281    /**
282     * @throws NoSuchElementException {@inheritDoc}
283     */
284    public K firstKey() {
285        return key(getFirstEntry());
286    }
287
288    /**
289     * @throws NoSuchElementException {@inheritDoc}
290     */
291    public K lastKey() {
292        return key(getLastEntry());
293    }
294
295    /**
296     * Copies all of the mappings from the specified map to this map.
297     * These mappings replace any mappings that this map had for any
298     * of the keys currently in the specified map.
299     *
300     * @param  map mappings to be stored in this map
301     * @throws ClassCastException if the class of a key or value in
302     *         the specified map prevents it from being stored in this map
303     * @throws NullPointerException if the specified map is null or
304     *         the specified map contains a null key and this map does not
305     *         permit null keys
306     */
307    public void putAll(Map<? extends K, ? extends V> map) {
308        int mapSize = map.size();
309        if (size==0 && mapSize!=0 && map instanceof SortedMap) {
310            Comparator c = ((SortedMap)map).comparator();
311            if (c == comparator || (c != null && c.equals(comparator))) {
312                ++modCount;
313                try {
314                    buildFromSorted(mapSize, map.entrySet().iterator(),
315                                    null, null);
316                } catch (java.io.IOException cannotHappen) {
317                } catch (ClassNotFoundException cannotHappen) {
318                }
319                return;
320            }
321        }
322        super.putAll(map);
323    }
324
325    /**
326     * Returns this map's entry for the given key, or {@code null} if the map
327     * does not contain an entry for the key.
328     *
329     * @return this map's entry for the given key, or {@code null} if the map
330     *         does not contain an entry for the key
331     * @throws ClassCastException if the specified key cannot be compared
332     *         with the keys currently in the map
333     * @throws NullPointerException if the specified key is null
334     *         and this map uses natural ordering, or its comparator
335     *         does not permit null keys
336     */
337    final Entry<K,V> getEntry(Object key) {
338        // Offload comparator-based version for sake of performance
339        if (comparator != null)
340            return getEntryUsingComparator(key);
341        if (key == null)
342            throw new NullPointerException();
343        Comparable<? super K> k = (Comparable<? super K>) key;
344        Entry<K,V> p = root;
345        while (p != null) {
346            int cmp = k.compareTo(p.key);
347            if (cmp < 0)
348                p = p.left;
349            else if (cmp > 0)
350                p = p.right;
351            else
352                return p;
353        }
354        return null;
355    }
356
357    /**
358     * Version of getEntry using comparator. Split off from getEntry
359     * for performance. (This is not worth doing for most methods,
360     * that are less dependent on comparator performance, but is
361     * worthwhile here.)
362     */
363    final Entry<K,V> getEntryUsingComparator(Object key) {
364        K k = (K) key;
365        Comparator<? super K> cpr = comparator;
366        if (cpr != null) {
367            Entry<K,V> p = root;
368            while (p != null) {
369                int cmp = cpr.compare(k, p.key);
370                if (cmp < 0)
371                    p = p.left;
372                else if (cmp > 0)
373                    p = p.right;
374                else
375                    return p;
376            }
377        }
378        return null;
379    }
380
381    /**
382     * Gets the entry corresponding to the specified key; if no such entry
383     * exists, returns the entry for the least key greater than the specified
384     * key; if no such entry exists (i.e., the greatest key in the Tree is less
385     * than the specified key), returns {@code null}.
386     */
387    final Entry<K,V> getCeilingEntry(K key) {
388        Entry<K,V> p = root;
389        while (p != null) {
390            int cmp = compare(key, p.key);
391            if (cmp < 0) {
392                if (p.left != null)
393                    p = p.left;
394                else
395                    return p;
396            } else if (cmp > 0) {
397                if (p.right != null) {
398                    p = p.right;
399                } else {
400                    Entry<K,V> parent = p.parent;
401                    Entry<K,V> ch = p;
402                    while (parent != null && ch == parent.right) {
403                        ch = parent;
404                        parent = parent.parent;
405                    }
406                    return parent;
407                }
408            } else
409                return p;
410        }
411        return null;
412    }
413
414    /**
415     * Gets the entry corresponding to the specified key; if no such entry
416     * exists, returns the entry for the greatest key less than the specified
417     * key; if no such entry exists, returns {@code null}.
418     */
419    final Entry<K,V> getFloorEntry(K key) {
420        Entry<K,V> p = root;
421        while (p != null) {
422            int cmp = compare(key, p.key);
423            if (cmp > 0) {
424                if (p.right != null)
425                    p = p.right;
426                else
427                    return p;
428            } else if (cmp < 0) {
429                if (p.left != null) {
430                    p = p.left;
431                } else {
432                    Entry<K,V> parent = p.parent;
433                    Entry<K,V> ch = p;
434                    while (parent != null && ch == parent.left) {
435                        ch = parent;
436                        parent = parent.parent;
437                    }
438                    return parent;
439                }
440            } else
441                return p;
442
443        }
444        return null;
445    }
446
447    /**
448     * Gets the entry for the least key greater than the specified
449     * key; if no such entry exists, returns the entry for the least
450     * key greater than the specified key; if no such entry exists
451     * returns {@code null}.
452     */
453    final Entry<K,V> getHigherEntry(K key) {
454        Entry<K,V> p = root;
455        while (p != null) {
456            int cmp = compare(key, p.key);
457            if (cmp < 0) {
458                if (p.left != null)
459                    p = p.left;
460                else
461                    return p;
462            } else {
463                if (p.right != null) {
464                    p = p.right;
465                } else {
466                    Entry<K,V> parent = p.parent;
467                    Entry<K,V> ch = p;
468                    while (parent != null && ch == parent.right) {
469                        ch = parent;
470                        parent = parent.parent;
471                    }
472                    return parent;
473                }
474            }
475        }
476        return null;
477    }
478
479    /**
480     * Returns the entry for the greatest key less than the specified key; if
481     * no such entry exists (i.e., the least key in the Tree is greater than
482     * the specified key), returns {@code null}.
483     */
484    final Entry<K,V> getLowerEntry(K key) {
485        Entry<K,V> p = root;
486        while (p != null) {
487            int cmp = compare(key, p.key);
488            if (cmp > 0) {
489                if (p.right != null)
490                    p = p.right;
491                else
492                    return p;
493            } else {
494                if (p.left != null) {
495                    p = p.left;
496                } else {
497                    Entry<K,V> parent = p.parent;
498                    Entry<K,V> ch = p;
499                    while (parent != null && ch == parent.left) {
500                        ch = parent;
501                        parent = parent.parent;
502                    }
503                    return parent;
504                }
505            }
506        }
507        return null;
508    }
509
510    /**
511     * Associates the specified value with the specified key in this map.
512     * If the map previously contained a mapping for the key, the old
513     * value is replaced.
514     *
515     * @param key key with which the specified value is to be associated
516     * @param value value to be associated with the specified key
517     *
518     * @return the previous value associated with {@code key}, or
519     *         {@code null} if there was no mapping for {@code key}.
520     *         (A {@code null} return can also indicate that the map
521     *         previously associated {@code null} with {@code key}.)
522     * @throws ClassCastException if the specified key cannot be compared
523     *         with the keys currently in the map
524     * @throws NullPointerException if the specified key is null
525     *         and this map uses natural ordering, or its comparator
526     *         does not permit null keys
527     */
528    public V put(K key, V value) {
529        Entry<K,V> t = root;
530        if (t == null) {
531            compare(key, key); // type (and possibly null) check
532
533            root = new Entry<>(key, value, null);
534            size = 1;
535            modCount++;
536            return null;
537        }
538        int cmp;
539        Entry<K,V> parent;
540        // split comparator and comparable paths
541        Comparator<? super K> cpr = comparator;
542        if (cpr != null) {
543            do {
544                parent = t;
545                cmp = cpr.compare(key, t.key);
546                if (cmp < 0)
547                    t = t.left;
548                else if (cmp > 0)
549                    t = t.right;
550                else
551                    return t.setValue(value);
552            } while (t != null);
553        }
554        else {
555            if (key == null)
556                throw new NullPointerException();
557            Comparable<? super K> k = (Comparable<? super K>) key;
558            do {
559                parent = t;
560                cmp = k.compareTo(t.key);
561                if (cmp < 0)
562                    t = t.left;
563                else if (cmp > 0)
564                    t = t.right;
565                else
566                    return t.setValue(value);
567            } while (t != null);
568        }
569        Entry<K,V> e = new Entry<>(key, value, parent);
570        if (cmp < 0)
571            parent.left = e;
572        else
573            parent.right = e;
574        fixAfterInsertion(e);
575        size++;
576        modCount++;
577        return null;
578    }
579
580    /**
581     * Removes the mapping for this key from this TreeMap if present.
582     *
583     * @param  key key for which mapping should be removed
584     * @return the previous value associated with {@code key}, or
585     *         {@code null} if there was no mapping for {@code key}.
586     *         (A {@code null} return can also indicate that the map
587     *         previously associated {@code null} with {@code key}.)
