WeakHashMap.java revision 309f9df28350e15445b9135e8b710fa2b34b5dc1
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.  Oracle designates this
9 * particular file as subject to the "Classpath" exception as provided
10 * by Oracle in the LICENSE file that accompanied this code.
11 *
12 * This code is distributed in the hope that it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 * version 2 for more details (a copy is included in the LICENSE file that
16 * accompanied this code).
17 *
18 * You should have received a copy of the GNU General Public License version
19 * 2 along with this work; if not, write to the Free Software Foundation,
20 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
21 *
22 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
23 * or visit www.oracle.com if you need additional information or have any
24 * questions.
25 */
26
27package java.util;
28import java.lang.ref.WeakReference;
29import java.lang.ref.ReferenceQueue;
30import java.util.function.BiConsumer;
31import java.util.function.BiFunction;
32import java.util.function.Consumer;
33
34
35/**
36 * Hash table based implementation of the <tt>Map</tt> interface, with
37 * <em>weak keys</em>.
38 * An entry in a <tt>WeakHashMap</tt> will automatically be removed when
39 * its key is no longer in ordinary use.  More precisely, the presence of a
40 * mapping for a given key will not prevent the key from being discarded by the
41 * garbage collector, that is, made finalizable, finalized, and then reclaimed.
42 * When a key has been discarded its entry is effectively removed from the map,
43 * so this class behaves somewhat differently from other <tt>Map</tt>
44 * implementations.
45 *
46 * <p> Both null values and the null key are supported. This class has
47 * performance characteristics similar to those of the <tt>HashMap</tt>
48 * class, and has the same efficiency parameters of <em>initial capacity</em>
49 * and <em>load factor</em>.
50 *
51 * <p> Like most collection classes, this class is not synchronized.
52 * A synchronized <tt>WeakHashMap</tt> may be constructed using the
53 * {@link Collections#synchronizedMap Collections.synchronizedMap}
54 * method.
55 *
56 * <p> This class is intended primarily for use with key objects whose
57 * <tt>equals</tt> methods test for object identity using the
58 * <tt>==</tt> operator.  Once such a key is discarded it can never be
59 * recreated, so it is impossible to do a lookup of that key in a
60 * <tt>WeakHashMap</tt> at some later time and be surprised that its entry
61 * has been removed.  This class will work perfectly well with key objects
62 * whose <tt>equals</tt> methods are not based upon object identity, such
63 * as <tt>String</tt> instances.  With such recreatable key objects,
64 * however, the automatic removal of <tt>WeakHashMap</tt> entries whose
65 * keys have been discarded may prove to be confusing.
66 *
67 * <p> The behavior of the <tt>WeakHashMap</tt> class depends in part upon
68 * the actions of the garbage collector, so several familiar (though not
69 * required) <tt>Map</tt> invariants do not hold for this class.  Because
70 * the garbage collector may discard keys at any time, a
71 * <tt>WeakHashMap</tt> may behave as though an unknown thread is silently
72 * removing entries.  In particular, even if you synchronize on a
73 * <tt>WeakHashMap</tt> instance and invoke none of its mutator methods, it
74 * is possible for the <tt>size</tt> method to return smaller values over
75 * time, for the <tt>isEmpty</tt> method to return <tt>false</tt> and
76 * then <tt>true</tt>, for the <tt>containsKey</tt> method to return
77 * <tt>true</tt> and later <tt>false</tt> for a given key, for the
78 * <tt>get</tt> method to return a value for a given key but later return
79 * <tt>null</tt>, for the <tt>put</tt> method to return
80 * <tt>null</tt> and the <tt>remove</tt> method to return
81 * <tt>false</tt> for a key that previously appeared to be in the map, and
82 * for successive examinations of the key set, the value collection, and
83 * the entry set to yield successively smaller numbers of elements.
84 *
85 * <p> Each key object in a <tt>WeakHashMap</tt> is stored indirectly as
86 * the referent of a weak reference.  Therefore a key will automatically be
87 * removed only after the weak references to it, both inside and outside of the
88 * map, have been cleared by the garbage collector.
89 *
90 * <p> <strong>Implementation note:</strong> The value objects in a
91 * <tt>WeakHashMap</tt> are held by ordinary strong references.  Thus care
92 * should be taken to ensure that value objects do not strongly refer to their
93 * own keys, either directly or indirectly, since that will prevent the keys
94 * from being discarded.  Note that a value object may refer indirectly to its
95 * key via the <tt>WeakHashMap</tt> itself; that is, a value object may
96 * strongly refer to some other key object whose associated value object, in
97 * turn, strongly refers to the key of the first value object.  If the values
98 * in the map do not rely on the map holding strong references to them, one way
99 * to deal with this is to wrap values themselves within
100 * <tt>WeakReferences</tt> before
101 * inserting, as in: <tt>m.put(key, new WeakReference(value))</tt>,
102 * and then unwrapping upon each <tt>get</tt>.
103 *
104 * <p>The iterators returned by the <tt>iterator</tt> method of the collections
105 * returned by all of this class's "collection view methods" are
106 * <i>fail-fast</i>: if the map is structurally modified at any time after the
107 * iterator is created, in any way except through the iterator's own
108 * <tt>remove</tt> method, the iterator will throw a {@link
109 * ConcurrentModificationException}.  Thus, in the face of concurrent
110 * modification, the iterator fails quickly and cleanly, rather than risking
111 * arbitrary, non-deterministic behavior at an undetermined time in the future.
