WeakHashMap.java revision 15a062b16485b913fbca72ce5ebafb9e16aab284
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.  Oracle designates this
9 * particular file as subject to the "Classpath" exception as provided
10 * by Oracle in the LICENSE file that accompanied this code.
11 *
12 * This code is distributed in the hope that it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 * version 2 for more details (a copy is included in the LICENSE file that
16 * accompanied this code).
17 *
18 * You should have received a copy of the GNU General Public License version
19 * 2 along with this work; if not, write to the Free Software Foundation,
20 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
21 *
22 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
23 * or visit www.oracle.com if you need additional information or have any
24 * questions.
25 */
26
27package java.util;
28
29import java.lang.ref.WeakReference;
30import java.lang.ref.ReferenceQueue;
31import java.util.function.BiConsumer;
32import java.util.function.BiFunction;
33import java.util.function.Consumer;
34
35
36/**
37 * Hash table based implementation of the <tt>Map</tt> interface, with
38 * <em>weak keys</em>.
39 * An entry in a <tt>WeakHashMap</tt> will automatically be removed when
40 * its key is no longer in ordinary use.  More precisely, the presence of a
41 * mapping for a given key will not prevent the key from being discarded by the
42 * garbage collector, that is, made finalizable, finalized, and then reclaimed.
43 * When a key has been discarded its entry is effectively removed from the map,
44 * so this class behaves somewhat differently from other <tt>Map</tt>
45 * implementations.
46 *
47 * <p> Both null values and the null key are supported. This class has
48 * performance characteristics similar to those of the <tt>HashMap</tt>
49 * class, and has the same efficiency parameters of <em>initial capacity</em>
50 * and <em>load factor</em>.
51 *
52 * <p> Like most collection classes, this class is not synchronized.
53 * A synchronized <tt>WeakHashMap</tt> may be constructed using the
54 * {@link Collections#synchronizedMap Collections.synchronizedMap}
55 * method.
56 *
57 * <p> This class is intended primarily for use with key objects whose
58 * <tt>equals</tt> methods test for object identity using the
59 * <tt>==</tt> operator.  Once such a key is discarded it can never be
60 * recreated, so it is impossible to do a lookup of that key in a
61 * <tt>WeakHashMap</tt> at some later time and be surprised that its entry
62 * has been removed.  This class will work perfectly well with key objects
63 * whose <tt>equals</tt> methods are not based upon object identity, such
64 * as <tt>String</tt> instances.  With such recreatable key objects,
65 * however, the automatic removal of <tt>WeakHashMap</tt> entries whose
66 * keys have been discarded may prove to be confusing.
67 *
68 * <p> The behavior of the <tt>WeakHashMap</tt> class depends in part upon
69 * the actions of the garbage collector, so several familiar (though not
70 * required) <tt>Map</tt> invariants do not hold for this class.  Because
71 * the garbage collector may discard keys at any time, a
72 * <tt>WeakHashMap</tt> may behave as though an unknown thread is silently
73 * removing entries.  In particular, even if you synchronize on a
74 * <tt>WeakHashMap</tt> instance and invoke none of its mutator methods, it
75 * is possible for the <tt>size</tt> method to return smaller values over
76 * time, for the <tt>isEmpty</tt> method to return <tt>false</tt> and
77 * then <tt>true</tt>, for the <tt>containsKey</tt> method to return
78 * <tt>true</tt> and later <tt>false</tt> for a given key, for the
79 * <tt>get</tt> method to return a value for a given key but later return
80 * <tt>null</tt>, for the <tt>put</tt> method to return
81 * <tt>null</tt> and the <tt>remove</tt> method to return
82 * <tt>false</tt> for a key that previously appeared to be in the map, and
83 * for successive examinations of the key set, the value collection, and
84 * the entry set to yield successively smaller numbers of elements.
85 *
86 * <p> Each key object in a <tt>WeakHashMap</tt> is stored indirectly as
87 * the referent of a weak reference.  Therefore a key will automatically be
88 * removed only after the weak references to it, both inside and outside of the
89 * map, have been cleared by the garbage collector.
90 *
91 * <p> <strong>Implementation note:</strong> The value objects in a
92 * <tt>WeakHashMap</tt> are held by ordinary strong references.  Thus care
93 * should be taken to ensure that value objects do not strongly refer to their
94 * own keys, either directly or indirectly, since that will prevent the keys
95 * from being discarded.  Note that a value object may refer indirectly to its
96 * key via the <tt>WeakHashMap</tt> itself; that is, a value object may
97 * strongly refer to some other key object whose associated value object, in
98 * turn, strongly refers to the key of the first value object.  If the values
99 * in the map do not rely on the map holding strong references to them, one way
100 * to deal with this is to wrap values themselves within
101 * <tt>WeakReferences</tt> before
102 * inserting, as in: <tt>m.put(key, new WeakReference(value))</tt>,
103 * and then unwrapping upon each <tt>get</tt>.
104 *
105 * <p>The iterators returned by the <tt>iterator</tt> method of the collections
106 * returned by all of this class's "collection view methods" are
107 * <i>fail-fast</i>: if the map is structurally modified at any time after the
108 * iterator is created, in any way except through the iterator's own
109 * <tt>remove</tt> method, the iterator will throw a {@link
110 * ConcurrentModificationException}.  Thus, in the face of concurrent
111 * modification, the iterator fails quickly and cleanly, rather than risking
112 * arbitrary, non-deterministic behavior at an undetermined time in the future.
