TreeMap.java revision f0d9b8aea94c2a207b7b71faaa7a8a2f78ddf1ea
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.  Oracle designates this
9 * particular file as subject to the "Classpath" exception as provided
10 * by Oracle in the LICENSE file that accompanied this code.
11 *
12 * This code is distributed in the hope that it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 * version 2 for more details (a copy is included in the LICENSE file that
16 * accompanied this code).
17 *
18 * You should have received a copy of the GNU General Public License version
19 * 2 along with this work; if not, write to the Free Software Foundation,
20 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
21 *
22 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
23 * or visit www.oracle.com if you need additional information or have any
24 * questions.
25 */
26
27package java.util;
28
29import java.io.Serializable;
30import java.util.function.BiConsumer;
31import java.util.function.BiFunction;
32import java.util.function.Consumer;
33
34/**
35 * A Red-Black tree based {@link NavigableMap} implementation.
36 * The map is sorted according to the {@linkplain Comparable natural
37 * ordering} of its keys, or by a {@link Comparator} provided at map
38 * creation time, depending on which constructor is used.
39 *
40 * <p>This implementation provides guaranteed log(n) time cost for the
41 * {@code containsKey}, {@code get}, {@code put} and {@code remove}
42 * operations.  Algorithms are adaptations of those in Cormen, Leiserson, and
43 * Rivest's <em>Introduction to Algorithms</em>.
44 *
45 * <p>Note that the ordering maintained by a tree map, like any sorted map, and
46 * whether or not an explicit comparator is provided, must be <em>consistent
47 * with {@code equals}</em> if this sorted map is to correctly implement the
48 * {@code Map} interface.  (See {@code Comparable} or {@code Comparator} for a
49 * precise definition of <em>consistent with equals</em>.)  This is so because
50 * the {@code Map} interface is defined in terms of the {@code equals}
51 * operation, but a sorted map performs all key comparisons using its {@code
52 * compareTo} (or {@code compare}) method, so two keys that are deemed equal by
53 * this method are, from the standpoint of the sorted map, equal.  The behavior
54 * of a sorted map <em>is</em> well-defined even if its ordering is
55 * inconsistent with {@code equals}; it just fails to obey the general contract
56 * of the {@code Map} interface.
57 *
58 * <p><strong>Note that this implementation is not synchronized.</strong>
59 * If multiple threads access a map concurrently, and at least one of the
60 * threads modifies the map structurally, it <em>must</em> be synchronized
61 * externally.  (A structural modification is any operation that adds or
62 * deletes one or more mappings; merely changing the value associated
63 * with an existing key is not a structural modification.)  This is
64 * typically accomplished by synchronizing on some object that naturally
65 * encapsulates the map.
66 * If no such object exists, the map should be "wrapped" using the
67 * {@link Collections#synchronizedSortedMap Collections.synchronizedSortedMap}
68 * method.  This is best done at creation time, to prevent accidental
69 * unsynchronized access to the map: <pre>
70 *   SortedMap m = Collections.synchronizedSortedMap(new TreeMap(...));</pre>
71 *
72 * <p>The iterators returned by the {@code iterator} method of the collections
73 * returned by all of this class's "collection view methods" are
74 * <em>fail-fast</em>: if the map is structurally modified at any time after
75 * the iterator is created, in any way except through the iterator's own
76 * {@code remove} method, the iterator will throw a {@link
77 * ConcurrentModificationException}.  Thus, in the face of concurrent
78 * modification, the iterator fails quickly and cleanly, rather than risking
79 * arbitrary, non-deterministic behavior at an undetermined time in the future.
80 *
81 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
82 * as it is, generally speaking, impossible to make any hard guarantees in the
83 * presence of unsynchronized concurrent modification.  Fail-fast iterators
84 * throw {@code ConcurrentModificationException} on a best-effort basis.
85 * Therefore, it would be wrong to write a program that depended on this
86 * exception for its correctness:   <em>the fail-fast behavior of iterators
87 * should be used only to detect bugs.</em>
88 *
89 * <p>All {@code Map.Entry} pairs returned by methods in this class
90 * and its views represent snapshots of mappings at the time they were
91 * produced. They do <strong>not</strong> support the {@code Entry.setValue}
92 * method. (Note however that it is possible to change mappings in the
93 * associated map using {@code put}.)
94 *
95 * <p>This class is a member of the
96 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
97 * Java Collections Framework</a>.
98 *
99 * @param <K> the type of keys maintained by this map
100 * @param <V> the type of mapped values
101 *
102 * @author  Josh Bloch and Doug Lea
103 * @see Map
104 * @see HashMap
105 * @see Hashtable
106 * @see Comparable
107 * @see Comparator
108 * @see Collection
109 * @since 1.2
110 */
111
112public class TreeMap<K,V>
113    extends AbstractMap<K,V>
114    implements NavigableMap<K,V>, Cloneable, java.io.Serializable
115{
116    /**
117     * The comparator used to maintain order in this tree map, or
118     * null if it uses the natural ordering of its keys.
119     *
120     * @serial
121     */
122    private final Comparator<? super K> comparator;
123
124    private transient TreeMapEntry<K,V> root = null;
125
126    /**
127     * The number of entries in the tree
128     */
129    private transient int size = 0;
130
131    /**
132     * The number of structural modifications to the tree.
133     */
134    private transient int modCount = 0;
135
136    /**
137     * Constructs a new, empty tree map, using the natural ordering of its
138     * keys.  All keys inserted into the map must implement the {@link
139     * Comparable} interface.  Furthermore, all such keys must be
140     * <em>mutually comparable</em>: {@code k1.compareTo(k2)} must not throw
141     * a {@code ClassCastException} for any keys {@code k1} and
142     * {@code k2} in the map.  If the user attempts to put a key into the
143     * map that violates this constraint (for example, the user attempts to
144     * put a string key into a map whose keys are integers), the
145     * {@code put(Object key, Object value)} call will throw a
146     * {@code ClassCastException}.
147     */
148    public TreeMap() {
149        comparator = null;
150    }
151
152    /**
153     * Constructs a new, empty tree map, ordered according to the given
154     * comparator.  All keys inserted into the map must be <em>mutually
155     * comparable</em> by the given comparator: {@code comparator.compare(k1,
156     * k2)} must not throw a {@code ClassCastException} for any keys
157     * {@code k1} and {@code k2} in the map.  If the user attempts to put
158     * a key into the map that violates this constraint, the {@code put(Object
159     * key, Object value)} call will throw a
160     * {@code ClassCastException}.
161     *
162     * @param comparator the comparator that will be used to order this map.
163     *        If {@code null}, the {@linkplain Comparable natural
164     *        ordering} of the keys will be used.
165     */
166    public TreeMap(Comparator<? super K> comparator) {
167        this.comparator = comparator;
168    }
169
170    /**
171     * Constructs a new tree map containing the same mappings as the given
172     * map, ordered according to the <em>natural ordering</em> of its keys.
173     * All keys inserted into the new map must implement the {@link
174     * Comparable} interface.  Furthermore, all such keys must be
175     * <em>mutually comparable</em>: {@code k1.compareTo(k2)} must not throw
176     * a {@code ClassCastException} for any keys {@code k1} and
177     * {@code k2} in the map.  This method runs in n*log(n) time.
178     *
179     * @param  m the map whose mappings are to be placed in this map
180     * @throws ClassCastException if the keys in m are not {@link Comparable},
181     *         or are not mutually comparable
182     * @throws NullPointerException if the specified map is null
183     */
184    public TreeMap(Map<? extends K, ? extends V> m) {
185        comparator = null;
186        putAll(m);
187    }
188
189    /**
190     * Constructs a new tree map containing the same mappings and
191     * using the same ordering as the specified sorted map.  This
192     * method runs in linear time.
193     *
194     * @param  m the sorted map whose mappings are to be placed in this map,
195     *         and whose comparator is to be used to sort this map
196     * @throws NullPointerException if the specified map is null
197     */
198    public TreeMap(SortedMap<K, ? extends V> m) {
199        comparator = m.comparator();
200        try {
201            buildFromSorted(m.size(), m.entrySet().iterator(), null, null);
202        } catch (java.io.IOException cannotHappen) {
203        } catch (ClassNotFoundException cannotHappen) {
204        }
205    }
206
207
208    // Query Operations
209
210    /**
211     * Returns the number of key-value mappings in this map.
212     *
213     * @return the number of key-value mappings in this map
214     */
215    public int size() {
216        return size;
217    }
218
219    /**
220     * Returns {@code true} if this map contains a mapping for the specified
221     * key.
222     *
223     * @param key key whose presence in this map is to be tested
224     * @return {@code true} if this map contains a mapping for the
225     *         specified key
226     * @throws ClassCastException if the specified key cannot be compared
227     *         with the keys currently in the map
228     * @throws NullPointerException if the specified key is null
229     *         and this map uses natural ordering, or its comparator
230     *         does not permit null keys
231     */
232    public boolean containsKey(Object key) {
233        return getEntry(key) != null;
234    }
235
236    /**
237     * Returns {@code true} if this map maps one or more keys to the
238     * specified value.  More formally, returns {@code true} if and only if
239     * this map contains at least one mapping to a value {@code v} such
240     * that {@code (value==null ? v==null : value.equals(v))}.  This
241     * operation will probably require time linear in the map size for
242     * most implementations.
243     *
244     * @param value value whose presence in this map is to be tested
245     * @return {@code true} if a mapping to {@code value} exists;
246     *         {@code false} otherwise
247     * @since 1.2
248     */
249    public boolean containsValue(Object value) {
250        for (TreeMapEntry<K,V> e = getFirstEntry(); e != null; e = successor(e))
251            if (valEquals(value, e.value))
252                return true;
253        return false;
254    }
255
256    /**
257     * Returns the value to which the specified key is mapped,
258     * or {@code null} if this map contains no mapping for the key.
259     *
260     * <p>More formally, if this map contains a mapping from a key
261     * {@code k} to a value {@code v} such that {@code key} compares
262     * equal to {@code k} according to the map's ordering, then this
263     * method returns {@code v}; otherwise it returns {@code null}.
264     * (There can be at most one such mapping.)
265     *
266     * <p>A return value of {@code null} does not <em>necessarily</em>
267     * indicate that the map contains no mapping for the key; it's also
268     * possible that the map explicitly maps the key to {@code null}.
269     * The {@link #containsKey containsKey} operation may be used to
270     * distinguish these two cases.
271     *
272     * @throws ClassCastException if the specified key cannot be compared
273     *         with the keys currently in the map
274     * @throws NullPointerException if the specified key is null
275     *         and this map uses natural ordering, or its comparator
276     *         does not permit null keys
277     */
278    public V get(Object key) {
279        TreeMapEntry<K,V> p = getEntry(key);
280        return (p==null ? null : p.value);
281    }
282
283    public Comparator<? super K> comparator() {
284        return comparator;
285    }
286
287    /**
288     * @throws NoSuchElementException {@inheritDoc}
289     */
290    public K firstKey() {
291        return key(getFirstEntry());
292    }
293
294    /**
295     * @throws NoSuchElementException {@inheritDoc}
296     */
297    public K lastKey() {
298        return key(getLastEntry());
299    }
300
301    /**
302     * Copies all of the mappings from the specified map to this map.
303     * These mappings replace any mappings that this map had for any
304     * of the keys currently in the specified map.
305     *
306     * @param  map mappings to be stored in this map
307     * @throws ClassCastException if the class of a key or value in
308     *         the specified map prevents it from being stored in this map
309     * @throws NullPointerException if the specified map is null or
310     *         the specified map contains a null key and this map does not
311     *         permit null keys
312     */
313    public void putAll(Map<? extends K, ? extends V> map) {
314        int mapSize = map.size();
315        if (size==0 && mapSize!=0 && map instanceof SortedMap) {
316            Comparator<?> c = ((SortedMap<?,?>)map).comparator();
317            if (c == comparator || (c != null && c.equals(comparator))) {
318                ++modCount;
319                try {
320                    buildFromSorted(mapSize, map.entrySet().iterator(),
321                                    null, null);
322                } catch (java.io.IOException cannotHappen) {
323                } catch (ClassNotFoundException cannotHappen) {
324                }
325                return;
326            }
327        }
328        super.putAll(map);
329    }
330
331    /**
332     * Returns this map's entry for the given key, or {@code null} if the map
333     * does not contain an entry for the key.
334     *
335     * @return this map's entry for the given key, or {@code null} if the map
336     *         does not contain an entry for the key
337     * @throws ClassCastException if the specified key cannot be compared
338     *         with the keys currently in the map
339     * @throws NullPointerException if the specified key is null
340     *         and this map uses natural ordering, or its comparator
341     *         does not permit null keys
342     */
343    final TreeMapEntry<K,V> getEntry(Object key) {
344        // Offload comparator-based version for sake of performance
345        if (comparator != null)
346            return getEntryUsingComparator(key);
347        if (key == null)
348            throw new NullPointerException();
349        @SuppressWarnings("unchecked")
350            Comparable<? super K> k = (Comparable<? super K>) key;
351        TreeMapEntry<K,V> p = root;
352        while (p != null) {
353            int cmp = k.compareTo(p.key);
354            if (cmp < 0)
355                p = p.left;
356            else if (cmp > 0)
357                p = p.right;
358            else
359                return p;
360        }
361        return null;
362    }
363
364    /**
365     * Version of getEntry using comparator. Split off from getEntry
366     * for performance. (This is not worth doing for most methods,
367     * that are less dependent on comparator performance, but is
368     * worthwhile here.)
