Stream.java revision d0a2645e29a9b84d7e5ec822eb9904e93bd6c013
1/*
2 * Copyright (c) 2012, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25package java.util.stream;
26
27import java.nio.charset.Charset;
28import java.util.Arrays;
29import java.util.Collection;
30import java.util.Comparator;
31import java.util.Iterator;
32import java.util.Objects;
33import java.util.Optional;
34import java.util.Spliterator;
35import java.util.Spliterators;
36import java.util.concurrent.ConcurrentHashMap;
37import java.util.function.BiConsumer;
38import java.util.function.BiFunction;
39import java.util.function.BinaryOperator;
40import java.util.function.Consumer;
41import java.util.function.Function;
42import java.util.function.IntFunction;
43import java.util.function.Predicate;
44import java.util.function.Supplier;
45import java.util.function.ToDoubleFunction;
46import java.util.function.ToIntFunction;
47import java.util.function.ToLongFunction;
48import java.util.function.UnaryOperator;
49
50/**
51 * A sequence of elements supporting sequential and parallel aggregate
52 * operations.  The following example illustrates an aggregate operation using
53 * {@link Stream} and {@link IntStream}:
54 *
55 * <pre>{@code
56 *     int sum = widgets.stream()
57 *                      .filter(w -> w.getColor() == RED)
58 *                      .mapToInt(w -> w.getWeight())
59 *                      .sum();
60 * }</pre>
61 *
62 * In this example, {@code widgets} is a {@code Collection<Widget>}.  We create
63 * a stream of {@code Widget} objects via {@link Collection#stream Collection.stream()},
64 * filter it to produce a stream containing only the red widgets, and then
65 * transform it into a stream of {@code int} values representing the weight of
66 * each red widget. Then this stream is summed to produce a total weight.
67 *
68 * <p>In addition to {@code Stream}, which is a stream of object references,
69 * there are primitive specializations for {@link IntStream}, {@link LongStream},
70 * and {@link DoubleStream}, all of which are referred to as "streams" and
71 * conform to the characteristics and restrictions described here.
72 *
73 * <p>To perform a computation, stream
74 * <a href="package-summary.html#StreamOps">operations</a> are composed into a
75 * <em>stream pipeline</em>.  A stream pipeline consists of a source (which
76 * might be an array, a collection, a generator function, an I/O channel,
77 * etc), zero or more <em>intermediate operations</em> (which transform a
78 * stream into another stream, such as {@link Stream#filter(Predicate)}), and a
79 * <em>terminal operation</em> (which produces a result or side-effect, such
80 * as {@link Stream#count()} or {@link Stream#forEach(Consumer)}).
81 * Streams are lazy; computation on the source data is only performed when the
82 * terminal operation is initiated, and source elements are consumed only
83 * as needed.
84 *
85 * <p>Collections and streams, while bearing some superficial similarities,
86 * have different goals.  Collections are primarily concerned with the efficient
87 * management of, and access to, their elements.  By contrast, streams do not
88 * provide a means to directly access or manipulate their elements, and are
89 * instead concerned with declaratively describing their source and the
90 * computational operations which will be performed in aggregate on that source.
91 * However, if the provided stream operations do not offer the desired
92 * functionality, the {@link #iterator()} and {@link #spliterator()} operations
93 * can be used to perform a controlled traversal.
94 *
95 * <p>A stream pipeline, like the "widgets" example above, can be viewed as
96 * a <em>query</em> on the stream source.  Unless the source was explicitly
97 * designed for concurrent modification (such as a {@link ConcurrentHashMap}),
98 * unpredictable or erroneous behavior may result from modifying the stream
99 * source while it is being queried.
100 *
101 * <p>Most stream operations accept parameters that describe user-specified
102 * behavior, such as the lambda expression {@code w -> w.getWeight()} passed to
103 * {@code mapToInt} in the example above.  To preserve correct behavior,
104 * these <em>behavioral parameters</em>:
105 * <ul>
106 * <li>must be <a href="package-summary.html#NonInterference">non-interfering</a>
107 * (they do not modify the stream source); and</li>
108 * <li>in most cases must be <a href="package-summary.html#Statelessness">stateless</a>
109 * (their result should not depend on any state that might change during execution
110 * of the stream pipeline).</li>
111 * </ul>
112 *
113 * <p>Such parameters are always instances of a
114 * <a href="../function/package-summary.html">functional interface</a> such
115 * as {@link java.util.function.Function}, and are often lambda expressions or
116 * method references.  Unless otherwise specified these parameters must be
117 * <em>non-null</em>.
118 *
119 * <p>A stream should be operated on (invoking an intermediate or terminal stream
120 * operation) only once.  This rules out, for example, "forked" streams, where
121 * the same source feeds two or more pipelines, or multiple traversals of the
122 * same stream.  A stream implementation may throw {@link IllegalStateException}
123 * if it detects that the stream is being reused. However, since some stream
124 * operations may return their receiver rather than a new stream object, it may
125 * not be possible to detect reuse in all cases.
126 *
127 * <p>Streams have a {@link #close()} method and implement {@link AutoCloseable},
128 * but nearly all stream instances do not actually need to be closed after use.
129 * Generally, only streams whose source is an IO channel will require closing.  Most streams
130 * are backed by collections, arrays, or generating functions, which require no
131 * special resource management.  (If a stream does require closing, it can be
132 * declared as a resource in a {@code try}-with-resources statement.)
133 *
134 * <p>Stream pipelines may execute either sequentially or in
135 * <a href="package-summary.html#Parallelism">parallel</a>.  This
136 * execution mode is a property of the stream.  Streams are created
137 * with an initial choice of sequential or parallel execution.  (For example,
138 * {@link Collection#stream() Collection.stream()} creates a sequential stream,
139 * and {@link Collection#parallelStream() Collection.parallelStream()} creates
140 * a parallel one.)  This choice of execution mode may be modified by the
141 * {@link #sequential()} or {@link #parallel()} methods, and may be queried with
142 * the {@link #isParallel()} method.