113 *
114 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
115 * as it is, generally speaking, impossible to make any hard guarantees in the
116 * presence of unsynchronized concurrent modification.  Fail-fast iterators
117 * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
118 * Therefore, it would be wrong to write a program that depended on this
119 * exception for its correctness:  <i>the fail-fast behavior of iterators
120 * should be used only to detect bugs.</i>
121 *
122 * <p>This class is a member of the
123 * <a href="{@docRoot}openjdk-redirect.html?v=8&path=/technotes/guides/collections/index.html">
124 * Java Collections Framework</a>.
125 *
126 * @param <K> the type of keys maintained by this map
127 * @param <V> the type of mapped values
128 *
129 * @author      Doug Lea
130 * @author      Josh Bloch
131 * @author      Mark Reinhold
132 * @since       1.2
133 * @see         java.util.HashMap
134 * @see         java.lang.ref.WeakReference
135 */
136public class WeakHashMap<K,V>
137    extends AbstractMap<K,V>
138    implements Map<K,V> {
139
140    /**
141     * The default initial capacity -- MUST be a power of two.
142     */
143    private static final int DEFAULT_INITIAL_CAPACITY = 16;
144
145    /**
146     * The maximum capacity, used if a higher value is implicitly specified
147     * by either of the constructors with arguments.
148     * MUST be a power of two <= 1<<30.
149     */
150    private static final int MAXIMUM_CAPACITY = 1 << 30;
151
152    /**
153     * The load factor used when none specified in constructor.
154     */
155    private static final float DEFAULT_LOAD_FACTOR = 0.75f;
156
157    /**
158     * The table, resized as necessary. Length MUST Always be a power of two.
159     */
160    Entry<K,V>[] table;
161
162    /**
163     * The number of key-value mappings contained in this weak hash map.
164     */
165    private int size;
166
167    /**
168     * The next size value at which to resize (capacity * load factor).
169     */
170    private int threshold;
171
172    /**
173     * The load factor for the hash table.
174     */
175    private final float loadFactor;
176
177    /**
178     * Reference queue for cleared WeakEntries
179     */
180    private final ReferenceQueue<Object> queue = new ReferenceQueue<>();
181
182    /**
183     * The number of times this WeakHashMap has been structurally modified.
184     * Structural modifications are those that change the number of
185     * mappings in the map or otherwise modify its internal structure
186     * (e.g., rehash).  This field is used to make iterators on
187     * Collection-views of the map fail-fast.
188     *
189     * @see ConcurrentModificationException
190     */
191    int modCount;
192
193    @SuppressWarnings("unchecked")
194    private Entry<K,V>[] newTable(int n) {
195        return (Entry<K,V>[]) new Entry<?,?>[n];
196    }
197
198    /**
199     * Constructs a new, empty <tt>WeakHashMap</tt> with the given initial
200     * capacity and the given load factor.
201     *
202     * @param  initialCapacity The initial capacity of the <tt>WeakHashMap</tt>
203     * @param  loadFactor      The load factor of the <tt>WeakHashMap</tt>
204     * @throws IllegalArgumentException if the initial capacity is negative,
205     *         or if the load factor is nonpositive.
206     */
207    public WeakHashMap(int initialCapacity, float loadFactor) {
208        if (initialCapacity < 0)
209            throw new IllegalArgumentException("Illegal Initial Capacity: "+
210                                               initialCapacity);
211        if (initialCapacity > MAXIMUM_CAPACITY)
212            initialCapacity = MAXIMUM_CAPACITY;
213
214        if (loadFactor <= 0 || Float.isNaN(loadFactor))
215            throw new IllegalArgumentException("Illegal Load factor: "+
216                                               loadFactor);
217        int capacity = 1;
218        while (capacity < initialCapacity)
219            capacity <<= 1;
220        table = newTable(capacity);
221        this.loadFactor = loadFactor;
222        threshold = (int)(capacity * loadFactor);
223    }
224
225    /**
226     * Constructs a new, empty <tt>WeakHashMap</tt> with the given initial
227     * capacity and the default load factor (0.75).
228     *
229     * @param  initialCapacity The initial capacity of the <tt>WeakHashMap</tt>
230     * @throws IllegalArgumentException if the initial capacity is negative
231     */
232    public WeakHashMap(int initialCapacity) {
233        this(initialCapacity, DEFAULT_LOAD_FACTOR);
234    }
235
236    /**
237     * Constructs a new, empty <tt>WeakHashMap</tt> with the default initial
238     * capacity (16) and load factor (0.75).
239     */
240    public WeakHashMap() {
241        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR);
242    }
243
244    /**
245     * Constructs a new <tt>WeakHashMap</tt> with the same mappings as the
246     * specified map.  The <tt>WeakHashMap</tt> is created with the default
247     * load factor (0.75) and an initial capacity sufficient to hold the
248     * mappings in the specified map.
249     *
250     * @param   m the map whose mappings are to be placed in this map
251     * @throws  NullPointerException if the specified map is null
252     * @since   1.3
253     */
254    public WeakHashMap(Map<? extends K, ? extends V> m) {
255        this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
256                DEFAULT_INITIAL_CAPACITY),
257             DEFAULT_LOAD_FACTOR);
258        putAll(m);
259    }
260
261    // internal utilities
262
263    /**
264     * Value representing null keys inside tables.
265     */
266    private static final Object NULL_KEY = new Object();
267
268    /**
269     * Use NULL_KEY for key if it is null.
270     */
271    private static Object maskNull(Object key) {
272        return (key == null) ? NULL_KEY : key;
273    }
274
275    /**
276     * Returns internal representation of null key back to caller as null.