112 *
113 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
114 * as it is, generally speaking, impossible to make any hard guarantees in the
115 * presence of unsynchronized concurrent modification.  Fail-fast iterators
116 * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
117 * Therefore, it would be wrong to write a program that depended on this
118 * exception for its correctness:  <i>the fail-fast behavior of iterators
119 * should be used only to detect bugs.</i>
120 *
121 * <p>This class is a member of the
122 * <a href="{@docRoot}openjdk-redirect.html?v=8&path=/technotes/guides/collections/index.html">
123 * Java Collections Framework</a>.
124 *
125 * @param <K> the type of keys maintained by this map
126 * @param <V> the type of mapped values
127 *
128 * @author      Doug Lea
129 * @author      Josh Bloch
130 * @author      Mark Reinhold
131 * @since       1.2
132 * @see         java.util.HashMap
133 * @see         java.lang.ref.WeakReference
134 */
135public class WeakHashMap<K,V>
136    extends AbstractMap<K,V>
137    implements Map<K,V> {
138
139    /**
140     * The default initial capacity -- MUST be a power of two.
141     */
142    private static final int DEFAULT_INITIAL_CAPACITY = 16;
143
144    /**
145     * The maximum capacity, used if a higher value is implicitly specified
146     * by either of the constructors with arguments.
147     * MUST be a power of two <= 1<<30.
148     */
149    private static final int MAXIMUM_CAPACITY = 1 << 30;
150
151    /**
152     * The load factor used when none specified in constructor.
153     */
154    private static final float DEFAULT_LOAD_FACTOR = 0.75f;
155
156    /**
157     * The table, resized as necessary. Length MUST Always be a power of two.
158     */
159    Entry<K,V>[] table;
160
161    /**
162     * The number of key-value mappings contained in this weak hash map.
163     */
164    private int size;
165
166    /**
167     * The next size value at which to resize (capacity * load factor).
168     */
169    private int threshold;
170
171    /**
172     * The load factor for the hash table.
173     */
174    private final float loadFactor;
175
176    /**
177     * Reference queue for cleared WeakEntries
178     */
179    private final ReferenceQueue<Object> queue = new ReferenceQueue<>();
180
181    /**
182     * The number of times this WeakHashMap has been structurally modified.
183     * Structural modifications are those that change the number of
184     * mappings in the map or otherwise modify its internal structure
185     * (e.g., rehash).  This field is used to make iterators on
186     * Collection-views of the map fail-fast.
187     *
188     * @see ConcurrentModificationException
189     */
190    int modCount;
191
192    @SuppressWarnings("unchecked")
193    private Entry<K,V>[] newTable(int n) {
194        return (Entry<K,V>[]) new Entry[n];
195    }
196
197    /**
198     * Constructs a new, empty <tt>WeakHashMap</tt> with the given initial
199     * capacity and the given load factor.
200     *
201     * @param  initialCapacity The initial capacity of the <tt>WeakHashMap</tt>
202     * @param  loadFactor      The load factor of the <tt>WeakHashMap</tt>
203     * @throws IllegalArgumentException if the initial capacity is negative,
204     *         or if the load factor is nonpositive.
205     */
206    public WeakHashMap(int initialCapacity, float loadFactor) {
207        if (initialCapacity < 0)
208            throw new IllegalArgumentException("Illegal Initial Capacity: "+
209                                               initialCapacity);
210        if (initialCapacity > MAXIMUM_CAPACITY)
211            initialCapacity = MAXIMUM_CAPACITY;
212
213        if (loadFactor <= 0 || Float.isNaN(loadFactor))
214            throw new IllegalArgumentException("Illegal Load factor: "+
215                                               loadFactor);
216        int capacity = 1;
217        while (capacity < initialCapacity)
218            capacity <<= 1;
219        table = newTable(capacity);
220        this.loadFactor = loadFactor;
221        threshold = (int)(capacity * loadFactor);
222    }
223
224    /**
225     * Constructs a new, empty <tt>WeakHashMap</tt> with the given initial
226     * capacity and the default load factor (0.75).
227     *
228     * @param  initialCapacity The initial capacity of the <tt>WeakHashMap</tt>
229     * @throws IllegalArgumentException if the initial capacity is negative
230     */
231    public WeakHashMap(int initialCapacity) {
232        this(initialCapacity, DEFAULT_LOAD_FACTOR);
233    }
234
235    /**
236     * Constructs a new, empty <tt>WeakHashMap</tt> with the default initial
237     * capacity (16) and load factor (0.75).
238     */
239    public WeakHashMap() {
240        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR);
241    }
242
243    /**
244     * Constructs a new <tt>WeakHashMap</tt> with the same mappings as the
245     * specified map.  The <tt>WeakHashMap</tt> is created with the default
246     * load factor (0.75) and an initial capacity sufficient to hold the
247     * mappings in the specified map.
248     *
249     * @param   m the map whose mappings are to be placed in this map
250     * @throws  NullPointerException if the specified map is null
251     * @since   1.3
252     */
253    public WeakHashMap(Map<? extends K, ? extends V> m) {
254        this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
255                DEFAULT_INITIAL_CAPACITY),
256             DEFAULT_LOAD_FACTOR);
257        putAll(m);
258    }
259
260    // internal utilities
261
262    /**
263     * Value representing null keys inside tables.
264     */
265    private static final Object NULL_KEY = new Object();
266
267    /**
268     * Use NULL_KEY for key if it is null.
269     */
270    private static Object maskNull(Object key) {
271        return (key == null) ? NULL_KEY : key;
272    }
273
274    /**
275     * Returns internal representation of null key back to caller as null.