143 *
144 * @param <T> the type of the stream elements
145 * @since 1.8
146 * @see IntStream
147 * @see LongStream
148 * @see DoubleStream
149 * @see <a href="package-summary.html">java.util.stream</a>
150 */
151public interface Stream<T> extends BaseStream<T, Stream<T>> {
152
153    /**
154     * Returns a stream consisting of the elements of this stream that match
155     * the given predicate.
156     *
157     * <p>This is an <a href="package-summary.html#StreamOps">intermediate
158     * operation</a>.
159     *
160     * @param predicate a <a href="package-summary.html#NonInterference">non-interfering</a>,
161     *                  <a href="package-summary.html#Statelessness">stateless</a>
162     *                  predicate to apply to each element to determine if it
163     *                  should be included
164     * @return the new stream
165     */
166    Stream<T> filter(Predicate<? super T> predicate);
167
168    /**
169     * Returns a stream consisting of the results of applying the given
170     * function to the elements of this stream.
171     *
172     * <p>This is an <a href="package-summary.html#StreamOps">intermediate
173     * operation</a>.
174     *
175     * @param <R> The element type of the new stream
176     * @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,
177     *               <a href="package-summary.html#Statelessness">stateless</a>
178     *               function to apply to each element
179     * @return the new stream
180     */
181    <R> Stream<R> map(Function<? super T, ? extends R> mapper);
182
183    /**
184     * Returns an {@code IntStream} consisting of the results of applying the
185     * given function to the elements of this stream.
186     *
187     * <p>This is an <a href="package-summary.html#StreamOps">
188     *     intermediate operation</a>.
189     *
190     * @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,
191     *               <a href="package-summary.html#Statelessness">stateless</a>
192     *               function to apply to each element
193     * @return the new stream
194     */
195    IntStream mapToInt(ToIntFunction<? super T> mapper);
196
197    /**
198     * Returns a {@code LongStream} consisting of the results of applying the
199     * given function to the elements of this stream.
200     *
201     * <p>This is an <a href="package-summary.html#StreamOps">intermediate
202     * operation</a>.
203     *
204     * @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,
205     *               <a href="package-summary.html#Statelessness">stateless</a>
206     *               function to apply to each element
207     * @return the new stream
208     */
209    LongStream mapToLong(ToLongFunction<? super T> mapper);
210
211    /**
212     * Returns a {@code DoubleStream} consisting of the results of applying the
213     * given function to the elements of this stream.
214     *
215     * <p>This is an <a href="package-summary.html#StreamOps">intermediate
216     * operation</a>.
217     *
218     * @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,
219     *               <a href="package-summary.html#Statelessness">stateless</a>
220     *               function to apply to each element
221     * @return the new stream
222     */
223    DoubleStream mapToDouble(ToDoubleFunction<? super T> mapper);
224
225    /**
226     * Returns a stream consisting of the results of replacing each element of
227     * this stream with the contents of a mapped stream produced by applying
228     * the provided mapping function to each element.  Each mapped stream is
229     * {@link java.util.stream.BaseStream#close() closed} after its contents
230     * have been placed into this stream.  (If a mapped stream is {@code null}
231     * an empty stream is used, instead.)
232     *
233     * <p>This is an <a href="package-summary.html#StreamOps">intermediate
234     * operation</a>.
235     *
236     * @apiNote
237     * The {@code flatMap()} operation has the effect of applying a one-to-many
238     * transformation to the elements of the stream, and then flattening the
239     * resulting elements into a new stream.
240     *
241     * <p><b>Examples.</b>
242     *
243     * <p>If {@code orders} is a stream of purchase orders, and each purchase
244     * order contains a collection of line items, then the following produces a
245     * stream containing all the line items in all the orders:
246     * <pre>{@code
247     *     orders.flatMap(order -> order.getLineItems().stream())...
248     * }</pre>
249     *
250     * <p>If {@code path} is the path to a file, then the following produces a
251     * stream of the {@code words} contained in that file:
252     * <pre>{@code
253     *     Stream<String> lines = Files.lines(path, StandardCharsets.UTF_8);
254     *     Stream<String> words = lines.flatMap(line -> Stream.of(line.split(" +")));
255     * }</pre>
256     * The {@code mapper} function passed to {@code flatMap} splits a line,
257     * using a simple regular expression, into an array of words, and then
258     * creates a stream of words from that array.
259     *
260     * @param <R> The element type of the new stream
261     * @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,
262     *               <a href="package-summary.html#Statelessness">stateless</a>
263     *               function to apply to each element which produces a stream
264     *               of new values
265     * @return the new stream
266     */
267    <R> Stream<R> flatMap(Function<? super T, ? extends Stream<? extends R>> mapper);
268
269    /**
270     * Returns an {@code IntStream} consisting of the results of replacing each
271     * element of this stream with the contents of a mapped stream produced by
272     * applying the provided mapping function to each element.  Each mapped
273     * stream is {@link java.util.stream.BaseStream#close() closed} after its
274     * contents have been placed into this stream.  (If a mapped stream is
275     * {@code null} an empty stream is used, instead.)
276     *
277     * <p>This is an <a href="package-summary.html#StreamOps">intermediate
278     * operation</a>.
279     *
280     * @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,
281     *               <a href="package-summary.html#Statelessness">stateless</a>
282     *               function to apply to each element which produces a stream
283     *               of new values
284     * @return the new stream
285     * @see #flatMap(Function)
286     */
287    IntStream flatMapToInt(Function<? super T, ? extends IntStream> mapper);
288
289    /**
290     * Returns an {@code LongStream} consisting of the results of replacing each
291     * element of this stream with the contents of a mapped stream produced by
292     * applying the provided mapping function to each element.  Each mapped
293     * stream is {@link java.util.stream.BaseStream#close() closed} after its
294     * contents have been placed into this stream.  (If a mapped stream is
295     * {@code null} an empty stream is used, instead.)