277     */
278    static Object unmaskNull(Object key) {
279        return (key == NULL_KEY) ? null : key;
280    }
281
282    /**
283     * Checks for equality of non-null reference x and possibly-null y.  By
284     * default uses Object.equals.
285     */
286    private static boolean eq(Object x, Object y) {
287        return x == y || x.equals(y);
288    }
289
290    /**
291     * Retrieve object hash code and applies a supplemental hash function to the
292     * result hash, which defends against poor quality hash functions.  This is
293     * critical because HashMap uses power-of-two length hash tables, that
294     * otherwise encounter collisions for hashCodes that do not differ
295     * in lower bits.
296     */
297    final int hash(Object k) {
298        int h = k.hashCode();
299
300        // This function ensures that hashCodes that differ only by
301        // constant multiples at each bit position have a bounded
302        // number of collisions (approximately 8 at default load factor).
303        h ^= (h >>> 20) ^ (h >>> 12);
304        return h ^ (h >>> 7) ^ (h >>> 4);
305    }
306
307    /**
308     * Returns index for hash code h.
309     */
310    private static int indexFor(int h, int length) {
311        return h & (length-1);
312    }
313
314    /**
315     * Expunges stale entries from the table.
316     */
317    private void expungeStaleEntries() {
318        for (Object x; (x = queue.poll()) != null; ) {
319            synchronized (queue) {
320                @SuppressWarnings("unchecked")
321                    Entry<K,V> e = (Entry<K,V>) x;
322                int i = indexFor(e.hash, table.length);
323
324                Entry<K,V> prev = table[i];
325                Entry<K,V> p = prev;
326                while (p != null) {
327                    Entry<K,V> next = p.next;
328                    if (p == e) {
329                        if (prev == e)
330                            table[i] = next;
331                        else
332                            prev.next = next;
333                        // Must not null out e.next;
334                        // stale entries may be in use by a HashIterator
335                        e.value = null; // Help GC
336                        size--;
337                        break;
338                    }
339                    prev = p;
340                    p = next;
341                }
342            }
343        }
344    }
345
346    /**
347     * Returns the table after first expunging stale entries.
348     */
349    private Entry<K,V>[] getTable() {
350        expungeStaleEntries();
351        return table;
352    }
353
354    /**
355     * Returns the number of key-value mappings in this map.
356     * This result is a snapshot, and may not reflect unprocessed
357     * entries that will be removed before next attempted access
358     * because they are no longer referenced.
359     */
360    public int size() {
361        if (size == 0)
362            return 0;
363        expungeStaleEntries();
364        return size;
365    }
366
367    /**
368     * Returns <tt>true</tt> if this map contains no key-value mappings.
369     * This result is a snapshot, and may not reflect unprocessed
370     * entries that will be removed before next attempted access
371     * because they are no longer referenced.
372     */
373    public boolean isEmpty() {
374        return size() == 0;
375    }
376
377    /**
378     * Returns the value to which the specified key is mapped,
379     * or {@code null} if this map contains no mapping for the key.
380     *
381     * <p>More formally, if this map contains a mapping from a key
382     * {@code k} to a value {@code v} such that {@code (key==null ? k==null :
383     * key.equals(k))}, then this method returns {@code v}; otherwise
384     * it returns {@code null}.  (There can be at most one such mapping.)
385     *
386     * <p>A return value of {@code null} does not <i>necessarily</i>
387     * indicate that the map contains no mapping for the key; it's also
388     * possible that the map explicitly maps the key to {@code null}.
389     * The {@link #containsKey containsKey} operation may be used to
390     * distinguish these two cases.
391     *
392     * @see #put(Object, Object)
393     */
394    public V get(Object key) {
395        Object k = maskNull(key);
396        int h = hash(k);
397        Entry<K,V>[] tab = getTable();
398        int index = indexFor(h, tab.length);
399        Entry<K,V> e = tab[index];
400        while (e != null) {
401            if (e.hash == h && eq(k, e.get()))
402                return e.value;
403            e = e.next;
404        }
405        return null;
406    }
407
408    /**
409     * Returns <tt>true</tt> if this map contains a mapping for the
410     * specified key.
411     *
412     * @param  key   The key whose presence in this map is to be tested
413     * @return <tt>true</tt> if there is a mapping for <tt>key</tt>;
414     *         <tt>false</tt> otherwise
415     */
416    public boolean containsKey(Object key) {
417        return getEntry(key) != null;
418    }
419
420    /**
421     * Returns the entry associated with the specified key in this map.
422     * Returns null if the map contains no mapping for this key.
423     */
424    Entry<K,V> getEntry(Object key) {
425        Object k = maskNull(key);
426        int h = hash(k);
427        Entry<K,V>[] tab = getTable();
428        int index = indexFor(h, tab.length);
429        Entry<K,V> e = tab[index];
430        while (e != null && !(e.hash == h && eq(k, e.get())))
431            e = e.next;
432        return e;
433    }
434
435    /**
436     * Associates the specified value with the specified key in this map.
437     * If the map previously contained a mapping for this key, the old
438     * value is replaced.
439     *
440     * @param key key with which the specified value is to be associated.
441     * @param value value to be associated with the specified key.
442     * @return the previous value associated with <tt>key</tt>, or
443     *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
444     *         (A <tt>null</tt> return can also indicate that the map
445     *         previously associated <tt>null</tt> with <tt>key</tt>.)