276     */
277    static Object unmaskNull(Object key) {
278        return (key == NULL_KEY) ? null : key;
279    }
280
281    /**
282     * Checks for equality of non-null reference x and possibly-null y.  By
283     * default uses Object.equals.
284     */
285    private static boolean eq(Object x, Object y) {
286        return x == y || x.equals(y);
287    }
288
289    /**
290     * Returns index for hash code h.
291     */
292    private static int indexFor(int h, int length) {
293        return h & (length-1);
294    }
295
296    /**
297     * Expunges stale entries from the table.
298     */
299    private void expungeStaleEntries() {
300        for (Object x; (x = queue.poll()) != null; ) {
301            synchronized (queue) {
302                @SuppressWarnings("unchecked")
303                    Entry<K,V> e = (Entry<K,V>) x;
304                int i = indexFor(e.hash, table.length);
305
306                Entry<K,V> prev = table[i];
307                Entry<K,V> p = prev;
308                while (p != null) {
309                    Entry<K,V> next = p.next;
310                    if (p == e) {
311                        if (prev == e)
312                            table[i] = next;
313                        else
314                            prev.next = next;
315                        // Must not null out e.next;
316                        // stale entries may be in use by a HashIterator
317                        e.value = null; // Help GC
318                        size--;
319                        break;
320                    }
321                    prev = p;
322                    p = next;
323                }
324            }
325        }
326    }
327
328    /**
329     * Returns the table after first expunging stale entries.
330     */
331    private Entry<K,V>[] getTable() {
332        expungeStaleEntries();
333        return table;
334    }
335
336    /**
337     * Returns the number of key-value mappings in this map.
338     * This result is a snapshot, and may not reflect unprocessed
339     * entries that will be removed before next attempted access
340     * because they are no longer referenced.
341     */
342    public int size() {
343        if (size == 0)
344            return 0;
345        expungeStaleEntries();
346        return size;
347    }
348
349    /**
350     * Returns <tt>true</tt> if this map contains no key-value mappings.
351     * This result is a snapshot, and may not reflect unprocessed
352     * entries that will be removed before next attempted access
353     * because they are no longer referenced.
354     */
355    public boolean isEmpty() {
356        return size() == 0;
357    }
358
359    /**
360     * Returns the value to which the specified key is mapped,
361     * or {@code null} if this map contains no mapping for the key.
362     *
363     * <p>More formally, if this map contains a mapping from a key
364     * {@code k} to a value {@code v} such that {@code (key==null ? k==null :
365     * key.equals(k))}, then this method returns {@code v}; otherwise
366     * it returns {@code null}.  (There can be at most one such mapping.)
367     *
368     * <p>A return value of {@code null} does not <i>necessarily</i>
369     * indicate that the map contains no mapping for the key; it's also
370     * possible that the map explicitly maps the key to {@code null}.
371     * The {@link #containsKey containsKey} operation may be used to
372     * distinguish these two cases.
373     *
374     * @see #put(Object, Object)
375     */
376    public V get(Object key) {
377        Object k = maskNull(key);
378        int h = sun.misc.Hashing.singleWordWangJenkinsHash(k);
379        Entry<K,V>[] tab = getTable();
380        int index = indexFor(h, tab.length);
381        Entry<K,V> e = tab[index];
382        while (e != null) {
383            if (e.hash == h && eq(k, e.get()))
384                return e.value;
385            e = e.next;
386        }
387        return null;
388    }
389
390    /**
391     * Returns <tt>true</tt> if this map contains a mapping for the
392     * specified key.
393     *
394     * @param  key   The key whose presence in this map is to be tested
395     * @return <tt>true</tt> if there is a mapping for <tt>key</tt>;
396     *         <tt>false</tt> otherwise
397     */
398    public boolean containsKey(Object key) {
399        return getEntry(key) != null;
400    }
401
402    /**
403     * Returns the entry associated with the specified key in this map.
404     * Returns null if the map contains no mapping for this key.
405     */
406    Entry<K,V> getEntry(Object key) {
407        Object k = maskNull(key);
408        int h = sun.misc.Hashing.singleWordWangJenkinsHash(k);
409        Entry<K,V>[] tab = getTable();
410        int index = indexFor(h, tab.length);
411        Entry<K,V> e = tab[index];
412        while (e != null && !(e.hash == h && eq(k, e.get())))
413            e = e.next;
414        return e;
415    }
416
417    /**
418     * Associates the specified value with the specified key in this map.
419     * If the map previously contained a mapping for this key, the old
420     * value is replaced.
421     *
422     * @param key key with which the specified value is to be associated.
423     * @param value value to be associated with the specified key.
424     * @return the previous value associated with <tt>key</tt>, or
425     *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
426     *         (A <tt>null</tt> return can also indicate that the map
427     *         previously associated <tt>null</tt> with <tt>key</tt>.)
428     */
429    public V put(K key, V value) {
430        Object k = maskNull(key);
431        int h = sun.misc.Hashing.singleWordWangJenkinsHash(k);
432        Entry<K,V>[] tab = getTable();
433        int i = indexFor(h, tab.length);
434
435        for (Entry<K,V> e = tab[i]; e != null; e = e.next) {
436            if (h == e.hash && eq(k, e.get())) {
437                V oldValue = e.value;
438                if (value != oldValue)
439                    e.value = value;
440                return oldValue;
441            }
442        }
443
444        modCount++;
445        Entry<K,V> e = tab[i];
446        tab[i] = new Entry<>(k, value, queue, h, e);
447        if (++size >= threshold)
448            resize(tab.length * 2);
449        return null;
450    }
451
452    /**
453     * Rehashes the contents of this map into a new array with a
454     * larger capacity.  This method is called automatically when the
455     * number of keys in this map reaches its threshold.