588     * @throws ClassCastException if the specified key cannot be compared
589     *         with the keys currently in the map
590     * @throws NullPointerException if the specified key is null
591     *         and this map uses natural ordering, or its comparator
592     *         does not permit null keys
593     */
594    public V remove(Object key) {
595        Entry<K,V> p = getEntry(key);
596        if (p == null)
597            return null;
598
599        V oldValue = p.value;
600        deleteEntry(p);
601        return oldValue;
602    }
603
604    /**
605     * Removes all of the mappings from this map.
606     * The map will be empty after this call returns.
607     */
608    public void clear() {
609        modCount++;
610        size = 0;
611        root = null;
612    }
613
614    /**
615     * Returns a shallow copy of this {@code TreeMap} instance. (The keys and
616     * values themselves are not cloned.)
617     *
618     * @return a shallow copy of this map
619     */
620    public Object clone() {
621        TreeMap<K,V> clone = null;
622        try {
623            clone = (TreeMap<K,V>) super.clone();
624        } catch (CloneNotSupportedException e) {
625            throw new InternalError();
626        }
627
628        // Put clone into "virgin" state (except for comparator)
629        clone.root = null;
630        clone.size = 0;
631        clone.modCount = 0;
632        clone.entrySet = null;
633        clone.navigableKeySet = null;
634        clone.descendingMap = null;
635
636        // Initialize clone with our mappings
637        try {
638            clone.buildFromSorted(size, entrySet().iterator(), null, null);
639        } catch (java.io.IOException cannotHappen) {
640        } catch (ClassNotFoundException cannotHappen) {
641        }
642
643        return clone;
644    }
645
646    // NavigableMap API methods
647
648    /**
649     * @since 1.6
650     */
651    public Map.Entry<K,V> firstEntry() {
652        return exportEntry(getFirstEntry());
653    }
654
655    /**
656     * @since 1.6
657     */
658    public Map.Entry<K,V> lastEntry() {
659        return exportEntry(getLastEntry());
660    }
661
662    /**
663     * @since 1.6
664     */
665    public Map.Entry<K,V> pollFirstEntry() {
666        Entry<K,V> p = getFirstEntry();
667        Map.Entry<K,V> result = exportEntry(p);
668        if (p != null)
669            deleteEntry(p);
670        return result;
671    }
672
673    /**
674     * @since 1.6
675     */
676    public Map.Entry<K,V> pollLastEntry() {
677        Entry<K,V> p = getLastEntry();
678        Map.Entry<K,V> result = exportEntry(p);
679        if (p != null)
680            deleteEntry(p);
681        return result;
682    }
683
684    /**
685     * @throws ClassCastException {@inheritDoc}
686     * @throws NullPointerException if the specified key is null
687     *         and this map uses natural ordering, or its comparator
688     *         does not permit null keys
689     * @since 1.6
690     */
691    public Map.Entry<K,V> lowerEntry(K key) {
692        return exportEntry(getLowerEntry(key));
693    }
694
695    /**
696     * @throws ClassCastException {@inheritDoc}
697     * @throws NullPointerException if the specified key is null
698     *         and this map uses natural ordering, or its comparator
699     *         does not permit null keys
700     * @since 1.6
701     */
702    public K lowerKey(K key) {
703        return keyOrNull(getLowerEntry(key));
704    }
705
706    /**
707     * @throws ClassCastException {@inheritDoc}
708     * @throws NullPointerException if the specified key is null
709     *         and this map uses natural ordering, or its comparator
710     *         does not permit null keys
711     * @since 1.6
712     */
713    public Map.Entry<K,V> floorEntry(K key) {
714        return exportEntry(getFloorEntry(key));
715    }
716
717    /**
718     * @throws ClassCastException {@inheritDoc}
719     * @throws NullPointerException if the specified key is null
720     *         and this map uses natural ordering, or its comparator
721     *         does not permit null keys
722     * @since 1.6
723     */
724    public K floorKey(K key) {
725        return keyOrNull(getFloorEntry(key));
726    }
727
728    /**
729     * @throws ClassCastException {@inheritDoc}
730     * @throws NullPointerException if the specified key is null
731     *         and this map uses natural ordering, or its comparator
732     *         does not permit null keys
733     * @since 1.6
734     */
735    public Map.Entry<K,V> ceilingEntry(K key) {
736        return exportEntry(getCeilingEntry(key));
737    }
738
739    /**
740     * @throws ClassCastException {@inheritDoc}
741     * @throws NullPointerException if the specified key is null
742     *         and this map uses natural ordering, or its comparator
743     *         does not permit null keys
744     * @since 1.6
745     */
746    public K ceilingKey(K key) {
747        return keyOrNull(getCeilingEntry(key));
748    }
749
750    /**
751     * @throws ClassCastException {@inheritDoc}
752     * @throws NullPointerException if the specified key is null
753     *         and this map uses natural ordering, or its comparator
754     *         does not permit null keys
755     * @since 1.6
756     */
757    public Map.Entry<K,V> higherEntry(K key) {
758        return exportEntry(getHigherEntry(key));
759    }
760
761    /**
762     * @throws ClassCastException {@inheritDoc}
763     * @throws NullPointerException if the specified key is null
764     *         and this map uses natural ordering, or its comparator
765     *         does not permit null keys
766     * @since 1.6
767     */
768    public K higherKey(K key) {
769        return keyOrNull(getHigherEntry(key));
770    }
771
772    // Views
773
774    /**
775     * Fields initialized to contain an instance of the entry set view
776     * the first time this view is requested.  Views are stateless, so
777     * there's no reason to create more than one.
778     */
779    private transient EntrySet entrySet = null;
780    private transient KeySet<K> navigableKeySet = null;
781    private transient NavigableMap<K,V> descendingMap = null;
782
783    /**
784     * Returns a {@link Set} view of the keys contained in this map.
785     * The set's iterator returns the keys in ascending order.
786     * The set is backed by the map, so changes to the map are
787     * reflected in the set, and vice-versa.  If the map is modified
788     * while an iteration over the set is in progress (except through
789     * the iterator's own {@code remove} operation), the results of
790     * the iteration are undefined.  The set supports element removal,
791     * which removes the corresponding mapping from the map, via the
792     * {@code Iterator.remove}, {@code Set.remove},
793     * {@code removeAll}, {@code retainAll}, and {@code clear}
794     * operations.  It does not support the {@code add} or {@code addAll}
795     * operations.
796     */
797    public Set<K> keySet() {
798        return navigableKeySet();
799    }
800
801    /**
802     * @since 1.6
803     */
804    public NavigableSet<K> navigableKeySet() {
805        KeySet<K> nks = navigableKeySet;
806        return (nks != null) ? nks : (navigableKeySet = new KeySet(this));
807    }
808
809    /**
810     * @since 1.6
811     */
812    public NavigableSet<K> descendingKeySet() {
813        return descendingMap().navigableKeySet();
814    }
815
816    /**
817     * Returns a {@link Collection} view of the values contained in this map.
818     * The collection's iterator returns the values in ascending order
819     * of the corresponding keys.
820     * The collection is backed by the map, so changes to the map are
821     * reflected in the collection, and vice-versa.  If the map is
822     * modified while an iteration over the collection is in progress
823     * (except through the iterator's own {@code remove} operation),
824     * the results of the iteration are undefined.  The collection
825     * supports element removal, which removes the corresponding
826     * mapping from the map, via the {@code Iterator.remove},
827     * {@code Collection.remove}, {@code removeAll},
828     * {@code retainAll} and {@code clear} operations.  It does not
829     * support the {@code add} or {@code addAll} operations.
830     */
831    public Collection<V> values() {
832        Collection<V> vs = values;
833        return (vs != null) ? vs : (values = new Values());
834    }
835
836    /**
837     * Returns a {@link Set} view of the mappings contained in this map.
838     * The set's iterator returns the entries in ascending key order.
839     * The set is backed by the map, so changes to the map are
840     * reflected in the set, and vice-versa.  If the map is modified
841     * while an iteration over the set is in progress (except through
842     * the iterator's own {@code remove} operation, or through the
843     * {@code setValue} operation on a map entry returned by the
844     * iterator) the results of the iteration are undefined.  The set
845     * supports element removal, which removes the corresponding
846     * mapping from the map, via the {@code Iterator.remove},
847     * {@code Set.remove}, {@code removeAll}, {@code retainAll} and
848     * {@code clear} operations.  It does not support the
849     * {@code add} or {@code addAll} operations.