446     */
447    public V put(K key, V value) {
448        Object k = maskNull(key);
449        int h = hash(k);
450        Entry<K,V>[] tab = getTable();
451        int i = indexFor(h, tab.length);
452
453        for (Entry<K,V> e = tab[i]; e != null; e = e.next) {
454            if (h == e.hash && eq(k, e.get())) {
455                V oldValue = e.value;
456                if (value != oldValue)
457                    e.value = value;
458                return oldValue;
459            }
460        }
461
462        modCount++;
463        Entry<K,V> e = tab[i];
464        tab[i] = new Entry<>(k, value, queue, h, e);
465        if (++size >= threshold)
466            resize(tab.length * 2);
467        return null;
468    }
469
470    /**
471     * Rehashes the contents of this map into a new array with a
472     * larger capacity.  This method is called automatically when the
473     * number of keys in this map reaches its threshold.
474     *
475     * If current capacity is MAXIMUM_CAPACITY, this method does not
476     * resize the map, but sets threshold to Integer.MAX_VALUE.
477     * This has the effect of preventing future calls.
478     *
479     * @param newCapacity the new capacity, MUST be a power of two;
480     *        must be greater than current capacity unless current
481     *        capacity is MAXIMUM_CAPACITY (in which case value
482     *        is irrelevant).
483     */
484    void resize(int newCapacity) {
485        Entry<K,V>[] oldTable = getTable();
486        int oldCapacity = oldTable.length;
487        if (oldCapacity == MAXIMUM_CAPACITY) {
488            threshold = Integer.MAX_VALUE;
489            return;
490        }
491
492        Entry<K,V>[] newTable = newTable(newCapacity);
493        transfer(oldTable, newTable);
494        table = newTable;
495
496        /*
497         * If ignoring null elements and processing ref queue caused massive
498         * shrinkage, then restore old table.  This should be rare, but avoids
499         * unbounded expansion of garbage-filled tables.
500         */
501        if (size >= threshold / 2) {
502            threshold = (int)(newCapacity * loadFactor);
503        } else {
504            expungeStaleEntries();
505            transfer(newTable, oldTable);
506            table = oldTable;
507        }
508    }
509
510    /** Transfers all entries from src to dest tables */
511    private void transfer(Entry<K,V>[] src, Entry<K,V>[] dest) {
512        for (int j = 0; j < src.length; ++j) {
513            Entry<K,V> e = src[j];
514            src[j] = null;
515            while (e != null) {
516                Entry<K,V> next = e.next;
517                Object key = e.get();
518                if (key == null) {
519                    e.next = null;  // Help GC
520                    e.value = null; //  "   "
521                    size--;
522                } else {
523                    int i = indexFor(e.hash, dest.length);
524                    e.next = dest[i];
525                    dest[i] = e;
526                }
527                e = next;
528            }
529        }
530    }
531
532    /**
533     * Copies all of the mappings from the specified map to this map.
534     * These mappings will replace any mappings that this map had for any
535     * of the keys currently in the specified map.
536     *
537     * @param m mappings to be stored in this map.
538     * @throws  NullPointerException if the specified map is null.
539     */
540    public void putAll(Map<? extends K, ? extends V> m) {
541        int numKeysToBeAdded = m.size();
542        if (numKeysToBeAdded == 0)
543            return;
544
545        /*
546         * Expand the map if the map if the number of mappings to be added
547         * is greater than or equal to threshold.  This is conservative; the
548         * obvious condition is (m.size() + size) >= threshold, but this
549         * condition could result in a map with twice the appropriate capacity,
550         * if the keys to be added overlap with the keys already in this map.
551         * By using the conservative calculation, we subject ourself
552         * to at most one extra resize.
553         */
554        if (numKeysToBeAdded > threshold) {
555            int targetCapacity = (int)(numKeysToBeAdded / loadFactor + 1);
556            if (targetCapacity > MAXIMUM_CAPACITY)
557                targetCapacity = MAXIMUM_CAPACITY;
558            int newCapacity = table.length;
559            while (newCapacity < targetCapacity)
560                newCapacity <<= 1;
561            if (newCapacity > table.length)
562                resize(newCapacity);
563        }
564
565        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
566            put(e.getKey(), e.getValue());
567    }
568
569    /**
570     * Removes the mapping for a key from this weak hash map if it is present.
571     * More formally, if this map contains a mapping from key <tt>k</tt> to
572     * value <tt>v</tt> such that <code>(key==null ?  k==null :
573     * key.equals(k))</code>, that mapping is removed.  (The map can contain
574     * at most one such mapping.)
575     *
576     * <p>Returns the value to which this map previously associated the key,
577     * or <tt>null</tt> if the map contained no mapping for the key.  A
578     * return value of <tt>null</tt> does not <i>necessarily</i> indicate
579     * that the map contained no mapping for the key; it's also possible
580     * that the map explicitly mapped the key to <tt>null</tt>.
581     *
582     * <p>The map will not contain a mapping for the specified key once the
583     * call returns.
584     *
585     * @param key key whose mapping is to be removed from the map
586     * @return the previous value associated with <tt>key</tt>, or
587     *         <tt>null</tt> if there was no mapping for <tt>key</tt>
588     */
589    public V remove(Object key) {
590        Object k = maskNull(key);
591        int h = hash(k);
592        Entry<K,V>[] tab = getTable();
593        int i = indexFor(h, tab.length);
594        Entry<K,V> prev = tab[i];
595        Entry<K,V> e = prev;
596
597        while (e != null) {
598            Entry<K,V> next = e.next;
599            if (h == e.hash && eq(k, e.get())) {
600                modCount++;
601                size--;
602                if (prev == e)
603                    tab[i] = next;
604                else
605                    prev.next = next;
606                return e.value;
607            }
608            prev = e;
609            e = next;
610        }
611
612        return null;
613    }
614
615    /** Special version of remove needed by Entry set */
616    boolean removeMapping(Object o) {
617        if (!(o instanceof Map.Entry))
618            return false;
619        Entry<K,V>[] tab = getTable();
620        Map.Entry<?,?> entry = (Map.Entry<?,?>)o;
621        Object k = maskNull(entry.getKey());
622        int h = hash(k);
623        int i = indexFor(h, tab.length);
624        Entry<K,V> prev = tab[i];
625        Entry<K,V> e = prev;
626
627        while (e != null) {
628            Entry<K,V> next = e.next;
629            if (h == e.hash && e.equals(entry)) {
630                modCount++;
631                size--;
632                if (prev == e)
633                    tab[i] = next;
634                else
635                    prev.next = next;
636                return true;
637            }
638            prev = e;
639            e = next;
640        }
641
642        return false;
643    }
644
645    /**
646     * Removes all of the mappings from this map.