456     *
457     * If current capacity is MAXIMUM_CAPACITY, this method does not
458     * resize the map, but sets threshold to Integer.MAX_VALUE.
459     * This has the effect of preventing future calls.
460     *
461     * @param newCapacity the new capacity, MUST be a power of two;
462     *        must be greater than current capacity unless current
463     *        capacity is MAXIMUM_CAPACITY (in which case value
464     *        is irrelevant).
465     */
466    void resize(int newCapacity) {
467        Entry<K,V>[] oldTable = getTable();
468        int oldCapacity = oldTable.length;
469        if (oldCapacity == MAXIMUM_CAPACITY) {
470            threshold = Integer.MAX_VALUE;
471            return;
472        }
473
474        Entry<K,V>[] newTable = newTable(newCapacity);
475        transfer(oldTable, newTable);
476        table = newTable;
477
478        /*
479         * If ignoring null elements and processing ref queue caused massive
480         * shrinkage, then restore old table.  This should be rare, but avoids
481         * unbounded expansion of garbage-filled tables.
482         */
483        if (size >= threshold / 2) {
484            threshold = (int)(newCapacity * loadFactor);
485        } else {
486            expungeStaleEntries();
487            transfer(newTable, oldTable);
488            table = oldTable;
489        }
490    }
491
492    /** Transfers all entries from src to dest tables */
493    private void transfer(Entry<K,V>[] src, Entry<K,V>[] dest) {
494        for (int j = 0; j < src.length; ++j) {
495            Entry<K,V> e = src[j];
496            src[j] = null;
497            while (e != null) {
498                Entry<K,V> next = e.next;
499                Object key = e.get();
500                if (key == null) {
501                    e.next = null;  // Help GC
502                    e.value = null; //  "   "
503                    size--;
504                } else {
505                    int i = indexFor(e.hash, dest.length);
506                    e.next = dest[i];
507                    dest[i] = e;
508                }
509                e = next;
510            }
511        }
512    }
513
514    /**
515     * Copies all of the mappings from the specified map to this map.
516     * These mappings will replace any mappings that this map had for any
517     * of the keys currently in the specified map.
518     *
519     * @param m mappings to be stored in this map.
520     * @throws  NullPointerException if the specified map is null.
521     */
522    public void putAll(Map<? extends K, ? extends V> m) {
523        int numKeysToBeAdded = m.size();
524        if (numKeysToBeAdded == 0)
525            return;
526
527        /*
528         * Expand the map if the map if the number of mappings to be added
529         * is greater than or equal to threshold.  This is conservative; the
530         * obvious condition is (m.size() + size) >= threshold, but this
531         * condition could result in a map with twice the appropriate capacity,
532         * if the keys to be added overlap with the keys already in this map.
533         * By using the conservative calculation, we subject ourself
534         * to at most one extra resize.
535         */
536        if (numKeysToBeAdded > threshold) {
537            int targetCapacity = (int)(numKeysToBeAdded / loadFactor + 1);
538            if (targetCapacity > MAXIMUM_CAPACITY)
539                targetCapacity = MAXIMUM_CAPACITY;
540            int newCapacity = table.length;
541            while (newCapacity < targetCapacity)
542                newCapacity <<= 1;
543            if (newCapacity > table.length)
544                resize(newCapacity);
545        }
546
547        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
548            put(e.getKey(), e.getValue());
549    }
550
551    /**
552     * Removes the mapping for a key from this weak hash map if it is present.
553     * More formally, if this map contains a mapping from key <tt>k</tt> to
554     * value <tt>v</tt> such that <code>(key==null ?  k==null :
555     * key.equals(k))</code>, that mapping is removed.  (The map can contain
556     * at most one such mapping.)
557     *
558     * <p>Returns the value to which this map previously associated the key,
559     * or <tt>null</tt> if the map contained no mapping for the key.  A
560     * return value of <tt>null</tt> does not <i>necessarily</i> indicate
561     * that the map contained no mapping for the key; it's also possible
562     * that the map explicitly mapped the key to <tt>null</tt>.
563     *
564     * <p>The map will not contain a mapping for the specified key once the
565     * call returns.
566     *
567     * @param key key whose mapping is to be removed from the map
568     * @return the previous value associated with <tt>key</tt>, or
569     *         <tt>null</tt> if there was no mapping for <tt>key</tt>
570     */
571    public V remove(Object key) {
572        Object k = maskNull(key);
573        int h = sun.misc.Hashing.singleWordWangJenkinsHash(k);
574        Entry<K,V>[] tab = getTable();
575        int i = indexFor(h, tab.length);
576        Entry<K,V> prev = tab[i];
577        Entry<K,V> e = prev;
578
579        while (e != null) {
580            Entry<K,V> next = e.next;
581            if (h == e.hash && eq(k, e.get())) {
582                modCount++;
583                size--;
584                if (prev == e)
585                    tab[i] = next;
586                else
587                    prev.next = next;
588                return e.value;
589            }
590            prev = e;
591            e = next;
592        }
593
594        return null;
595    }
596
597    /** Special version of remove needed by Entry set */
598    boolean removeMapping(Object o) {
599        if (!(o instanceof Map.Entry))
600            return false;
601        Entry<K,V>[] tab = getTable();
602        Map.Entry<?,?> entry = (Map.Entry<?,?>)o;
603        Object k = maskNull(entry.getKey());
604        int h = sun.misc.Hashing.singleWordWangJenkinsHash(k);
605        int i = indexFor(h, tab.length);
606        Entry<K,V> prev = tab[i];
607        Entry<K,V> e = prev;
608
609        while (e != null) {
610            Entry<K,V> next = e.next;
611            if (h == e.hash && e.equals(entry)) {
612                modCount++;
613                size--;
614                if (prev == e)
615                    tab[i] = next;
616                else
617                    prev.next = next;
618                return true;
619            }
620            prev = e;
621            e = next;
622        }
623
624        return false;
625    }
626
627    /**
628     * Removes all of the mappings from this map.