850     */
851    public Set<Map.Entry<K,V>> entrySet() {
852        EntrySet es = entrySet;
853        return (es != null) ? es : (entrySet = new EntrySet());
854    }
855
856    /**
857     * @since 1.6
858     */
859    public NavigableMap<K, V> descendingMap() {
860        NavigableMap<K, V> km = descendingMap;
861        return (km != null) ? km :
862            (descendingMap = new DescendingSubMap(this,
863                                                  true, null, true,
864                                                  true, null, true));
865    }
866
867    /**
868     * @throws ClassCastException       {@inheritDoc}
869     * @throws NullPointerException if {@code fromKey} or {@code toKey} is
870     *         null and this map uses natural ordering, or its comparator
871     *         does not permit null keys
872     * @throws IllegalArgumentException {@inheritDoc}
873     * @since 1.6
874     */
875    public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,
876                                    K toKey,   boolean toInclusive) {
877        return new AscendingSubMap(this,
878                                   false, fromKey, fromInclusive,
879                                   false, toKey,   toInclusive);
880    }
881
882    /**
883     * @throws ClassCastException       {@inheritDoc}
884     * @throws NullPointerException if {@code toKey} is null
885     *         and this map uses natural ordering, or its comparator
886     *         does not permit null keys
887     * @throws IllegalArgumentException {@inheritDoc}
888     * @since 1.6
889     */
890    public NavigableMap<K,V> headMap(K toKey, boolean inclusive) {
891        return new AscendingSubMap(this,
892                                   true,  null,  true,
893                                   false, toKey, inclusive);
894    }
895
896    /**
897     * @throws ClassCastException       {@inheritDoc}
898     * @throws NullPointerException if {@code fromKey} is null
899     *         and this map uses natural ordering, or its comparator
900     *         does not permit null keys
901     * @throws IllegalArgumentException {@inheritDoc}
902     * @since 1.6
903     */
904    public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive) {
905        return new AscendingSubMap(this,
906                                   false, fromKey, inclusive,
907                                   true,  null,    true);
908    }
909
910    /**
911     * @throws ClassCastException       {@inheritDoc}
912     * @throws NullPointerException if {@code fromKey} or {@code toKey} is
913     *         null and this map uses natural ordering, or its comparator
914     *         does not permit null keys
915     * @throws IllegalArgumentException {@inheritDoc}
916     */
917    public SortedMap<K,V> subMap(K fromKey, K toKey) {
918        return subMap(fromKey, true, toKey, false);
919    }
920
921    /**
922     * @throws ClassCastException       {@inheritDoc}
923     * @throws NullPointerException if {@code toKey} is null
924     *         and this map uses natural ordering, or its comparator
925     *         does not permit null keys
926     * @throws IllegalArgumentException {@inheritDoc}
927     */
928    public SortedMap<K,V> headMap(K toKey) {
929        return headMap(toKey, false);
930    }
931
932    /**
933     * @throws ClassCastException       {@inheritDoc}
934     * @throws NullPointerException if {@code fromKey} is null
935     *         and this map uses natural ordering, or its comparator
936     *         does not permit null keys
937     * @throws IllegalArgumentException {@inheritDoc}
938     */
939    public SortedMap<K,V> tailMap(K fromKey) {
940        return tailMap(fromKey, true);
941    }
942
943    // View class support
944
945    class Values extends AbstractCollection<V> {
946        public Iterator<V> iterator() {
947            return new ValueIterator(getFirstEntry());
948        }
949
950        public int size() {
951            return TreeMap.this.size();
952        }
953
954        public boolean contains(Object o) {
955            return TreeMap.this.containsValue(o);
956        }
957
958        public boolean remove(Object o) {
959            for (Entry<K,V> e = getFirstEntry(); e != null; e = successor(e)) {
960                if (valEquals(e.getValue(), o)) {
961                    deleteEntry(e);
962                    return true;
963                }
964            }
965            return false;
966        }
967
968        public void clear() {
969            TreeMap.this.clear();
970        }
971    }
972
973    class EntrySet extends AbstractSet<Map.Entry<K,V>> {
974        public Iterator<Map.Entry<K,V>> iterator() {
975            return new EntryIterator(getFirstEntry());
976        }
977
978        public boolean contains(Object o) {
979            if (!(o instanceof Map.Entry))
980                return false;
981            Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
982            V value = entry.getValue();
983            Entry<K,V> p = getEntry(entry.getKey());
984            return p != null && valEquals(p.getValue(), value);
985        }
986
987        public boolean remove(Object o) {
988            if (!(o instanceof Map.Entry))
989                return false;
990            Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
991            V value = entry.getValue();
992            Entry<K,V> p = getEntry(entry.getKey());
993            if (p != null && valEquals(p.getValue(), value)) {
994                deleteEntry(p);
995                return true;
996            }
997            return false;
998        }
999
1000        public int size() {
1001            return TreeMap.this.size();
1002        }
1003
1004        public void clear() {
1005            TreeMap.this.clear();
1006        }
1007    }
1008
1009    /*
1010     * Unlike Values and EntrySet, the KeySet class is static,
1011     * delegating to a NavigableMap to allow use by SubMaps, which
1012     * outweighs the ugliness of needing type-tests for the following
1013     * Iterator methods that are defined appropriately in main versus
1014     * submap classes.
1015     */
1016
1017    Iterator<K> keyIterator() {
1018        return new KeyIterator(getFirstEntry());
1019    }
1020
1021    Iterator<K> descendingKeyIterator() {
1022        return new DescendingKeyIterator(getLastEntry());
1023    }
1024
1025    static final class KeySet<E> extends AbstractSet<E> implements NavigableSet<E> {
1026        private final NavigableMap<E, Object> m;
1027        KeySet(NavigableMap<E,Object> map) { m = map; }
1028
1029        public Iterator<E> iterator() {
1030            if (m instanceof TreeMap)
1031                return ((TreeMap<E,Object>)m).keyIterator();
1032            else
1033                return (Iterator<E>)(((TreeMap.NavigableSubMap)m).keyIterator());
1034        }
1035
1036        public Iterator<E> descendingIterator() {
1037            if (m instanceof TreeMap)
1038                return ((TreeMap<E,Object>)m).descendingKeyIterator();
1039            else
1040                return (Iterator<E>)(((TreeMap.NavigableSubMap)m).descendingKeyIterator());
1041        }
1042
1043        public int size() { return m.size(); }
1044        public boolean isEmpty() { return m.isEmpty(); }
1045        public boolean contains(Object o) { return m.containsKey(o); }
1046        public void clear() { m.clear(); }
1047        public E lower(E e) { return m.lowerKey(e); }
1048        public E floor(E e) { return m.floorKey(e); }
1049        public E ceiling(E e) { return m.ceilingKey(e); }
1050        public E higher(E e) { return m.higherKey(e); }
1051        public E first() { return m.firstKey(); }
1052        public E last() { return m.lastKey(); }
1053        public Comparator<? super E> comparator() { return m.comparator(); }
1054        public E pollFirst() {
1055            Map.Entry<E,Object> e = m.pollFirstEntry();
1056            return (e == null) ? null : e.getKey();
1057        }
1058        public E pollLast() {
1059            Map.Entry<E,Object> e = m.pollLastEntry();
1060            return (e == null) ? null : e.getKey();
1061        }
1062        public boolean remove(Object o) {
1063            int oldSize = size();
1064            m.remove(o);
1065            return size() != oldSize;
1066        }
1067        public NavigableSet<E> subSet(E fromElement, boolean fromInclusive,
1068                                      E toElement,   boolean toInclusive) {
1069            return new KeySet<>(m.subMap(fromElement, fromInclusive,
1070                                          toElement,   toInclusive));
1071        }
1072        public NavigableSet<E> headSet(E toElement, boolean inclusive) {
1073            return new KeySet<>(m.headMap(toElement, inclusive));
1074        }
1075        public NavigableSet<E> tailSet(E fromElement, boolean inclusive) {
1076            return new KeySet<>(m.tailMap(fromElement, inclusive));
1077        }
1078        public SortedSet<E> subSet(E fromElement, E toElement) {
1079            return subSet(fromElement, true, toElement, false);
1080        }
1081        public SortedSet<E> headSet(E toElement) {
1082            return headSet(toElement, false);
1083        }
1084        public SortedSet<E> tailSet(E fromElement) {
1085            return tailSet(fromElement, true);
1086        }
1087        public NavigableSet<E> descendingSet() {
1088            return new KeySet(m.descendingMap());
1089        }
1090    }
1091
1092    /**
1093     * Base class for TreeMap Iterators
1094     */
1095    abstract class PrivateEntryIterator<T> implements Iterator<T> {
1096        Entry<K,V> next;
1097        Entry<K,V> lastReturned;
1098        int expectedModCount;
1099
1100        PrivateEntryIterator(Entry<K,V> first) {
1101            expectedModCount = modCount;
1102            lastReturned = null;
1103            next = first;
1104        }
1105
1106        public final boolean hasNext() {
1107            return next != null;
1108        }
1109
1110        final Entry<K,V> nextEntry() {
1111            Entry<K,V> e = next;
1112            if (e == null)
1113                throw new NoSuchElementException();
1114            if (modCount != expectedModCount)
1115                throw new ConcurrentModificationException();
1116            next = successor(e);
1117            lastReturned = e;
1118            return e;
1119        }
1120
1121        final Entry<K,V> prevEntry() {
1122            Entry<K,V> e = next;
1123            if (e == null)
1124                throw new NoSuchElementException();
1125            if (modCount != expectedModCount)
1126                throw new ConcurrentModificationException();
1127            next = predecessor(e);
1128            lastReturned = e;
1129            return e;
1130        }
1131
1132        public void remove() {
1133            if (lastReturned == null)
1134                throw new IllegalStateException();
1135            if (modCount != expectedModCount)
1136                throw new ConcurrentModificationException();
1137            // deleted entries are replaced by their successors
1138            if (lastReturned.left != null && lastReturned.right != null)
1139                next = lastReturned;
1140            deleteEntry(lastReturned);
1141            expectedModCount = modCount;
1142            lastReturned = null;
1143        }
1144    }
1145
1146    final class EntryIterator extends PrivateEntryIterator<Map.Entry<K,V>> {
1147        EntryIterator(Entry<K,V> first) {
1148            super(first);
1149        }
1150        public Map.Entry<K,V> next() {
1151            return nextEntry();
1152        }
1153    }
1154
1155    final class ValueIterator extends PrivateEntryIterator<V> {
1156        ValueIterator(Entry<K,V> first) {
1157            super(first);
1158        }
1159        public V next() {
1160            return nextEntry().value;
1161        }
1162    }
1163
1164    final class KeyIterator extends PrivateEntryIterator<K> {
1165        KeyIterator(Entry<K,V> first) {
1166            super(first);
1167        }
1168        public K next() {
1169            return nextEntry().key;
1170        }
1171    }
1172
1173    final class DescendingKeyIterator extends PrivateEntryIterator<K> {
1174        DescendingKeyIterator(Entry<K,V> first) {
1175            super(first);
1176        }
1177        public K next() {
1178            return prevEntry().key;
1179        }
1180    }
1181
1182    // Little utilities
1183
1184    /**
1185     * Compares two keys using the correct comparison method for this TreeMap.