296     *
297     * <p>This is an <a href="package-summary.html#StreamOps">intermediate
298     * operation</a>.
299     *
300     * @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,
301     *               <a href="package-summary.html#Statelessness">stateless</a>
302     *               function to apply to each element which produces a stream
303     *               of new values
304     * @return the new stream
305     * @see #flatMap(Function)
306     */
307    LongStream flatMapToLong(Function<? super T, ? extends LongStream> mapper);
308
309    /**
310     * Returns an {@code DoubleStream} consisting of the results of replacing
311     * each element of this stream with the contents of a mapped stream produced
312     * by applying the provided mapping function to each element.  Each mapped
313     * stream is {@link java.util.stream.BaseStream#close() closed} after its
314     * contents have placed been into this stream.  (If a mapped stream is
315     * {@code null} an empty stream is used, instead.)
316     *
317     * <p>This is an <a href="package-summary.html#StreamOps">intermediate
318     * operation</a>.
319     *
320     * @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,
321     *               <a href="package-summary.html#Statelessness">stateless</a>
322     *               function to apply to each element which produces a stream
323     *               of new values
324     * @return the new stream
325     * @see #flatMap(Function)
326     */
327    DoubleStream flatMapToDouble(Function<? super T, ? extends DoubleStream> mapper);
328
329    /**
330     * Returns a stream consisting of the distinct elements (according to
331     * {@link Object#equals(Object)}) of this stream.
332     *
333     * <p>For ordered streams, the selection of distinct elements is stable
334     * (for duplicated elements, the element appearing first in the encounter
335     * order is preserved.)  For unordered streams, no stability guarantees
336     * are made.
337     *
338     * <p>This is a <a href="package-summary.html#StreamOps">stateful
339     * intermediate operation</a>.
340     *
341     * @apiNote
342     * Preserving stability for {@code distinct()} in parallel pipelines is
343     * relatively expensive (requires that the operation act as a full barrier,
344     * with substantial buffering overhead), and stability is often not needed.
345     * Using an unordered stream source (such as {@link #generate(Supplier)})
346     * or removing the ordering constraint with {@link #unordered()} may result
347     * in significantly more efficient execution for {@code distinct()} in parallel
348     * pipelines, if the semantics of your situation permit.  If consistency
349     * with encounter order is required, and you are experiencing poor performance
350     * or memory utilization with {@code distinct()} in parallel pipelines,
351     * switching to sequential execution with {@link #sequential()} may improve
352     * performance.
353     *
354     * @return the new stream
355     */
356    Stream<T> distinct();
357
358    /**
359     * Returns a stream consisting of the elements of this stream, sorted
360     * according to natural order.  If the elements of this stream are not
361     * {@code Comparable}, a {@code java.lang.ClassCastException} may be thrown
362     * when the terminal operation is executed.
363     *
364     * <p>For ordered streams, the sort is stable.  For unordered streams, no
365     * stability guarantees are made.
366     *
367     * <p>This is a <a href="package-summary.html#StreamOps">stateful
368     * intermediate operation</a>.
369     *
370     * @return the new stream
371     */
372    Stream<T> sorted();
373
374    /**
375     * Returns a stream consisting of the elements of this stream, sorted
376     * according to the provided {@code Comparator}.
377     *
378     * <p>For ordered streams, the sort is stable.  For unordered streams, no
379     * stability guarantees are made.
380     *
381     * <p>This is a <a href="package-summary.html#StreamOps">stateful
382     * intermediate operation</a>.
383     *
384     * @param comparator a <a href="package-summary.html#NonInterference">non-interfering</a>,
385     *                   <a href="package-summary.html#Statelessness">stateless</a>
386     *                   {@code Comparator} to be used to compare stream elements
387     * @return the new stream
388     */
389    Stream<T> sorted(Comparator<? super T> comparator);
390
391    /**
392     * Returns a stream consisting of the elements of this stream, additionally
393     * performing the provided action on each element as elements are consumed
394     * from the resulting stream.
395     *
396     * <p>This is an <a href="package-summary.html#StreamOps">intermediate
397     * operation</a>.
398     *
399     * <p>For parallel stream pipelines, the action may be called at
400     * whatever time and in whatever thread the element is made available by the
401     * upstream operation.  If the action modifies shared state,
402     * it is responsible for providing the required synchronization.
403     *
404     * @apiNote This method exists mainly to support debugging, where you want
405     * to see the elements as they flow past a certain point in a pipeline:
406     * <pre>{@code
407     *     Stream.of("one", "two", "three", "four")
408     *         .filter(e -> e.length() > 3)
409     *         .peek(e -> System.out.println("Filtered value: " + e))
410     *         .map(String::toUpperCase)
411     *         .peek(e -> System.out.println("Mapped value: " + e))
412     *         .collect(Collectors.toList());
413     * }</pre>
414     *
415     * @param action a <a href="package-summary.html#NonInterference">
416     *                 non-interfering</a> action to perform on the elements as
417     *                 they are consumed from the stream
418     * @return the new stream
419     */
420    Stream<T> peek(Consumer<? super T> action);
421
422    /**
423     * Returns a stream consisting of the elements of this stream, truncated
424     * to be no longer than {@code maxSize} in length.
425     *
426     * <p>This is a <a href="package-summary.html#StreamOps">short-circuiting
427     * stateful intermediate operation</a>.