629     * The map will be empty after this call returns.
630     */
631    public void clear() {
632        // clear out ref queue. We don't need to expunge entries
633        // since table is getting cleared.
634        while (queue.poll() != null)
635            ;
636
637        modCount++;
638        Arrays.fill(table, null);
639        size = 0;
640
641        // Allocation of array may have caused GC, which may have caused
642        // additional entries to go stale.  Removing these entries from the
643        // reference queue will make them eligible for reclamation.
644        while (queue.poll() != null)
645            ;
646    }
647
648    /**
649     * Returns <tt>true</tt> if this map maps one or more keys to the
650     * specified value.
651     *
652     * @param value value whose presence in this map is to be tested
653     * @return <tt>true</tt> if this map maps one or more keys to the
654     *         specified value
655     */
656    public boolean containsValue(Object value) {
657        if (value==null)
658            return containsNullValue();
659
660        Entry<K,V>[] tab = getTable();
661        for (int i = tab.length; i-- > 0;)
662            for (Entry<K,V> e = tab[i]; e != null; e = e.next)
663                if (value.equals(e.value))
664                    return true;
665        return false;
666    }
667
668    /**
669     * Special-case code for containsValue with null argument
670     */
671    private boolean containsNullValue() {
672        Entry<K,V>[] tab = getTable();
673        for (int i = tab.length; i-- > 0;)
674            for (Entry<K,V> e = tab[i]; e != null; e = e.next)
675                if (e.value==null)
676                    return true;
677        return false;
678    }
679
680    /**
681     * The entries in this hash table extend WeakReference, using its main ref
682     * field as the key.
683     */
684    private static class Entry<K,V> extends WeakReference<Object> implements Map.Entry<K,V> {
685        V value;
686        int hash;
687        Entry<K,V> next;
688
689        /**
690         * Creates new entry.
691         */
692        Entry(Object key, V value,
693              ReferenceQueue<Object> queue,
694              int hash, Entry<K,V> next) {
695            super(key, queue);
696            this.value = value;
697            this.hash  = hash;
698            this.next  = next;
699        }
700
701        @SuppressWarnings("unchecked")
702        public K getKey() {
703            return (K) WeakHashMap.unmaskNull(get());
704        }
705
706        public V getValue() {
707            return value;
708        }
709
710        public V setValue(V newValue) {
711            V oldValue = value;
712            value = newValue;
713            return oldValue;
714        }
715
716        public boolean equals(Object o) {
717            if (!(o instanceof Map.Entry))
718                return false;
719            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
720            K k1 = getKey();
721            Object k2 = e.getKey();
722            if (k1 == k2 || (k1 != null && k1.equals(k2))) {
723                V v1 = getValue();
724                Object v2 = e.getValue();
725                if (v1 == v2 || (v1 != null && v1.equals(v2)))
726                    return true;
727            }
728            return false;
729        }
730
731        public int hashCode() {
732            K k = getKey();
733            V v = getValue();
734            return ((k==null ? 0 : k.hashCode()) ^
735                    (v==null ? 0 : v.hashCode()));
736        }
737
738        public String toString() {
739            return getKey() + "=" + getValue();
740        }
741    }
742
743    private abstract class HashIterator<T> implements Iterator<T> {
744        private int index;
745        private Entry<K,V> entry = null;
746        private Entry<K,V> lastReturned = null;
747        private int expectedModCount = modCount;
748
749        /**
750         * Strong reference needed to avoid disappearance of key
751         * between hasNext and next
752         */
753        private Object nextKey = null;
754
755        /**
756         * Strong reference needed to avoid disappearance of key
757         * between nextEntry() and any use of the entry
758         */
759        private Object currentKey = null;
760
761        HashIterator() {
762            index = isEmpty() ? 0 : table.length;
763        }
764
765        public boolean hasNext() {
766            Entry<K,V>[] t = table;
767
768            while (nextKey == null) {
769                Entry<K,V> e = entry;
770                int i = index;
771                while (e == null && i > 0)
772                    e = t[--i];
773                entry = e;
774                index = i;
775                if (e == null) {
776                    currentKey = null;
777                    return false;
778                }
779                nextKey = e.get(); // hold on to key in strong ref
780                if (nextKey == null)
781                    entry = entry.next;
782            }
783            return true;
784        }
785
786        /** The common parts of next() across different types of iterators */
787        protected Entry<K,V> nextEntry() {
788            if (modCount != expectedModCount)
789                throw new ConcurrentModificationException();
790            if (nextKey == null && !hasNext())
791                throw new NoSuchElementException();
792
793            lastReturned = entry;
794            entry = entry.next;
795            currentKey = nextKey;
796            nextKey = null;
797            return lastReturned;
798        }
799
800        public void remove() {
801            if (lastReturned == null)
802                throw new IllegalStateException();
803            if (modCount != expectedModCount)
804                throw new ConcurrentModificationException();
805
806            WeakHashMap.this.remove(currentKey);
807            expectedModCount = modCount;
808            lastReturned = null;
809            currentKey = null;
810        }
811
812    }
813
814    private class ValueIterator extends HashIterator<V> {
815        public V next() {
816            return nextEntry().value;
817        }
818    }
819
820    private class KeyIterator extends HashIterator<K> {
821        public K next() {
822            return nextEntry().getKey();
823        }
824    }
825
826    private class EntryIterator extends HashIterator<Map.Entry<K,V>> {
827        public Map.Entry<K,V> next() {
828            return nextEntry();
829        }
830    }
831
832    // Views
833
834    private transient Set<Map.Entry<K,V>> entrySet = null;
835
836    /**
837     * Returns a {@link Set} view of the keys contained in this map.