1186     */
1187    final int compare(Object k1, Object k2) {
1188        return comparator==null ? ((Comparable<? super K>)k1).compareTo((K)k2)
1189            : comparator.compare((K)k1, (K)k2);
1190    }
1191
1192    /**
1193     * Test two values for equality.  Differs from o1.equals(o2) only in
1194     * that it copes with {@code null} o1 properly.
1195     */
1196    static final boolean valEquals(Object o1, Object o2) {
1197        return (o1==null ? o2==null : o1.equals(o2));
1198    }
1199
1200    /**
1201     * Return SimpleImmutableEntry for entry, or null if null
1202     */
1203    static <K,V> Map.Entry<K,V> exportEntry(TreeMap.Entry<K,V> e) {
1204        return (e == null) ? null :
1205            new AbstractMap.SimpleImmutableEntry<>(e);
1206    }
1207
1208    /**
1209     * Return key for entry, or null if null
1210     */
1211    static <K,V> K keyOrNull(TreeMap.Entry<K,V> e) {
1212        return (e == null) ? null : e.key;
1213    }
1214
1215    /**
1216     * Returns the key corresponding to the specified Entry.
1217     * @throws NoSuchElementException if the Entry is null
1218     */
1219    static <K> K key(Entry<K,?> e) {
1220        if (e==null)
1221            throw new NoSuchElementException();
1222        return e.key;
1223    }
1224
1225
1226    // SubMaps
1227
1228    /**
1229     * Dummy value serving as unmatchable fence key for unbounded
1230     * SubMapIterators
1231     */
1232    private static final Object UNBOUNDED = new Object();
1233
1234    /**
1235     * @serial include
1236     */
1237    abstract static class NavigableSubMap<K,V> extends AbstractMap<K,V>
1238        implements NavigableMap<K,V>, java.io.Serializable {
1239        /**
1240         * The backing map.
1241         */
1242        final TreeMap<K,V> m;
1243
1244        /**
1245         * Endpoints are represented as triples (fromStart, lo,
1246         * loInclusive) and (toEnd, hi, hiInclusive). If fromStart is
1247         * true, then the low (absolute) bound is the start of the
1248         * backing map, and the other values are ignored. Otherwise,
1249         * if loInclusive is true, lo is the inclusive bound, else lo
1250         * is the exclusive bound. Similarly for the upper bound.
1251         */
1252        final K lo, hi;
1253        final boolean fromStart, toEnd;
1254        final boolean loInclusive, hiInclusive;
1255
1256        NavigableSubMap(TreeMap<K,V> m,
1257                        boolean fromStart, K lo, boolean loInclusive,
1258                        boolean toEnd,     K hi, boolean hiInclusive) {
1259            if (!fromStart && !toEnd) {
1260                if (m.compare(lo, hi) > 0)
1261                    throw new IllegalArgumentException("fromKey > toKey");
1262            } else {
1263                if (!fromStart) // type check
1264                    m.compare(lo, lo);
1265                if (!toEnd)
1266                    m.compare(hi, hi);
1267            }
1268
1269            this.m = m;
1270            this.fromStart = fromStart;
1271            this.lo = lo;
1272            this.loInclusive = loInclusive;
1273            this.toEnd = toEnd;
1274            this.hi = hi;
1275            this.hiInclusive = hiInclusive;
1276        }
1277
1278        // internal utilities
1279
1280        final boolean tooLow(Object key) {
1281            if (!fromStart) {
1282                int c = m.compare(key, lo);
1283                if (c < 0 || (c == 0 && !loInclusive))
1284                    return true;
1285            }
1286            return false;
1287        }
1288
1289        final boolean tooHigh(Object key) {
1290            if (!toEnd) {
1291                int c = m.compare(key, hi);
1292                if (c > 0 || (c == 0 && !hiInclusive))
1293                    return true;
1294            }
1295            return false;
1296        }
1297
1298        final boolean inRange(Object key) {
1299            return !tooLow(key) && !tooHigh(key);
1300        }
1301
1302        final boolean inClosedRange(Object key) {
1303            return (fromStart || m.compare(key, lo) >= 0)
1304                && (toEnd || m.compare(hi, key) >= 0);
1305        }
1306
1307        final boolean inRange(Object key, boolean inclusive) {
1308            return inclusive ? inRange(key) : inClosedRange(key);
1309        }
1310
1311        /*
1312         * Absolute versions of relation operations.
1313         * Subclasses map to these using like-named "sub"
1314         * versions that invert senses for descending maps
1315         */
1316
1317        final TreeMap.Entry<K,V> absLowest() {
1318            TreeMap.Entry<K,V> e =
1319                (fromStart ?  m.getFirstEntry() :
1320                 (loInclusive ? m.getCeilingEntry(lo) :
1321                                m.getHigherEntry(lo)));
1322            return (e == null || tooHigh(e.key)) ? null : e;
1323        }
1324
1325        final TreeMap.Entry<K,V> absHighest() {
1326            TreeMap.Entry<K,V> e =
1327                (toEnd ?  m.getLastEntry() :
1328                 (hiInclusive ?  m.getFloorEntry(hi) :
1329                                 m.getLowerEntry(hi)));
1330            return (e == null || tooLow(e.key)) ? null : e;
1331        }
1332
1333        final TreeMap.Entry<K,V> absCeiling(K key) {
1334            if (tooLow(key))
1335                return absLowest();
1336            TreeMap.Entry<K,V> e = m.getCeilingEntry(key);
1337            return (e == null || tooHigh(e.key)) ? null : e;
1338        }
1339
1340        final TreeMap.Entry<K,V> absHigher(K key) {
1341            if (tooLow(key))
1342                return absLowest();
1343            TreeMap.Entry<K,V> e = m.getHigherEntry(key);
1344            return (e == null || tooHigh(e.key)) ? null : e;
1345        }
1346
1347        final TreeMap.Entry<K,V> absFloor(K key) {
1348            if (tooHigh(key))
1349                return absHighest();
1350            TreeMap.Entry<K,V> e = m.getFloorEntry(key);
1351            return (e == null || tooLow(e.key)) ? null : e;
1352        }
1353
1354        final TreeMap.Entry<K,V> absLower(K key) {
1355            if (tooHigh(key))
1356                return absHighest();
1357            TreeMap.Entry<K,V> e = m.getLowerEntry(key);
1358            return (e == null || tooLow(e.key)) ? null : e;
1359        }
1360
1361        /** Returns the absolute high fence for ascending traversal */
1362        final TreeMap.Entry<K,V> absHighFence() {
1363            return (toEnd ? null : (hiInclusive ?
1364                                    m.getHigherEntry(hi) :
1365                                    m.getCeilingEntry(hi)));
1366        }
1367
1368        /** Return the absolute low fence for descending traversal  */
1369        final TreeMap.Entry<K,V> absLowFence() {
1370            return (fromStart ? null : (loInclusive ?