647     * The map will be empty after this call returns.
648     */
649    public void clear() {
650        // clear out ref queue. We don't need to expunge entries
651        // since table is getting cleared.
652        while (queue.poll() != null)
653            ;
654
655        modCount++;
656        Arrays.fill(table, null);
657        size = 0;
658
659        // Allocation of array may have caused GC, which may have caused
660        // additional entries to go stale.  Removing these entries from the
661        // reference queue will make them eligible for reclamation.
662        while (queue.poll() != null)
663            ;
664    }
665
666    /**
667     * Returns <tt>true</tt> if this map maps one or more keys to the
668     * specified value.
669     *
670     * @param value value whose presence in this map is to be tested
671     * @return <tt>true</tt> if this map maps one or more keys to the
672     *         specified value
673     */
674    public boolean containsValue(Object value) {
675        if (value==null)
676            return containsNullValue();
677
678        Entry<K,V>[] tab = getTable();
679        for (int i = tab.length; i-- > 0;)
680            for (Entry<K,V> e = tab[i]; e != null; e = e.next)
681                if (value.equals(e.value))
682                    return true;
683        return false;
684    }
685
686    /**
687     * Special-case code for containsValue with null argument
688     */
689    private boolean containsNullValue() {
690        Entry<K,V>[] tab = getTable();
691        for (int i = tab.length; i-- > 0;)
692            for (Entry<K,V> e = tab[i]; e != null; e = e.next)
693                if (e.value==null)
694                    return true;
695        return false;
696    }
697
698    /**
699     * The entries in this hash table extend WeakReference, using its main ref
700     * field as the key.
701     */
702    private static class Entry<K,V> extends WeakReference<Object> implements Map.Entry<K,V> {
703        V value;
704        final int hash;
705        Entry<K,V> next;
706
707        /**
708         * Creates new entry.
709         */
710        Entry(Object key, V value,
711              ReferenceQueue<Object> queue,
712              int hash, Entry<K,V> next) {
713            super(key, queue);
714            this.value = value;
715            this.hash  = hash;
716            this.next  = next;
717        }
718
719        @SuppressWarnings("unchecked")
720        public K getKey() {
721            return (K) WeakHashMap.unmaskNull(get());
722        }
723
724        public V getValue() {
725            return value;
726        }
727
728        public V setValue(V newValue) {
729            V oldValue = value;
730            value = newValue;
731            return oldValue;
732        }
733
734        public boolean equals(Object o) {
735            if (!(o instanceof Map.Entry))
736                return false;
737            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
738            K k1 = getKey();
739            Object k2 = e.getKey();
740            if (k1 == k2 || (k1 != null && k1.equals(k2))) {
741                V v1 = getValue();
742                Object v2 = e.getValue();
743                if (v1 == v2 || (v1 != null && v1.equals(v2)))
744                    return true;
745            }
746            return false;
747        }
748
749        public int hashCode() {
750            K k = getKey();
751            V v = getValue();
752            return Objects.hashCode(k) ^ Objects.hashCode(v);
753        }
754
755        public String toString() {
756            return getKey() + "=" + getValue();
757        }
758    }
759
760    private abstract class HashIterator<T> implements Iterator<T> {
761        private int index;
762        private Entry<K,V> entry;
763        private Entry<K,V> lastReturned;
764        private int expectedModCount = modCount;
765
766        /**
767         * Strong reference needed to avoid disappearance of key
768         * between hasNext and next
769         */
770        private Object nextKey;
771
772        /**
773         * Strong reference needed to avoid disappearance of key
774         * between nextEntry() and any use of the entry
775         */
776        private Object currentKey;
777
778        HashIterator() {
779            index = isEmpty() ? 0 : table.length;
780        }
781
782        public boolean hasNext() {
783            Entry<K,V>[] t = table;
784
785            while (nextKey == null) {
786                Entry<K,V> e = entry;
787                int i = index;
788                while (e == null && i > 0)
789                    e = t[--i];
790                entry = e;
791                index = i;
792                if (e == null) {
793                    currentKey = null;
794                    return false;
795                }
796                nextKey = e.get(); // hold on to key in strong ref
797                if (nextKey == null)
798                    entry = entry.next;
799            }
800            return true;
801        }
802
803        /** The common parts of next() across different types of iterators */
804        protected Entry<K,V> nextEntry() {
805            if (modCount != expectedModCount)
806                throw new ConcurrentModificationException();
807            if (nextKey == null && !hasNext())
808                throw new NoSuchElementException();
809
810            lastReturned = entry;
811            entry = entry.next;
812            currentKey = nextKey;
813            nextKey = null;
814            return lastReturned;
815        }
816
817        public void remove() {
818            if (lastReturned == null)
819                throw new IllegalStateException();
820            if (modCount != expectedModCount)
821                throw new ConcurrentModificationException();
822
823            WeakHashMap.this.remove(currentKey);
824            expectedModCount = modCount;
825            lastReturned = null;
826            currentKey = null;
827        }
828
829    }
830
831    private class ValueIterator extends HashIterator<V> {
832        public V next() {
833            return nextEntry().value;
834        }
835    }
836
837    private class KeyIterator extends HashIterator<K> {
838        public K next() {
839            return nextEntry().getKey();
840        }
841    }
842
843    private class EntryIterator extends HashIterator<Map.Entry<K,V>> {
844        public Map.Entry<K,V> next() {
845            return nextEntry();
846        }
847    }
848
849    // Views
850
851    private transient Set<Map.Entry<K,V>> entrySet;
852
853    /**
854     * Returns a {@link Set} view of the keys contained in this map.