369     */
370    final TreeMapEntry<K,V> getEntryUsingComparator(Object key) {
371        @SuppressWarnings("unchecked")
372            K k = (K) key;
373        Comparator<? super K> cpr = comparator;
374        if (cpr != null) {
375            TreeMapEntry<K,V> p = root;
376            while (p != null) {
377                int cmp = cpr.compare(k, p.key);
378                if (cmp < 0)
379                    p = p.left;
380                else if (cmp > 0)
381                    p = p.right;
382                else
383                    return p;
384            }
385        }
386        return null;
387    }
388
389    /**
390     * Gets the entry corresponding to the specified key; if no such entry
391     * exists, returns the entry for the least key greater than the specified
392     * key; if no such entry exists (i.e., the greatest key in the Tree is less
393     * than the specified key), returns {@code null}.
394     */
395    final TreeMapEntry<K,V> getCeilingEntry(K key) {
396        TreeMapEntry<K,V> p = root;
397        while (p != null) {
398            int cmp = compare(key, p.key);
399            if (cmp < 0) {
400                if (p.left != null)
401                    p = p.left;
402                else
403                    return p;
404            } else if (cmp > 0) {
405                if (p.right != null) {
406                    p = p.right;
407                } else {
408                    TreeMapEntry<K,V> parent = p.parent;
409                    TreeMapEntry<K,V> ch = p;
410                    while (parent != null && ch == parent.right) {
411                        ch = parent;
412                        parent = parent.parent;
413                    }
414                    return parent;
415                }
416            } else
417                return p;
418        }
419        return null;
420    }
421
422    /**
423     * Gets the entry corresponding to the specified key; if no such entry
424     * exists, returns the entry for the greatest key less than the specified
425     * key; if no such entry exists, returns {@code null}.
426     */
427    final TreeMapEntry<K,V> getFloorEntry(K key) {
428        TreeMapEntry<K,V> p = root;
429        while (p != null) {
430            int cmp = compare(key, p.key);
431            if (cmp > 0) {
432                if (p.right != null)
433                    p = p.right;
434                else
435                    return p;
436            } else if (cmp < 0) {
437                if (p.left != null) {
438                    p = p.left;
439                } else {
440                    TreeMapEntry<K,V> parent = p.parent;
441                    TreeMapEntry<K,V> ch = p;
442                    while (parent != null && ch == parent.left) {
443                        ch = parent;
444                        parent = parent.parent;
445                    }
446                    return parent;
447                }
448            } else
449                return p;
450
451        }
452        return null;
453    }
454
455    /**
456     * Gets the entry for the least key greater than the specified
457     * key; if no such entry exists, returns the entry for the least
458     * key greater than the specified key; if no such entry exists
459     * returns {@code null}.
460     */
461    final TreeMapEntry<K,V> getHigherEntry(K key) {
462        TreeMapEntry<K,V> p = root;
463        while (p != null) {
464            int cmp = compare(key, p.key);
465            if (cmp < 0) {
466                if (p.left != null)
467                    p = p.left;
468                else
469                    return p;
470            } else {
471                if (p.right != null) {
472                    p = p.right;
473                } else {
474                    TreeMapEntry<K,V> parent = p.parent;
475                    TreeMapEntry<K,V> ch = p;
476                    while (parent != null && ch == parent.right) {
477                        ch = parent;
478                        parent = parent.parent;
479                    }
480                    return parent;
481                }
482            }
483        }
484        return null;
485    }
486
487    /**
488     * Returns the entry for the greatest key less than the specified key; if
489     * no such entry exists (i.e., the least key in the Tree is greater than
490     * the specified key), returns {@code null}.
491     */
492    final TreeMapEntry<K,V> getLowerEntry(K key) {
493        TreeMapEntry<K,V> p = root;
494        while (p != null) {
495            int cmp = compare(key, p.key);
496            if (cmp > 0) {
497                if (p.right != null)
498                    p = p.right;
499                else
500                    return p;
501            } else {
502                if (p.left != null) {
503                    p = p.left;
504                } else {
505                    TreeMapEntry<K,V> parent = p.parent;
506                    TreeMapEntry<K,V> ch = p;
507                    while (parent != null && ch == parent.left) {
508                        ch = parent;
509                        parent = parent.parent;
510                    }
511                    return parent;
512                }
513            }
514        }
515        return null;
516    }
517
518    /**
519     * Associates the specified value with the specified key in this map.
520     * If the map previously contained a mapping for the key, the old
521     * value is replaced.
522     *
523     * @param key key with which the specified value is to be associated
524     * @param value value to be associated with the specified key
525     *
526     * @return the previous value associated with {@code key}, or
527     *         {@code null} if there was no mapping for {@code key}.
528     *         (A {@code null} return can also indicate that the map
529     *         previously associated {@code null} with {@code key}.)
530     * @throws ClassCastException if the specified key cannot be compared
531     *         with the keys currently in the map
532     * @throws NullPointerException if the specified key is null
533     *         and this map uses natural ordering, or its comparator
534     *         does not permit null keys
535     */
536    public V put(K key, V value) {
537        TreeMapEntry<K,V> t = root;
538        if (t == null) {
539            // We could just call compare(key, key) for its side effect of checking the type and
540            // nullness of the input key. However, several applications seem to have written comparators
541            // that only expect to be called on elements that aren't equal to each other (after
542            // making assumptions about the domain of the map). Clearly, such comparators are bogus
543            // because get() would never work, but TreeSets are frequently used for sorting a set
544            // of distinct elements.
545            //
546            // As a temporary work around, we perform the null & instanceof checks by hand so that
547            // we can guarantee that elements are never compared against themselves.
548            //
549            // compare(key, key);
550            //
551            // **** THIS CHANGE WILL BE REVERTED IN A FUTURE ANDROID RELEASE ****
552            if (comparator != null) {
553                if (key == null) {
554                    comparator.compare(key, key);
555                }
556            } else {
557                if (key == null) {
558                    throw new NullPointerException("key == null");
559                } else if (!(key instanceof Comparable)) {
560                    throw new ClassCastException(
561                            "Cannot cast" + key.getClass().getName() + " to Comparable.");
562                }
563            }
564
565            root = new TreeMapEntry<>(key, value, null);
566            size = 1;
567            modCount++;
568            return null;
569        }
570        int cmp;
571        TreeMapEntry<K,V> parent;
572        // split comparator and comparable paths
573        Comparator<? super K> cpr = comparator;
574        if (cpr != null) {
575            do {
576                parent = t;
577                cmp = cpr.compare(key, t.key);
578                if (cmp < 0)
579                    t = t.left;
580                else if (cmp > 0)
581                    t = t.right;
582                else
583                    return t.setValue(value);
584            } while (t != null);
585        }
586        else {
587            if (key == null)
588                throw new NullPointerException();
589            @SuppressWarnings("unchecked")
590                Comparable<? super K> k = (Comparable<? super K>) key;
591            do {
592                parent = t;
593                cmp = k.compareTo(t.key);
594                if (cmp < 0)
595                    t = t.left;
596                else if (cmp > 0)
597                    t = t.right;
598                else
599                    return t.setValue(value);
600            } while (t != null);
601        }
602        TreeMapEntry<K,V> e = new TreeMapEntry<>(key, value, parent);
603        if (cmp < 0)
604            parent.left = e;
605        else
606            parent.right = e;
607        fixAfterInsertion(e);
608        size++;
609        modCount++;
610        return null;
611    }
612
613    /**
614     * Removes the mapping for this key from this TreeMap if present.
615     *
616     * @param  key key for which mapping should be removed
617     * @return the previous value associated with {@code key}, or
618     *         {@code null} if there was no mapping for {@code key}.
619     *         (A {@code null} return can also indicate that the map
620     *         previously associated {@code null} with {@code key}.)
621     * @throws ClassCastException if the specified key cannot be compared
622     *         with the keys currently in the map
623     * @throws NullPointerException if the specified key is null
624     *         and this map uses natural ordering, or its comparator
625     *         does not permit null keys
626     */
627    public V remove(Object key) {
628        TreeMapEntry<K,V> p = getEntry(key);
629        if (p == null)
630            return null;
631
632        V oldValue = p.value;
633        deleteEntry(p);
634        return oldValue;
635    }
636
637    /**
638     * Removes all of the mappings from this map.
639     * The map will be empty after this call returns.
640     */
641    public void clear() {
642        modCount++;
643        size = 0;
644        root = null;
645    }
646
647    /**
648     * Returns a shallow copy of this {@code TreeMap} instance. (The keys and
649     * values themselves are not cloned.)
650     *
651     * @return a shallow copy of this map
652     */
653    public Object clone() {
654        TreeMap<?,?> clone;
655        try {
656            clone = (TreeMap<?,?>) super.clone();
657        } catch (CloneNotSupportedException e) {
658            throw new InternalError(e);
659        }
660
661        // Put clone into "virgin" state (except for comparator)
662        clone.root = null;
663        clone.size = 0;
664        clone.modCount = 0;
665        clone.entrySet = null;
666        clone.navigableKeySet = null;
667        clone.descendingMap = null;
668
669        // Initialize clone with our mappings
670        try {
671            clone.buildFromSorted(size, entrySet().iterator(), null, null);
672        } catch (java.io.IOException cannotHappen) {
673        } catch (ClassNotFoundException cannotHappen) {
674        }
675
676        return clone;
677    }
678
679    // NavigableMap API methods
680
681    /**
682     * @since 1.6
683     */
684    public Map.Entry<K,V> firstEntry() {
685        return exportEntry(getFirstEntry());
686    }
687
688    /**
689     * @since 1.6
690     */
691    public Map.Entry<K,V> lastEntry() {
692        return exportEntry(getLastEntry());
693    }
694
695    /**
696     * @since 1.6
697     */
698    public Map.Entry<K,V> pollFirstEntry() {
699        TreeMapEntry<K,V> p = getFirstEntry();
700        Map.Entry<K,V> result = exportEntry(p);
701        if (p != null)
702            deleteEntry(p);
703        return result;
704    }
705
706    /**
707     * @since 1.6
708     */
709    public Map.Entry<K,V> pollLastEntry() {
710        TreeMapEntry<K,V> p = getLastEntry();
711        Map.Entry<K,V> result = exportEntry(p);
712        if (p != null)
713            deleteEntry(p);
714        return result;
715    }
716
717    /**
718     * @throws ClassCastException {@inheritDoc}
719     * @throws NullPointerException if the specified key is null
720     *         and this map uses natural ordering, or its comparator
721     *         does not permit null keys
722     * @since 1.6
723     */
724    public Map.Entry<K,V> lowerEntry(K key) {
725        return exportEntry(getLowerEntry(key));
726    }
727
728    /**
729     * @throws ClassCastException {@inheritDoc}
730     * @throws NullPointerException if the specified key is null
731     *         and this map uses natural ordering, or its comparator
732     *         does not permit null keys
733     * @since 1.6
734     */
735    public K lowerKey(K key) {
736        return keyOrNull(getLowerEntry(key));
737    }
738
739    /**
740     * @throws ClassCastException {@inheritDoc}
741     * @throws NullPointerException if the specified key is null
742     *         and this map uses natural ordering, or its comparator
743     *         does not permit null keys
744     * @since 1.6
745     */
746    public Map.Entry<K,V> floorEntry(K key) {
747        return exportEntry(getFloorEntry(key));
748    }
749
750    /**
751     * @throws ClassCastException {@inheritDoc}
752     * @throws NullPointerException if the specified key is null
753     *         and this map uses natural ordering, or its comparator
754     *         does not permit null keys
755     * @since 1.6
756     */
757    public K floorKey(K key) {
758        return keyOrNull(getFloorEntry(key));
759    }
760
761    /**
762     * @throws ClassCastException {@inheritDoc}
763     * @throws NullPointerException if the specified key is null
764     *         and this map uses natural ordering, or its comparator
765     *         does not permit null keys
766     * @since 1.6
767     */
768    public Map.Entry<K,V> ceilingEntry(K key) {
769        return exportEntry(getCeilingEntry(key));
770    }
771
772    /**
773     * @throws ClassCastException {@inheritDoc}
774     * @throws NullPointerException if the specified key is null
775     *         and this map uses natural ordering, or its comparator
776     *         does not permit null keys
777     * @since 1.6
778     */
779    public K ceilingKey(K key) {
780        return keyOrNull(getCeilingEntry(key));
781    }
782
783    /**
784     * @throws ClassCastException {@inheritDoc}
785     * @throws NullPointerException if the specified key is null
786     *         and this map uses natural ordering, or its comparator
787     *         does not permit null keys
788     * @since 1.6
789     */
790    public Map.Entry<K,V> higherEntry(K key) {
791        return exportEntry(getHigherEntry(key));
792    }
793
794    /**
795     * @throws ClassCastException {@inheritDoc}
796     * @throws NullPointerException if the specified key is null
797     *         and this map uses natural ordering, or its comparator
798     *         does not permit null keys
799     * @since 1.6
800     */
801    public K higherKey(K key) {
802        return keyOrNull(getHigherEntry(key));
803    }
804
805    // Views
806
807    /**
808     * Fields initialized to contain an instance of the entry set view
809     * the first time this view is requested.  Views are stateless, so
810     * there's no reason to create more than one.
811     */
812    private transient EntrySet entrySet = null;
813    private transient KeySet<K> navigableKeySet = null;
814    private transient NavigableMap<K,V> descendingMap = null;
815
816    /**
817     * Returns a {@link Set} view of the keys contained in this map.
818     *
819     * <p>The set's iterator returns the keys in ascending order.