1371                                        m.getLowerEntry(lo) :
1372                                        m.getFloorEntry(lo)));
1373        }
1374
1375        // Abstract methods defined in ascending vs descending classes
1376        // These relay to the appropriate absolute versions
1377
1378        abstract TreeMap.Entry<K,V> subLowest();
1379        abstract TreeMap.Entry<K,V> subHighest();
1380        abstract TreeMap.Entry<K,V> subCeiling(K key);
1381        abstract TreeMap.Entry<K,V> subHigher(K key);
1382        abstract TreeMap.Entry<K,V> subFloor(K key);
1383        abstract TreeMap.Entry<K,V> subLower(K key);
1384
1385        /** Returns ascending iterator from the perspective of this submap */
1386        abstract Iterator<K> keyIterator();
1387
1388        /** Returns descending iterator from the perspective of this submap */
1389        abstract Iterator<K> descendingKeyIterator();
1390
1391        // public methods
1392
1393        public boolean isEmpty() {
1394            return (fromStart && toEnd) ? m.isEmpty() : entrySet().isEmpty();
1395        }
1396
1397        public int size() {
1398            return (fromStart && toEnd) ? m.size() : entrySet().size();
1399        }
1400
1401        public final boolean containsKey(Object key) {
1402            return inRange(key) && m.containsKey(key);
1403        }
1404
1405        public final V put(K key, V value) {
1406            if (!inRange(key))
1407                throw new IllegalArgumentException("key out of range");
1408            return m.put(key, value);
1409        }
1410
1411        public final V get(Object key) {
1412            return !inRange(key) ? null :  m.get(key);
1413        }
1414
1415        public final V remove(Object key) {
1416            return !inRange(key) ? null : m.remove(key);
1417        }
1418
1419        public final Map.Entry<K,V> ceilingEntry(K key) {
1420            return exportEntry(subCeiling(key));
1421        }
1422
1423        public final K ceilingKey(K key) {
1424            return keyOrNull(subCeiling(key));
1425        }
1426
1427        public final Map.Entry<K,V> higherEntry(K key) {
1428            return exportEntry(subHigher(key));
1429        }
1430
1431        public final K higherKey(K key) {
1432            return keyOrNull(subHigher(key));
1433        }
1434
1435        public final Map.Entry<K,V> floorEntry(K key) {
1436            return exportEntry(subFloor(key));
1437        }
1438
1439        public final K floorKey(K key) {
1440            return keyOrNull(subFloor(key));
1441        }
1442
1443        public final Map.Entry<K,V> lowerEntry(K key) {
1444            return exportEntry(subLower(key));
1445        }
1446
1447        public final K lowerKey(K key) {
1448            return keyOrNull(subLower(key));
1449        }
1450
1451        public final K firstKey() {
1452            return key(subLowest());
1453        }
1454
1455        public final K lastKey() {
1456            return key(subHighest());
1457        }
1458
1459        public final Map.Entry<K,V> firstEntry() {
1460            return exportEntry(subLowest());
1461        }
1462
1463        public final Map.Entry<K,V> lastEntry() {
1464            return exportEntry(subHighest());
1465        }
1466
1467        public final Map.Entry<K,V> pollFirstEntry() {
1468            TreeMap.Entry<K,V> e = subLowest();
1469            Map.Entry<K,V> result = exportEntry(e);
1470            if (e != null)
1471                m.deleteEntry(e);
1472            return result;
1473        }
1474
1475        public final Map.Entry<K,V> pollLastEntry() {
1476            TreeMap.Entry<K,V> e = subHighest();
1477            Map.Entry<K,V> result = exportEntry(e);
1478            if (e != null)
1479                m.deleteEntry(e);
1480            return result;
1481        }
1482
1483        // Views
1484        transient NavigableMap<K,V> descendingMapView = null;
1485        transient EntrySetView entrySetView = null;
1486        transient KeySet<K> navigableKeySetView = null;
1487
1488        public final NavigableSet<K> navigableKeySet() {
1489            KeySet<K> nksv = navigableKeySetView;
1490            return (nksv != null) ? nksv :
1491                (navigableKeySetView = new TreeMap.KeySet(this));
1492        }
1493
1494        public final Set<K> keySet() {
1495            return navigableKeySet();
1496        }
1497
1498        public NavigableSet<K> descendingKeySet() {
1499            return descendingMap().navigableKeySet();
1500        }
1501
1502        public final SortedMap<K,V> subMap(K fromKey, K toKey) {
1503            return subMap(fromKey, true, toKey, false);
1504        }
1505
1506        public final SortedMap<K,V> headMap(K toKey) {
1507            return headMap(toKey, false);
1508        }
1509
1510        public final SortedMap<K,V> tailMap(K fromKey) {
1511            return tailMap(fromKey, true);
1512        }
1513
1514        // View classes
1515
1516        abstract class EntrySetView extends AbstractSet<Map.Entry<K,V>> {
1517            private transient int size = -1, sizeModCount;
1518
1519            public int size() {
1520                if (fromStart && toEnd)
1521                    return m.size();
1522                if (size == -1 || sizeModCount != m.modCount) {
1523                    sizeModCount = m.modCount;
1524                    size = 0;
1525                    Iterator i = iterator();
1526                    while (i.hasNext()) {
1527                        size++;
1528                        i.next();
1529                    }
1530                }
1531                return size;
1532            }
1533
1534            public boolean isEmpty() {
1535                TreeMap.Entry<K,V> n = absLowest();
1536                return n == null || tooHigh(n.key);
1537            }
1538
1539            public boolean contains(Object o) {
1540                if (!(o instanceof Map.Entry))
1541                    return false;
1542                Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
1543                K key = entry.getKey();
1544                if (!inRange(key))
1545                    return false;
1546                TreeMap.Entry node = m.getEntry(key);
1547                return node != null &&
1548                    valEquals(node.getValue(), entry.getValue());
1549            }
1550
1551            public boolean remove(Object o) {
1552                if (!(o instanceof Map.Entry))
1553                    return false;
1554                Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
1555                K key = entry.getKey();
1556                if (!inRange(key))
1557                    return false;
1558                TreeMap.Entry<K,V> node = m.getEntry(key);
1559                if (node!=null && valEquals(node.getValue(),
1560                                            entry.getValue())) {
1561                    m.deleteEntry(node);
1562                    return true;
1563                }
1564                return false;
1565            }
1566        }
1567
1568        /**
1569         * Iterators for SubMaps
1570         */
1571        abstract class SubMapIterator<T> implements Iterator<T> {
1572            TreeMap.Entry<K,V> lastReturned;
1573            TreeMap.Entry<K,V> next;
1574            final Object fenceKey;
1575            int expectedModCount;
1576
1577            SubMapIterator(TreeMap.Entry<K,V> first,
1578                           TreeMap.Entry<K,V> fence) {
1579                expectedModCount = m.modCount;
1580                lastReturned = null;
1581                next = first;
1582                fenceKey = fence == null ? UNBOUNDED : fence.key;
1583            }
1584
1585            public final boolean hasNext() {
1586                return next != null && next.key != fenceKey;
1587            }
1588
1589            final TreeMap.Entry<K,V> nextEntry() {
1590                TreeMap.Entry<K,V> e = next;
1591                if (e == null || e.key == fenceKey)
1592                    throw new NoSuchElementException();
1593                if (m.modCount != expectedModCount)
1594                    throw new ConcurrentModificationException();
1595                next = successor(e);
1596                lastReturned = e;
1597                return e;
1598            }
1599
1600            final TreeMap.Entry<K,V> prevEntry() {
1601                TreeMap.Entry<K,V> e = next;
1602                if (e == null || e.key == fenceKey)
1603                    throw new NoSuchElementException();
1604                if (m.modCount != expectedModCount)
1605                    throw new ConcurrentModificationException();
1606                next = predecessor(e);
1607                lastReturned = e;
1608                return e;
1609            }
1610
1611            final void removeAscending() {
1612                if (lastReturned == null)
1613                    throw new IllegalStateException();
1614                if (m.modCount != expectedModCount)
1615                    throw new ConcurrentModificationException();
1616                // deleted entries are replaced by their successors
1617                if (lastReturned.left != null && lastReturned.right != null)
1618                    next = lastReturned;
1619                m.deleteEntry(lastReturned);
1620                lastReturned = null;
1621                expectedModCount = m.modCount;
1622            }
1623
1624            final void removeDescending() {
1625                if (lastReturned == null)
1626                    throw new IllegalStateException();
1627                if (m.modCount != expectedModCount)
1628                    throw new ConcurrentModificationException();
1629                m.deleteEntry(lastReturned);
1630                lastReturned = null;
1631                expectedModCount = m.modCount;
1632            }
1633
1634        }
1635
1636        final class SubMapEntryIterator extends SubMapIterator<Map.Entry<K,V>> {
1637            SubMapEntryIterator(TreeMap.Entry<K,V> first,
1638                                TreeMap.Entry<K,V> fence) {
1639                super(first, fence);
1640            }
1641            public Map.Entry<K,V> next() {
1642                return nextEntry();
1643            }
1644            public void remove() {
1645                removeAscending();
1646            }
1647        }
1648
1649        final class SubMapKeyIterator extends SubMapIterator<K> {
1650            SubMapKeyIterator(TreeMap.Entry<K,V> first,
1651                              TreeMap.Entry<K,V> fence) {
1652                super(first, fence);
1653            }
1654            public K next() {
1655                return nextEntry().key;
1656            }
1657            public void remove() {
1658                removeAscending();
1659            }
1660        }
1661
1662        final class DescendingSubMapEntryIterator extends SubMapIterator<Map.Entry<K,V>> {
1663            DescendingSubMapEntryIterator(TreeMap.Entry<K,V> last,
1664                                          TreeMap.Entry<K,V> fence) {
1665                super(last, fence);