855     * The set is backed by the map, so changes to the map are
856     * reflected in the set, and vice-versa.  If the map is modified
857     * while an iteration over the set is in progress (except through
858     * the iterator's own <tt>remove</tt> operation), the results of
859     * the iteration are undefined.  The set supports element removal,
860     * which removes the corresponding mapping from the map, via the
861     * <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
862     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
863     * operations.  It does not support the <tt>add</tt> or <tt>addAll</tt>
864     * operations.
865     */
866    public Set<K> keySet() {
867        Set<K> ks = keySet;
868        if (ks == null) {
869            ks = new KeySet();
870            keySet = ks;
871        }
872        return ks;
873    }
874
875    private class KeySet extends AbstractSet<K> {
876        public Iterator<K> iterator() {
877            return new KeyIterator();
878        }
879
880        public int size() {
881            return WeakHashMap.this.size();
882        }
883
884        public boolean contains(Object o) {
885            return containsKey(o);
886        }
887
888        public boolean remove(Object o) {
889            if (containsKey(o)) {
890                WeakHashMap.this.remove(o);
891                return true;
892            }
893            else
894                return false;
895        }
896
897        public void clear() {
898            WeakHashMap.this.clear();
899        }
900
901        public Spliterator<K> spliterator() {
902            return new KeySpliterator<>(WeakHashMap.this, 0, -1, 0, 0);
903        }
904    }
905
906    /**
907     * Returns a {@link Collection} view of the values contained in this map.
908     * The collection is backed by the map, so changes to the map are
909     * reflected in the collection, and vice-versa.  If the map is
910     * modified while an iteration over the collection is in progress
911     * (except through the iterator's own <tt>remove</tt> operation),
912     * the results of the iteration are undefined.  The collection
913     * supports element removal, which removes the corresponding
914     * mapping from the map, via the <tt>Iterator.remove</tt>,
915     * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
916     * <tt>retainAll</tt> and <tt>clear</tt> operations.  It does not
917     * support the <tt>add</tt> or <tt>addAll</tt> operations.
918     */
919    public Collection<V> values() {
920        Collection<V> vs = values;
921        if (vs == null) {
922            vs = new Values();
923            values = vs;
924        }
925        return vs;
926    }
927
928    private class Values extends AbstractCollection<V> {
929        public Iterator<V> iterator() {
930            return new ValueIterator();
931        }
932
933        public int size() {
934            return WeakHashMap.this.size();
935        }
936
937        public boolean contains(Object o) {
938            return containsValue(o);
939        }
940
941        public void clear() {
942            WeakHashMap.this.clear();
943        }
944
945        public Spliterator<V> spliterator() {
946            return new ValueSpliterator<>(WeakHashMap.this, 0, -1, 0, 0);
947        }
948    }
949
950    /**
951     * Returns a {@link Set} view of the mappings contained in this map.
952     * The set is backed by the map, so changes to the map are
953     * reflected in the set, and vice-versa.  If the map is modified
954     * while an iteration over the set is in progress (except through
955     * the iterator's own <tt>remove</tt> operation, or through the
956     * <tt>setValue</tt> operation on a map entry returned by the
957     * iterator) the results of the iteration are undefined.  The set
958     * supports element removal, which removes the corresponding
959     * mapping from the map, via the <tt>Iterator.remove</tt>,
960     * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and
961     * <tt>clear</tt> operations.  It does not support the
962     * <tt>add</tt> or <tt>addAll</tt> operations.