820     * The set's spliterator is
821     * <em><a href="Spliterator.html#binding">late-binding</a></em>,
822     * <em>fail-fast</em>, and additionally reports {@link Spliterator#SORTED}
823     * and {@link Spliterator#ORDERED} with an encounter order that is ascending
824     * key order.  The spliterator's comparator (see
825     * {@link java.util.Spliterator#getComparator()}) is {@code null} if
826     * the tree map's comparator (see {@link #comparator()}) is {@code null}.
827     * Otherwise, the spliterator's comparator is the same as or imposes the
828     * same total ordering as the tree map's comparator.
829     *
830     * <p>The set is backed by the map, so changes to the map are
831     * reflected in the set, and vice-versa.  If the map is modified
832     * while an iteration over the set is in progress (except through
833     * the iterator's own {@code remove} operation), the results of
834     * the iteration are undefined.  The set supports element removal,
835     * which removes the corresponding mapping from the map, via the
836     * {@code Iterator.remove}, {@code Set.remove},
837     * {@code removeAll}, {@code retainAll}, and {@code clear}
838     * operations.  It does not support the {@code add} or {@code addAll}
839     * operations.
840     */
841    public Set<K> keySet() {
842        return navigableKeySet();
843    }
844
845    /**
846     * @since 1.6
847     */
848    public NavigableSet<K> navigableKeySet() {
849        KeySet<K> nks = navigableKeySet;
850        return (nks != null) ? nks : (navigableKeySet = new KeySet<>(this));
851    }
852
853    /**
854     * @since 1.6
855     */
856    public NavigableSet<K> descendingKeySet() {
857        return descendingMap().navigableKeySet();
858    }
859
860    /**
861     * Returns a {@link Collection} view of the values contained in this map.
862     *
863     * <p>The collection's iterator returns the values in ascending order
864     * of the corresponding keys. The collection's spliterator is
865     * <em><a href="Spliterator.html#binding">late-binding</a></em>,
866     * <em>fail-fast</em>, and additionally reports {@link Spliterator#ORDERED}
867     * with an encounter order that is ascending order of the corresponding
868     * keys.
869     *
870     * <p>The collection is backed by the map, so changes to the map are
871     * reflected in the collection, and vice-versa.  If the map is
872     * modified while an iteration over the collection is in progress
873     * (except through the iterator's own {@code remove} operation),
874     * the results of the iteration are undefined.  The collection
875     * supports element removal, which removes the corresponding
876     * mapping from the map, via the {@code Iterator.remove},
877     * {@code Collection.remove}, {@code removeAll},
878     * {@code retainAll} and {@code clear} operations.  It does not
879     * support the {@code add} or {@code addAll} operations.
880     */
881    public Collection<V> values() {
882        Collection<V> vs = values;
883        return (vs != null) ? vs : (values = new Values());
884    }
885
886    /**
887     * Returns a {@link Set} view of the mappings contained in this map.
888     *
889     * <p>The set's iterator returns the entries in ascending key order. The
890     * sets's spliterator is
891     * <em><a href="Spliterator.html#binding">late-binding</a></em>,
892     * <em>fail-fast</em>, and additionally reports {@link Spliterator#SORTED} and
893     * {@link Spliterator#ORDERED} with an encounter order that is ascending key
894     * order.
895     *
896     * <p>The set is backed by the map, so changes to the map are
897     * reflected in the set, and vice-versa.  If the map is modified
898     * while an iteration over the set is in progress (except through
899     * the iterator's own {@code remove} operation, or through the
900     * {@code setValue} operation on a map entry returned by the
901     * iterator) the results of the iteration are undefined.  The set
902     * supports element removal, which removes the corresponding
903     * mapping from the map, via the {@code Iterator.remove},
904     * {@code Set.remove}, {@code removeAll}, {@code retainAll} and
905     * {@code clear} operations.  It does not support the
906     * {@code add} or {@code addAll} operations.
907     */
908    public Set<Map.Entry<K,V>> entrySet() {
909        EntrySet es = entrySet;
910        return (es != null) ? es : (entrySet = new EntrySet());
911    }
912
913    /**
914     * @since 1.6
915     */
916    public NavigableMap<K, V> descendingMap() {
917        NavigableMap<K, V> km = descendingMap;
918        return (km != null) ? km :
919            (descendingMap = new DescendingSubMap<>(this,
920                                                    true, null, true,
921                                                    true, null, true));
922    }
923
924    /**
925     * @throws ClassCastException       {@inheritDoc}
926     * @throws NullPointerException if {@code fromKey} or {@code toKey} is
927     *         null and this map uses natural ordering, or its comparator
928     *         does not permit null keys
929     * @throws IllegalArgumentException {@inheritDoc}
930     * @since 1.6
931     */
932    public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,
933                                    K toKey,   boolean toInclusive) {
934        return new AscendingSubMap<>(this,
935                                     false, fromKey, fromInclusive,
936                                     false, toKey,   toInclusive);
937    }
938
939    /**
940     * @throws ClassCastException       {@inheritDoc}
941     * @throws NullPointerException if {@code toKey} is null
942     *         and this map uses natural ordering, or its comparator
943     *         does not permit null keys
944     * @throws IllegalArgumentException {@inheritDoc}
945     * @since 1.6
946     */
947    public NavigableMap<K,V> headMap(K toKey, boolean inclusive) {
948        return new AscendingSubMap<>(this,
949                                     true,  null,  true,
950                                     false, toKey, inclusive);
951    }
952
953    /**
954     * @throws ClassCastException       {@inheritDoc}
955     * @throws NullPointerException if {@code fromKey} is null
956     *         and this map uses natural ordering, or its comparator
957     *         does not permit null keys
958     * @throws IllegalArgumentException {@inheritDoc}
959     * @since 1.6
960     */
961    public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive) {
962        return new AscendingSubMap<>(this,
963                                     false, fromKey, inclusive,
964                                     true,  null,    true);
965    }
966
967    /**
968     * @throws ClassCastException       {@inheritDoc}
969     * @throws NullPointerException if {@code fromKey} or {@code toKey} is
970     *         null and this map uses natural ordering, or its comparator
971     *         does not permit null keys
972     * @throws IllegalArgumentException {@inheritDoc}
973     */
974    public SortedMap<K,V> subMap(K fromKey, K toKey) {
975        return subMap(fromKey, true, toKey, false);
976    }
977
978    /**
979     * @throws ClassCastException       {@inheritDoc}
980     * @throws NullPointerException if {@code toKey} is null
981     *         and this map uses natural ordering, or its comparator
982     *         does not permit null keys
983     * @throws IllegalArgumentException {@inheritDoc}
984     */
985    public SortedMap<K,V> headMap(K toKey) {
986        return headMap(toKey, false);
987    }
988
989    /**
990     * @throws ClassCastException       {@inheritDoc}
991     * @throws NullPointerException if {@code fromKey} is null
992     *         and this map uses natural ordering, or its comparator
993     *         does not permit null keys
994     * @throws IllegalArgumentException {@inheritDoc}
995     */
996    public SortedMap<K,V> tailMap(K fromKey) {
997        return tailMap(fromKey, true);
998    }
999
1000    @Override
1001    public boolean replace(K key, V oldValue, V newValue) {
1002        TreeMapEntry<K,V> p = getEntry(key);
1003        if (p!=null && Objects.equals(oldValue, p.value)) {
1004            p.value = newValue;
1005            return true;
1006        }
1007        return false;
1008    }
1009
1010    @Override
1011    public V replace(K key, V value) {
1012        TreeMapEntry<K,V> p = getEntry(key);
1013        if (p!=null) {
1014            V oldValue = p.value;
1015            p.value = value;
1016            return oldValue;
1017        }
1018        return null;
1019    }
1020
1021    @Override
1022    public void forEach(BiConsumer<? super K, ? super V> action) {
1023        Objects.requireNonNull(action);
1024        int expectedModCount = modCount;
1025        for (TreeMapEntry<K, V> e = getFirstEntry(); e != null; e = successor(e)) {
1026            action.accept(e.key, e.value);
1027
1028            if (expectedModCount != modCount) {
1029                throw new ConcurrentModificationException();
1030            }
1031        }
1032    }
1033
1034    @Override
1035    public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1036        Objects.requireNonNull(function);
1037        int expectedModCount = modCount;
1038
1039        for (TreeMapEntry<K, V> e = getFirstEntry(); e != null; e = successor(e)) {
1040            e.value = function.apply(e.key, e.value);
1041
1042            if (expectedModCount != modCount) {
1043                throw new ConcurrentModificationException();
1044            }
1045        }
1046    }
1047
1048    // View class support
1049
1050    class Values extends AbstractCollection<V> {
1051        public Iterator<V> iterator() {
1052            return new ValueIterator(getFirstEntry());
1053        }
1054
1055        public int size() {
1056            return TreeMap.this.size();
1057        }
1058
1059        public boolean contains(Object o) {
1060            return TreeMap.this.containsValue(o);
1061        }
1062
1063        public boolean remove(Object o) {
1064            for (TreeMapEntry<K,V> e = getFirstEntry(); e != null; e = successor(e)) {
1065                if (valEquals(e.getValue(), o)) {
1066                    deleteEntry(e);
1067                    return true;
1068                }
1069            }
1070            return false;
1071        }
1072
1073        public void clear() {
1074            TreeMap.this.clear();
1075        }
1076
1077        public Spliterator<V> spliterator() {
1078            return new ValueSpliterator<K,V>(TreeMap.this, null, null, 0, -1, 0);
1079        }
1080    }
1081
1082    class EntrySet extends AbstractSet<Map.Entry<K,V>> {
1083        public Iterator<Map.Entry<K,V>> iterator() {
1084            return new EntryIterator(getFirstEntry());
1085        }
1086
1087        public boolean contains(Object o) {
1088            if (!(o instanceof Map.Entry))
1089                return false;
1090            Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
1091            V value = entry.getValue();
1092            TreeMapEntry<K,V> p = getEntry(entry.getKey());
1093            return p != null && valEquals(p.getValue(), value);
1094        }
1095
1096        public boolean remove(Object o) {
1097            if (!(o instanceof Map.Entry))
1098                return false;
1099            Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
1100            V value = entry.getValue();
1101            TreeMapEntry<K,V> p = getEntry(entry.getKey());
1102            if (p != null && valEquals(p.getValue(), value)) {
1103                deleteEntry(p);
1104                return true;
1105            }
1106            return false;
1107        }
1108
1109        public int size() {
1110            return TreeMap.this.size();
1111        }
1112
1113        public void clear() {
1114            TreeMap.this.clear();
1115        }
1116
1117        public Spliterator<Map.Entry<K,V>> spliterator() {
1118            return new EntrySpliterator<K,V>(TreeMap.this, null, null, 0, -1, 0);
1119        }
1120    }
1121
1122    /*
1123     * Unlike Values and EntrySet, the KeySet class is static,
1124     * delegating to a NavigableMap to allow use by SubMaps, which
1125     * outweighs the ugliness of needing type-tests for the following
1126     * Iterator methods that are defined appropriately in main versus
1127     * submap classes.