1666            }
1667
1668            public Map.Entry<K,V> next() {
1669                return prevEntry();
1670            }
1671            public void remove() {
1672                removeDescending();
1673            }
1674        }
1675
1676        final class DescendingSubMapKeyIterator extends SubMapIterator<K> {
1677            DescendingSubMapKeyIterator(TreeMap.Entry<K,V> last,
1678                                        TreeMap.Entry<K,V> fence) {
1679                super(last, fence);
1680            }
1681            public K next() {
1682                return prevEntry().key;
1683            }
1684            public void remove() {
1685                removeDescending();
1686            }
1687        }
1688    }
1689
1690    /**
1691     * @serial include
1692     */
1693    static final class AscendingSubMap<K,V> extends NavigableSubMap<K,V> {
1694        private static final long serialVersionUID = 912986545866124060L;
1695
1696        AscendingSubMap(TreeMap<K,V> m,
1697                        boolean fromStart, K lo, boolean loInclusive,
1698                        boolean toEnd,     K hi, boolean hiInclusive) {
1699            super(m, fromStart, lo, loInclusive, toEnd, hi, hiInclusive);
1700        }
1701
1702        public Comparator<? super K> comparator() {
1703            return m.comparator();
1704        }
1705
1706        public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,
1707                                        K toKey,   boolean toInclusive) {
1708            if (!inRange(fromKey, fromInclusive))
1709                throw new IllegalArgumentException("fromKey out of range");
1710            if (!inRange(toKey, toInclusive))
1711                throw new IllegalArgumentException("toKey out of range");
1712            return new AscendingSubMap(m,
1713                                       false, fromKey, fromInclusive,
1714                                       false, toKey,   toInclusive);
1715        }
1716
1717        public NavigableMap<K,V> headMap(K toKey, boolean inclusive) {
1718            if (!inRange(toKey, inclusive))
1719                throw new IllegalArgumentException("toKey out of range");
1720            return new AscendingSubMap(m,
1721                                       fromStart, lo,    loInclusive,
1722                                       false,     toKey, inclusive);
1723        }
1724
1725        public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive) {
1726            if (!inRange(fromKey, inclusive))
1727                throw new IllegalArgumentException("fromKey out of range");
1728            return new AscendingSubMap(m,
1729                                       false, fromKey, inclusive,
1730                                       toEnd, hi,      hiInclusive);
1731        }
1732
1733        public NavigableMap<K,V> descendingMap() {
1734            NavigableMap<K,V> mv = descendingMapView;
1735            return (mv != null) ? mv :
1736                (descendingMapView =
1737                 new DescendingSubMap(m,
1738                                      fromStart, lo, loInclusive,
1739                                      toEnd,     hi, hiInclusive));
1740        }
1741
1742        Iterator<K> keyIterator() {
1743            return new SubMapKeyIterator(absLowest(), absHighFence());
1744        }
1745
1746        Iterator<K> descendingKeyIterator() {
1747            return new DescendingSubMapKeyIterator(absHighest(), absLowFence());
1748        }
1749
1750        final class AscendingEntrySetView extends EntrySetView {
1751            public Iterator<Map.Entry<K,V>> iterator() {
1752                return new SubMapEntryIterator(absLowest(), absHighFence());
1753            }
1754        }
1755
1756        public Set<Map.Entry<K,V>> entrySet() {
1757            EntrySetView es = entrySetView;
1758            return (es != null) ? es : new AscendingEntrySetView();
1759        }
1760
1761        TreeMap.Entry<K,V> subLowest()       { return absLowest(); }
1762        TreeMap.Entry<K,V> subHighest()      { return absHighest(); }
1763        TreeMap.Entry<K,V> subCeiling(K key) { return absCeiling(key); }
1764        TreeMap.Entry<K,V> subHigher(K key)  { return absHigher(key); }
1765        TreeMap.Entry<K,V> subFloor(K key)   { return absFloor(key); }
1766        TreeMap.Entry<K,V> subLower(K key)   { return absLower(key); }
1767    }
1768
1769    /**
1770     * @serial include
1771     */
1772    static final class DescendingSubMap<K,V>  extends NavigableSubMap<K,V> {
1773        private static final long serialVersionUID = 912986545866120460L;
1774        DescendingSubMap(TreeMap<K,V> m,
1775                        boolean fromStart, K lo, boolean loInclusive,
1776                        boolean toEnd,     K hi, boolean hiInclusive) {
1777            super(m, fromStart, lo, loInclusive, toEnd, hi, hiInclusive);
1778        }
1779
1780        private final Comparator<? super K> reverseComparator =
1781            Collections.reverseOrder(m.comparator);
1782
1783        public Comparator<? super K> comparator() {
1784            return reverseComparator;
1785        }
1786
1787        public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,
1788                                        K toKey,   boolean toInclusive) {
1789            if (!inRange(fromKey, fromInclusive))
1790                throw new IllegalArgumentException("fromKey out of range");
1791            if (!inRange(toKey, toInclusive))
1792                throw new IllegalArgumentException("toKey out of range");
1793            return new DescendingSubMap(m,
1794                                        false, toKey,   toInclusive,
1795                                        false, fromKey, fromInclusive);
1796        }
1797
1798        public NavigableMap<K,V> headMap(K toKey, boolean inclusive) {
1799            if (!inRange(toKey, inclusive))
1800                throw new IllegalArgumentException("toKey out of range");
1801            return new DescendingSubMap(m,
1802                                        false, toKey, inclusive,
1803                                        toEnd, hi,    hiInclusive);
1804        }
1805
1806        public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive) {
1807            if (!inRange(fromKey, inclusive))
1808                throw new IllegalArgumentException("fromKey out of range");
1809            return new DescendingSubMap(m,
1810                                        fromStart, lo, loInclusive,
1811                                        false, fromKey, inclusive);
1812        }
1813
1814        public NavigableMap<K,V> descendingMap() {
1815            NavigableMap<K,V> mv = descendingMapView;
1816            return (mv != null) ? mv :
1817                (descendingMapView =
1818                 new AscendingSubMap(m,
1819                                     fromStart, lo, loInclusive,
1820                                     toEnd,     hi, hiInclusive));
1821        }
1822
1823        Iterator<K> keyIterator() {
1824            return new DescendingSubMapKeyIterator(absHighest(), absLowFence());
1825        }
1826
1827        Iterator<K> descendingKeyIterator() {
1828            return new SubMapKeyIterator(absLowest(), absHighFence());
1829        }
1830
1831        final class DescendingEntrySetView extends EntrySetView {
1832            public Iterator<Map.Entry<K,V>> iterator() {
1833                return new DescendingSubMapEntryIterator(absHighest(), absLowFence());
1834            }
1835        }
1836
1837        public Set<Map.Entry<K,V>> entrySet() {
1838            EntrySetView es = entrySetView;
1839            return (es != null) ? es : new DescendingEntrySetView();
1840        }
1841
1842        TreeMap.Entry<K,V> subLowest()       { return absHighest(); }
1843        TreeMap.Entry<K,V> subHighest()      { return absLowest(); }
1844        TreeMap.Entry<K,V> subCeiling(K key) { return absFloor(key); }
1845        TreeMap.Entry<K,V> subHigher(K key)  { return absLower(key); }
1846        TreeMap.Entry<K,V> subFloor(K key)   { return absCeiling(key); }
1847        TreeMap.Entry<K,V> subLower(K key)   { return absHigher(key); }
1848    }
1849
1850    /**
1851     * This class exists solely for the sake of serialization
1852     * compatibility with previous releases of TreeMap that did not
1853     * support NavigableMap.  It translates an old-version SubMap into
1854     * a new-version AscendingSubMap. This class is never otherwise
1855     * used.
1856     *
1857     * @serial include
1858     */
1859    private class SubMap extends AbstractMap<K,V>
1860        implements SortedMap<K,V>, java.io.Serializable {
1861        private static final long serialVersionUID = -6520786458950516097L;
1862        private boolean fromStart = false, toEnd = false;
1863        private K fromKey, toKey;
1864        private Object readResolve() {
1865            return new AscendingSubMap(TreeMap.this,
1866                                       fromStart, fromKey, true,
1867                                       toEnd, toKey, false);
1868        }
1869        public Set<Map.Entry<K,V>> entrySet() { throw new InternalError(); }
1870        public K lastKey() { throw new InternalError(); }
1871        public K firstKey() { throw new InternalError(); }
1872        public SortedMap<K,V> subMap(K fromKey, K toKey) { throw new InternalError(); }
1873        public SortedMap<K,V> headMap(K toKey) { throw new InternalError(); }
1874        public SortedMap<K,V> tailMap(K fromKey) { throw new InternalError(); }
1875        public Comparator<? super K> comparator() { throw new InternalError(); }
1876    }
1877
1878
1879    // Red-black mechanics
1880
1881    private static final boolean RED   = false;
1882    private static final boolean BLACK = true;
1883
1884    /**
1885     * Node in the Tree.  Doubles as a means to pass key-value pairs back to
1886     * user (see Map.Entry).
1887     */
1888
1889    static final class Entry<K,V> implements Map.Entry<K,V> {
1890        K key;
1891        V value;
1892        Entry<K,V> left = null;
1893        Entry<K,V> right = null;
1894        Entry<K,V> parent;
1895        boolean color = BLACK;
1896
1897        /**
1898         * Make a new cell with given key, value, and parent, and with
1899         * {@code null} child links, and BLACK color.
1900         */
1901        Entry(K key, V value, Entry<K,V> parent) {
1902            this.key = key;
1903            this.value = value;
1904            this.parent = parent;
1905        }
1906
1907        /**
1908         * Returns the key.
1909         *
1910         * @return the key
1911         */
1912        public K getKey() {
1913            return key;
1914        }
1915
1916        /**
1917         * Returns the value associated with the key.
1918         *
1919         * @return the value associated with the key
1920         */
1921        public V getValue() {
1922            return value;
1923        }
1924
1925        /**
1926         * Replaces the value currently associated with the key with the given
1927         * value.