428     *
429     * @apiNote
430     * While {@code limit()} is generally a cheap operation on sequential
431     * stream pipelines, it can be quite expensive on ordered parallel pipelines,
432     * especially for large values of {@code maxSize}, since {@code limit(n)}
433     * is constrained to return not just any <em>n</em> elements, but the
434     * <em>first n</em> elements in the encounter order.  Using an unordered
435     * stream source (such as {@link #generate(Supplier)}) or removing the
436     * ordering constraint with {@link #unordered()} may result in significant
437     * speedups of {@code limit()} in parallel pipelines, if the semantics of
438     * your situation permit.  If consistency with encounter order is required,
439     * and you are experiencing poor performance or memory utilization with
440     * {@code limit()} in parallel pipelines, switching to sequential execution
441     * with {@link #sequential()} may improve performance.
442     *
443     * @param maxSize the number of elements the stream should be limited to
444     * @return the new stream
445     * @throws IllegalArgumentException if {@code maxSize} is negative
446     */
447    Stream<T> limit(long maxSize);
448
449    /**
450     * Returns a stream consisting of the remaining elements of this stream
451     * after discarding the first {@code n} elements of the stream.
452     * If this stream contains fewer than {@code n} elements then an
453     * empty stream will be returned.
454     *
455     * <p>This is a <a href="package-summary.html#StreamOps">stateful
456     * intermediate operation</a>.
457     *
458     * @apiNote
459     * While {@code skip()} is generally a cheap operation on sequential
460     * stream pipelines, it can be quite expensive on ordered parallel pipelines,
461     * especially for large values of {@code n}, since {@code skip(n)}
462     * is constrained to skip not just any <em>n</em> elements, but the
463     * <em>first n</em> elements in the encounter order.  Using an unordered
464     * stream source (such as {@link #generate(Supplier)}) or removing the
465     * ordering constraint with {@link #unordered()} may result in significant
466     * speedups of {@code skip()} in parallel pipelines, if the semantics of
467     * your situation permit.  If consistency with encounter order is required,
468     * and you are experiencing poor performance or memory utilization with
469     * {@code skip()} in parallel pipelines, switching to sequential execution
470     * with {@link #sequential()} may improve performance.
471     *
472     * @param n the number of leading elements to skip
473     * @return the new stream
474     * @throws IllegalArgumentException if {@code n} is negative
475     */
476    Stream<T> skip(long n);
477
478    /**
479     * Performs an action for each element of this stream.
480     *
481     * <p>This is a <a href="package-summary.html#StreamOps">terminal
482     * operation</a>.
483     *
484     * <p>The behavior of this operation is explicitly nondeterministic.
485     * For parallel stream pipelines, this operation does <em>not</em>
486     * guarantee to respect the encounter order of the stream, as doing so
487     * would sacrifice the benefit of parallelism.  For any given element, the
488     * action may be performed at whatever time and in whatever thread the
489     * library chooses.  If the action accesses shared state, it is
490     * responsible for providing the required synchronization.
491     *
492     * @param action a <a href="package-summary.html#NonInterference">
493     *               non-interfering</a> action to perform on the elements
494     */
495    void forEach(Consumer<? super T> action);
496
497    /**
498     * Performs an action for each element of this stream, in the encounter
499     * order of the stream if the stream has a defined encounter order.
500     *
501     * <p>This is a <a href="package-summary.html#StreamOps">terminal
502     * operation</a>.
503     *
504     * <p>This operation processes the elements one at a time, in encounter
505     * order if one exists.  Performing the action for one element
506     * <a href="../concurrent/package-summary.html#MemoryVisibility"><i>happens-before</i></a>
507     * performing the action for subsequent elements, but for any given element,
508     * the action may be performed in whatever thread the library chooses.
509     *
510     * @param action a <a href="package-summary.html#NonInterference">
511     *               non-interfering</a> action to perform on the elements
512     * @see #forEach(Consumer)
513     */
514    void forEachOrdered(Consumer<? super T> action);
515
516    /**
517     * Returns an array containing the elements of this stream.
518     *
519     * <p>This is a <a href="package-summary.html#StreamOps">terminal
520     * operation</a>.
521     *
522     * @return an array containing the elements of this stream
523     */
524    Object[] toArray();
525
526    /**
527     * Returns an array containing the elements of this stream, using the
528     * provided {@code generator} function to allocate the returned array, as
529     * well as any additional arrays that might be required for a partitioned
530     * execution or for resizing.
531     *
532     * <p>This is a <a href="package-summary.html#StreamOps">terminal
533     * operation</a>.
534     *
535     * @apiNote
536     * The generator function takes an integer, which is the size of the
537     * desired array, and produces an array of the desired size.  This can be
538     * concisely expressed with an array constructor reference:
539     * <pre>{@code
540     *     Person[] men = people.stream()
541     *                          .filter(p -> p.getGender() == MALE)
542     *                          .toArray(Person[]::new);
543     * }</pre>
544     *
545     * @param <A> the element type of the resulting array
546     * @param generator a function which produces a new array of the desired
547     *                  type and the provided length
548     * @return an array containing the elements in this stream
549     * @throws ArrayStoreException if the runtime type of the array returned
550     * from the array generator is not a supertype of the runtime type of every
551     * element in this stream
552     */
553    <A> A[] toArray(IntFunction<A[]> generator);
554
555    /**
556     * Performs a <a href="package-summary.html#Reduction">reduction</a> on the
557     * elements of this stream, using the provided identity value and an
558     * <a href="package-summary.html#Associativity">associative</a>
559     * accumulation function, and returns the reduced value.  This is equivalent
560     * to:
561     * <pre>{@code
562     *     T result = identity;
563     *     for (T element : this stream)
564     *         result = accumulator.apply(result, element)
565     *     return result;
566     * }</pre>
567     *
568     * but is not constrained to execute sequentially.
569     *
570     * <p>The {@code identity} value must be an identity for the accumulator
571     * function. This means that for all {@code t},
572     * {@code accumulator.apply(identity, t)} is equal to {@code t}.
573     * The {@code accumulator} function must be an
574     * <a href="package-summary.html#Associativity">associative</a> function.