1128     */
1129
1130    Iterator<K> keyIterator() {
1131        return new KeyIterator(getFirstEntry());
1132    }
1133
1134    Iterator<K> descendingKeyIterator() {
1135        return new DescendingKeyIterator(getLastEntry());
1136    }
1137
1138    static final class KeySet<E> extends AbstractSet<E> implements NavigableSet<E> {
1139        private final NavigableMap<E, ?> m;
1140        KeySet(NavigableMap<E,?> map) { m = map; }
1141
1142        public Iterator<E> iterator() {
1143            if (m instanceof TreeMap)
1144                return ((TreeMap<E,?>)m).keyIterator();
1145            else
1146                return ((TreeMap.NavigableSubMap<E,?>)m).keyIterator();
1147        }
1148
1149        public Iterator<E> descendingIterator() {
1150            if (m instanceof TreeMap)
1151                return ((TreeMap<E,?>)m).descendingKeyIterator();
1152            else
1153                return ((TreeMap.NavigableSubMap<E,?>)m).descendingKeyIterator();
1154        }
1155
1156        public int size() { return m.size(); }
1157        public boolean isEmpty() { return m.isEmpty(); }
1158        public boolean contains(Object o) { return m.containsKey(o); }
1159        public void clear() { m.clear(); }
1160        public E lower(E e) { return m.lowerKey(e); }
1161        public E floor(E e) { return m.floorKey(e); }
1162        public E ceiling(E e) { return m.ceilingKey(e); }
1163        public E higher(E e) { return m.higherKey(e); }
1164        public E first() { return m.firstKey(); }
1165        public E last() { return m.lastKey(); }
1166        public Comparator<? super E> comparator() { return m.comparator(); }
1167        public E pollFirst() {
1168            Map.Entry<E,?> e = m.pollFirstEntry();
1169            return (e == null) ? null : e.getKey();
1170        }
1171        public E pollLast() {
1172            Map.Entry<E,?> e = m.pollLastEntry();
1173            return (e == null) ? null : e.getKey();
1174        }
1175        public boolean remove(Object o) {
1176            int oldSize = size();
1177            m.remove(o);
1178            return size() != oldSize;
1179        }
1180        public NavigableSet<E> subSet(E fromElement, boolean fromInclusive,
1181                                      E toElement,   boolean toInclusive) {
1182            return new KeySet<>(m.subMap(fromElement, fromInclusive,
1183                                          toElement,   toInclusive));
1184        }
1185        public NavigableSet<E> headSet(E toElement, boolean inclusive) {
1186            return new KeySet<>(m.headMap(toElement, inclusive));
1187        }
1188        public NavigableSet<E> tailSet(E fromElement, boolean inclusive) {
1189            return new KeySet<>(m.tailMap(fromElement, inclusive));
1190        }
1191        public SortedSet<E> subSet(E fromElement, E toElement) {
1192            return subSet(fromElement, true, toElement, false);
1193        }
1194        public SortedSet<E> headSet(E toElement) {
1195            return headSet(toElement, false);
1196        }
1197        public SortedSet<E> tailSet(E fromElement) {
1198            return tailSet(fromElement, true);
1199        }
1200        public NavigableSet<E> descendingSet() {
1201            return new KeySet<>(m.descendingMap());
1202        }
1203
1204        public Spliterator<E> spliterator() {
1205            return keySpliteratorFor(m);
1206        }
1207    }
1208
1209    /**
1210     * Base class for TreeMap Iterators
1211     */
1212    abstract class PrivateEntryIterator<T> implements Iterator<T> {
1213        TreeMapEntry<K,V> next;
1214        TreeMapEntry<K,V> lastReturned;
1215        int expectedModCount;
1216
1217        PrivateEntryIterator(TreeMapEntry<K,V> first) {
1218            expectedModCount = modCount;
1219            lastReturned = null;
1220            next = first;
1221        }
1222
1223        public final boolean hasNext() {
1224            return next != null;
1225        }
1226
1227        final TreeMapEntry<K,V> nextEntry() {
1228            TreeMapEntry<K,V> e = next;
1229            if (e == null)
1230                throw new NoSuchElementException();
1231            if (modCount != expectedModCount)
1232                throw new ConcurrentModificationException();
1233            next = successor(e);
1234            lastReturned = e;
1235            return e;
1236        }
1237
1238        final TreeMapEntry<K,V> prevEntry() {
1239            TreeMapEntry<K,V> e = next;
1240            if (e == null)
1241                throw new NoSuchElementException();
1242            if (modCount != expectedModCount)
1243                throw new ConcurrentModificationException();
1244            next = predecessor(e);
1245            lastReturned = e;
1246            return e;
1247        }
1248
1249        public void remove() {
1250            if (lastReturned == null)
1251                throw new IllegalStateException();
1252            if (modCount != expectedModCount)
1253                throw new ConcurrentModificationException();
1254            // deleted entries are replaced by their successors
1255            if (lastReturned.left != null && lastReturned.right != null)
1256                next = lastReturned;
1257            deleteEntry(lastReturned);
1258            expectedModCount = modCount;
1259            lastReturned = null;
1260        }
1261    }
1262
1263    final class EntryIterator extends PrivateEntryIterator<Map.Entry<K,V>> {
1264        EntryIterator(TreeMapEntry<K,V> first) {
1265            super(first);
1266        }
1267        public Map.Entry<K,V> next() {
1268            return nextEntry();
1269        }
1270    }
1271
1272    final class ValueIterator extends PrivateEntryIterator<V> {
1273        ValueIterator(TreeMapEntry<K,V> first) {
1274            super(first);
1275        }
1276        public V next() {
1277            return nextEntry().value;
1278        }
1279    }
1280
1281    final class KeyIterator extends PrivateEntryIterator<K> {
1282        KeyIterator(TreeMapEntry<K,V> first) {
1283            super(first);
1284        }
1285        public K next() {
1286            return nextEntry().key;
1287        }
1288    }
1289
1290    final class DescendingKeyIterator extends PrivateEntryIterator<K> {
1291        DescendingKeyIterator(TreeMapEntry<K,V> first) {
1292            super(first);
1293        }
1294        public K next() {
1295            return prevEntry().key;
1296        }
1297        public void remove() {
1298            if (lastReturned == null)
1299                throw new IllegalStateException();
1300            if (modCount != expectedModCount)
1301                throw new ConcurrentModificationException();
1302            deleteEntry(lastReturned);
1303            lastReturned = null;
1304            expectedModCount = modCount;
1305        }
1306    }
1307
1308    // Little utilities
1309
1310    /**
1311     * Compares two keys using the correct comparison method for this TreeMap.
1312     */
1313    @SuppressWarnings("unchecked")
1314    final int compare(Object k1, Object k2) {
1315        return comparator==null ? ((Comparable<? super K>)k1).compareTo((K)k2)
1316            : comparator.compare((K)k1, (K)k2);
1317    }
1318
1319    /**
1320     * Test two values for equality.  Differs from o1.equals(o2) only in
1321     * that it copes with {@code null} o1 properly.
1322     */
1323    static final boolean valEquals(Object o1, Object o2) {
1324        return (o1==null ? o2==null : o1.equals(o2));
1325    }
1326
1327    /**
1328     * Return SimpleImmutableEntry for entry, or null if null
1329     */
1330    static <K,V> Map.Entry<K,V> exportEntry(TreeMapEntry<K,V> e) {
1331        return (e == null) ? null :
1332            new AbstractMap.SimpleImmutableEntry<>(e);
1333    }
1334
1335    /**
1336     * Return key for entry, or null if null
1337     */
1338    static <K,V> K keyOrNull(TreeMapEntry<K,V> e) {
1339        return (e == null) ? null : e.key;
1340    }
1341
1342    /**
1343     * Returns the key corresponding to the specified Entry.
1344     * @throws NoSuchElementException if the Entry is null
1345     */
1346    static <K> K key(TreeMapEntry<K,?> e) {
1347        if (e==null)
1348            throw new NoSuchElementException();
1349        return e.key;
1350    }
1351
1352
1353    // SubMaps
1354
1355    /**
1356     * Dummy value serving as unmatchable fence key for unbounded
1357     * SubMapIterators
1358     */
1359    private static final Object UNBOUNDED = new Object();
1360
1361    /**
1362     * @serial include
1363     */
1364    abstract static class NavigableSubMap<K,V> extends AbstractMap<K,V>
1365        implements NavigableMap<K,V>, java.io.Serializable {
1366        // Android-changed: Explicitly add a serialVersionUID so that we're serialization
1367        // compatible with the Java-7 version of this class. Several new methods were added
1368        // in Java-8 but none of them have any bearing on the serialized format of the class
1369        // or require any additional state to be preserved.
1370        private static final long serialVersionUID = 2765629423043303731L;
1371
1372        /**
1373         * The backing map.
1374         */
1375        final TreeMap<K,V> m;
1376
1377        /**
1378         * Endpoints are represented as triples (fromStart, lo,
1379         * loInclusive) and (toEnd, hi, hiInclusive). If fromStart is
1380         * true, then the low (absolute) bound is the start of the
1381         * backing map, and the other values are ignored. Otherwise,
1382         * if loInclusive is true, lo is the inclusive bound, else lo
1383         * is the exclusive bound. Similarly for the upper bound.
1384         */
1385        final K lo, hi;
1386        final boolean fromStart, toEnd;
1387        final boolean loInclusive, hiInclusive;
1388
1389        NavigableSubMap(TreeMap<K,V> m,
1390                        boolean fromStart, K lo, boolean loInclusive,
1391                        boolean toEnd,     K hi, boolean hiInclusive) {
1392            if (!fromStart && !toEnd) {
1393                if (m.compare(lo, hi) > 0)
1394                    throw new IllegalArgumentException("fromKey > toKey");
1395            } else {
1396                if (!fromStart) // type check
1397                    m.compare(lo, lo);
1398                if (!toEnd)
1399                    m.compare(hi, hi);
1400            }
1401
1402            this.m = m;
1403            this.fromStart = fromStart;
1404            this.lo = lo;
1405            this.loInclusive = loInclusive;
1406            this.toEnd = toEnd;
1407            this.hi = hi;
1408            this.hiInclusive = hiInclusive;
1409        }
1410
1411        // internal utilities
1412
1413        final boolean tooLow(Object key) {
1414            if (!fromStart) {
1415                int c = m.compare(key, lo);
1416                if (c < 0 || (c == 0 && !loInclusive))
1417                    return true;
1418            }
1419            return false;
1420        }
1421
1422        final boolean tooHigh(Object key) {
1423            if (!toEnd) {
1424                int c = m.compare(key, hi);
1425                if (c > 0 || (c == 0 && !hiInclusive))
1426                    return true;
1427            }
1428            return false;
1429        }
1430
1431        final boolean inRange(Object key) {
1432            return !tooLow(key) && !tooHigh(key);
1433        }
1434
1435        final boolean inClosedRange(Object key) {
1436            return (fromStart || m.compare(key, lo) >= 0)
1437                && (toEnd || m.compare(hi, key) >= 0);
1438        }
1439
1440        final boolean inRange(Object key, boolean inclusive) {
1441            return inclusive ? inRange(key) : inClosedRange(key);
1442        }
1443
1444        /*
1445         * Absolute versions of relation operations.
1446         * Subclasses map to these using like-named "sub"
1447         * versions that invert senses for descending maps
1448         */
1449
1450        final TreeMapEntry<K,V> absLowest() {
1451            TreeMapEntry<K,V> e =
1452                (fromStart ?  m.getFirstEntry() :
1453                 (loInclusive ? m.getCeilingEntry(lo) :
1454                                m.getHigherEntry(lo)));
1455            return (e == null || tooHigh(e.key)) ? null : e;
1456        }
1457
1458        final TreeMapEntry<K,V> absHighest() {
1459            TreeMapEntry<K,V> e =
1460                (toEnd ?  m.getLastEntry() :
1461                 (hiInclusive ?  m.getFloorEntry(hi) :
1462                                 m.getLowerEntry(hi)));
1463            return (e == null || tooLow(e.key)) ? null : e;
1464        }
1465
1466        final TreeMapEntry<K,V> absCeiling(K key) {
1467            if (tooLow(key))
1468                return absLowest();
1469            TreeMapEntry<K,V> e = m.getCeilingEntry(key);
1470            return (e == null || tooHigh(e.key)) ? null : e;
1471        }
1472
1473        final TreeMapEntry<K,V> absHigher(K key) {
1474            if (tooLow(key))
1475                return absLowest();
1476            TreeMapEntry<K,V> e = m.getHigherEntry(key);
1477            return (e == null || tooHigh(e.key)) ? null : e;
1478        }
1479
1480        final TreeMapEntry<K,V> absFloor(K key) {
1481            if (tooHigh(key))
1482                return absHighest();
1483            TreeMapEntry<K,V> e = m.getFloorEntry(key);
1484            return (e == null || tooLow(e.key)) ? null : e;
1485        }
1486
1487        final TreeMapEntry<K,V> absLower(K key) {
1488            if (tooHigh(key))
1489                return absHighest();
1490            TreeMapEntry<K,V> e = m.getLowerEntry(key);
1491            return (e == null || tooLow(e.key)) ? null : e;
1492        }
1493
1494        /** Returns the absolute high fence for ascending traversal */
1495        final TreeMapEntry<K,V> absHighFence() {
1496            return (toEnd ? null : (hiInclusive ?
1497                                    m.getHigherEntry(hi) :
1498                                    m.getCeilingEntry(hi)));
1499        }
1500
1501        /** Return the absolute low fence for descending traversal  */
1502        final TreeMapEntry<K,V> absLowFence() {
1503            return (fromStart ? null : (loInclusive ?