1928         *
1929         * @return the value associated with the key before this method was
1930         *         called
1931         */
1932        public V setValue(V value) {
1933            V oldValue = this.value;
1934            this.value = value;
1935            return oldValue;
1936        }
1937
1938        public boolean equals(Object o) {
1939            if (!(o instanceof Map.Entry))
1940                return false;
1941            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
1942
1943            return valEquals(key,e.getKey()) && valEquals(value,e.getValue());
1944        }
1945
1946        public int hashCode() {
1947            int keyHash = (key==null ? 0 : key.hashCode());
1948            int valueHash = (value==null ? 0 : value.hashCode());
1949            return keyHash ^ valueHash;
1950        }
1951
1952        public String toString() {
1953            return key + "=" + value;
1954        }
1955    }
1956
1957    /**
1958     * Returns the first Entry in the TreeMap (according to the TreeMap's
1959     * key-sort function).  Returns null if the TreeMap is empty.
1960     */
1961    final Entry<K,V> getFirstEntry() {
1962        Entry<K,V> p = root;
1963        if (p != null)
1964            while (p.left != null)
1965                p = p.left;
1966        return p;
1967    }
1968
1969    /**
1970     * Returns the last Entry in the TreeMap (according to the TreeMap's
1971     * key-sort function).  Returns null if the TreeMap is empty.
1972     */
1973    final Entry<K,V> getLastEntry() {
1974        Entry<K,V> p = root;
1975        if (p != null)
1976            while (p.right != null)
1977                p = p.right;
1978        return p;
1979    }
1980
1981    /**
1982     * Returns the successor of the specified Entry, or null if no such.
1983     */
1984    static <K,V> TreeMap.Entry<K,V> successor(Entry<K,V> t) {
1985        if (t == null)
1986            return null;
1987        else if (t.right != null) {
1988            Entry<K,V> p = t.right;
1989            while (p.left != null)
1990                p = p.left;
1991            return p;
1992        } else {
1993            Entry<K,V> p = t.parent;
1994            Entry<K,V> ch = t;
1995            while (p != null && ch == p.right) {
1996                ch = p;
1997                p = p.parent;
1998            }
1999            return p;
2000        }
2001    }
2002
2003    /**
2004     * Returns the predecessor of the specified Entry, or null if no such.
2005     */
2006    static <K,V> Entry<K,V> predecessor(Entry<K,V> t) {
2007        if (t == null)
2008            return null;
2009        else if (t.left != null) {
2010            Entry<K,V> p = t.left;
2011            while (p.right != null)
2012                p = p.right;
2013            return p;
2014        } else {
2015            Entry<K,V> p = t.parent;
2016            Entry<K,V> ch = t;
2017            while (p != null && ch == p.left) {
2018                ch = p;
2019                p = p.parent;
2020            }
2021            return p;
2022        }
2023    }
2024
2025    /**
2026     * Balancing operations.
2027     *
2028     * Implementations of rebalancings during insertion and deletion are
2029     * slightly different than the CLR version.  Rather than using dummy
2030     * nilnodes, we use a set of accessors that deal properly with null.  They
2031     * are used to avoid messiness surrounding nullness checks in the main
2032     * algorithms.
2033     */
2034
2035    private static <K,V> boolean colorOf(Entry<K,V> p) {
2036        return (p == null ? BLACK : p.color);
2037    }
2038
2039    private static <K,V> Entry<K,V> parentOf(Entry<K,V> p) {
2040        return (p == null ? null: p.parent);
2041    }
2042
2043    private static <K,V> void setColor(Entry<K,V> p, boolean c) {
2044        if (p != null)
2045            p.color = c;
2046    }
2047
2048    private static <K,V> Entry<K,V> leftOf(Entry<K,V> p) {
2049        return (p == null) ? null: p.left;
2050    }
2051
2052    private static <K,V> Entry<K,V> rightOf(Entry<K,V> p) {
2053        return (p == null) ? null: p.right;
2054    }
2055
2056    /** From CLR */
2057    private void rotateLeft(Entry<K,V> p) {
2058        if (p != null) {
2059            Entry<K,V> r = p.right;
2060            p.right = r.left;
2061            if (r.left != null)
2062                r.left.parent = p;
2063            r.parent = p.parent;
2064            if (p.parent == null)
2065                root = r;
2066            else if (p.parent.left == p)
2067                p.parent.left = r;
2068            else
2069                p.parent.right = r;
2070            r.left = p;
2071            p.parent = r;
2072        }
2073    }
2074
2075    /** From CLR */
2076    private void rotateRight(Entry<K,V> p) {
2077        if (p != null) {
2078            Entry<K,V> l = p.left;
2079            p.left = l.right;
2080            if (l.right != null) l.right.parent = p;
2081            l.parent = p.parent;
2082            if (p.parent == null)
2083                root = l;
2084            else if (p.parent.right == p)
2085                p.parent.right = l;
2086            else p.parent.left = l;
2087            l.right = p;
2088            p.parent = l;
2089        }
2090    }
2091
2092    /** From CLR */
2093    private void fixAfterInsertion(Entry<K,V> x) {
2094        x.color = RED;
2095
2096        while (x != null && x != root && x.parent.color == RED) {
2097            if (parentOf(x) == leftOf(parentOf(parentOf(x)))) {
2098                Entry<K,V> y = rightOf(parentOf(parentOf(x)));
2099                if (colorOf(y) == RED) {
2100                    setColor(parentOf(x), BLACK);
2101                    setColor(y, BLACK);
2102                    setColor(parentOf(parentOf(x)), RED);
2103                    x = parentOf(parentOf(x));
2104                } else {
2105                    if (x == rightOf(parentOf(x))) {
2106                        x = parentOf(x);
2107                        rotateLeft(x);
2108                    }
2109                    setColor(parentOf(x), BLACK);
2110                    setColor(parentOf(parentOf(x)), RED);
2111                    rotateRight(parentOf(parentOf(x)));
2112                }
2113            } else {
2114                Entry<K,V> y = leftOf(parentOf(parentOf(x)));
2115                if (colorOf(y) == RED) {
2116                    setColor(parentOf(x), BLACK);
2117                    setColor(y, BLACK);
2118                    setColor(parentOf(parentOf(x)), RED);
2119                    x = parentOf(parentOf(x));
2120                } else {
2121                    if (x == leftOf(parentOf(x))) {
2122                        x = parentOf(x);
2123                        rotateRight(x);
2124                    }
2125                    setColor(parentOf(x), BLACK);
2126                    setColor(parentOf(parentOf(x)), RED);
2127                    rotateLeft(parentOf(parentOf(x)));
2128                }
2129            }
2130        }
2131        root.color = BLACK;
2132    }
2133
2134    /**
2135     * Delete node p, and then rebalance the tree.
2136     */
2137    private void deleteEntry(Entry<K,V> p) {
2138        modCount++;
2139        size--;
2140
2141        // If strictly internal, copy successor's element to p and then make p
2142        // point to successor.
2143        if (p.left != null && p.right != null) {
2144            Entry<K,V> s = successor(p);
2145            p.key = s.key;
2146            p.value = s.value;
2147            p = s;
2148        } // p has 2 children
2149
2150        // Start fixup at replacement node, if it exists.
2151        Entry<K,V> replacement = (p.left != null ? p.left : p.right);
2152
2153        if (replacement != null) {
2154            // Link replacement to parent
2155            replacement.parent = p.parent;
2156            if (p.parent == null)
2157                root = replacement;
2158            else if (p == p.parent.left)
2159                p.parent.left  = replacement;
2160            else
2161                p.parent.right = replacement;
2162
2163            // Null out links so they are OK to use by fixAfterDeletion.
2164            p.left = p.right = p.parent = null;
2165
2166            // Fix replacement
2167            if (p.color == BLACK)
2168                fixAfterDeletion(replacement);
2169        } else if (p.parent == null) { // return if we are the only node.
2170            root = null;
2171        } else { //  No children. Use self as phantom replacement and unlink.