575     *
576     * <p>This is a <a href="package-summary.html#StreamOps">terminal
577     * operation</a>.
578     *
579     * @apiNote Sum, min, max, average, and string concatenation are all special
580     * cases of reduction. Summing a stream of numbers can be expressed as:
581     *
582     * <pre>{@code
583     *     Integer sum = integers.reduce(0, (a, b) -> a+b);
584     * }</pre>
585     *
586     * or:
587     *
588     * <pre>{@code
589     *     Integer sum = integers.reduce(0, Integer::sum);
590     * }</pre>
591     *
592     * <p>While this may seem a more roundabout way to perform an aggregation
593     * compared to simply mutating a running total in a loop, reduction
594     * operations parallelize more gracefully, without needing additional
595     * synchronization and with greatly reduced risk of data races.
596     *
597     * @param identity the identity value for the accumulating function
598     * @param accumulator an <a href="package-summary.html#Associativity">associative</a>,
599     *                    <a href="package-summary.html#NonInterference">non-interfering</a>,
600     *                    <a href="package-summary.html#Statelessness">stateless</a>
601     *                    function for combining two values
602     * @return the result of the reduction
603     */
604    T reduce(T identity, BinaryOperator<T> accumulator);
605
606    /**
607     * Performs a <a href="package-summary.html#Reduction">reduction</a> on the
608     * elements of this stream, using an
609     * <a href="package-summary.html#Associativity">associative</a> accumulation
610     * function, and returns an {@code Optional} describing the reduced value,
611     * if any. This is equivalent to:
612     * <pre>{@code
613     *     boolean foundAny = false;
614     *     T result = null;
615     *     for (T element : this stream) {
616     *         if (!foundAny) {
617     *             foundAny = true;
618     *             result = element;
619     *         }
620     *         else
621     *             result = accumulator.apply(result, element);
622     *     }
623     *     return foundAny ? Optional.of(result) : Optional.empty();
624     * }</pre>
625     *
626     * but is not constrained to execute sequentially.
627     *
628     * <p>The {@code accumulator} function must be an
629     * <a href="package-summary.html#Associativity">associative</a> function.
630     *
631     * <p>This is a <a href="package-summary.html#StreamOps">terminal
632     * operation</a>.
633     *
634     * @param accumulator an <a href="package-summary.html#Associativity">associative</a>,
635     *                    <a href="package-summary.html#NonInterference">non-interfering</a>,
636     *                    <a href="package-summary.html#Statelessness">stateless</a>
637     *                    function for combining two values
638     * @return an {@link Optional} describing the result of the reduction
639     * @throws NullPointerException if the result of the reduction is null
640     * @see #reduce(Object, BinaryOperator)
641     * @see #min(Comparator)
642     * @see #max(Comparator)
643     */
644    Optional<T> reduce(BinaryOperator<T> accumulator);
645
646    /**
647     * Performs a <a href="package-summary.html#Reduction">reduction</a> on the
648     * elements of this stream, using the provided identity, accumulation and
649     * combining functions.  This is equivalent to:
650     * <pre>{@code
651     *     U result = identity;
652     *     for (T element : this stream)
653     *         result = accumulator.apply(result, element)
654     *     return result;
655     * }</pre>
656     *
657     * but is not constrained to execute sequentially.
658     *
659     * <p>The {@code identity} value must be an identity for the combiner
660     * function.  This means that for all {@code u}, {@code combiner(identity, u)}
661     * is equal to {@code u}.  Additionally, the {@code combiner} function
662     * must be compatible with the {@code accumulator} function; for all
663     * {@code u} and {@code t}, the following must hold:
664     * <pre>{@code
665     *     combiner.apply(u, accumulator.apply(identity, t)) == accumulator.apply(u, t)
666     * }</pre>
667     *
668     * <p>This is a <a href="package-summary.html#StreamOps">terminal
669     * operation</a>.
670     *
671     * @apiNote Many reductions using this form can be represented more simply
672     * by an explicit combination of {@code map} and {@code reduce} operations.
673     * The {@code accumulator} function acts as a fused mapper and accumulator,
674     * which can sometimes be more efficient than separate mapping and reduction,
675     * such as when knowing the previously reduced value allows you to avoid
676     * some computation.
677     *
678     * @param <U> The type of the result
679     * @param identity the identity value for the combiner function
680     * @param accumulator an <a href="package-summary.html#Associativity">associative</a>,
681     *                    <a href="package-summary.html#NonInterference">non-interfering</a>,
682     *                    <a href="package-summary.html#Statelessness">stateless</a>
683     *                    function for incorporating an additional element into a result
684     * @param combiner an <a href="package-summary.html#Associativity">associative</a>,
685     *                    <a href="package-summary.html#NonInterference">non-interfering</a>,
686     *                    <a href="package-summary.html#Statelessness">stateless</a>
687     *                    function for combining two values, which must be
688     *                    compatible with the accumulator function
689     * @return the result of the reduction
690     * @see #reduce(BinaryOperator)
691     * @see #reduce(Object, BinaryOperator)
692     */
693    <U> U reduce(U identity,
694                 BiFunction<U, ? super T, U> accumulator,
695                 BinaryOperator<U> combiner);
696
697    /**
698     * Performs a <a href="package-summary.html#MutableReduction">mutable
699     * reduction</a> operation on the elements of this stream.  A mutable
700     * reduction is one in which the reduced value is a mutable result container,
701     * such as an {@code ArrayList}, and elements are incorporated by updating
702     * the state of the result rather than by replacing the result.  This
703     * produces a result equivalent to:
704     * <pre>{@code
705     *     R result = supplier.get();
706     *     for (T element : this stream)
707     *         accumulator.accept(result, element);
708     *     return result;
709     * }</pre>
710     *
711     * <p>Like {@link #reduce(Object, BinaryOperator)}, {@code collect} operations
712     * can be parallelized without requiring additional synchronization.