838     * The set is backed by the map, so changes to the map are
839     * reflected in the set, and vice-versa.  If the map is modified
840     * while an iteration over the set is in progress (except through
841     * the iterator's own <tt>remove</tt> operation), the results of
842     * the iteration are undefined.  The set supports element removal,
843     * which removes the corresponding mapping from the map, via the
844     * <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
845     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
846     * operations.  It does not support the <tt>add</tt> or <tt>addAll</tt>
847     * operations.
848     */
849    public Set<K> keySet() {
850        Set<K> ks = keySet;
851        return (ks != null ? ks : (keySet = new KeySet()));
852    }
853
854    private class KeySet extends AbstractSet<K> {
855        public Iterator<K> iterator() {
856            return new KeyIterator();
857        }
858
859        public int size() {
860            return WeakHashMap.this.size();
861        }
862
863        public boolean contains(Object o) {
864            return containsKey(o);
865        }
866
867        public boolean remove(Object o) {
868            if (containsKey(o)) {
869                WeakHashMap.this.remove(o);
870                return true;
871            }
872            else
873                return false;
874        }
875
876        public void clear() {
877            WeakHashMap.this.clear();
878        }
879
880        public Spliterator<K> spliterator() {
881            return new KeySpliterator<>(WeakHashMap.this, 0, -1, 0, 0);
882        }
883    }
884
885    /**
886     * Returns a {@link Collection} view of the values contained in this map.
887     * The collection is backed by the map, so changes to the map are
888     * reflected in the collection, and vice-versa.  If the map is
889     * modified while an iteration over the collection is in progress
890     * (except through the iterator's own <tt>remove</tt> operation),
891     * the results of the iteration are undefined.  The collection
892     * supports element removal, which removes the corresponding
893     * mapping from the map, via the <tt>Iterator.remove</tt>,
894     * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
895     * <tt>retainAll</tt> and <tt>clear</tt> operations.  It does not
896     * support the <tt>add</tt> or <tt>addAll</tt> operations.
897     */
898    public Collection<V> values() {
899        Collection<V> vs = values;
900        return (vs != null) ? vs : (values = new Values());
901    }
902
903    private class Values extends AbstractCollection<V> {
904        public Iterator<V> iterator() {
905            return new ValueIterator();
906        }
907
908        public int size() {
909            return WeakHashMap.this.size();
910        }
911
912        public boolean contains(Object o) {
913            return containsValue(o);
914        }
915
916        public void clear() {
917            WeakHashMap.this.clear();
918        }
919
920        public Spliterator<V> spliterator() {
921            return new ValueSpliterator<>(WeakHashMap.this, 0, -1, 0, 0);
922        }
923    }
924
925    /**
926     * Returns a {@link Set} view of the mappings contained in this map.
927     * The set is backed by the map, so changes to the map are
928     * reflected in the set, and vice-versa.  If the map is modified
929     * while an iteration over the set is in progress (except through
930     * the iterator's own <tt>remove</tt> operation, or through the
931     * <tt>setValue</tt> operation on a map entry returned by the
932     * iterator) the results of the iteration are undefined.  The set
933     * supports element removal, which removes the corresponding
934     * mapping from the map, via the <tt>Iterator.remove</tt>,
935     * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and
936     * <tt>clear</tt> operations.  It does not support the
937     * <tt>add</tt> or <tt>addAll</tt> operations.