1504                                        m.getLowerEntry(lo) :
1505                                        m.getFloorEntry(lo)));
1506        }
1507
1508        // Abstract methods defined in ascending vs descending classes
1509        // These relay to the appropriate absolute versions
1510
1511        abstract TreeMapEntry<K,V> subLowest();
1512        abstract TreeMapEntry<K,V> subHighest();
1513        abstract TreeMapEntry<K,V> subCeiling(K key);
1514        abstract TreeMapEntry<K,V> subHigher(K key);
1515        abstract TreeMapEntry<K,V> subFloor(K key);
1516        abstract TreeMapEntry<K,V> subLower(K key);
1517
1518        /** Returns ascending iterator from the perspective of this submap */
1519        abstract Iterator<K> keyIterator();
1520
1521        abstract Spliterator<K> keySpliterator();
1522
1523        /** Returns descending iterator from the perspective of this submap */
1524        abstract Iterator<K> descendingKeyIterator();
1525
1526        // public methods
1527
1528        public boolean isEmpty() {
1529            return (fromStart && toEnd) ? m.isEmpty() : entrySet().isEmpty();
1530        }
1531
1532        public int size() {
1533            return (fromStart && toEnd) ? m.size() : entrySet().size();
1534        }
1535
1536        public final boolean containsKey(Object key) {
1537            return inRange(key) && m.containsKey(key);
1538        }
1539
1540        public final V put(K key, V value) {
1541            if (!inRange(key))
1542                throw new IllegalArgumentException("key out of range");
1543            return m.put(key, value);
1544        }
1545
1546        public final V get(Object key) {
1547            return !inRange(key) ? null :  m.get(key);
1548        }
1549
1550        public final V remove(Object key) {
1551            return !inRange(key) ? null : m.remove(key);
1552        }
1553
1554        public final Map.Entry<K,V> ceilingEntry(K key) {
1555            return exportEntry(subCeiling(key));
1556        }
1557
1558        public final K ceilingKey(K key) {
1559            return keyOrNull(subCeiling(key));
1560        }
1561
1562        public final Map.Entry<K,V> higherEntry(K key) {
1563            return exportEntry(subHigher(key));
1564        }
1565
1566        public final K higherKey(K key) {
1567            return keyOrNull(subHigher(key));
1568        }
1569
1570        public final Map.Entry<K,V> floorEntry(K key) {
1571            return exportEntry(subFloor(key));
1572        }
1573
1574        public final K floorKey(K key) {
1575            return keyOrNull(subFloor(key));
1576        }
1577
1578        public final Map.Entry<K,V> lowerEntry(K key) {
1579            return exportEntry(subLower(key));
1580        }
1581
1582        public final K lowerKey(K key) {
1583            return keyOrNull(subLower(key));
1584        }
1585
1586        public final K firstKey() {
1587            return key(subLowest());
1588        }
1589
1590        public final K lastKey() {
1591            return key(subHighest());
1592        }
1593
1594        public final Map.Entry<K,V> firstEntry() {
1595            return exportEntry(subLowest());
1596        }
1597
1598        public final Map.Entry<K,V> lastEntry() {
1599            return exportEntry(subHighest());
1600        }
1601
1602        public final Map.Entry<K,V> pollFirstEntry() {
1603            TreeMapEntry<K,V> e = subLowest();
1604            Map.Entry<K,V> result = exportEntry(e);
1605            if (e != null)
1606                m.deleteEntry(e);
1607            return result;
1608        }
1609
1610        public final Map.Entry<K,V> pollLastEntry() {
1611            TreeMapEntry<K,V> e = subHighest();
1612            Map.Entry<K,V> result = exportEntry(e);
1613            if (e != null)
1614                m.deleteEntry(e);
1615            return result;
1616        }
1617
1618        // Views
1619        transient NavigableMap<K,V> descendingMapView = null;
1620        transient EntrySetView entrySetView = null;
1621        transient KeySet<K> navigableKeySetView = null;
1622
1623        public final NavigableSet<K> navigableKeySet() {
1624            KeySet<K> nksv = navigableKeySetView;
1625            return (nksv != null) ? nksv :
1626                (navigableKeySetView = new TreeMap.KeySet<>(this));
1627        }
1628
1629        public final Set<K> keySet() {
1630            return navigableKeySet();
1631        }
1632
1633        public NavigableSet<K> descendingKeySet() {
1634            return descendingMap().navigableKeySet();
1635        }
1636
1637        public final SortedMap<K,V> subMap(K fromKey, K toKey) {
1638            return subMap(fromKey, true, toKey, false);
1639        }
1640
1641        public final SortedMap<K,V> headMap(K toKey) {
1642            return headMap(toKey, false);
1643        }
1644
1645        public final SortedMap<K,V> tailMap(K fromKey) {
1646            return tailMap(fromKey, true);
1647        }
1648
1649        // View classes
1650
1651        abstract class EntrySetView extends AbstractSet<Map.Entry<K,V>> {
1652            private transient int size = -1, sizeModCount;
1653
1654            public int size() {
1655                if (fromStart && toEnd)
1656                    return m.size();
1657                if (size == -1 || sizeModCount != m.modCount) {
1658                    sizeModCount = m.modCount;
1659                    size = 0;
1660                    Iterator<?> i = iterator();
1661                    while (i.hasNext()) {
1662                        size++;
1663                        i.next();
1664                    }
1665                }
1666                return size;
1667            }
1668
1669            public boolean isEmpty() {
1670                TreeMapEntry<K,V> n = absLowest();
1671                return n == null || tooHigh(n.key);
1672            }
1673
1674            public boolean contains(Object o) {
1675                if (!(o instanceof Map.Entry))
1676                    return false;
1677                Map.Entry<?,?> entry = (Map.Entry<?,?>) o;
1678                Object key = entry.getKey();
1679                if (!inRange(key))
1680                    return false;
1681                TreeMapEntry<?, ?> node = m.getEntry(key);
1682                return node != null &&
1683                    valEquals(node.getValue(), entry.getValue());
1684            }
1685
1686            public boolean remove(Object o) {
1687                if (!(o instanceof Map.Entry))
1688                    return false;
1689                Map.Entry<?,?> entry = (Map.Entry<?,?>) o;
1690                Object key = entry.getKey();
1691                if (!inRange(key))
1692                    return false;
1693                TreeMapEntry<K,V> node = m.getEntry(key);
1694                if (node!=null && valEquals(node.getValue(),
1695                                            entry.getValue())) {
1696                    m.deleteEntry(node);
1697                    return true;
1698                }
1699                return false;
1700            }
1701        }
1702
1703        /**
1704         * Iterators for SubMaps
1705         */
1706        abstract class SubMapIterator<T> implements Iterator<T> {
1707            TreeMapEntry<K,V> lastReturned;
1708            TreeMapEntry<K,V> next;
1709            final Object fenceKey;
1710            int expectedModCount;
1711
1712            SubMapIterator(TreeMapEntry<K,V> first,
1713                           TreeMapEntry<K,V> fence) {
1714                expectedModCount = m.modCount;
1715                lastReturned = null;
1716                next = first;
1717                fenceKey = fence == null ? UNBOUNDED : fence.key;
1718            }
1719
1720            public final boolean hasNext() {
1721                return next != null && next.key != fenceKey;
1722            }
1723
1724            final TreeMapEntry<K,V> nextEntry() {
1725                TreeMapEntry<K,V> e = next;
1726                if (e == null || e.key == fenceKey)
1727                    throw new NoSuchElementException();
1728                if (m.modCount != expectedModCount)
1729                    throw new ConcurrentModificationException();
1730                next = successor(e);
1731                lastReturned = e;
1732                return e;
1733            }
1734
1735            final TreeMapEntry<K,V> prevEntry() {
1736                TreeMapEntry<K,V> e = next;
1737                if (e == null || e.key == fenceKey)
1738                    throw new NoSuchElementException();
1739                if (m.modCount != expectedModCount)
1740                    throw new ConcurrentModificationException();
1741                next = predecessor(e);
1742                lastReturned = e;
1743                return e;
1744            }
1745
1746            final void removeAscending() {
1747                if (lastReturned == null)
1748                    throw new IllegalStateException();
1749                if (m.modCount != expectedModCount)
1750                    throw new ConcurrentModificationException();
1751                // deleted entries are replaced by their successors
1752                if (lastReturned.left != null && lastReturned.right != null)
1753                    next = lastReturned;
1754                m.deleteEntry(lastReturned);
1755                lastReturned = null;
1756                expectedModCount = m.modCount;
1757            }
1758
1759            final void removeDescending() {
1760                if (lastReturned == null)
1761                    throw new IllegalStateException();
1762                if (m.modCount != expectedModCount)
1763                    throw new ConcurrentModificationException();
1764                m.deleteEntry(lastReturned);
1765                lastReturned = null;
1766                expectedModCount = m.modCount;
1767            }
1768
1769        }
1770
1771        final class SubMapEntryIterator extends SubMapIterator<Map.Entry<K,V>> {
1772            SubMapEntryIterator(TreeMapEntry<K,V> first,
1773                                TreeMapEntry<K,V> fence) {
1774                super(first, fence);
1775            }
1776            public Map.Entry<K,V> next() {
1777                return nextEntry();
1778            }
1779            public void remove() {
1780                removeAscending();
1781            }
1782        }
1783
1784        final class DescendingSubMapEntryIterator extends SubMapIterator<Map.Entry<K,V>> {
1785            DescendingSubMapEntryIterator(TreeMapEntry<K,V> last,
1786                                          TreeMapEntry<K,V> fence) {
1787                super(last, fence);
1788            }
1789
1790            public Map.Entry<K,V> next() {
1791                return prevEntry();
1792            }
1793            public void remove() {
1794                removeDescending();
1795            }
1796        }
1797
1798        // Implement minimal Spliterator as KeySpliterator backup
1799        final class SubMapKeyIterator extends SubMapIterator<K>
1800            implements Spliterator<K> {
1801            SubMapKeyIterator(TreeMapEntry<K,V> first,
1802                              TreeMapEntry<K,V> fence) {
1803                super(first, fence);
1804            }
1805            public K next() {
1806                return nextEntry().key;
1807            }
1808            public void remove() {
1809                removeAscending();
1810            }
1811            public Spliterator<K> trySplit() {
1812                return null;
1813            }
1814            public void forEachRemaining(Consumer<? super K> action) {
1815                while (hasNext())
1816                    action.accept(next());
1817            }
1818            public boolean tryAdvance(Consumer<? super K> action) {
1819                if (hasNext()) {
1820                    action.accept(next());
1821                    return true;
1822                }
1823                return false;
1824            }
1825            public long estimateSize() {
1826                return Long.MAX_VALUE;
1827            }
1828            public int characteristics() {
1829                return Spliterator.DISTINCT | Spliterator.ORDERED |
1830                    Spliterator.SORTED;
1831            }
1832            public final Comparator<? super K>  getComparator() {
1833                return NavigableSubMap.this.comparator();
1834            }
1835        }
1836
1837        final class DescendingSubMapKeyIterator extends SubMapIterator<K>
1838            implements Spliterator<K> {
1839            DescendingSubMapKeyIterator(TreeMapEntry<K,V> last,
1840                                        TreeMapEntry<K,V> fence) {
1841                super(last, fence);
1842            }
1843            public K next() {
1844                return prevEntry().key;
1845            }
1846            public void remove() {
1847                removeDescending();
1848            }
1849            public Spliterator<K> trySplit() {
1850                return null;
1851            }
1852            public void forEachRemaining(Consumer<? super K> action) {
1853                while (hasNext())
1854                    action.accept(next());
1855            }
1856            public boolean tryAdvance(Consumer<? super K> action) {
1857                if (hasNext()) {
1858                    action.accept(next());
1859                    return true;
1860                }
1861                return false;
1862            }
1863            public long estimateSize() {
1864                return Long.MAX_VALUE;
1865            }
1866            public int characteristics() {
1867                return Spliterator.DISTINCT | Spliterator.ORDERED;
1868            }
1869        }
1870    }
1871
1872    /**
1873     * @serial include
1874     */
1875    static final class AscendingSubMap<K,V> extends NavigableSubMap<K,V> {
1876        private static final long serialVersionUID = 912986545866124060L;
1877
1878        AscendingSubMap(TreeMap<K,V> m,
1879                        boolean fromStart, K lo, boolean loInclusive,
1880                        boolean toEnd,     K hi, boolean hiInclusive) {
1881            super(m, fromStart, lo, loInclusive, toEnd, hi, hiInclusive);
1882        }
1883
1884        public Comparator<? super K> comparator() {
1885            return m.comparator();
1886        }
1887
1888        public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,
1889                                        K toKey,   boolean toInclusive) {
1890            if (!inRange(fromKey, fromInclusive))
1891                throw new IllegalArgumentException("fromKey out of range");
1892            if (!inRange(toKey, toInclusive))
1893                throw new IllegalArgumentException("toKey out of range");
1894            return new AscendingSubMap<>(m,
1895                                         false, fromKey, fromInclusive,
1896                                         false, toKey,   toInclusive);
1897        }
1898
1899        public NavigableMap<K,V> headMap(K toKey, boolean inclusive) {
1900            /* ----- BEGIN android -----
1901               Fix for edge cases
1902               if (!inRange(toKey, inclusive)) */
1903            if (!inRange(toKey) && !(!toEnd && m.compare(toKey, hi) == 0 &&
1904                !hiInclusive && !inclusive))
1905            // ----- END android -----
1906                throw new IllegalArgumentException("toKey out of range");
1907            return new AscendingSubMap<>(m,
1908                                         fromStart, lo,    loInclusive,
1909                                         false,     toKey, inclusive);
1910        }
1911
1912        public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive) {
1913            /* ----- BEGIN android -----
1914               Fix for edge cases
1915               if (!inRange(fromKey, inclusive)) */
1916            if (!inRange(fromKey) && !(!fromStart && m.compare(fromKey, lo) == 0 &&
1917                !loInclusive && !inclusive))
1918            // ----- END android -----
1919                throw new IllegalArgumentException("fromKey out of range");
1920            return new AscendingSubMap<>(m,
1921                                         false, fromKey, inclusive,
1922                                         toEnd, hi,      hiInclusive);
1923        }
1924
1925        public NavigableMap<K,V> descendingMap() {
1926            NavigableMap<K,V> mv = descendingMapView;
1927            return (mv != null) ? mv :
1928                (descendingMapView =
1929                 new DescendingSubMap<>(m,
1930                                        fromStart, lo, loInclusive,
1931                                        toEnd,     hi, hiInclusive));
1932        }
1933
1934        Iterator<K> keyIterator() {
1935            return new SubMapKeyIterator(absLowest(), absHighFence());
1936        }
1937
1938        Spliterator<K> keySpliterator() {
1939            return new SubMapKeyIterator(absLowest(), absHighFence());
1940        }
1941
1942        Iterator<K> descendingKeyIterator() {
1943            return new DescendingSubMapKeyIterator(absHighest(), absLowFence());
1944        }
1945
1946        final class AscendingEntrySetView extends EntrySetView {
1947            public Iterator<Map.Entry<K,V>> iterator() {
1948                return new SubMapEntryIterator(absLowest(), absHighFence());
1949            }
1950        }
1951
1952        public Set<Map.Entry<K,V>> entrySet() {
1953            EntrySetView es = entrySetView;
1954            return (es != null) ? es : new AscendingEntrySetView();
1955        }
1956
1957        TreeMapEntry<K,V> subLowest()       { return absLowest(); }
1958        TreeMapEntry<K,V> subHighest()      { return absHighest(); }
1959        TreeMapEntry<K,V> subCeiling(K key) { return absCeiling(key); }
1960        TreeMapEntry<K,V> subHigher(K key)  { return absHigher(key); }
1961        TreeMapEntry<K,V> subFloor(K key)   { return absFloor(key); }
1962        TreeMapEntry<K,V> subLower(K key)   { return absLower(key); }
1963    }
1964
1965    /**
1966     * @serial include
1967     */
1968    static final class DescendingSubMap<K,V>  extends NavigableSubMap<K,V> {
1969        private static final long serialVersionUID = 912986545866120460L;
1970        DescendingSubMap(TreeMap<K,V> m,
1971                        boolean fromStart, K lo, boolean loInclusive,
1972                        boolean toEnd,     K hi, boolean hiInclusive) {
1973            super(m, fromStart, lo, loInclusive, toEnd, hi, hiInclusive);
1974        }
1975
1976        private final Comparator<? super K> reverseComparator =
1977            Collections.reverseOrder(m.comparator);
1978
1979        public Comparator<? super K> comparator() {
1980            return reverseComparator;
1981        }
1982
1983        public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,
1984                                        K toKey,   boolean toInclusive) {
1985            if (!inRange(fromKey, fromInclusive))
1986                throw new IllegalArgumentException("fromKey out of range");
1987            if (!inRange(toKey, toInclusive))
1988                throw new IllegalArgumentException("toKey out of range");
1989            return new DescendingSubMap<>(m,
1990                                          false, toKey,   toInclusive,
1991                                          false, fromKey, fromInclusive);
1992        }
1993
1994        public NavigableMap<K,V> headMap(K toKey, boolean inclusive) {
1995            /* ----- BEGIN android -----
1996               Fix for edge cases
1997               if (!inRange(toKey, inclusive)) */
1998            if (!inRange(toKey) && !(!fromStart && m.compare(toKey, lo) == 0 &&
1999                !loInclusive && !inclusive))
2000            // ----- END android -----
2001                throw new IllegalArgumentException("toKey out of range");
2002            return new DescendingSubMap<>(m,
2003                                          false, toKey, inclusive,
2004                                          toEnd, hi,    hiInclusive);
2005        }
2006
2007        public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive) {
2008            /* ----- BEGIN android -----
2009               Fix for edge cases
2010               if (!inRange(fromKey, inclusive)) */
2011            if (!inRange(fromKey) && !(!toEnd && m.compare(fromKey, hi) == 0 &&
2012                !hiInclusive && !inclusive))
2013            // ----- END android -----
2014                throw new IllegalArgumentException("fromKey out of range");
2015            return new DescendingSubMap<>(m,
2016                                          fromStart, lo, loInclusive,
2017                                          false, fromKey, inclusive);
2018        }
2019
2020        public NavigableMap<K,V> descendingMap() {
2021            NavigableMap<K,V> mv = descendingMapView;
2022            return (mv != null) ? mv :
2023                (descendingMapView =
2024                 new AscendingSubMap<>(m,
2025                                       fromStart, lo, loInclusive,
2026                                       toEnd,     hi, hiInclusive));
2027        }
2028
2029        Iterator<K> keyIterator() {
2030            return new DescendingSubMapKeyIterator(absHighest(), absLowFence());
2031        }
2032
2033        Spliterator<K> keySpliterator() {
2034            return new DescendingSubMapKeyIterator(absHighest(), absLowFence());
2035        }
2036
2037        Iterator<K> descendingKeyIterator() {
2038            return new SubMapKeyIterator(absLowest(), absHighFence());
2039        }
2040
2041        final class DescendingEntrySetView extends EntrySetView {
2042            public Iterator<Map.Entry<K,V>> iterator() {
2043                return new DescendingSubMapEntryIterator(absHighest(), absLowFence());
2044            }
2045        }
2046
2047        public Set<Map.Entry<K,V>> entrySet() {
2048            EntrySetView es = entrySetView;
2049            return (es != null) ? es : (entrySetView = new DescendingEntrySetView());
2050        }
2051
2052        TreeMapEntry<K,V> subLowest()       { return absHighest(); }
2053        TreeMapEntry<K,V> subHighest()      { return absLowest(); }
2054        TreeMapEntry<K,V> subCeiling(K key) { return absFloor(key); }
2055        TreeMapEntry<K,V> subHigher(K key)  { return absLower(key); }
2056        TreeMapEntry<K,V> subFloor(K key)   { return absCeiling(key); }
2057        TreeMapEntry<K,V> subLower(K key)   { return absHigher(key); }
2058    }
2059
2060    /**
2061     * This class exists solely for the sake of serialization
2062     * compatibility with previous releases of TreeMap that did not
2063     * support NavigableMap.  It translates an old-version SubMap into
2064     * a new-version AscendingSubMap. This class is never otherwise
2065     * used.