713     *
714     * <p>This is a <a href="package-summary.html#StreamOps">terminal
715     * operation</a>.
716     *
717     * @apiNote There are many existing classes in the JDK whose signatures are
718     * well-suited for use with method references as arguments to {@code collect()}.
719     * For example, the following will accumulate strings into an {@code ArrayList}:
720     * <pre>{@code
721     *     List<String> asList = stringStream.collect(ArrayList::new, ArrayList::add,
722     *                                                ArrayList::addAll);
723     * }</pre>
724     *
725     * <p>The following will take a stream of strings and concatenates them into a
726     * single string:
727     * <pre>{@code
728     *     String concat = stringStream.collect(StringBuilder::new, StringBuilder::append,
729     *                                          StringBuilder::append)
730     *                                 .toString();
731     * }</pre>
732     *
733     * @param <R> type of the result
734     * @param supplier a function that creates a new result container. For a
735     *                 parallel execution, this function may be called
736     *                 multiple times and must return a fresh value each time.
737     * @param accumulator an <a href="package-summary.html#Associativity">associative</a>,
738     *                    <a href="package-summary.html#NonInterference">non-interfering</a>,
739     *                    <a href="package-summary.html#Statelessness">stateless</a>
740     *                    function for incorporating an additional element into a result
741     * @param combiner an <a href="package-summary.html#Associativity">associative</a>,
742     *                    <a href="package-summary.html#NonInterference">non-interfering</a>,
743     *                    <a href="package-summary.html#Statelessness">stateless</a>
744     *                    function for combining two values, which must be
745     *                    compatible with the accumulator function
746     * @return the result of the reduction
747     */
748    <R> R collect(Supplier<R> supplier,
749                  BiConsumer<R, ? super T> accumulator,
750                  BiConsumer<R, R> combiner);
751
752    /**
753     * Performs a <a href="package-summary.html#MutableReduction">mutable
754     * reduction</a> operation on the elements of this stream using a
755     * {@code Collector}.  A {@code Collector}
756     * encapsulates the functions used as arguments to
757     * {@link #collect(Supplier, BiConsumer, BiConsumer)}, allowing for reuse of
758     * collection strategies and composition of collect operations such as
759     * multiple-level grouping or partitioning.
760     *
761     * <p>If the stream is parallel, and the {@code Collector}
762     * is {@link Collector.Characteristics#CONCURRENT concurrent}, and
763     * either the stream is unordered or the collector is
764     * {@link Collector.Characteristics#UNORDERED unordered},
765     * then a concurrent reduction will be performed (see {@link Collector} for
766     * details on concurrent reduction.)
767     *
768     * <p>This is a <a href="package-summary.html#StreamOps">terminal
769     * operation</a>.
770     *
771     * <p>When executed in parallel, multiple intermediate results may be
772     * instantiated, populated, and merged so as to maintain isolation of
773     * mutable data structures.  Therefore, even when executed in parallel
774     * with non-thread-safe data structures (such as {@code ArrayList}), no
775     * additional synchronization is needed for a parallel reduction.
776     *
777     * @apiNote
778     * The following will accumulate strings into an ArrayList:
779     * <pre>{@code
780     *     List<String> asList = stringStream.collect(Collectors.toList());
781     * }</pre>
782     *
783     * <p>The following will classify {@code Person} objects by city:
784     * <pre>{@code
785     *     Map<String, List<Person>> peopleByCity
786     *         = personStream.collect(Collectors.groupingBy(Person::getCity));
787     * }</pre>
788     *
789     * <p>The following will classify {@code Person} objects by state and city,
790     * cascading two {@code Collector}s together:
791     * <pre>{@code
792     *     Map<String, Map<String, List<Person>>> peopleByStateAndCity
793     *         = personStream.collect(Collectors.groupingBy(Person::getState,
794     *                                                      Collectors.groupingBy(Person::getCity)));
795     * }</pre>
796     *
797     * @param <R> the type of the result
798     * @param <A> the intermediate accumulation type of the {@code Collector}
799     * @param collector the {@code Collector} describing the reduction
800     * @return the result of the reduction
801     * @see #collect(Supplier, BiConsumer, BiConsumer)
802     * @see Collectors
803     */
804    <R, A> R collect(Collector<? super T, A, R> collector);
805
806    /**
807     * Returns the minimum element of this stream according to the provided
808     * {@code Comparator}.  This is a special case of a
809     * <a href="package-summary.html#Reduction">reduction</a>.
810     *
811     * <p>This is a <a href="package-summary.html#StreamOps">terminal operation</a>.
812     *
813     * @param comparator a <a href="package-summary.html#NonInterference">non-interfering</a>,
814     *                   <a href="package-summary.html#Statelessness">stateless</a>
815     *                   {@code Comparator} to compare elements of this stream
816     * @return an {@code Optional} describing the minimum element of this stream,
817     * or an empty {@code Optional} if the stream is empty
818     * @throws NullPointerException if the minimum element is null
819     */
820    Optional<T> min(Comparator<? super T> comparator);
821
822    /**
823     * Returns the maximum element of this stream according to the provided
824     * {@code Comparator}.  This is a special case of a
825     * <a href="package-summary.html#Reduction">reduction</a>.
826     *
827     * <p>This is a <a href="package-summary.html#StreamOps">terminal
828     * operation</a>.
829     *
830     * @param comparator a <a href="package-summary.html#NonInterference">non-interfering</a>,
831     *                   <a href="package-summary.html#Statelessness">stateless</a>
832     *                   {@code Comparator} to compare elements of this stream
833     * @return an {@code Optional} describing the maximum element of this stream,
834     * or an empty {@code Optional} if the stream is empty
835     * @throws NullPointerException if the maximum element is null
836     */
837    Optional<T> max(Comparator<? super T> comparator);
838
839    /**
840     * Returns the count of elements in this stream.  This is a special case of
841     * a <a href="package-summary.html#Reduction">reduction</a> and is
842     * equivalent to:
843     * <pre>{@code
844     *     return mapToLong(e -> 1L).sum();
845     * }</pre>
846     *
847     * <p>This is a <a href="package-summary.html#StreamOps">terminal operation</a>.