963     */
964    public Set<Map.Entry<K,V>> entrySet() {
965        Set<Map.Entry<K,V>> es = entrySet;
966        return es != null ? es : (entrySet = new EntrySet());
967    }
968
969    private class EntrySet extends AbstractSet<Map.Entry<K,V>> {
970        public Iterator<Map.Entry<K,V>> iterator() {
971            return new EntryIterator();
972        }
973
974        public boolean contains(Object o) {
975            if (!(o instanceof Map.Entry))
976                return false;
977            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
978            Entry<K,V> candidate = getEntry(e.getKey());
979            return candidate != null && candidate.equals(e);
980        }
981
982        public boolean remove(Object o) {
983            return removeMapping(o);
984        }
985
986        public int size() {
987            return WeakHashMap.this.size();
988        }
989
990        public void clear() {
991            WeakHashMap.this.clear();
992        }
993
994        private List<Map.Entry<K,V>> deepCopy() {
995            List<Map.Entry<K,V>> list = new ArrayList<>(size());
996            for (Map.Entry<K,V> e : this)
997                list.add(new AbstractMap.SimpleEntry<>(e));
998            return list;
999        }
1000
1001        public Object[] toArray() {
1002            return deepCopy().toArray();
1003        }
1004
1005        public <T> T[] toArray(T[] a) {
1006            return deepCopy().toArray(a);
1007        }
1008
1009        public Spliterator<Map.Entry<K,V>> spliterator() {
1010            return new EntrySpliterator<>(WeakHashMap.this, 0, -1, 0, 0);
1011        }
1012    }
1013
1014    @SuppressWarnings("unchecked")
1015    @Override
1016    public void forEach(BiConsumer<? super K, ? super V> action) {
1017        Objects.requireNonNull(action);
1018        int expectedModCount = modCount;
1019
1020        Entry<K, V>[] tab = getTable();
1021        for (Entry<K, V> entry : tab) {
1022            while (entry != null) {
1023                Object key = entry.get();
1024                if (key != null) {
1025                    action.accept((K)WeakHashMap.unmaskNull(key), entry.value);
1026                }
1027                entry = entry.next;
1028
1029                if (expectedModCount != modCount) {
1030                    throw new ConcurrentModificationException();
1031                }
1032            }
1033        }
1034    }
1035
1036    @SuppressWarnings("unchecked")
1037    @Override
1038    public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1039        Objects.requireNonNull(function);
1040        int expectedModCount = modCount;
1041
1042        Entry<K, V>[] tab = getTable();;
1043        for (Entry<K, V> entry : tab) {
1044            while (entry != null) {
1045                Object key = entry.get();
1046                if (key != null) {
1047                    entry.value = function.apply((K)WeakHashMap.unmaskNull(key), entry.value);
1048                }
1049                entry = entry.next;
1050
1051                if (expectedModCount != modCount) {
1052                    throw new ConcurrentModificationException();
1053                }
1054            }
1055        }
1056    }
1057
1058    /**
1059     * Similar form as other hash Spliterators, but skips dead
1060     * elements.
1061     */
1062    static class WeakHashMapSpliterator<K,V> {
1063        final WeakHashMap<K,V> map;
1064        WeakHashMap.Entry<K,V> current; // current node
1065        int index;             // current index, modified on advance/split
1066        int fence;             // -1 until first use; then one past last index
1067        int est;               // size estimate
1068        int expectedModCount;  // for comodification checks
1069
1070        WeakHashMapSpliterator(WeakHashMap<K,V> m, int origin,
1071                               int fence, int est,
1072                               int expectedModCount) {
1073            this.map = m;
1074            this.index = origin;
1075            this.fence = fence;
1076            this.est = est;
1077            this.expectedModCount = expectedModCount;
1078        }
1079
1080        final int getFence() { // initialize fence and size on first use
1081            int hi;
1082            if ((hi = fence) < 0) {
1083                WeakHashMap<K,V> m = map;
1084                est = m.size();
1085                expectedModCount = m.modCount;
1086                hi = fence = m.table.length;
1087            }
1088            return hi;
1089        }
1090
1091        public final long estimateSize() {
1092            getFence(); // force init
1093            return (long) est;
1094        }
1095    }
1096
1097    static final class KeySpliterator<K,V>
1098        extends WeakHashMapSpliterator<K,V>
1099        implements Spliterator<K> {
1100        KeySpliterator(WeakHashMap<K,V> m, int origin, int fence, int est,
1101                       int expectedModCount) {
1102            super(m, origin, fence, est, expectedModCount);
1103        }
1104
1105        public KeySpliterator<K,V> trySplit() {
1106            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1107            return (lo >= mid) ? null :
1108                new KeySpliterator<K,V>(map, lo, index = mid, est >>>= 1,
1109                                        expectedModCount);
1110        }
1111
1112        public void forEachRemaining(Consumer<? super K> action) {
1113            int i, hi, mc;
1114            if (action == null)
1115                throw new NullPointerException();
1116            WeakHashMap<K,V> m = map;
1117            WeakHashMap.Entry<K,V>[] tab = m.table;
1118            if ((hi = fence) < 0) {
1119                mc = expectedModCount = m.modCount;
1120                hi = fence = tab.length;
1121            }
1122            else
1123                mc = expectedModCount;
1124            if (tab.length >= hi && (i = index) >= 0 &&
1125                (i < (index = hi) || current != null)) {
1126                WeakHashMap.Entry<K,V> p = current;
1127                current = null; // exhaust
1128                do {
1129                    if (p == null)
1130                        p = tab[i++];
1131                    else {
1132                        Object x = p.get();
1133                        p = p.next;
1134                        if (x != null) {
1135                            @SuppressWarnings("unchecked") K k =
1136                                (K) WeakHashMap.unmaskNull(x);
1137                            action.accept(k);
1138                        }
1139                    }
1140                } while (p != null || i < hi);
1141            }
1142            if (m.modCount != mc)
1143                throw new ConcurrentModificationException();
1144        }
1145
1146        public boolean tryAdvance(Consumer<? super K> action) {
1147            int hi;
1148            if (action == null)
1149                throw new NullPointerException();
1150            WeakHashMap.Entry<K,V>[] tab = map.table;
1151            if (tab.length >= (hi = getFence()) && index >= 0) {
1152                while (current != null || index < hi) {
1153                    if (current == null)
1154                        current = tab[index++];
1155                    else {
1156                        Object x = current.get();
1157                        current = current.next;
1158                        if (x != null) {
1159                            @SuppressWarnings("unchecked") K k =