2066     *
2067     * @serial include
2068     */
2069    private class SubMap extends AbstractMap<K,V>
2070        implements SortedMap<K,V>, java.io.Serializable {
2071        private static final long serialVersionUID = -6520786458950516097L;
2072        private boolean fromStart = false, toEnd = false;
2073        private K fromKey, toKey;
2074        private Object readResolve() {
2075            return new AscendingSubMap<>(TreeMap.this,
2076                                         fromStart, fromKey, true,
2077                                         toEnd, toKey, false);
2078        }
2079        public Set<Map.Entry<K,V>> entrySet() { throw new InternalError(); }
2080        public K lastKey() { throw new InternalError(); }
2081        public K firstKey() { throw new InternalError(); }
2082        public SortedMap<K,V> subMap(K fromKey, K toKey) { throw new InternalError(); }
2083        public SortedMap<K,V> headMap(K toKey) { throw new InternalError(); }
2084        public SortedMap<K,V> tailMap(K fromKey) { throw new InternalError(); }
2085        public Comparator<? super K> comparator() { throw new InternalError(); }
2086    }
2087
2088
2089    // Red-black mechanics
2090
2091    private static final boolean RED   = false;
2092    private static final boolean BLACK = true;
2093
2094    /**
2095     * Node in the Tree.  Doubles as a means to pass key-value pairs back to
2096     * user (see Map.Entry).
2097     */
2098
2099    static final class TreeMapEntry<K,V> implements Map.Entry<K,V> {
2100        K key;
2101        V value;
2102        TreeMapEntry<K,V> left = null;
2103        TreeMapEntry<K,V> right = null;
2104        TreeMapEntry<K,V> parent;
2105        boolean color = BLACK;
2106
2107        /**
2108         * Make a new cell with given key, value, and parent, and with
2109         * {@code null} child links, and BLACK color.
2110         */
2111        TreeMapEntry(K key, V value, TreeMapEntry<K,V> parent) {
2112            this.key = key;
2113            this.value = value;
2114            this.parent = parent;
2115        }
2116
2117        /**
2118         * Returns the key.
2119         *
2120         * @return the key
2121         */
2122        public K getKey() {
2123            return key;
2124        }
2125
2126        /**
2127         * Returns the value associated with the key.
2128         *
2129         * @return the value associated with the key
2130         */
2131        public V getValue() {
2132            return value;
2133        }
2134
2135        /**
2136         * Replaces the value currently associated with the key with the given
2137         * value.
2138         *
2139         * @return the value associated with the key before this method was
2140         *         called
2141         */
2142        public V setValue(V value) {
2143            V oldValue = this.value;
2144            this.value = value;
2145            return oldValue;
2146        }
2147
2148        public boolean equals(Object o) {
2149            if (!(o instanceof Map.Entry))
2150                return false;
2151            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
2152
2153            return valEquals(key,e.getKey()) && valEquals(value,e.getValue());
2154        }
2155
2156        public int hashCode() {
2157            int keyHash = (key==null ? 0 : key.hashCode());
2158            int valueHash = (value==null ? 0 : value.hashCode());
2159            return keyHash ^ valueHash;
2160        }
2161
2162        public String toString() {
2163            return key + "=" + value;
2164        }
2165    }
2166
2167    /**
2168     * Returns the first Entry in the TreeMap (according to the TreeMap's
2169     * key-sort function).  Returns null if the TreeMap is empty.
2170     */
2171    final TreeMapEntry<K,V> getFirstEntry() {
2172        TreeMapEntry<K,V> p = root;
2173        if (p != null)
2174            while (p.left != null)
2175                p = p.left;
2176        return p;
2177    }
2178
2179    /**
2180     * Returns the last Entry in the TreeMap (according to the TreeMap's
2181     * key-sort function).  Returns null if the TreeMap is empty.
2182     */
2183    final TreeMapEntry<K,V> getLastEntry() {
2184        TreeMapEntry<K,V> p = root;
2185        if (p != null)
2186            while (p.right != null)
2187                p = p.right;
2188        return p;
2189    }
2190
2191    /**
2192     * Returns the successor of the specified Entry, or null if no such.
2193     */
2194    static <K,V> TreeMapEntry<K,V> successor(TreeMapEntry<K,V> t) {
2195        if (t == null)
2196            return null;
2197        else if (t.right != null) {
2198            TreeMapEntry<K,V> p = t.right;
2199            while (p.left != null)
2200                p = p.left;
2201            return p;
2202        } else {
2203            TreeMapEntry<K,V> p = t.parent;
2204            TreeMapEntry<K,V> ch = t;
2205            while (p != null && ch == p.right) {
2206                ch = p;
2207                p = p.parent;
2208            }
2209            return p;
2210        }
2211    }
2212
2213    /**
2214     * Returns the predecessor of the specified Entry, or null if no such.
2215     */
2216    static <K,V> TreeMapEntry<K,V> predecessor(TreeMapEntry<K,V> t) {
2217        if (t == null)
2218            return null;
2219        else if (t.left != null) {
2220            TreeMapEntry<K,V> p = t.left;
2221            while (p.right != null)
2222                p = p.right;
2223            return p;
2224        } else {
2225            TreeMapEntry<K,V> p = t.parent;
2226            TreeMapEntry<K,V> ch = t;
2227            while (p != null && ch == p.left) {
2228                ch = p;
2229                p = p.parent;
2230            }
2231            return p;
2232        }
2233    }
2234
2235    /**
2236     * Balancing operations.
2237     *
2238     * Implementations of rebalancings during insertion and deletion are
2239     * slightly different than the CLR version.  Rather than using dummy
2240     * nilnodes, we use a set of accessors that deal properly with null.  They
2241     * are used to avoid messiness surrounding nullness checks in the main
2242     * algorithms.
2243     */
2244
2245    private static <K,V> boolean colorOf(TreeMapEntry<K,V> p) {
2246        return (p == null ? BLACK : p.color);
2247    }
2248
2249    private static <K,V> TreeMapEntry<K,V> parentOf(TreeMapEntry<K,V> p) {
2250        return (p == null ? null: p.parent);
2251    }
2252
2253    private static <K,V> void setColor(TreeMapEntry<K,V> p, boolean c) {
2254        if (p != null)
2255            p.color = c;
2256    }
2257
2258    private static <K,V> TreeMapEntry<K,V> leftOf(TreeMapEntry<K,V> p) {
2259        return (p == null) ? null: p.left;
2260    }
2261
2262    private static <K,V> TreeMapEntry<K,V> rightOf(TreeMapEntry<K,V> p) {
2263        return (p == null) ? null: p.right;
2264    }
2265
2266    /** From CLR */
2267    private void rotateLeft(TreeMapEntry<K,V> p) {
2268        if (p != null) {
2269            TreeMapEntry<K,V> r = p.right;
2270            p.right = r.left;
2271            if (r.left != null)
2272                r.left.parent = p;
2273            r.parent = p.parent;
2274            if (p.parent == null)
2275                root = r;
2276            else if (p.parent.left == p)
2277                p.parent.left = r;
2278            else
2279                p.parent.right = r;
2280            r.left = p;
2281            p.parent = r;
2282        }
2283    }
2284
2285    /** From CLR */
2286    private void rotateRight(TreeMapEntry<K,V> p) {
2287        if (p != null) {
2288            TreeMapEntry<K,V> l = p.left;
2289            p.left = l.right;
2290            if (l.right != null) l.right.parent = p;
2291            l.parent = p.parent;
2292            if (p.parent == null)
2293                root = l;
2294            else if (p.parent.right == p)
2295                p.parent.right = l;
2296            else p.parent.left = l;
2297            l.right = p;
2298            p.parent = l;
2299        }
2300    }
2301
2302    /** From CLR */
2303    private void fixAfterInsertion(TreeMapEntry<K,V> x) {
2304        x.color = RED;
2305
2306        while (x != null && x != root && x.parent.color == RED) {
2307            if (parentOf(x) == leftOf(parentOf(parentOf(x)))) {
2308                TreeMapEntry<K,V> y = rightOf(parentOf(parentOf(x)));
2309                if (colorOf(y) == RED) {
2310                    setColor(parentOf(x), BLACK);
2311                    setColor(y, BLACK);
2312                    setColor(parentOf(parentOf(x)), RED);
2313                    x = parentOf(parentOf(x));
2314                } else {
2315                    if (x == rightOf(parentOf(x))) {
2316                        x = parentOf(x);
2317                        rotateLeft(x);
2318                    }
2319                    setColor(parentOf(x), BLACK);
2320                    setColor(parentOf(parentOf(x)), RED);
2321                    rotateRight(parentOf(parentOf(x)));
2322                }
2323            } else {
2324                TreeMapEntry<K,V> y = leftOf(parentOf(parentOf(x)));
2325                if (colorOf(y) == RED) {
2326                    setColor(parentOf(x), BLACK);
2327                    setColor(y, BLACK);
2328                    setColor(parentOf(parentOf(x)), RED);
2329                    x = parentOf(parentOf(x));
2330                } else {
2331                    if (x == leftOf(parentOf(x))) {
2332                        x = parentOf(x);
2333                        rotateRight(x);
2334                    }
2335                    setColor(parentOf(x), BLACK);
2336                    setColor(parentOf(parentOf(x)), RED);
2337                    rotateLeft(parentOf(parentOf(x)));
2338                }
2339            }
2340        }
2341        root.color = BLACK;
2342    }
2343
2344    /**
2345     * Delete node p, and then rebalance the tree.
2346     */
2347    private void deleteEntry(TreeMapEntry<K,V> p) {
2348        modCount++;
2349        size--;
2350
2351        // If strictly internal, copy successor's element to p and then make p
2352        // point to successor.