848     *
849     * @return the count of elements in this stream
850     */
851    long count();
852
853    /**
854     * Returns whether any elements of this stream match the provided
855     * predicate.  May not evaluate the predicate on all elements if not
856     * necessary for determining the result.  If the stream is empty then
857     * {@code false} is returned and the predicate is not evaluated.
858     *
859     * <p>This is a <a href="package-summary.html#StreamOps">short-circuiting
860     * terminal operation</a>.
861     *
862     * @apiNote
863     * This method evaluates the <em>existential quantification</em> of the
864     * predicate over the elements of the stream (for some x P(x)).
865     *
866     * @param predicate a <a href="package-summary.html#NonInterference">non-interfering</a>,
867     *                  <a href="package-summary.html#Statelessness">stateless</a>
868     *                  predicate to apply to elements of this stream
869     * @return {@code true} if any elements of the stream match the provided
870     * predicate, otherwise {@code false}
871     */
872    boolean anyMatch(Predicate<? super T> predicate);
873
874    /**
875     * Returns whether all elements of this stream match the provided predicate.
876     * May not evaluate the predicate on all elements if not necessary for
877     * determining the result.  If the stream is empty then {@code true} is
878     * returned and the predicate is not evaluated.
879     *
880     * <p>This is a <a href="package-summary.html#StreamOps">short-circuiting
881     * terminal operation</a>.
882     *
883     * @apiNote
884     * This method evaluates the <em>universal quantification</em> of the
885     * predicate over the elements of the stream (for all x P(x)).  If the
886     * stream is empty, the quantification is said to be <em>vacuously
887     * satisfied</em> and is always {@code true} (regardless of P(x)).
888     *
889     * @param predicate a <a href="package-summary.html#NonInterference">non-interfering</a>,
890     *                  <a href="package-summary.html#Statelessness">stateless</a>
891     *                  predicate to apply to elements of this stream
892     * @return {@code true} if either all elements of the stream match the
893     * provided predicate or the stream is empty, otherwise {@code false}
894     */
895    boolean allMatch(Predicate<? super T> predicate);
896
897    /**
898     * Returns whether no elements of this stream match the provided predicate.
899     * May not evaluate the predicate on all elements if not necessary for
900     * determining the result.  If the stream is empty then {@code true} is
901     * returned and the predicate is not evaluated.
902     *
903     * <p>This is a <a href="package-summary.html#StreamOps">short-circuiting
904     * terminal operation</a>.
905     *
906     * @apiNote
907     * This method evaluates the <em>universal quantification</em> of the
908     * negated predicate over the elements of the stream (for all x ~P(x)).  If
909     * the stream is empty, the quantification is said to be vacuously satisfied
910     * and is always {@code true}, regardless of P(x).
911     *
912     * @param predicate a <a href="package-summary.html#NonInterference">non-interfering</a>,
913     *                  <a href="package-summary.html#Statelessness">stateless</a>
914     *                  predicate to apply to elements of this stream
915     * @return {@code true} if either no elements of the stream match the
916     * provided predicate or the stream is empty, otherwise {@code false}
917     */
918    boolean noneMatch(Predicate<? super T> predicate);
919
920    /**
921     * Returns an {@link Optional} describing the first element of this stream,
922     * or an empty {@code Optional} if the stream is empty.  If the stream has
923     * no encounter order, then any element may be returned.
924     *
925     * <p>This is a <a href="package-summary.html#StreamOps">short-circuiting
926     * terminal operation</a>.
927     *
928     * @return an {@code Optional} describing the first element of this stream,
929     * or an empty {@code Optional} if the stream is empty
930     * @throws NullPointerException if the element selected is null
931     */
932    Optional<T> findFirst();
933
934    /**
935     * Returns an {@link Optional} describing some element of the stream, or an
936     * empty {@code Optional} if the stream is empty.
937     *
938     * <p>This is a <a href="package-summary.html#StreamOps">short-circuiting
939     * terminal operation</a>.
940     *
941     * <p>The behavior of this operation is explicitly nondeterministic; it is
942     * free to select any element in the stream.  This is to allow for maximal
943     * performance in parallel operations; the cost is that multiple invocations
944     * on the same source may not return the same result.  (If a stable result
945     * is desired, use {@link #findFirst()} instead.)
946     *
947     * @return an {@code Optional} describing some element of this stream, or an
948     * empty {@code Optional} if the stream is empty
949     * @throws NullPointerException if the element selected is null
950     * @see #findFirst()
951     */
952    Optional<T> findAny();
953
954    // Static factories
955
956    /**
957     * Returns a builder for a {@code Stream}.
958     *
959     * @param <T> type of elements
960     * @return a stream builder
961     */
962    public static<T> Builder<T> builder() {
963        return new Streams.StreamBuilderImpl<>();
964    }
965
966    /**
967     * Returns an empty sequential {@code Stream}.
968     *
969     * @param <T> the type of stream elements
970     * @return an empty sequential stream
971     */
972    public static<T> Stream<T> empty() {
973        return StreamSupport.stream(Spliterators.<T>emptySpliterator(), false);
974    }
975
976    /**
977     * Returns a sequential {@code Stream} containing a single element.
978     *
979     * @param t the single element
980     * @param <T> the type of stream elements
981     * @return a singleton sequential stream
982     */
983    public static<T> Stream<T> of(T t) {
984        return StreamSupport.stream(new Streams.StreamBuilderImpl<>(t), false);
985    }
986
987    /**
988     * Returns a sequential ordered stream whose elements are the specified values.