1160                                (K) WeakHashMap.unmaskNull(x);
1161                            action.accept(k);
1162                            if (map.modCount != expectedModCount)
1163                                throw new ConcurrentModificationException();
1164                            return true;
1165                        }
1166                    }
1167                }
1168            }
1169            return false;
1170        }
1171
1172        public int characteristics() {
1173            return Spliterator.DISTINCT;
1174        }
1175    }
1176
1177    static final class ValueSpliterator<K,V>
1178        extends WeakHashMapSpliterator<K,V>
1179        implements Spliterator<V> {
1180        ValueSpliterator(WeakHashMap<K,V> m, int origin, int fence, int est,
1181                         int expectedModCount) {
1182            super(m, origin, fence, est, expectedModCount);
1183        }
1184
1185        public ValueSpliterator<K,V> trySplit() {
1186            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1187            return (lo >= mid) ? null :
1188                new ValueSpliterator<K,V>(map, lo, index = mid, est >>>= 1,
1189                                          expectedModCount);
1190        }
1191
1192        public void forEachRemaining(Consumer<? super V> action) {
1193            int i, hi, mc;
1194            if (action == null)
1195                throw new NullPointerException();
1196            WeakHashMap<K,V> m = map;
1197            WeakHashMap.Entry<K,V>[] tab = m.table;
1198            if ((hi = fence) < 0) {
1199                mc = expectedModCount = m.modCount;
1200                hi = fence = tab.length;
1201            }
1202            else
1203                mc = expectedModCount;
1204            if (tab.length >= hi && (i = index) >= 0 &&
1205                (i < (index = hi) || current != null)) {
1206                WeakHashMap.Entry<K,V> p = current;
1207                current = null; // exhaust
1208                do {
1209                    if (p == null)
1210                        p = tab[i++];
1211                    else {
1212                        Object x = p.get();
1213                        V v = p.value;
1214                        p = p.next;
1215                        if (x != null)
1216                            action.accept(v);
1217                    }
1218                } while (p != null || i < hi);
1219            }
1220            if (m.modCount != mc)
1221                throw new ConcurrentModificationException();
1222        }
1223
1224        public boolean tryAdvance(Consumer<? super V> action) {
1225            int hi;
1226            if (action == null)
1227                throw new NullPointerException();
1228            WeakHashMap.Entry<K,V>[] tab = map.table;
1229            if (tab.length >= (hi = getFence()) && index >= 0) {
1230                while (current != null || index < hi) {
1231                    if (current == null)
1232                        current = tab[index++];
1233                    else {
1234                        Object x = current.get();
1235                        V v = current.value;
1236                        current = current.next;
1237                        if (x != null) {
1238                            action.accept(v);
1239                            if (map.modCount != expectedModCount)
1240                                throw new ConcurrentModificationException();
1241                            return true;
1242                        }
1243                    }
1244                }
1245            }
1246            return false;
1247        }
1248
1249        public int characteristics() {
1250            return 0;
1251        }
1252    }
1253
1254    static final class EntrySpliterator<K,V>
1255        extends WeakHashMapSpliterator<K,V>
1256        implements Spliterator<Map.Entry<K,V>> {
1257        EntrySpliterator(WeakHashMap<K,V> m, int origin, int fence, int est,
1258                       int expectedModCount) {
1259            super(m, origin, fence, est, expectedModCount);
1260        }
1261
1262        public EntrySpliterator<K,V> trySplit() {
1263            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1264            return (lo >= mid) ? null :
1265                new EntrySpliterator<K,V>(map, lo, index = mid, est >>>= 1,
1266                                          expectedModCount);
1267        }
1268
1269
1270        public void forEachRemaining(Consumer<? super Map.Entry<K, V>> action) {
1271            int i, hi, mc;
1272            if (action == null)
1273                throw new NullPointerException();
1274            WeakHashMap<K,V> m = map;
1275            WeakHashMap.Entry<K,V>[] tab = m.table;
1276            if ((hi = fence) < 0) {
1277                mc = expectedModCount = m.modCount;
1278                hi = fence = tab.length;
1279            }
1280            else
1281                mc = expectedModCount;
1282            if (tab.length >= hi && (i = index) >= 0 &&
1283                (i < (index = hi) || current != null)) {
1284                WeakHashMap.Entry<K,V> p = current;
1285                current = null; // exhaust
1286                do {
1287                    if (p == null)
1288                        p = tab[i++];
1289                    else {
1290                        Object x = p.get();
1291                        V v = p.value;
1292                        p = p.next;
1293                        if (x != null) {
1294                            @SuppressWarnings("unchecked") K k =
1295                                (K) WeakHashMap.unmaskNull(x);
1296                            action.accept
1297                                (new AbstractMap.SimpleImmutableEntry<K,V>(k, v));
1298                        }
1299                    }
1300                } while (p != null || i < hi);
1301            }
1302            if (m.modCount != mc)
1303                throw new ConcurrentModificationException();
1304        }
1305
1306        public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
1307            int hi;
1308            if (action == null)
1309                throw new NullPointerException();
1310            WeakHashMap.Entry<K,V>[] tab = map.table;
1311            if (tab.length >= (hi = getFence()) && index >= 0) {
1312                while (current != null || index < hi) {
1313                    if (current == null)
1314                        current = tab[index++];
1315                    else {
1316                        Object x = current.get();
1317                        V v = current.value;
1318                        current = current.next;
1319                        if (x != null) {
1320                            @SuppressWarnings("unchecked") K k =
1321                                (K) WeakHashMap.unmaskNull(x);
1322                            action.accept
1323                                (new AbstractMap.SimpleImmutableEntry<K,V>(k, v));
1324                            if (map.modCount != expectedModCount)
1325                                throw new ConcurrentModificationException();
1326                            return true;
1327                        }
1328                    }
1329                }
1330            }
1331            return false;
1332        }
1333
1334        public int characteristics() {
1335            return Spliterator.DISTINCT;
1336        }
1337    }
1338
1339}
1340