2353        if (p.left != null && p.right != null) {
2354            TreeMapEntry<K,V> s = successor(p);
2355            p.key = s.key;
2356            p.value = s.value;
2357            p = s;
2358        } // p has 2 children
2359
2360        // Start fixup at replacement node, if it exists.
2361        TreeMapEntry<K,V> replacement = (p.left != null ? p.left : p.right);
2362
2363        if (replacement != null) {
2364            // Link replacement to parent
2365            replacement.parent = p.parent;
2366            if (p.parent == null)
2367                root = replacement;
2368            else if (p == p.parent.left)
2369                p.parent.left  = replacement;
2370            else
2371                p.parent.right = replacement;
2372
2373            // Null out links so they are OK to use by fixAfterDeletion.
2374            p.left = p.right = p.parent = null;
2375
2376            // Fix replacement
2377            if (p.color == BLACK)
2378                fixAfterDeletion(replacement);
2379        } else if (p.parent == null) { // return if we are the only node.
2380            root = null;
2381        } else { //  No children. Use self as phantom replacement and unlink.
2382            if (p.color == BLACK)
2383                fixAfterDeletion(p);
2384
2385            if (p.parent != null) {
2386                if (p == p.parent.left)
2387                    p.parent.left = null;
2388                else if (p == p.parent.right)
2389                    p.parent.right = null;
2390                p.parent = null;
2391            }
2392        }
2393    }
2394
2395    /** From CLR */
2396    private void fixAfterDeletion(TreeMapEntry<K,V> x) {
2397        while (x != root && colorOf(x) == BLACK) {
2398            if (x == leftOf(parentOf(x))) {
2399                TreeMapEntry<K,V> sib = rightOf(parentOf(x));
2400
2401                if (colorOf(sib) == RED) {
2402                    setColor(sib, BLACK);
2403                    setColor(parentOf(x), RED);
2404                    rotateLeft(parentOf(x));
2405                    sib = rightOf(parentOf(x));
2406                }
2407
2408                if (colorOf(leftOf(sib))  == BLACK &&
2409                    colorOf(rightOf(sib)) == BLACK) {
2410                    setColor(sib, RED);
2411                    x = parentOf(x);
2412                } else {
2413                    if (colorOf(rightOf(sib)) == BLACK) {
2414                        setColor(leftOf(sib), BLACK);
2415                        setColor(sib, RED);
2416                        rotateRight(sib);
2417                        sib = rightOf(parentOf(x));
2418                    }
2419                    setColor(sib, colorOf(parentOf(x)));
2420                    setColor(parentOf(x), BLACK);
2421                    setColor(rightOf(sib), BLACK);
2422                    rotateLeft(parentOf(x));
2423                    x = root;
2424                }
2425            } else { // symmetric
2426                TreeMapEntry<K,V> sib = leftOf(parentOf(x));
2427
2428                if (colorOf(sib) == RED) {
2429                    setColor(sib, BLACK);
2430                    setColor(parentOf(x), RED);
2431                    rotateRight(parentOf(x));
2432                    sib = leftOf(parentOf(x));
2433                }
2434
2435                if (colorOf(rightOf(sib)) == BLACK &&
2436                    colorOf(leftOf(sib)) == BLACK) {
2437                    setColor(sib, RED);
2438                    x = parentOf(x);
2439                } else {
2440                    if (colorOf(leftOf(sib)) == BLACK) {
2441                        setColor(rightOf(sib), BLACK);
2442                        setColor(sib, RED);
2443                        rotateLeft(sib);
2444                        sib = leftOf(parentOf(x));
2445                    }
2446                    setColor(sib, colorOf(parentOf(x)));
2447                    setColor(parentOf(x), BLACK);
2448                    setColor(leftOf(sib), BLACK);
2449                    rotateRight(parentOf(x));
2450                    x = root;
2451                }
2452            }
2453        }
2454
2455        setColor(x, BLACK);
2456    }
2457
2458    private static final long serialVersionUID = 919286545866124006L;
2459
2460    /**
2461     * Save the state of the {@code TreeMap} instance to a stream (i.e.,
2462     * serialize it).
2463     *
2464     * @serialData The <em>size</em> of the TreeMap (the number of key-value
2465     *             mappings) is emitted (int), followed by the key (Object)
2466     *             and value (Object) for each key-value mapping represented
2467     *             by the TreeMap. The key-value mappings are emitted in
2468     *             key-order (as determined by the TreeMap's Comparator,
2469     *             or by the keys' natural ordering if the TreeMap has no
2470     *             Comparator).
2471     */
2472    private void writeObject(java.io.ObjectOutputStream s)
2473        throws java.io.IOException {
2474        // Write out the Comparator and any hidden stuff
2475        s.defaultWriteObject();
2476
2477        // Write out size (number of Mappings)
2478        s.writeInt(size);
2479
2480        // Write out keys and values (alternating)
2481        for (Iterator<Map.Entry<K,V>> i = entrySet().iterator(); i.hasNext(); ) {
2482            Map.Entry<K,V> e = i.next();
2483            s.writeObject(e.getKey());
2484            s.writeObject(e.getValue());
2485        }
2486    }
2487
2488    /**
2489     * Reconstitute the {@code TreeMap} instance from a stream (i.e.,
2490     * deserialize it).
2491     */
2492    private void readObject(final java.io.ObjectInputStream s)
2493        throws java.io.IOException, ClassNotFoundException {
2494        // Read in the Comparator and any hidden stuff
2495        s.defaultReadObject();
2496
2497        // Read in size
2498        int size = s.readInt();
2499
2500        buildFromSorted(size, null, s, null);
2501    }
2502
2503    /** Intended to be called only from TreeSet.readObject */
2504    void readTreeSet(int size, java.io.ObjectInputStream s, V defaultVal)
2505        throws java.io.IOException, ClassNotFoundException {
2506        buildFromSorted(size, null, s, defaultVal);
2507    }
2508
2509    /** Intended to be called only from TreeSet.addAll */
2510    void addAllForTreeSet(SortedSet<? extends K> set, V defaultVal) {
2511        try {
2512            buildFromSorted(set.size(), set.iterator(), null, defaultVal);
2513        } catch (java.io.IOException cannotHappen) {
2514        } catch (ClassNotFoundException cannotHappen) {
2515        }
2516    }
2517
2518
2519    /**
2520     * Linear time tree building algorithm from sorted data.  Can accept keys
2521     * and/or values from iterator or stream. This leads to too many
2522     * parameters, but seems better than alternatives.  The four formats
2523     * that this method accepts are:
2524     *
2525     *    1) An iterator of Map.Entries.  (it != null, defaultVal == null).
2526     *    2) An iterator of keys.         (it != null, defaultVal != null).
2527     *    3) A stream of alternating serialized keys and values.
2528     *                                   (it == null, defaultVal == null).
2529     *    4) A stream of serialized keys. (it == null, defaultVal != null).
2530     *
2531     * It is assumed that the comparator of the TreeMap is already set prior
2532     * to calling this method.
2533     *
2534     * @param size the number of keys (or key-value pairs) to be read from
2535     *        the iterator or stream
2536     * @param it If non-null, new entries are created from entries
2537     *        or keys read from this iterator.
2538     * @param str If non-null, new entries are created from keys and
2539     *        possibly values read from this stream in serialized form.
2540     *        Exactly one of it and str should be non-null.
2541     * @param defaultVal if non-null, this default value is used for
2542     *        each value in the map.  If null, each value is read from
2543     *        iterator or stream, as described above.
2544     * @throws java.io.IOException propagated from stream reads. This cannot
2545     *         occur if str is null.
2546     * @throws ClassNotFoundException propagated from readObject.
2547     *         This cannot occur if str is null.
2548     */
2549    private void buildFromSorted(int size, Iterator<?> it,
2550                                 java.io.ObjectInputStream str,
2551                                 V defaultVal)
2552        throws  java.io.IOException, ClassNotFoundException {
2553        this.size = size;
2554        root = buildFromSorted(0, 0, size-1, computeRedLevel(size),
2555                               it, str, defaultVal);
2556    }
2557
2558    /**
2559     * Recursive "helper method" that does the real work of the
2560     * previous method.  Identically named parameters have
2561     * identical definitions.  Additional parameters are documented below.
2562     * It is assumed that the comparator and size fields of the TreeMap are
2563     * already set prior to calling this method.  (It ignores both fields.)
2564     *
2565     * @param level the current level of tree. Initial call should be 0.
2566     * @param lo the first element index of this subtree. Initial should be 0.
2567     * @param hi the last element index of this subtree.  Initial should be
2568     *        size-1.
2569     * @param redLevel the level at which nodes should be red.
2570     *        Must be equal to computeRedLevel for tree of this size.
2571     */
2572    @SuppressWarnings("unchecked")
2573    private final TreeMapEntry<K,V> buildFromSorted(int level, int lo, int hi,
2574                                             int redLevel,
2575                                             Iterator<?> it,
2576                                             java.io.ObjectInputStream str,
2577                                             V defaultVal)
2578        throws  java.io.IOException, ClassNotFoundException {
2579        /*
2580         * Strategy: The root is the middlemost element. To get to it, we
2581         * have to first recursively construct the entire left subtree,
2582         * so as to grab all of its elements. We can then proceed with right
2583         * subtree.
2584         *
2585         * The lo and hi arguments are the minimum and maximum
2586         * indices to pull out of the iterator or stream for current subtree.
2587         * They are not actually indexed, we just proceed sequentially,
2588         * ensuring that items are extracted in corresponding order.
2589         */
2590
2591        if (hi < lo) return null;
2592
2593        int mid = (lo + hi) >>> 1;
2594
2595        TreeMapEntry<K,V> left  = null;
2596        if (lo < mid)
2597            left = buildFromSorted(level+1, lo, mid - 1, redLevel,
2598                                   it, str, defaultVal);
2599
2600        // extract key and/or value from iterator or stream
2601        K key;
2602        V value;
2603        if (it != null) {
2604            if (defaultVal==null) {
2605                Map.Entry<K,V> entry = (Map.Entry<K,V>)it.next();
2606                key = entry.getKey();
2607                value = entry.getValue();
2608            } else {
2609                key = (K)it.next();
2610                value = defaultVal;
2611            }
2612        } else { // use stream
2613            key = (K) str.readObject();
2614            value = (defaultVal != null ? defaultVal : (V) str.readObject());
2615        }
2616
2617        TreeMapEntry<K,V> middle =  new TreeMapEntry<>(key, value, null);
2618
2619        // color nodes in non-full bottommost level red
2620        if (level == redLevel)
2621            middle.color = RED;
2622
2623        if (left != null) {
2624            middle.left = left;
2625            left.parent = middle;
2626        }
2627
2628        if (mid < hi) {
2629            TreeMapEntry<K,V> right = buildFromSorted(level+1, mid+1, hi, redLevel,
2630                                               it, str, defaultVal);
2631            middle.right = right;
2632            right.parent = middle;
2633        }
2634
2635        return middle;
2636    }
2637
2638    /**
2639     * Find the level down to which to assign all nodes BLACK.  This is the
2640     * last `full' level of the complete binary tree produced by
2641     * buildTree. The remaining nodes are colored RED. (This makes a `nice'
2642     * set of color assignments wrt future insertions.) This level number is
2643     * computed by finding the number of splits needed to reach the zeroeth
2644     * node.  (The answer is ~lg(N), but in any case must be computed by same
2645     * quick O(lg(N)) loop.)
2646     */
2647    private static int computeRedLevel(int sz) {
2648        int level = 0;
2649        for (int m = sz - 1; m >= 0; m = m / 2 - 1)
2650            level++;
2651        return level;
2652    }
2653
2654    /**
2655     * Currently, we support Spliterator-based versions only for the
2656     * full map, in either plain of descending form, otherwise relying
2657     * on defaults because size estimation for submaps would dominate
2658     * costs. The type tests needed to check these for key views are
2659     * not very nice but avoid disrupting existing class
2660     * structures. Callers must use plain default spliterators if this
2661     * returns null.
2662     */
2663    static <K> Spliterator<K> keySpliteratorFor(NavigableMap<K,?> m) {
2664        if (m instanceof TreeMap) {
2665            @SuppressWarnings("unchecked") TreeMap<K,Object> t =
2666                (TreeMap<K,Object>) m;
2667            return t.keySpliterator();
2668        }
2669        if (m instanceof DescendingSubMap) {
2670            @SuppressWarnings("unchecked") DescendingSubMap<K,?> dm =
2671                (DescendingSubMap<K,?>) m;
2672            TreeMap<K,?> tm = dm.m;
2673            if (dm == tm.descendingMap) {
2674                @SuppressWarnings("unchecked") TreeMap<K,Object> t =
2675                    (TreeMap<K,Object>) tm;
2676                return t.descendingKeySpliterator();
2677            }
2678        }
2679        @SuppressWarnings("unchecked") NavigableSubMap<K,?> sm =
2680            (NavigableSubMap<K,?>) m;
2681        return sm.keySpliterator();
2682    }
2683
2684    final Spliterator<K> keySpliterator() {
2685        return new KeySpliterator<K,V>(this, null, null, 0, -1, 0);
2686    }
2687
2688    final Spliterator<K> descendingKeySpliterator() {
2689        return new DescendingKeySpliterator<K,V>(this, null, null, 0, -2, 0);
2690    }
2691
2692    /**
2693     * Base class for spliterators.  Iteration starts at a given
2694     * origin and continues up to but not including a given fence (or
2695     * null for end).  At top-level, for ascending cases, the first
2696     * split uses the root as left-fence/right-origin. From there,
2697     * right-hand splits replace the current fence with its left
2698     * child, also serving as origin for the split-off spliterator.