938     */
939    public Set<Map.Entry<K,V>> entrySet() {
940        Set<Map.Entry<K,V>> es = entrySet;
941        return es != null ? es : (entrySet = new EntrySet());
942    }
943
944    private class EntrySet extends AbstractSet<Map.Entry<K,V>> {
945        public Iterator<Map.Entry<K,V>> iterator() {
946            return new EntryIterator();
947        }
948
949        public boolean contains(Object o) {
950            if (!(o instanceof Map.Entry))
951                return false;
952            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
953            Entry<K,V> candidate = getEntry(e.getKey());
954            return candidate != null && candidate.equals(e);
955        }
956
957        public boolean remove(Object o) {
958            return removeMapping(o);
959        }
960
961        public int size() {
962            return WeakHashMap.this.size();
963        }
964
965        public void clear() {
966            WeakHashMap.this.clear();
967        }
968
969        private List<Map.Entry<K,V>> deepCopy() {
970            List<Map.Entry<K,V>> list = new ArrayList<>(size());
971            for (Map.Entry<K,V> e : this)
972                list.add(new AbstractMap.SimpleEntry<>(e));
973            return list;
974        }
975
976        public Object[] toArray() {
977            return deepCopy().toArray();
978        }
979
980        public <T> T[] toArray(T[] a) {
981            return deepCopy().toArray(a);
982        }
983
984        public Spliterator<Map.Entry<K,V>> spliterator() {
985            return new EntrySpliterator<>(WeakHashMap.this, 0, -1, 0, 0);
986        }
987    }
988
989    @SuppressWarnings("unchecked")
990    @Override
991    public void forEach(BiConsumer<? super K, ? super V> action) {
992        Objects.requireNonNull(action);
993        int expectedModCount = modCount;
994
995        Entry<K, V>[] tab = getTable();
996        for (Entry<K, V> entry : tab) {
997            while (entry != null) {
998                Object key = entry.get();
999                if (key != null) {
1000                    action.accept((K)WeakHashMap.unmaskNull(key), entry.value);
1001                }
1002                entry = entry.next;
1003
1004                if (expectedModCount != modCount) {
1005                    throw new ConcurrentModificationException();
1006                }
1007            }
1008        }
1009    }
1010
1011    @SuppressWarnings("unchecked")
1012    @Override
1013    public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1014        Objects.requireNonNull(function);
1015        int expectedModCount = modCount;
1016
1017        Entry<K, V>[] tab = getTable();
1018        for (Entry<K, V> entry : tab) {
1019            while (entry != null) {
1020                Object key = entry.get();
1021                if (key != null) {
1022                    entry.value = function.apply((K)WeakHashMap.unmaskNull(key), entry.value);
1023                }
1024                entry = entry.next;
1025
1026                if (expectedModCount != modCount) {
1027                    throw new ConcurrentModificationException();
1028                }
1029            }
1030        }
1031    }
1032
1033
1034    /**
1035     * Similar form as other hash Spliterators, but skips dead
1036     * elements.
1037     */
1038    static class WeakHashMapSpliterator<K,V> {
1039        final WeakHashMap<K,V> map;
1040        WeakHashMap.Entry<K,V> current; // current node
1041        int index;             // current index, modified on advance/split
1042        int fence;             // -1 until first use; then one past last index
1043        int est;               // size estimate
1044        int expectedModCount;  // for comodification checks
1045
1046        WeakHashMapSpliterator(WeakHashMap<K,V> m, int origin,
1047                               int fence, int est,
1048                               int expectedModCount) {
1049            this.map = m;
1050            this.index = origin;
1051            this.fence = fence;
1052            this.est = est;
1053            this.expectedModCount = expectedModCount;
1054        }
1055
1056        final int getFence() { // initialize fence and size on first use
1057            int hi;
1058            if ((hi = fence) < 0) {
1059                WeakHashMap<K,V> m = map;
1060                est = m.size();
1061                expectedModCount = m.modCount;
1062                hi = fence = m.table.length;
1063            }
1064            return hi;
1065        }
1066
1067        public final long estimateSize() {
1068            getFence(); // force init
1069            return (long) est;
1070        }
1071    }
1072
1073    static final class KeySpliterator<K,V>
1074        extends WeakHashMapSpliterator<K,V>
1075        implements Spliterator<K> {
1076        KeySpliterator(WeakHashMap<K,V> m, int origin, int fence, int est,
1077                       int expectedModCount) {
1078            super(m, origin, fence, est, expectedModCount);
1079        }
1080
1081        public KeySpliterator<K,V> trySplit() {
1082            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1083            return (lo >= mid) ? null :
1084                new KeySpliterator<K,V>(map, lo, index = mid, est >>>= 1,
1085                                        expectedModCount);
1086        }
1087
1088        public void forEachRemaining(Consumer<? super K> action) {
1089            int i, hi, mc;
1090            if (action == null)
1091                throw new NullPointerException();
1092            WeakHashMap<K,V> m = map;
1093            WeakHashMap.Entry<K,V>[] tab = m.table;
1094            if ((hi = fence) < 0) {
1095                mc = expectedModCount = m.modCount;
1096                hi = fence = tab.length;
1097            }
1098            else
1099                mc = expectedModCount;
1100            if (tab.length >= hi && (i = index) >= 0 &&
1101                (i < (index = hi) || current != null)) {
1102                WeakHashMap.Entry<K,V> p = current;
1103                current = null; // exhaust
1104                do {
1105                    if (p == null)
1106                        p = tab[i++];
1107                    else {
1108                        Object x = p.get();
1109                        p = p.next;
1110                        if (x != null) {
1111                            @SuppressWarnings("unchecked") K k =
1112                                (K) WeakHashMap.unmaskNull(x);
1113                            action.accept(k);
1114                        }
1115                    }
1116                } while (p != null || i < hi);
1117            }
1118            if (m.modCount != mc)
1119                throw new ConcurrentModificationException();
1120        }
1121
1122        public boolean tryAdvance(Consumer<? super K> action) {
1123            int hi;
1124            if (action == null)
1125                throw new NullPointerException();
1126            WeakHashMap.Entry<K,V>[] tab = map.table;
1127            if (tab.length >= (hi = getFence()) && index >= 0) {
1128                while (current != null || index < hi) {
1129                    if (current == null)
1130                        current = tab[index++];
1131                    else {
1132                        Object x = current.get();
1133                        current = current.next;
1134                        if (x != null) {
1135                            @SuppressWarnings("unchecked") K k =