989     *
990     * @param <T> the type of stream elements
991     * @param values the elements of the new stream
992     * @return the new stream
993     */
994    @SafeVarargs
995    @SuppressWarnings("varargs") // Creating a stream from an array is safe
996    public static<T> Stream<T> of(T... values) {
997        return Arrays.stream(values);
998    }
999
1000    /**
1001     * Returns an infinite sequential ordered {@code Stream} produced by iterative
1002     * application of a function {@code f} to an initial element {@code seed},
1003     * producing a {@code Stream} consisting of {@code seed}, {@code f(seed)},
1004     * {@code f(f(seed))}, etc.
1005     *
1006     * <p>The first element (position {@code 0}) in the {@code Stream} will be
1007     * the provided {@code seed}.  For {@code n > 0}, the element at position
1008     * {@code n}, will be the result of applying the function {@code f} to the
1009     * element at position {@code n - 1}.
1010     *
1011     * @param <T> the type of stream elements
1012     * @param seed the initial element
1013     * @param f a function to be applied to to the previous element to produce
1014     *          a new element
1015     * @return a new sequential {@code Stream}
1016     */
1017    public static<T> Stream<T> iterate(final T seed, final UnaryOperator<T> f) {
1018        Objects.requireNonNull(f);
1019        final Iterator<T> iterator = new Iterator<T>() {
1020            @SuppressWarnings("unchecked")
1021            T t = (T) Streams.NONE;
1022
1023            @Override
1024            public boolean hasNext() {
1025                return true;
1026            }
1027
1028            @Override
1029            public T next() {
1030                return t = (t == Streams.NONE) ? seed : f.apply(t);
1031            }
1032        };
1033        return StreamSupport.stream(Spliterators.spliteratorUnknownSize(
1034                iterator,
1035                Spliterator.ORDERED | Spliterator.IMMUTABLE), false);
1036    }
1037
1038    /**
1039     * Returns an infinite sequential unordered stream where each element is
1040     * generated by the provided {@code Supplier}.  This is suitable for
1041     * generating constant streams, streams of random elements, etc.
1042     *
1043     * @param <T> the type of stream elements
1044     * @param s the {@code Supplier} of generated elements
1045     * @return a new infinite sequential unordered {@code Stream}
1046     */
1047    public static<T> Stream<T> generate(Supplier<T> s) {
1048        Objects.requireNonNull(s);
1049        return StreamSupport.stream(
1050                new StreamSpliterators.InfiniteSupplyingSpliterator.OfRef<>(Long.MAX_VALUE, s), false);
1051    }
1052
1053    /**
1054     * Creates a lazily concatenated stream whose elements are all the
1055     * elements of the first stream followed by all the elements of the
1056     * second stream.  The resulting stream is ordered if both
1057     * of the input streams are ordered, and parallel if either of the input
1058     * streams is parallel.  When the resulting stream is closed, the close
1059     * handlers for both input streams are invoked.
1060     *
1061     * @implNote
1062     * Use caution when constructing streams from repeated concatenation.
1063     * Accessing an element of a deeply concatenated stream can result in deep
1064     * call chains, or even {@code StackOverflowException}.
1065     *
1066     * @param <T> The type of stream elements
1067     * @param a the first stream
1068     * @param b the second stream
1069     * @return the concatenation of the two input streams
1070     */
1071    public static <T> Stream<T> concat(Stream<? extends T> a, Stream<? extends T> b) {
1072        Objects.requireNonNull(a);
1073        Objects.requireNonNull(b);
1074
1075        @SuppressWarnings("unchecked")
1076        Spliterator<T> split = new Streams.ConcatSpliterator.OfRef<>(
1077                (Spliterator<T>) a.spliterator(), (Spliterator<T>) b.spliterator());
1078        Stream<T> stream = StreamSupport.stream(split, a.isParallel() || b.isParallel());
1079        return stream.onClose(Streams.composedClose(a, b));
1080    }
1081
1082    /**
1083     * A mutable builder for a {@code Stream}.  This allows the creation of a
1084     * {@code Stream} by generating elements individually and adding them to the
1085     * {@code Builder} (without the copying overhead that comes from using
1086     * an {@code ArrayList} as a temporary buffer.)
1087     *
1088     * <p>A stream builder has a lifecycle, which starts in a building
1089     * phase, during which elements can be added, and then transitions to a built
1090     * phase, after which elements may not be added.  The built phase begins
1091     * when the {@link #build()} method is called, which creates an ordered
1092     * {@code Stream} whose elements are the elements that were added to the stream
1093     * builder, in the order they were added.
1094     *
1095     * @param <T> the type of stream elements
1096     * @see Stream#builder()
1097     * @since 1.8
1098     */
1099    public interface Builder<T> extends Consumer<T> {
1100
1101        /**
1102         * Adds an element to the stream being built.
1103         *
1104         * @throws IllegalStateException if the builder has already transitioned to
1105         * the built state
1106         */
1107        @Override
1108        void accept(T t);
1109
1110        /**
1111         * Adds an element to the stream being built.
1112         *
1113         * @implSpec
1114         * The default implementation behaves as if:
1115         * <pre>{@code
1116         *     accept(t)
1117         *     return this;
1118         * }</pre>
1119         *
1120         * @param t the element to add
1121         * @return {@code this} builder
1122         * @throws IllegalStateException if the builder has already transitioned to
1123         * the built state
1124         */
1125        default Builder<T> add(T t) {
1126            accept(t);
1127            return this;
1128        }
1129
1130        /**
1131         * Builds the stream, transitioning this builder to the built state.
1132         * An {@code IllegalStateException} is thrown if there are further attempts
1133         * to operate on the builder after it has entered the built state.
1134         *
1135         * @return the built stream
1136         * @throws IllegalStateException if the builder has already transitioned to
1137         * the built state
1138         */
1139        Stream<T> build();
1140
1141    }
1142}
1143