2172            if (p.color == BLACK)
2173                fixAfterDeletion(p);
2174
2175            if (p.parent != null) {
2176                if (p == p.parent.left)
2177                    p.parent.left = null;
2178                else if (p == p.parent.right)
2179                    p.parent.right = null;
2180                p.parent = null;
2181            }
2182        }
2183    }
2184
2185    /** From CLR */
2186    private void fixAfterDeletion(Entry<K,V> x) {
2187        while (x != root && colorOf(x) == BLACK) {
2188            if (x == leftOf(parentOf(x))) {
2189                Entry<K,V> sib = rightOf(parentOf(x));
2190
2191                if (colorOf(sib) == RED) {
2192                    setColor(sib, BLACK);
2193                    setColor(parentOf(x), RED);
2194                    rotateLeft(parentOf(x));
2195                    sib = rightOf(parentOf(x));
2196                }
2197
2198                if (colorOf(leftOf(sib))  == BLACK &&
2199                    colorOf(rightOf(sib)) == BLACK) {
2200                    setColor(sib, RED);
2201                    x = parentOf(x);
2202                } else {
2203                    if (colorOf(rightOf(sib)) == BLACK) {
2204                        setColor(leftOf(sib), BLACK);
2205                        setColor(sib, RED);
2206                        rotateRight(sib);
2207                        sib = rightOf(parentOf(x));
2208                    }
2209                    setColor(sib, colorOf(parentOf(x)));
2210                    setColor(parentOf(x), BLACK);
2211                    setColor(rightOf(sib), BLACK);
2212                    rotateLeft(parentOf(x));
2213                    x = root;
2214                }
2215            } else { // symmetric
2216                Entry<K,V> sib = leftOf(parentOf(x));
2217
2218                if (colorOf(sib) == RED) {
2219                    setColor(sib, BLACK);
2220                    setColor(parentOf(x), RED);
2221                    rotateRight(parentOf(x));
2222                    sib = leftOf(parentOf(x));
2223                }
2224
2225                if (colorOf(rightOf(sib)) == BLACK &&
2226                    colorOf(leftOf(sib)) == BLACK) {
2227                    setColor(sib, RED);
2228                    x = parentOf(x);
2229                } else {
2230                    if (colorOf(leftOf(sib)) == BLACK) {
2231                        setColor(rightOf(sib), BLACK);
2232                        setColor(sib, RED);
2233                        rotateLeft(sib);
2234                        sib = leftOf(parentOf(x));
2235                    }
2236                    setColor(sib, colorOf(parentOf(x)));
2237                    setColor(parentOf(x), BLACK);
2238                    setColor(leftOf(sib), BLACK);
2239                    rotateRight(parentOf(x));
2240                    x = root;
2241                }
2242            }
2243        }
2244
2245        setColor(x, BLACK);
2246    }
2247
2248    private static final long serialVersionUID = 919286545866124006L;
2249
2250    /**
2251     * Save the state of the {@code TreeMap} instance to a stream (i.e.,
2252     * serialize it).
2253     *
2254     * @serialData The <em>size</em> of the TreeMap (the number of key-value
2255     *             mappings) is emitted (int), followed by the key (Object)
2256     *             and value (Object) for each key-value mapping represented
2257     *             by the TreeMap. The key-value mappings are emitted in
2258     *             key-order (as determined by the TreeMap's Comparator,
2259     *             or by the keys' natural ordering if the TreeMap has no
2260     *             Comparator).
2261     */
2262    private void writeObject(java.io.ObjectOutputStream s)
2263        throws java.io.IOException {
2264        // Write out the Comparator and any hidden stuff
2265        s.defaultWriteObject();
2266
2267        // Write out size (number of Mappings)
2268        s.writeInt(size);
2269
2270        // Write out keys and values (alternating)
2271        for (Iterator<Map.Entry<K,V>> i = entrySet().iterator(); i.hasNext(); ) {
2272            Map.Entry<K,V> e = i.next();
2273            s.writeObject(e.getKey());
2274            s.writeObject(e.getValue());
2275        }
2276    }
2277
2278    /**
2279     * Reconstitute the {@code TreeMap} instance from a stream (i.e.,
2280     * deserialize it).
2281     */
2282    private void readObject(final java.io.ObjectInputStream s)
2283        throws java.io.IOException, ClassNotFoundException {
2284        // Read in the Comparator and any hidden stuff
2285        s.defaultReadObject();
2286
2287        // Read in size
2288        int size = s.readInt();
2289
2290        buildFromSorted(size, null, s, null);
2291    }
2292
2293    /** Intended to be called only from TreeSet.readObject */
2294    void readTreeSet(int size, java.io.ObjectInputStream s, V defaultVal)
2295        throws java.io.IOException, ClassNotFoundException {
2296        buildFromSorted(size, null, s, defaultVal);
2297    }
2298
2299    /** Intended to be called only from TreeSet.addAll */
2300    void addAllForTreeSet(SortedSet<? extends K> set, V defaultVal) {
2301        try {
2302            buildFromSorted(set.size(), set.iterator(), null, defaultVal);
2303        } catch (java.io.IOException cannotHappen) {
2304        } catch (ClassNotFoundException cannotHappen) {
2305        }
2306    }
2307
2308
2309    /**
2310     * Linear time tree building algorithm from sorted data.  Can accept keys
2311     * and/or values from iterator or stream. This leads to too many
2312     * parameters, but seems better than alternatives.  The four formats
2313     * that this method accepts are:
2314     *
2315     *    1) An iterator of Map.Entries.  (it != null, defaultVal == null).
2316     *    2) An iterator of keys.         (it != null, defaultVal != null).
2317     *    3) A stream of alternating serialized keys and values.
2318     *                                   (it == null, defaultVal == null).
2319     *    4) A stream of serialized keys. (it == null, defaultVal != null).
2320     *
2321     * It is assumed that the comparator of the TreeMap is already set prior
2322     * to calling this method.
2323     *
2324     * @param size the number of keys (or key-value pairs) to be read from
2325     *        the iterator or stream
2326     * @param it If non-null, new entries are created from entries
2327     *        or keys read from this iterator.
2328     * @param str If non-null, new entries are created from keys and
2329     *        possibly values read from this stream in serialized form.
2330     *        Exactly one of it and str should be non-null.
2331     * @param defaultVal if non-null, this default value is used for
2332     *        each value in the map.  If null, each value is read from
2333     *        iterator or stream, as described above.
2334     * @throws IOException propagated from stream reads. This cannot
2335     *         occur if str is null.
2336     * @throws ClassNotFoundException propagated from readObject.
2337     *         This cannot occur if str is null.
2338     */
2339    private void buildFromSorted(int size, Iterator it,
2340                                 java.io.ObjectInputStream str,
2341                                 V defaultVal)
2342        throws  java.io.IOException, ClassNotFoundException {
2343        this.size = size;
2344        root = buildFromSorted(0, 0, size-1, computeRedLevel(size),
2345                               it, str, defaultVal);
2346    }
2347
2348    /**
2349     * Recursive "helper method" that does the real work of the
2350     * previous method.  Identically named parameters have
2351     * identical definitions.  Additional parameters are documented below.
2352     * It is assumed that the comparator and size fields of the TreeMap are
2353     * already set prior to calling this method.  (It ignores both fields.)
2354     *
2355     * @param level the current level of tree. Initial call should be 0.
2356     * @param lo the first element index of this subtree. Initial should be 0.
2357     * @param hi the last element index of this subtree.  Initial should be
2358     *        size-1.
2359     * @param redLevel the level at which nodes should be red.
2360     *        Must be equal to computeRedLevel for tree of this size.
2361     */
2362    private final Entry<K,V> buildFromSorted(int level, int lo, int hi,
2363                                             int redLevel,
2364                                             Iterator it,
2365                                             java.io.ObjectInputStream str,
2366                                             V defaultVal)
2367        throws  java.io.IOException, ClassNotFoundException {
2368        /*
2369         * Strategy: The root is the middlemost element. To get to it, we
2370         * have to first recursively construct the entire left subtree,
2371         * so as to grab all of its elements. We can then proceed with right
2372         * subtree.
2373         *
2374         * The lo and hi arguments are the minimum and maximum
2375         * indices to pull out of the iterator or stream for current subtree.
2376         * They are not actually indexed, we just proceed sequentially,
2377         * ensuring that items are extracted in corresponding order.
2378         */
2379
2380        if (hi < lo) return null;
2381
2382        int mid = (lo + hi) >>> 1;
2383
2384        Entry<K,V> left  = null;
2385        if (lo < mid)
2386            left = buildFromSorted(level+1, lo, mid - 1, redLevel,
2387                                   it, str, defaultVal);
2388
2389        // extract key and/or value from iterator or stream
2390        K key;
2391        V value;
2392        if (it != null) {
2393            if (defaultVal==null) {
2394                Map.Entry<K,V> entry = (Map.Entry<K,V>)it.next();
2395                key = entry.getKey();
2396                value = entry.getValue();
2397            } else {
2398                key = (K)it.next();
2399                value = defaultVal;
2400            }
2401        } else { // use stream
2402            key = (K) str.readObject();
2403            value = (defaultVal != null ? defaultVal : (V) str.readObject());
2404        }
2405
2406        Entry<K,V> middle =  new Entry<>(key, value, null);
2407
2408        // color nodes in non-full bottommost level red
2409        if (level == redLevel)
2410            middle.color = RED;
2411
2412        if (left != null) {
2413            middle.left = left;
2414            left.parent = middle;
2415        }
2416
2417        if (mid < hi) {
2418            Entry<K,V> right = buildFromSorted(level+1, mid+1, hi, redLevel,
2419                                               it, str, defaultVal);
2420            middle.right = right;
2421            right.parent = middle;
2422        }
2423
2424        return middle;
2425    }
2426
2427    /**
2428     * Find the level down to which to assign all nodes BLACK.  This is the
2429     * last `full' level of the complete binary tree produced by
2430     * buildTree. The remaining nodes are colored RED. (This makes a `nice'
2431     * set of color assignments wrt future insertions.) This level number is
2432     * computed by finding the number of splits needed to reach the zeroeth
2433     * node.  (The answer is ~lg(N), but in any case must be computed by same
2434     * quick O(lg(N)) loop.)
2435     */
2436    private static int computeRedLevel(int sz) {
2437        int level = 0;
2438        for (int m = sz - 1; m >= 0; m = m / 2 - 1)
2439            level++;
2440        return level;
2441    }
2442}
2443