2699     * Left-hands are symmetric. Descending versions place the origin
2700     * at the end and invert ascending split rules.  This base class
2701     * is non-commital about directionality, or whether the top-level
2702     * spliterator covers the whole tree. This means that the actual
2703     * split mechanics are located in subclasses. Some of the subclass
2704     * trySplit methods are identical (except for return types), but
2705     * not nicely factorable.
2706     *
2707     * Currently, subclass versions exist only for the full map
2708     * (including descending keys via its descendingMap).  Others are
2709     * possible but currently not worthwhile because submaps require
2710     * O(n) computations to determine size, which substantially limits
2711     * potential speed-ups of using custom Spliterators versus default
2712     * mechanics.
2713     *
2714     * To boostrap initialization, external constructors use
2715     * negative size estimates: -1 for ascend, -2 for descend.
2716     */
2717    static class TreeMapSpliterator<K,V> {
2718        final TreeMap<K,V> tree;
2719        TreeMapEntry<K,V> current; // traverser; initially first node in range
2720        TreeMapEntry<K,V> fence;   // one past last, or null
2721        int side;                   // 0: top, -1: is a left split, +1: right
2722        int est;                    // size estimate (exact only for top-level)
2723        int expectedModCount;       // for CME checks
2724
2725        TreeMapSpliterator(TreeMap<K,V> tree,
2726                           TreeMapEntry<K,V> origin, TreeMapEntry<K,V> fence,
2727                           int side, int est, int expectedModCount) {
2728            this.tree = tree;
2729            this.current = origin;
2730            this.fence = fence;
2731            this.side = side;
2732            this.est = est;
2733            this.expectedModCount = expectedModCount;
2734        }
2735
2736        final int getEstimate() { // force initialization
2737            int s; TreeMap<K,V> t;
2738            if ((s = est) < 0) {
2739                if ((t = tree) != null) {
2740                    current = (s == -1) ? t.getFirstEntry() : t.getLastEntry();
2741                    s = est = t.size;
2742                    expectedModCount = t.modCount;
2743                }
2744                else
2745                    s = est = 0;
2746            }
2747            return s;
2748        }
2749
2750        public final long estimateSize() {
2751            return (long)getEstimate();
2752        }
2753    }
2754
2755    static final class KeySpliterator<K,V>
2756        extends TreeMapSpliterator<K,V>
2757        implements Spliterator<K> {
2758        KeySpliterator(TreeMap<K,V> tree,
2759                       TreeMapEntry<K,V> origin, TreeMapEntry<K,V> fence,
2760                       int side, int est, int expectedModCount) {
2761            super(tree, origin, fence, side, est, expectedModCount);
2762        }
2763
2764        public KeySpliterator<K,V> trySplit() {
2765            if (est < 0)
2766                getEstimate(); // force initialization
2767            int d = side;
2768            TreeMapEntry<K,V> e = current, f = fence,
2769                s = ((e == null || e == f) ? null :      // empty
2770                     (d == 0)              ? tree.root : // was top
2771                     (d >  0)              ? e.right :   // was right
2772                     (d <  0 && f != null) ? f.left :    // was left
2773                     null);
2774            if (s != null && s != e && s != f &&
2775                tree.compare(e.key, s.key) < 0) {        // e not already past s
2776                side = 1;
2777                return new KeySpliterator<>
2778                    (tree, e, current = s, -1, est >>>= 1, expectedModCount);
2779            }
2780            return null;
2781        }
2782
2783        public void forEachRemaining(Consumer<? super K> action) {
2784            if (action == null)
2785                throw new NullPointerException();
2786            if (est < 0)
2787                getEstimate(); // force initialization
2788            TreeMapEntry<K,V> f = fence, e, p, pl;
2789            if ((e = current) != null && e != f) {
2790                current = f; // exhaust
2791                do {
2792                    action.accept(e.key);
2793                    if ((p = e.right) != null) {
2794                        while ((pl = p.left) != null)
2795                            p = pl;
2796                    }
2797                    else {
2798                        while ((p = e.parent) != null && e == p.right)
2799                            e = p;
2800                    }
2801                } while ((e = p) != null && e != f);
2802                if (tree.modCount != expectedModCount)
2803                    throw new ConcurrentModificationException();
2804            }
2805        }
2806
2807        public boolean tryAdvance(Consumer<? super K> action) {
2808            TreeMapEntry<K,V> e;
2809            if (action == null)
2810                throw new NullPointerException();
2811            if (est < 0)
2812                getEstimate(); // force initialization
2813            if ((e = current) == null || e == fence)
2814                return false;
2815            current = successor(e);
2816            action.accept(e.key);
2817            if (tree.modCount != expectedModCount)
2818                throw new ConcurrentModificationException();
2819            return true;
2820        }
2821
2822        public int characteristics() {
2823            return (side == 0 ? Spliterator.SIZED : 0) |
2824                Spliterator.DISTINCT | Spliterator.SORTED | Spliterator.ORDERED;
2825        }
2826
2827        public final Comparator<? super K>  getComparator() {
2828            return tree.comparator;
2829        }
2830
2831    }
2832
2833    static final class DescendingKeySpliterator<K,V>
2834        extends TreeMapSpliterator<K,V>
2835        implements Spliterator<K> {
2836        DescendingKeySpliterator(TreeMap<K,V> tree,
2837                                 TreeMapEntry<K,V> origin, TreeMapEntry<K,V> fence,
2838                                 int side, int est, int expectedModCount) {
2839            super(tree, origin, fence, side, est, expectedModCount);
2840        }
2841
2842        public DescendingKeySpliterator<K,V> trySplit() {
2843            if (est < 0)
2844                getEstimate(); // force initialization
2845            int d = side;
2846            TreeMapEntry<K,V> e = current, f = fence,
2847                    s = ((e == null || e == f) ? null :      // empty
2848                         (d == 0)              ? tree.root : // was top
2849                         (d <  0)              ? e.left :    // was left
2850                         (d >  0 && f != null) ? f.right :   // was right
2851                         null);
2852            if (s != null && s != e && s != f &&
2853                tree.compare(e.key, s.key) > 0) {       // e not already past s
2854                side = 1;
2855                return new DescendingKeySpliterator<>
2856                        (tree, e, current = s, -1, est >>>= 1, expectedModCount);
2857            }
2858            return null;
2859        }
2860
2861        public void forEachRemaining(Consumer<? super K> action) {
2862            if (action == null)
2863                throw new NullPointerException();
2864            if (est < 0)
2865                getEstimate(); // force initialization
2866            TreeMapEntry<K,V> f = fence, e, p, pr;
2867            if ((e = current) != null && e != f) {
2868                current = f; // exhaust
2869                do {
2870                    action.accept(e.key);
2871                    if ((p = e.left) != null) {
2872                        while ((pr = p.right) != null)
2873                            p = pr;
2874                    }
2875                    else {
2876                        while ((p = e.parent) != null && e == p.left)
2877                            e = p;
2878                    }
2879                } while ((e = p) != null && e != f);
2880                if (tree.modCount != expectedModCount)
2881                    throw new ConcurrentModificationException();
2882            }
2883        }
2884
2885        public boolean tryAdvance(Consumer<? super K> action) {
2886            TreeMapEntry<K,V> e;
2887            if (action == null)
2888                throw new NullPointerException();
2889            if (est < 0)
2890                getEstimate(); // force initialization
2891            if ((e = current) == null || e == fence)
2892                return false;
2893            current = predecessor(e);
2894            action.accept(e.key);
2895            if (tree.modCount != expectedModCount)
2896                throw new ConcurrentModificationException();
2897            return true;
2898        }
2899
2900        public int characteristics() {
2901            return (side == 0 ? Spliterator.SIZED : 0) |
2902                Spliterator.DISTINCT | Spliterator.ORDERED;
2903        }
2904    }
2905
2906    static final class ValueSpliterator<K,V>
2907            extends TreeMapSpliterator<K,V>
2908            implements Spliterator<V> {
2909        ValueSpliterator(TreeMap<K,V> tree,
2910                         TreeMapEntry<K,V> origin, TreeMapEntry<K,V> fence,
2911                         int side, int est, int expectedModCount) {
2912            super(tree, origin, fence, side, est, expectedModCount);
2913        }
2914
2915        public ValueSpliterator<K,V> trySplit() {
2916            if (est < 0)
2917                getEstimate(); // force initialization
2918            int d = side;
2919            TreeMapEntry<K,V> e = current, f = fence,
2920                    s = ((e == null || e == f) ? null :      // empty
2921                         (d == 0)              ? tree.root : // was top
2922                         (d >  0)              ? e.right :   // was right
2923                         (d <  0 && f != null) ? f.left :    // was left
2924                         null);
2925            if (s != null && s != e && s != f &&
2926                tree.compare(e.key, s.key) < 0) {        // e not already past s
2927                side = 1;
2928                return new ValueSpliterator<>
2929                        (tree, e, current = s, -1, est >>>= 1, expectedModCount);
2930            }
2931            return null;
2932        }
2933
2934        public void forEachRemaining(Consumer<? super V> action) {
2935            if (action == null)
2936                throw new NullPointerException();
2937            if (est < 0)
2938                getEstimate(); // force initialization
2939            TreeMapEntry<K,V> f = fence, e, p, pl;
2940            if ((e = current) != null && e != f) {
2941                current = f; // exhaust
2942                do {
2943                    action.accept(e.value);
2944                    if ((p = e.right) != null) {
2945                        while ((pl = p.left) != null)
2946                            p = pl;
2947                    }
2948                    else {
2949                        while ((p = e.parent) != null && e == p.right)
2950                            e = p;
2951                    }
2952                } while ((e = p) != null && e != f);
2953                if (tree.modCount != expectedModCount)
2954                    throw new ConcurrentModificationException();
2955            }
2956        }
2957
2958        public boolean tryAdvance(Consumer<? super V> action) {
2959            TreeMapEntry<K,V> e;
2960            if (action == null)
2961                throw new NullPointerException();
2962            if (est < 0)
2963                getEstimate(); // force initialization
2964            if ((e = current) == null || e == fence)
2965                return false;
2966            current = successor(e);
2967            action.accept(e.value);
2968            if (tree.modCount != expectedModCount)
2969                throw new ConcurrentModificationException();
2970            return true;
2971        }
2972
2973        public int characteristics() {
2974            return (side == 0 ? Spliterator.SIZED : 0) | Spliterator.ORDERED;
2975        }
2976    }
2977
2978    static final class EntrySpliterator<K,V>
2979        extends TreeMapSpliterator<K,V>
2980        implements Spliterator<Map.Entry<K,V>> {
2981        EntrySpliterator(TreeMap<K,V> tree,
2982                         TreeMapEntry<K,V> origin, TreeMapEntry<K,V> fence,
2983                         int side, int est, int expectedModCount) {
2984            super(tree, origin, fence, side, est, expectedModCount);
2985        }
2986
2987        public EntrySpliterator<K,V> trySplit() {
2988            if (est < 0)
2989                getEstimate(); // force initialization
2990            int d = side;
2991            TreeMapEntry<K,V> e = current, f = fence,
2992                    s = ((e == null || e == f) ? null :      // empty
2993                         (d == 0)              ? tree.root : // was top
2994                         (d >  0)              ? e.right :   // was right
2995                         (d <  0 && f != null) ? f.left :    // was left
2996                         null);
2997            if (s != null && s != e && s != f &&
2998                tree.compare(e.key, s.key) < 0) {        // e not already past s
2999                side = 1;
3000                return new EntrySpliterator<>
3001                        (tree, e, current = s, -1, est >>>= 1, expectedModCount);
3002            }
3003            return null;
3004        }
3005
3006        public void forEachRemaining(Consumer<? super Map.Entry<K, V>> action) {
3007            if (action == null)
3008                throw new NullPointerException();
3009            if (est < 0)
3010                getEstimate(); // force initialization
3011            TreeMapEntry<K,V> f = fence, e, p, pl;
3012            if ((e = current) != null && e != f) {
3013                current = f; // exhaust
3014                do {
3015                    action.accept(e);
3016                    if ((p = e.right) != null) {
3017                        while ((pl = p.left) != null)
3018                            p = pl;
3019                    }
3020                    else {
3021                        while ((p = e.parent) != null && e == p.right)
3022                            e = p;
3023                    }
3024                } while ((e = p) != null && e != f);
3025                if (tree.modCount != expectedModCount)
3026                    throw new ConcurrentModificationException();
3027            }
3028        }
3029
3030        public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3031            TreeMapEntry<K,V> e;
3032            if (action == null)
3033                throw new NullPointerException();
3034            if (est < 0)
3035                getEstimate(); // force initialization
3036            if ((e = current) == null || e == fence)
3037                return false;
3038            current = successor(e);
3039            action.accept(e);
3040            if (tree.modCount != expectedModCount)
3041                throw new ConcurrentModificationException();
3042            return true;
3043        }
3044
3045        public int characteristics() {
3046            return (side == 0 ? Spliterator.SIZED : 0) |
3047                    Spliterator.DISTINCT | Spliterator.SORTED | Spliterator.ORDERED;
3048        }
3049
3050        @Override
3051        public Comparator<Map.Entry<K, V>> getComparator() {
3052            // Adapt or create a key-based comparator
3053            if (tree.comparator != null) {
3054                return Map.Entry.comparingByKey(tree.comparator);
3055            }
3056            else {
3057                return (Comparator<Map.Entry<K, V>> & Serializable) (e1, e2) -> {
3058                    @SuppressWarnings("unchecked")
3059                    Comparable<? super K> k1 = (Comparable<? super K>) e1.getKey();
3060                    return k1.compareTo(e2.getKey());
3061                };
3062            }
3063        }
3064    }
3065}
3066