1136                                (K) WeakHashMap.unmaskNull(x);
1137                            action.accept(k);
1138                            if (map.modCount != expectedModCount)
1139                                throw new ConcurrentModificationException();
1140                            return true;
1141                        }
1142                    }
1143                }
1144            }
1145            return false;
1146        }
1147
1148        public int characteristics() {
1149            return Spliterator.DISTINCT;
1150        }
1151    }
1152
1153    static final class ValueSpliterator<K,V>
1154        extends WeakHashMapSpliterator<K,V>
1155        implements Spliterator<V> {
1156        ValueSpliterator(WeakHashMap<K,V> m, int origin, int fence, int est,
1157                         int expectedModCount) {
1158            super(m, origin, fence, est, expectedModCount);
1159        }
1160
1161        public ValueSpliterator<K,V> trySplit() {
1162            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1163            return (lo >= mid) ? null :
1164                new ValueSpliterator<K,V>(map, lo, index = mid, est >>>= 1,
1165                                          expectedModCount);
1166        }
1167
1168        public void forEachRemaining(Consumer<? super V> action) {
1169            int i, hi, mc;
1170            if (action == null)
1171                throw new NullPointerException();
1172            WeakHashMap<K,V> m = map;
1173            WeakHashMap.Entry<K,V>[] tab = m.table;
1174            if ((hi = fence) < 0) {
1175                mc = expectedModCount = m.modCount;
1176                hi = fence = tab.length;
1177            }
1178            else
1179                mc = expectedModCount;
1180            if (tab.length >= hi && (i = index) >= 0 &&
1181                (i < (index = hi) || current != null)) {
1182                WeakHashMap.Entry<K,V> p = current;
1183                current = null; // exhaust
1184                do {
1185                    if (p == null)
1186                        p = tab[i++];
1187                    else {
1188                        Object x = p.get();
1189                        V v = p.value;
1190                        p = p.next;
1191                        if (x != null)
1192                            action.accept(v);
1193                    }
1194                } while (p != null || i < hi);
1195            }
1196            if (m.modCount != mc)
1197                throw new ConcurrentModificationException();
1198        }
1199
1200        public boolean tryAdvance(Consumer<? super V> action) {
1201            int hi;
1202            if (action == null)
1203                throw new NullPointerException();
1204            WeakHashMap.Entry<K,V>[] tab = map.table;
1205            if (tab.length >= (hi = getFence()) && index >= 0) {
1206                while (current != null || index < hi) {
1207                    if (current == null)
1208                        current = tab[index++];
1209                    else {
1210                        Object x = current.get();
1211                        V v = current.value;
1212                        current = current.next;
1213                        if (x != null) {
1214                            action.accept(v);
1215                            if (map.modCount != expectedModCount)
1216                                throw new ConcurrentModificationException();
1217                            return true;
1218                        }
1219                    }
1220                }
1221            }
1222            return false;
1223        }
1224
1225        public int characteristics() {
1226            return 0;
1227        }
1228    }
1229
1230    static final class EntrySpliterator<K,V>
1231        extends WeakHashMapSpliterator<K,V>
1232        implements Spliterator<Map.Entry<K,V>> {
1233        EntrySpliterator(WeakHashMap<K,V> m, int origin, int fence, int est,
1234                       int expectedModCount) {
1235            super(m, origin, fence, est, expectedModCount);
1236        }
1237
1238        public EntrySpliterator<K,V> trySplit() {
1239            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1240            return (lo >= mid) ? null :
1241                new EntrySpliterator<K,V>(map, lo, index = mid, est >>>= 1,
1242                                          expectedModCount);
1243        }
1244
1245
1246        public void forEachRemaining(Consumer<? super Map.Entry<K, V>> action) {
1247            int i, hi, mc;
1248            if (action == null)
1249                throw new NullPointerException();
1250            WeakHashMap<K,V> m = map;
1251            WeakHashMap.Entry<K,V>[] tab = m.table;
1252            if ((hi = fence) < 0) {
1253                mc = expectedModCount = m.modCount;
1254                hi = fence = tab.length;
1255            }
1256            else
1257                mc = expectedModCount;
1258            if (tab.length >= hi && (i = index) >= 0 &&
1259                (i < (index = hi) || current != null)) {
1260                WeakHashMap.Entry<K,V> p = current;
1261                current = null; // exhaust
1262                do {
1263                    if (p == null)
1264                        p = tab[i++];
1265                    else {
1266                        Object x = p.get();
1267                        V v = p.value;
1268                        p = p.next;
1269                        if (x != null) {
1270                            @SuppressWarnings("unchecked") K k =
1271                                (K) WeakHashMap.unmaskNull(x);
1272                            action.accept
1273                                (new AbstractMap.SimpleImmutableEntry<K,V>(k, v));
1274                        }
1275                    }
1276                } while (p != null || i < hi);
1277            }
1278            if (m.modCount != mc)
1279                throw new ConcurrentModificationException();
1280        }
1281
1282        public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
1283            int hi;
1284            if (action == null)
1285                throw new NullPointerException();
1286            WeakHashMap.Entry<K,V>[] tab = map.table;
1287            if (tab.length >= (hi = getFence()) && index >= 0) {
1288                while (current != null || index < hi) {
1289                    if (current == null)
1290                        current = tab[index++];
1291                    else {
1292                        Object x = current.get();
1293                        V v = current.value;
1294                        current = current.next;
1295                        if (x != null) {
1296                            @SuppressWarnings("unchecked") K k =
1297                                (K) WeakHashMap.unmaskNull(x);
1298                            action.accept
1299                                (new AbstractMap.SimpleImmutableEntry<K,V>(k, v));
1300                            if (map.modCount != expectedModCount)
1301                                throw new ConcurrentModificationException();
1302                            return true;
1303                        }
1304                    }
1305                }
1306            }
1307            return false;
1308        }
1309
1310        public int characteristics() {
1311            return Spliterator.DISTINCT;
1312        }
1313    }
1314
1315}
1316